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Abstract

Nonlinear optimization stems from calculus and becomes an independent subject due to
the proposition of Karush–Kuhn–Tucker optimality conditions. The ever-growing realm
of applications and the explosion in computing power is driving nonlinear optimization
research in new and exciting directions. In this article, I shall give a brief overview of non-
linear optimization, mainly on unconstrained optimization, constrained optimization, and
optimization with least constraint violation.
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1. Introduction

It is known that nonlinear optimization stems from calculus. Consider the uncon-
strained optimization problem

min
x2<n

f .x/; (1.1)

where f W <n ! < is smooth and its gradient g is available. The calculus invented by Newton
and Leibniz in the seventeenth century provided a necessary condition for a point x to be
the optimal solution of (1.1), which is rf .x/ D 0, i.e., the tangent line of f at x is hori-
zontal. For equality constrained optimization, the necessary optimality condition is that the
derivatives of the Lagrangian function with respect to the primal and dual variables are equal
to zero, which was exposed by Lagrange in the eighteenth century. Nonlinear optimization
became an independent subject when Karush [52] and Kuhn and Tucker [53] provided nec-
essary optimality conditions for general optimization subjected to equality and inequality
constraints,

min f .x/ (1.2)

such that h.x/ D 0; (1.3)

g.x/ � 0; (1.4)

where f W <n ! <, h W <n ! <mE , g W <n ! <mI are supposed to be twice continuously
differentiable functions. The proposition of the Fletcher–Reeves conjugate gradient method
[39] and the Davidon–Fletcher–Powell quasi-Newton method [33, 38] greatly promoted the
development of nonlinear optimization.

This article shall give a brief overview of nonlinear optimization, mainly on uncon-
strained optimization, constrained optimization, and optimization with least constraint vio-
lation.

2. Unconstrained optimization

The design and analysis of numerical methods for unconstrained optimization is
closely related to the unconstrained quadratic optimization

min
x2<n

q.x/ WD
1

2
xTAx � bT x; (2.1)

where b 2 <n and A 2 <n�n is symmetric and positive definite with eigenvalues 0 < �1 �

� � � � �n. Fundamental methods for unconstrained optimization include gradient methods,
conjugate gradient methods, quasi-Newton methods, Newton method, and derivative-free
methods. We focus on two classes of first-order methods, gradient methods, and conjugate
gradient methods, which are suitable for large-scale problems.

The gradient method can be dated back to Cauchy [9], and the first nonlinear con-
jugate gradient method is due to Fletcher and Reeves [39]. Driven by practical applications,
various variants of the methods have been proposed for convex optimization, nonsmooth
optimization, stochastic optimization, etc. For smooth optimization, the two classes of meth-
ods are significantly improved by asking their search directions to be close to the Newton or
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quasi-Newton direction in some sense. Typical examples of the conjugate gradient method
are the Dai–Yuan method [27], the Hager–Zhang method [46], and the Dai–Kou method [22].
For the gradient method, one milestone work is the Barzilai–Borwein (nonmonotone) gra-
dient method, while another significant work is the Yuan stepsize [87], which leads to the
proposition of the efficient Dai–Yuan (monotone) gradient method [30]. Interestingly enough,
Huang et al. [51] found that it is possible to equip the Barzilai–Borwein method with the two-
dimensional quadratic termination property.

2.1. Gradient methods
Gradient methods search along the negative gradient and are of the form

xkC1 D xk � ˛kgk ; (2.2)

where gk D rf .xk/ and ˛k > 0 is the stepsize. Different choices of the stepsize ˛k lead to
different gradient methods. The steepest descent (SD) method, which is due to Cauchy [9],
determines its stepsize by the exact line search, i.e.,

˛SD
k D arg min

˛>0
f .xk � ˛gk/: (2.3)

The SD method is shown to be Q-linearly convergent, but its performance is poor when
the problem is ill-conditioned [1]. Specifically, the SD method will asymptotically tend to
minimize the function in some two-dimensional subspace and produce zigzags [40]. If the
dimension is greater than one, the SD stepsize (2.3) always tends to be long, and some short-
ened SD methods are proposed in [30].

One milestone work on the gradient method is due to Barzilai and Borwein [3]. Its
basic idea is to ask the matrix ˛�1

k
I or ˛kI have a certain quasi-Newton property. Then

by minimizing ksk�1 � .˛�1
k
I /yk�1k or k.˛kI /sk�1 � yk�1k with respect to ˛k , where

sk�1 D xk � xk�1, yk�1 D gk � gk�1 and k � k is the two-norm, two stepsizes are derived
as

˛BB 1
k D

sT
k�1

sk�1

sT
k�1

yk�1

; ˛BB 2
k D

sT
k�1

yk�1

yT
k�1

yk�1

: (2.4)

The stepsizes ˛BB 1
k

and ˛BB 2
k

are called long and short Barzilai–Borwein (BB) stepsizes,
respectively, since ˛BB 1

k
� ˛BB 2

k
if sT

k�1
yk�1 > 0. Despite its heavy nonmonotone behavior,

the BB method performs significantly better than the SD method in practice; see, e.g., [36].
For unconstrained quadratic optimization, the BB method is proved to be R-superlinearly
convergent if the dimension is two [3]. For general dimension, the BB method is globally con-
vergent [73] and the convergence isR-linear [25]. An efficient extension of the BB method for
unconstrained optimization is given in [74] by incorporating the Grippo–Lampariello–Lucidi
(GLL) nonmonotone line search [45]. Interestingly enough, it is shown in [25] that the BB
stepsize can asymptotically be accepted by the GLL nonmonotone line search when the iter-
ate is close to the solution. This property is similar to the fact that the unit stepsize can
asymptotically be accepted by Newton or quasi-Newton methods using the Armijo or Wolfe
line search. Furthermore, efficient projected gradient methods based on BB-like methods
and applications can be found in [4,20,63,90], among many other references. The numerical
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efficiency of the BB method over the SD method has stimulated many studies on the gradient
method.

