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Abstract

In recent years, important progresses have been made in the control theory for stochastic
distributed parameter control systems (SDPSs for short). However, the theory is far from
being complete. The primary difficulty is that many effective tools and methods for deter-
ministic distributed parameter control systems and stochastic finite-dimensional control
systems do not work anymore for SDPSs. One has to develop new mathematical tools,
such as stochastic transposition method and stochastic Carleman estimate, even for some
very simple SDPSs. The objectives of this paper are to provide some new results, to show
some new phenomena, to explain the new difficulties, and to present some new methods
for the control theory of SDPSs. We mainly focus on our works for the controllability for
stochastic hyperbolic equations, and the Pontryagin-type maximum principle for controlled
stochastic evolution equations. At last, a number of open questions and future directions of
research are given.
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1. Introduction

Control theory was founded by N. Wiener in 1948. It is an interdiscipline among
mathematics, engineering, and computer science. The early works in this field were mainly
concerned with deterministic finite-dimensional control systems. Motivated by applica-
tions, numerous mathematicians and engineers put great effort to study control theory for
more complex systems, such as distributed parameter control systems (typically governed
by partial differential equations), stochastic finite-dimensional