However, it is intriguing to provide theoretical evidence showing that the BB method
performs much better than the SD method for high-dimensional problems. One possible
angle is to relate the stepsize in the gradient method to the eigenvalues of the Hessian of the
function. To this aim, consider the unconstrained quadratic optimization problem (2.1). In
this case, by (2.1) and (2.2), we have that gkC1 D .I � ˛kA/gk for all k � 1. Then we see
that the gradient method with constant stepsizes (i.e., ˛k � ˛ for some ˛ > 0) is equivalent
to the shifted power method for computing some eigenvalue of the matrix A since

gkC1

kgkC1k
D

.I � ˛A/kg1

k.I � ˛A/kg1k
D

.A � ˛�1I /kg1

k.A � ˛�1I /kg1k
: (2.5)

For example, if ˛k �
1

2L
, where L is the gradient Lipschitz constant, which was one choice

in the early times [2], gkC1

kgkC1k
will tend to the eigenvector corresponding to the minimal

eigenvalue of A provided the initial gradient g1 has a nonzero component in this eigen-
vector. Another fact is the quadratic termination property of the gradient method, which was
exposed by Lai [54]. To see this, notice that gkC1 D

Qk
j D1.I � j̨A/g1 for k � 1. Then by the

Hamilton–Caley theorem, we have that gnC1 vanishes if the set of stepsizes ¹˛i W 1� i � nº

coincides with the set of inverse eigenvalues of A, ¹��1
i W 1 � i � nº. A natural corollary is

as follows.

Lemma 2.1. Consider the gradient method (2.2) for the unconstrained quadratic opti-
mization problem (2.1). Assume that the initial gradient g1 has nonzero components in
all eigenvectors of the matrix A. If the gradient method is R-superlinearly convergent,
then, for each eigenvalue �i .1 � i � n/ of A, there exists a subsequence ¹˛ki

º such that
limki !1 ˛ki

D ��1
i .

The above lemma provides us an insight about convergence properties of gradient
methods. From the proof of the R-superlinear convergence of the BB method in the two-
dimensional setting [3], it is easy to see that there do exist subsequences ¹˛k1

º and ¹˛k2
º

such that they converge to the two inverse eigenvalues of the Hessian, respectively. Dai and
Fletcher [19] observed this phenomenon for the BB method in the three-dimensional setting
as well and showed that the BB method is likely to beR-superlinearly convergent in this case.
It is also shown in [19] that the cyclic steepest descent method is likely to be R-superlinearly
convergent for n-dimensional convex quadratic functions provided that m �

nC1
2

, where m
is the cyclic time of the steepest descent stepsize.

Another significant addition to the gradient method is the Yuan stepsize [87], which
is such that, if the previous and later steps use SD stepsizes, the gradient method can give
the exact minimizer of a two-dimensional convex quadratic function. A variant of the Yuan
stepsize is given by Dai and Yuan [30] as

˛DY
k D

2

1

˛SD
k�1

C
1

˛SD
k

C

r�
1

˛SD
k�1

�
1

˛SD
k

�2

C
4kgkk2

.˛SD
k�1

kgk�1k/2

: (2.6)
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They also suggested the so-called Dai–Yuan gradient method (2.2) with

˛k D

8<:˛SD
k
; if mod(k,4) D 0; 1,

˛DY
k
; if mod(k,4) D 2; 3.

(2.7)

The Dai–Yuan gradient method is monotone since ˛DY
k

� ˛SD
k

. This is the first monotone
gradient method which can beat the BB nonmonotone gradient method for unconstrained
quadratic optimization.

A recent progress in the gradient method is provided by Huang et al. [51], who intro-
duced a new mechanism for the gradient method to achieve the two-dimensional quadratic
termination property. Given �1.k/; �2.k/ 2 ¹1; : : : ; kº and some suitable functions  1,  2,
 3,  4 satisfying  1.A/ 2.A/ D  3.A/ 4.A/, they suggested calculating the stepsize ˛k

by solving the following quadratic equation:

gT
�1.k/ 1.A/.I � ˛kA/gk � gT

�2.k/ 2.A/.I � ˛kA/gk

D gT
�1.k/ 3.A/.I � ˛kA/gk � gT

�2.k/ 4.A/.I � ˛kA/gk ; (2.8)

and proved that the gradient method using any stepsize obtained from (2.8) and ˛kC2 in the
form of .A�gkCi /T .A�gkCi /

.A�gkCi /T A.A�gkCi /
with i D 1 or 2 and � being some real number achieves the

two-dimensional quadratic termination property. Interestingly, the stepsize ˛DY
k

in (2.6) is a
solution of equation (2.8) corresponding to �1.k/ D k � 1, �2.k/ D k,  1.A/ D  4.A/ D

.I � ˛k�1A/
�1, and  2.A/ D  3.A/ D I .

To equip the BB method with the two-dimensional quadratic termination property,
Huang et al. [51] chose �1.k/ D k � 2, �2.k/ D k � 1,  1.A/ D .I � ˛k�2A/

�1,  2.A/ D

.I � ˛k�1A/
�1,  3.A/ D  1.A/ 2.A/, and  4.A/ D I . Then by (2.8), they obtained the

following novel stepsize:
˛HDL

k D
2

�2

�3
C

q�
�2

�3

�2
� 4�1

�3

; (2.9)

where
�1

�3

D
˛BB 2

k�1
� ˛BB 2

k

˛BB 2
k�1

˛BB 2
k

.˛BB 1
k�1

� ˛BB 1
k

/
;

�2

�3

D
˛BB 1

k�1
˛BB 2

k�1
� ˛BB 1

k
˛BB 2

k

˛BB 2
k�1

˛BB 2
k

.˛BB 1
k�1

� ˛BB 1
k

/
: (2.10)

It is observed in [51] that the use of the stepsize ˛HDL
k

can make both the BB1 and BB2
methods achieve the two-dimensional quadratic termination property. The computation of
˛HDL

k
only involves the BB stepsizes in the previous two iterations and does not require exact

line searches or the Hessian computation. Hence it can easily be extended for nonlinear
optimization.

Based on the new stepsize ˛HDL
k

and the general framework in [92], an efficient gra-
dient method for solving unconstrained optimization problem (2.1) is suggested in [51]. In
particular, the method uses ˛1 D ˛SD

1 , ˛2 D ˛BB 1
2 , and, for k � 3,

˛k D

8<: min
®
˛BB 2

k�1
; ˛BB 2

k
; ˛HDL

k

¯
; if ˛BB 2

k
=˛BB 1

k
< �k ,

˛BB 1
k

; otherwise,
(2.11)
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where �k > 0 is chosen in some way. The method (2.11) appears to be much better than
BB, Dai–Yuan, and some other recent gradient methods. With the projection technique, the
method (2.11) was also extended in [51] to unconstrained optimization, box-constrained opti-
mization, and singly linearly box-constrained optimization, and good numerical results were
obtained.

There are still many questions about the gradient method to be investigated. Is it
possible to provide more theoretical evidence showing the efficiency of the BB method for
high-dimensional functions? What is the best choice of the stepsize in the gradient method?
How to extend the existing efficient gradient methods to many other areas?

2.2. Conjugate gradient methods
Conjugate gradient methods are a class of important methods for solving (1.1). They

are of the form
xkC1 D xk C ˛kdk ; (2.12)

where ˛k is the stepsize obtained by a line search and dk is the search direction given by

dk D �gk C ˇkdk�1; (2.13)

except for d1 D �g1. The scalar ˇk is the so-called conjugate gradient parameter such that
the method (2.12)–(2.13) reduces to the linear conjugate gradient method if the objective
function is quadratic and the line search is exact.

For nonlinear functions, however, different formulae for the parameter ˇk result
in different conjugate gradient methods and their properties can be significantly different.
To distinguish the linear conjugate gradient method, sometimes we call the conjugate gra-
dient method for unconstrained optimization as the nonlinear conjugate gradient method.
The work of Fletcher and Reeves [39] not only opened the door to the nonlinear conju-
gate gradient field but also greatly stimulated the study of nonlinear optimization. Four
well-known formulae for ˇk are called the Fletcher–Reeves (FR) [39], Dai–Yuan (DY) [27],
Polak–Ribière–Polyak (PRP) [67,68], and Hestenes–Stiefel (HS) [50], which are given by

ˇFR
k D

kgkk
2

kgk�1k
2
; ˇDY

k D
kgkk

2

dT
k�1

yk�1

;

ˇPRP
k D

gT
k
yk�1

kgk�1k
2
; ˇHS

k D
gT

k
yk�1

dT
k�1

yk�1

;

(2.14)

respectively, where yk�1 D gk � gk�1 as before.
Since the exact line search is usually expensive and impractical, the strong Wolfe line

search is often considered in the early convergence analysis and numerical implementation
for nonlinear conjugate gradient methods. The strong Wolfe line search aims to find a stepsize
˛k > 0 satisfying

f .xk C ˛kdk/ � f .xk/C ı˛kg
T
k dk ; (2.15)ˇ̌

g.xk C ˛kdk/
T dk

ˇ̌
� ��gT

k dk ; (2.16)
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where 0< ı < � < 1. However, it was shown in [28] that even with strong Wolfe line searches,
none of the FR, PRP, and HS methods can ensure the descent property of the search direction
if the parameter � is not properly chosen. If a descent search direction is not produced, a
practical remedy is to restart the method along �gk . This may degrade the efficiency of the
method since the second-derivative information achieved along the previous search direction
is discarded.

It is known that quasi-Newton methods often use the standard Wolfe line search,
which aims to find a stepsize ˛k > 0 satisfying (2.15) and

g.xk C ˛kdk/
T dk � �gT

k dk ; (2.17)

where 0< ı < � < 1. Dai and Yuan [27] were able to establish the descent property and global
convergence of the DY method with the standard Wolfe line search under weak assumptions
on the objective function.

Assumption 2.1. (i) The level set L D ¹x 2 <n W f .x/ � f .x1/º is bounded, where x1 is
the starting point; (ii) f is continuously differentiable in some neighborhood of L and its
gradient is Lipschitz continuous.

Theorem 2.1 ([27]). Suppose that f satisfies Assumption 2.1. Consider the sequence ¹xkº

generated by the DY method (2.12)–(2.13) with ˇk D ˇDY
k

and the standard Wolfe line
search (2.15) and (2.17). Assume that kgkk ¤ 0 for all k. Then we have that gT

k
dk < 0

for all k. Furthermore, the DY method converges in the sense that lim infk!C1 kgkk D 0.

It is noted in [27] that the DY formula can be rewritten as ˇDY
k

D
gT

k
dk

gT
k�1

dk�1
. It is

remarkable that the DY method has a certain self-adjusting property that is independent
of the line search and the function convexity. The DY direction can also be used to restart
optimization methods while guaranteeing the global convergence of the method (see [28]).
Interestingly enough, Dai [16] provided another nonlinear conjugate gradient method which
can ensure the descent property of the search direction without any line searches.

The following theorems provide general convergence results for nonlinear conju-
gate gradient methods with the strong Wolfe line search and the standard Wolfe line search,
respectively. The results are very useful in the convergence analysis of various nonlinear
conjugate gradient methods.

Theorem 2.2 ([21]). Suppose that Assumption 2.1 holds. Consider any method of the form
(2.12)–(2.13) with dk satisfying gT

k
dk < 0 and with the strong Wolfe line search (2.15)

and (2.16). Then the method is globally convergent in the sense that lim infk!C1 kgkk D 0

if
P

k�1 kdkk
�2

D C1.

Theorem 2.3 ([17]). Suppose that Assumption 2.1 holds. Consider any method of the form
(2.12)–(2.13) with dk satisfying gT

k
dk < 0 and with the standard Wolfe line search (2.15)

and (2.17). Then the method is globally convergent in the sense that lim infk!C1 kgkk D 0

if the scalar ˇk is such that
P

k�1

Qk
j D2 ˇ

�2
j D C1:
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Powell [71] found that the PRP method can automatically generate a search direction
close to the steepest descent direction once a small step occurs, whereas the FR method
may produce many tiny steps continuously. This explains why the PRP method sometimes
performs much better than the FR method in practice. Nevertheless, Powell [71] showed that,
even with exact line searches, the PRP method can cycle indefinitely without approaching
a stationary point. To change this unbalanced state, Touati-Ahmed and Storey [79] proposed
the hybrid conjugate gradient method, where

ˇFRPRP
k D max

®
0;min

®
ˇPRP

k ; ˇFR
k

¯¯
: (2.18)

Gilbert and Nocedal [42] modified the PRP method by setting

ˇPRPC

k
D max

²
gT

k
yk�1

kgk�1k
2
; 0

³
: (2.19)

They established the global convergence results for the FRPRP and PRP+ methods, but found
that the two methods are not significantly more efficient than the PRP method itself. Never-
theless, Dai and Yuan [29] were able to extend the convergence theorem of the DY method,
Theorem 2.1, to the following hybrid conjugate gradient method:

ˇDYHS
k D max

®
0;min

®
ˇHS

k ; ˇDY
k

¯¯
; (2.20)

and found that the DYHS method with the standard Wolfe line search performs much better
than the PRP method using the strong Wolfe line search.

Since yk�1 D Ask�1 D ˛k�1Adk�1 in case of unconstrained quadratic optimiza-
tion, an equivalent expression of the conjugacy condition dT

k
Adk�1 D 0 is dT

k
yk�1 D 0. For

general functions, however, we have for quasi-Newton methods that dk D �B�1
k
gk , where

the approximation matrix Bk satisfies the quasi-Newton equation Bksk�1 D yk�1. This
hints us at the nonlinear conjugate gradient condition dT

k
yk�1 D .�B�1

k
gk/

T .Bksk�1/ D

�gT
k
sk�1. By introducing a scaling factor t , Dai and Liao [24] considered a nonlinear con-

jugacy condition dT
k
yk�1 D �tgT

k
sk�1 and proposed the following family for conjugate

gradient methods:
ˇDL

k .t/ D
gkyk�1

dT
k�1

yk�1

� t
gksk�1

dT
k�1

yk�1

: (2.21)

Although the descent property of the search direction is sufficient for establishing
the convergence results, efficient conjugate gradient methods have been proposed such that
the sufficient descent condition

gT
k dk � �ckgkk

2 (2.22)

holds for some constant c > 0 and all k � 1. Specifically, Hager and Zhang [46] proposed a
family of conjugate gradient methods, where

ˇHZ
kC1 D

gT
kC1

yk

dT
k
yk

� �k

kykk
2

dT
k
yk

gT
kC1

dk

dT
k
yk

; (2.23)

with �k > N� > 1
4
, and they preferred the choice �k D 2. By introducing a suitable truncation

of ˇk and the approximate Wolfe line search, they built a conjugate gradient software, called
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CG_DESCENT [47], which performs better than PRP+ of Gilbert and Nocedal. By observing
that the loss of orthogonality in the sequence of gradients caused by numerical error might
slow down the convergence of conjugate gradient methods, Hager and Zhang [48] updated
CG_ DESCENT to Version 6.8 by combining the limited memory technique.

By projecting the search direction of the self-scaling memoryless BFGS method,
which was proposed by Perry [66] and Shanno [77], into the one-dimensional manifold �k D

Span¹�gk C ˇdk�1º, Dai and Kou [22] proposed a family of conjugate gradient methods,
where

ˇk.�k/ D
gT

k
yk�1

dT
k�1

yk�1

�

²
�k�1 C

kyk�1k
2

sT
k�1

yk�1

�
sT

k�1
yk�1

ksk�1k
2

³
gT

k
sk�1

dT
k�1

yk�1

: (2.24)

Then by choosing �k�1 D
sT

k�1
yk�1

ksk�1k
2 , they recommended the formula

ˇDK
k D

gT
k
yk�1

dT
k�1

yk�1

�
kyk�1k

2

sT
k�1

yk�1

gT
k
sk�1

dT
k�1

yk�1

; (2.25)

which is such that the sufficient descent condition (2.22) holds with c D
3
4
. The software

CGOPT was then developed in [22] based on the Dai–Kou method and an improved Wolfe
line search. Furthermore, CGOPT was updated in [60] to Version 2.0, which consists of
standard CG iterations and subspace iterations and is a strong competitor of CG_DESCENT.

Despite significant progresses, we feel there is still much more room to seek for
the best nonlinear conjugate gradient algorithms. For example, Yuan and Stoer [88] first
presented the subspace minimization conjugate gradient method by determining the search
direction via the subproblem min¹gT

k
d C

1
2
dTBkd W d 2 Span¹gk ; dk�1ºº. Following this

line, Dai and Kou [23] approximated the term gT
k
Bkgk by 3

2
kyk�1k

2

sT
k�1

yk�1
kgkk2 and presented an

efficient Barzilai–Borwein conjugate gradient method.

3. Constrained optimization

An intuitive way to deal with constrained optimization problems is to transform
them into unconstrained optimization problems via penalty functions or indicator functions.
Nowadays, there are many classes of numerical methods and software for constrained opti-
mization; see, e.g., [65, 89]. Sequential quadratic programming methods and interior-point
methods are two classes of very efficient numerical methods for constrained optimization
among many others. In addition, augmented Lagrangian methods of multipliers also received
a lot of attention since they form the base of alternating direction method of multipliers (see
[5]), which can deal with large-scale structured problems. In this section, we shall briefly
review some of our recent contributions to the three classes of methods.

3.1. Sequential quadratic programming methods
The sequential quadratic programming (SQP) method, also called Wilson–Han–

Powell method, is one of the most effective methods for constrained optimization and can
be viewed as a natural extension of Newton and quasi-Newton methods. Its basic idea is
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to transform the original problem into a sequence of quadratic program (QP) subproblems.
After solving each QP subproblem, we wish the full SQP-step to be a superlinearly con-
vergent step; by combining some criterion, we evaluate whether to accept this full step and
introduce some remedy if necessary. Based on the used criterion, SQP methods can roughly
be classified into two categories. One is penalty-type methods, whose main feature is to
use some penalty function. The other is penalty-free methods, which do not use any penalty
parameters, e.g., filter methods [37], the methods without any penalty function or a filter [44].

However, two possible difficulties may arise in SQP methods. One is that the QP
subproblem may be inconsistent. The other is how to avoid the Maratos effect [61] since
the full SQP-step may lead to an increase in both the objective function and the constraint
violation even when the iteration is arbitrarily close to a regular minimizer.

Various techniques are available for dealing with inconsistency of the QP subprob-
lem. Early such works include the scaling technique by Powell [70] and the Sl1QP method
by Fletcher [35]. Spellucct [78] introduced some slack variables for dealing with inconsistent
subproblems. Liu and Yuan [58] provided a robust SQP method by solving an unconstrained
piecewise quadratic subproblem and a QP subproblem at each iteration. Fabien [34] solved
a relaxed, strictly convex, QP subproblem if the constraints are inconsistent.

For the Maratos effect, Chen et al. [13] gave the following formal definition.

Definition 3.1. Let x� and v.kc.x/k/ be a solution and a measurement of the constraint vio-
lation of (1.2)–(1.4), respectively. Given a sequence ¹xkº which converges to x� and a se-
quence of full SQP-steps ¹dkº, we say that the Maratos effect happens if (i) limk!C1 kxk C

dk � x�k=kxk � x�k D 0; (ii) f .xk C dk/ > f .xk/ and v.kc.xk C dk/k/ > v.kc.xk/k/.

When the Maratos effect happens, the full SQP-step may not be accepted since it
makes both the objective function and the constraint violation worse. In fact, in this case, we
see that the pair .kh.xk/k; f .xk// dominates the pair .kh.xk C dk/k, f .xk C dk// even if
xk C dk is much closer to x� than xk and hence xk C dk will not be accepted by the filter
method initially proposed by Fletcher and Leyffer [37]. This is also the case for many other
globally convergent penalty-type and penalty-free-type algorithms. For example, if l1 and
l1 exact penalty functions are used, the full trial step dk will be rejected as well since the
value f .x/C �kh.x/kp (� > 0, p D 1;1) becomes worse.

Several approaches have been proposed for avoiding the Maratos effect, including
nonmonotone line search strategies [11], second order correction step [41, 62], and the use
of differentiable exact penalty functions [72]. The computation of second-order correction
steps may be cumbersome, and the nonmonotone framework will complicate the algorithmic
implementation. Another approach of avoiding the Maratos effect is to utilize the Lagrangian
function value instead of the objective function value. Such an idea can be found in Ulbrich
[80], who proposed a trust-region filter-SQP method by introducing the Lagrangian function
value in the filter.

For efficiency evidence of using the Lagrangian function value in avoiding the
Maratos effect, Chen et al. [13] provided the following basic result (for simplicity, it is
assumed that mI D 0).
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Theorem 3.1. Suppose that .x�; ��/ is a KKT pair of problem (1.2)–(1.3), at which the
second-order sufficient conditions and the linear independence constraint qualification hold.
Assume that v.kh.x/k/ is a measurement of constraint violation of the problem, �.x/ is a
Lipschitz continuous multipliers function, and Pk.Bk � r2

xxL.xk ; �.xk///dk D o.kdkk/,
where ¹xkº converges to x�, Bk is the approximation of r2

xxL.xk ; �.xk// in the QP sub-
problem, Pk is an orthogonal projection matrix from Rn to the null space of AT

k
, and dk

is the full SQP-step. If v.kh.xk C dk/k/ > v.kh.xk/k/, then there must exist some constant
b0 > 0 such that L.xk C dk ; �.xk C dk// � L.xk ; �.xk// � b0kdkk2.

The above theorem indicates that, when the Maratos effect happens, there must be
a sufficient decrease in the Lagrangian function. Thus we see that the Lagrangian function
value can play an important role. In this case, we can prove that Fletcher’s differentiable
exact penalty function is decreasing as well.

Furthermore, Chen et al. [12] proposed a penalty-free trust-region method with the
Lagrangian function value without using feasibility restoration phase. Chen et al. [13] pre-
sented a line search penalty-free SQP method for equality constrained optimization with
the Lagrangian function value. Thus with the use of the Lagrangian function value, one
would expect SQP methods to control possible erratic behavior in a better manner and share
the rapid convergence of Newton-like methods. More researches are required on the use of
Lagrangian function value in SQP methods for general nonlinear optimization.

3.2. Interior-point methods
Interior-point methods have been among the most efficient methods for continuous

optimization, see, e.g., Ye [84], Byrd et al. [8], Vanderbei and Shanno [81], Wächter and
Biegler [83], Liu and Yuan [59], Curtis [15], and Gould et al. [43]. These methods are iterative
and require every iterate to be an interior point. The numerical efficiency and polynomial
computational complexity of interior-point methods for linear programming made a lot of
researchers to be interested again in interior-point methods for nonlinear optimization.

However, Wächter and Biegler [82] noticed that many line-search interior-point
methods for nonlinear optimization may fail to find a feasible point of a single-variable
nonlinear and nonconvex problem, even though the problem is well posed. In addition, the
algorithmic framework of interior-point methods for nonlinear optimization often includes
an inner-loop and an outer-loop, in which the inner-loop finds an approximate solution of
a logarithmic barrier subproblem and the outer-loop focuses on the update of the barrier
parameter. This framework is distinct from that of interior-point methods for linear pro-
gramming (which reduces the barrier parameter at each iteration) and is believed to be
ineffective sometimes.

Below we shall describe a primal–dual interior-point relaxation method with nice
properties. The method was recently introduced in [56].

In order to avoid requiring feasible interior-point iterates, traditional interior-point
methods for problem (1.2)–(1.4) introduce slack variables for inequality constraints and solve
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the logarithmic barrier subproblem

min f .x/ � �

mIX
iD1

ln zi (3.1)

such that h.x/ D 0; (3.2)

g.x/ � z D 0; (3.3)

where � > 0 is a barrier parameter and zi > 0 is the i th component of z.
Noting that the subproblem (3.1)–(3.3) is an equality constrained optimization prob-

lem, we reformulate it as another constrained optimization by using the Hestenes–Powell
augmented Lagrangian:

min
x;z

f .x/ � �

mIX
iD1

ln zi � vT
�
g.x/ � z

�
C
1

2
�
�
g.x/ � z

�2 (3.4)

such that h.x/ D 0; (3.5)

where v 2 <mI is an estimate of the Lagrange multipliers associated with the original
inequality constraints, � > 0 is a barrier parameter, and � > 0 is a penalty parameter. Since
the objective function in (3.4) is strictly convex with respect to z, the unique minimizer of z
can be derived with the expression

zi D
1

2�

�q�
vi � �gi .x/

�2
C 4�� �

�
vi � �gi .x/

��
; i D 1; : : : ; mI : (3.6)

The preceding expression depends on the primal variable vector x and the dual variable
vector v, thus can be taken as a function of .x; v/. For simplicity, corresponding to (3.6),
denote

yi D
1

2�

�q�
vi � �gi .x/

�2
C 4��C

�
vi � �gi .x/

��
; i D 1; : : : ; mI : (3.7)

Substituting (3.6) for z in the objective function in (3.4) and maximizing the derived function
with respect to v, since it is a strictly concave function of v, the subproblem (3.4)–(3.5) can
be reformulated as

min
x

max
v

f .x/ � �

mIX
iD1

ln zi C
1

2
�kyk

2
�
1

2�
kvk

2 (3.8)

such that h.x/ D 0; (3.9)

where both z and y are real-valued functions of x 2 <n and v 2 <mI defined by (3.6)
and (3.7).

Although the subproblem (3.8)–(3.9) is originated from the logarithmic barrier sub-
problem (3.1)–(3.3), it is different from the latter in that zi is not a primal variable but a
positive function of primal and dual variables. Thus, the requirement that the primal and
dual iterates are interior-points is relieved. Our primal–dual interior-point relaxation method
is proposed to solve the subproblem (3.8)–(3.9) approximately. In particular, the barrier and
penalty parameters are updated adaptively during the iterative process.
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We firstly describe the relation between the logarithmic barrier subproblem (3.1)–
(3.3) and its augmented Lagrangian reformulation (3.8)–(3.9).

Theorem 3.2 ([56]). Suppose�> 0 and � > 0. Then .x�; v�/ 2 <n � <mI is a local solution
of the constrained minimax problem (3.8)–(3.9) if and only if x� is a local solution of the
logarithmic-barrier subproblem (3.1)–(3.3) and gi .x

�/ > 0, v�
i D �=gi .x

�/ for all i D

1; : : : ; mI .

Then we show the relation between the original problem (1.2)–(1.4) and the aug-
mented Lagrangian reformulation (3.8)–(3.9).

Theorem 3.3 ([56]). Given � > 0. Let z be defined by (3.6). The point .x�; u�; v�/ is a KKT
triple of the original problem (1.2)–(1.4) if and only if .x�; u�; v�/ and �� satisfy the system

� D 0; (3.10)

rf .x/ � rh.x/u � rg.x/v D 0; (3.11)

h.x/ D 0; (3.12)

g.x/ � z D 0: (3.13)

It should be noted that equations (3.11)–(3.13) are the KKT conditions of the sub-
problem (3.8)–(3.9). Moreover, for all � > 0 and i D 1; : : : ; mI , both zi and yi are twice
continuously differentiable with respect to x and v. Thus the subproblem (3.8)–(3.9) can
be thought as a smoothing problem of the original problem (1.2)–(1.4) in the sense that the
system (3.11)–(3.13) is a smoothing system of the KKT conditions of the original prob-
lem. Letting the merit function �.�;�/.x; u; v/ be the square of l2 residuals of the system
(3.11)–(3.13), the preceding system (3.10)–(3.13) can be further reformulated as the system

�C �.�;�/.x; u; v/ D 0; (3.14)

rf .x/ � rh.x/u � rg.x/v D 0; (3.15)

h.x/ D 0; (3.16)

g.x/ � z D 0; (3.17)

where  2 .0; 1/ is a scalar. The two systems (3.10)–(3.13) and (3.14)–(3.17) are equivalent,
but the connection between the parameter� and the KKT residual �.�;�/.x;u;v/ is enhanced
in (3.14) which requires that � vanishes with �.�;�/.x; u; v/.

Then by sequentially solving the linearized system of the system (3.14)–(3.17) and
using the merit function �.�;�/.x; u; v/, an efficient primal–dual interior-point relaxation
method was provided in [55]. Under suitable assumptions, the new method is proved to have
strong global convergence and rapid local convergence [55,56]. In particular, [26] shows that
some variant of this method is capable of rapidly detecting the infeasibility of nonlinear
optimization. Numerical experiments demonstrate that the new method not only is efficient
for well-posed feasible problems, but also is applicable for some feasible problems without
LICQ or MFCQ and some infeasible problems.

The new method is robust in the following three aspects. Firstly, the new method
does not require any primal or dual iterate to be an interior-point but prompts the iterate to
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be an interior-point, which is quite different from most of the globally convergent interior-
point methods in the literature. Secondly, the new method uses a single-loop framework and
updates the barrier parameter adaptively, which is similar to that of interior-point methods for
linear programming. Thirdly, the new method has strong global convergence and is capable
of rapidly detecting the infeasibility.

For convex and linear programming, our primal–dual interior point relaxation
method provides an intermediate approach between the simplex method and the interior-
point method. In addition, we admit the components of g.x/ and v to be zero during the
iterative process and thus � can be zero when the solution is obtained. Based on these obser-
vations, we may expect our relaxation method to give a solution with high accuracy and
to avoid the ill-conditioning phenomenon of interior-point methods, and improve the per-
formance of interior-point methods for large scale problems. Some future topics include its
extension for nonlinear semidefinite programming and its complexity when applied for linear
programming. An efficient extension of the method has been given for convex quadratic pro-
gramming [91]. More researches and software-building are expected to go along this line.

3.3. Augmented Lagrangian method of multipliers
The augmented Lagrangian method of multipliers (ALM) was initially proposed

by Hestenes [49] and Powell [69] for solving nonlinear optimization with only equality con-
straints. The ALM minimizes the Hestenes–Powell augmented Lagrangian approximately
and circularly with update of multipliers and has been attracting extensive attention in the
community. It was generalized by Rockafellar [76] to solve optimization problems with
inequality constraints. Many ALMs have been proposed for various optimization problems.

Consider the general nonlinear optimization problem (1.2)–(1.4). By introducing
some slack variables zi .i D 1; : : : ;mI / for the inequality constraints, the problem can equiv-
alently be transformed to that with general equality constraints and nonnegative constraints

min f .x/ (3.18)

such that h.x/ D 0; (3.19)

g.x/ � z D 0; (3.20)

z � 0: (3.21)

Using the augmented Lagrangian on equality constraints, problem (3.18)–(3.21) is reformu-
lated as a nonlinear program with only nonnegative constraints:

min
x;z

f .x/ � uT h.x/ � vT
�
g.x/ � z

�
C
1

2
�
�h.x/2

C
g.x/ � z

2�
(3.22)

such that z � 0; (3.23)

where u 2 <mE and v 2 <mI are the estimates of Lagrange multipliers and � > 0 is the
penalty parameter. Thanks to the strict convexity of the objective function with respect to z,
we may explicitly get the optimal z, yielding an equivalent unconstrained optimization sub-
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problem of (3.22)–(3.23),

min
x

f .x/ � uT h.x/C
1

2
�
h.x/2

C

mIX
iD1

�
�
gi .x/; vi I �

�
; (3.24)

where �.gi .x/; vi I �/ equals to �vigi .x/ C
1
2
�gi .x/

2 if gi .x/ � vi=� and �
1
2
v2

i =� oth-
erwise. Unfortunately, the function � in (3.24) is in general discontinuous in the second
derivative with respect to x. Some other unconstrained reformulation is based on the opti-
mization (3.4)–(3.5) in the form

min
x;z

f .x/ � �

mIX
iD1

ln zi � uT h.x/C
1

2
�
h.x/2

� vT
�
g.x/ � z

�
C
1

2
�
�
g.x/ � z

�2
;

(3.25)
where both x and z are primal variables, u and v are dual estimates, and z should be an
interior-point.

Originated from solving the augmented Lagrangian reformulation of problem (3.8)–
(3.9), the new ALM, proposed by Liu et al. [57], solves the following problem approximately
and circularly with update of multipliers u and v:

min
x

f .x/ � uT h.x/C
1

2
�
h.x/2

C

mIX
iD1

 
�
gi .x/; vi I�; �

�
; (3.26)

where  .gi .x/; vi I�; �/ D �� ln zi C
1
2
�y2

i �
1

2�
v2

i and zi and yi are defined by (3.6) and
(3.7). A detailed description of the new ALM is given in Algorithm 1. It is a generalization of
the classical Hestenes–Powell augmented Lagrangian and a combination of the augmented
Lagrangian and the interior-point technique.

Algorithm 1: A new ALM for problem (1.2)–(1.4) [57]

1 Given .x0; u0; v0/, and �0, �0. Let k WD 0.

2 while �k > � or �.�k ;�k/.xk ; uk ; vk/ > � do

3 Compute xkC1 to be an approximate solution of problem (3.26) with the
initial point xk .

4 Update uk by ukC1 D uk � �kh.xk/.

5 Update vk by vkC1 D �ky.xkC1; vk I�k ; �k/.

6 Update �kC1 � 2�k if kz.xkC1; vkC1I�k ; �k/ � c.xkC1/k is not small.

7 Update �kC1 � 0:5�k if kz.xkC1; vkC1I�k ; �k/ � c.xkC1/k is small.

8 Let k WD k C 1.
9 end

Liu et al. [57] proved that the new ALM is of strong global convergence, rapid infea-
sibility detection, and shares the same convergence rate to the KKT point as the Hestenes–
Powell augmented Lagrangian for optimization with equality constraints.
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Although the subproblem (3.26) is similar to the augmented Lagrangian counter-
part (3.24) and the interior-point counterpart (3.25) in appearance that all of them are uncon-
strained optimization and first-order smooth, but it is essentially distinct from the latter two
subproblems in the following aspects.

Firstly, the function  in (3.26) has one more parameter � than � in (3.24) and is
always twice continuously differentiable with respect to x provided g is twice continuously
differentiable and v holds fixed, while � in (3.24) has discontinuous second derivative with
respect to x. The problem (3.25) has the same property with (3.26). Secondly, the subprob-
lems (3.24) and (3.26) are convex if the original problem (1.2)–(1.4) is convex, while the
subproblem (3.25) can be nonconvex even though the original problem is convex. Thirdly,
unlike subproblem (3.25), the subproblems (3.24) and (3.26) do not require any primal or
dual variable to be positive. Moreover,  .gi .x/; vi I�; �/ is well defined for every x 2 <n

and v 2 <mI , while (3.25) requests z > 0 and v > 0.
To summarize, the new ALM can deal with optimization problems with inequality

constraints and shares the same convergence rate to the KKT point as the Hestenes–Powell
augmented Lagrangian for optimization problems with equality constraints. As the new
ALM has nice properties, more researches are expected along this line.

4. Optimization with least constraint violation

The theory and algorithms for constrained optimization usually assume the fea-
sibility of the optimization problem. If the constraints are inconsistent, several numerical
algorithms have been proposed to find infeasible stationary points, which have nothing to do
with the objective function; see, e.g., Byrd et al. [7], Burke et al. [6], and Dai et al. [26]. How-
ever, there are important optimization problems, which may be either feasible or infeasible
and whose objective function is wished to be minimized with the least constraint violation
even if they are infeasible. A typical example comes from rocket trajectory optimal control,
where the fuel is minimized with the aim of landing at a target point and subjected to other
constraints. If landing at the target is not possible, we might wish to minimize the distance
between the real landing point and the target and thereafter optimize the required fuel. Hence
we are led to optimization problems with least constraint violation.

For optimization with possible inconsistent constraints, we prove that the minimiza-
tion problem with least constraint violation is equivalent to a Lipschitz equality constrained
optimization problem. To this aim, consider the nonlinear optimization problem

min f .x/

such that Ax D b;

gi .x/ � 0; i D 1; : : : ; p;

(4.1)
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where f W <n ! < is smooth and gi .i D 1; : : : ; p/ are differentiable concave functions. In
this case, the optimization problem with the least constraint violation can be expressed as

min f .x/

such that AT .Ax � b/C Jg.x/T
�
g.x/

�
�

D 0:
(4.2)

Define H.x; y/ D ATA �
Pp

j D1 yj r2gj .x/. For y� D Œ�g.x�/�C and z� D Œg.x�/�C,
define ˛� D ¹i W y�

i > 0º, ˇ� D ¹i W y�
i D z�

i D 0º, � D ¹i W z�
i > 0º. Then we are

able to give an elegant necessary optimality condition from the classical optimality theory
of Lipschitz continuous optimization.

Theorem 4.1 ([31]). Let .x�; y�/ be a local minimizer of problem (4.2). Suppose that the
matrixH.x�; y�/C Jg˛�.x�/T Jg˛�.x�/ is positive definite. Then there exist �� 2 <n and
Œvb�ˇ� 2 <jˇ�j satisfying Œvb�i 2 Œ0; 1�, i 2 ˇ� such that

rf .x�/C
�
H.x�; y�/C Jg˛�.x�/T Jg˛�.x�/

C Jgˇ�.x�/T Diag
�
Œvb�ˇ�

�
Jgˇ�.x�/

�
��

D 0: (4.3)
Dai and Zhang [31] found that the penalty method can be used for solving opti-

mization problems with least constraint violation. Chiche and Gilbert [14] proved that the
augmented Lagrangian method of multipliers (ALM) can deal with an infeasible convex
quadratic optimization problem. Is the ALM still valid for general convex optimization with
the least constraint violation?

To this aim, consider the following convex constrained optimization problem:

.P/
min f .x/

such that g.x/ 2 K;
(4.4)

where f W <n ! <, g W <n ! Y, K � Y is a nonempty closed convex set, and Y is a finite-
dimensional Hilbert space. We analyze the dual of the problem with the least constraint
violation. By introducing a vector y 2 Y, problem (4.4) is equivalently expressed as

min f .x/

such that g.x/ D y;

y 2 K:

(4.5)

For a given s 2 Y, the shifted problem is defined as

P.s/
min f .x/

such that g.x/C s 2 K:
(4.6)

Here we call s a shift. The set of feasible shifts, denoted as � , is defined by

� WD
®
s 2 Y W there exists some x 2 <

n such that g.x/C s 2 K
¯
: (4.7)

Define the smallest norm shift by Ns D arg min¹
1
2
ksk2 W s 2 �º. If � is closed, then Ns can be

achieved, i.e., Ns 2 � . In this case, the optimization problem with the least constraint violation
is expressed as follows:

P.Ns/
min f .x/

such that g.x/C Ns 2 K:
(4.8)
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Now we shall present the properties of the ALM for problem (4.5), which was pro-
vided by Dai and Zhang [32]. The Lagrangian of problem (4.5), denoted by l , is defined by
l.x; y; �/ D f .x/C �T .g.x/ � y/. The augmented Lagrangian function of problem (4.5),
denoted by lr , is defined by

lr .x; y; �/ D f .x/C �T
�
g.x/ � y

�
C
r

2

g.x/ � y
2
: (4.9)

The dual function � W Y ! < associated with problem (4.5) is

�.�/ WD � inf
x2<n;y2K

l.x; y; �/: (4.10)

Denote by D and D.s/ the conjugate dual problems of P and P.s/, respectively. Then prob-
lems D and D.s/ are expressed as follows:

.D/ max
�

�
��.�/

�
;

�
D.s/

�
max

�

�
sT � � �.�/

�
: (4.11)

The following proposition reveals that the solution set of the dual problem, if nonempty, is
unbounded when Ns ¤ 0.

Proposition 4.1 ([32]). Assume that Ns ¤ 0, val P.Ns/ 2 <, � is lower semicontinuous at Ns and
Sol D.Ns/ ¤ ;. Then Sol D.Ns/ is unbounded with �Ns 2 ŒSol D.Ns/�1.

For the sequence ¹.xk ; yk ; �k/º generated by the ALM for solving problem (4.5),
defining sk D yk � g.xk/, we are able to prove the following theorem.

Theorem 4.2 ([32]). Assume that Ns ¤ 0, val P.Ns/ 2 <, � is lower semicontinuous at Ns and
Sol D.Ns/ ¤ ;. Assume also that ¹rkº has a positive lower bound and ¹.xk ; yk/º has an
accumulation point. Then we have that (i) sk ! Ns; (ii) ¹�kº diverges; (iii) for every " > 0,
there exists an index k large enough such that .xk ; yk/ satisfies "-approximate optimality
conditions of problem P.Ns/ in terms of the augmented Lagrangian.

The above theorem shows that the ALM can deal with convex optimization with
least constraint violation. Studies on the theory and algorithms for optimization with least
constraint violation are clearly required.

5. Some discussions

Due to limited space, this article only reviewed some numerical methods for general
nonlinear optimization. An early good review on unconstrained optimization is given by
Nocedal [64], where two open questions about quasi-Newton methods were summarized.
One is whether the DFP method with the Wolfe line search converges for uniformly convex
functions. The other is whether the BFGS method with the Wolfe line search converges for
general nonlinear functions. A negative answer of the second open question has been known
(see, e.g., Dai [18]). Although Yuan [86] made a significant progress on the first open question,
we do not know its answer, yet. The infimum of the Q-order of the convergence of quasi-
Newton methods is only one [85]. The work of Rodomanov and Nesterov [75] stimulated
research interests on this topic again.
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Previous studies for constrained optimization usually assumed the feasibility of the
optimization problem. This article described optimality conditions for optimization with
least constraint violation and the ability of the ALM method to deal with such a problem.
Independently of the work [31], Censor et al. [10] proposed a data-compatibility approach for
the problem and presented some theoretical analysis. However, more researches are clearly
required along this line.

The development of nonlinear optimization influences many research directions in
optimization such as matrix optimization, sparse optimization, and nonsmooth optimiza-
tion. There is still much to do in extending nonlinear optimization methods for minimax
optimization, which arises from both modern machine learning and tradition research areas.
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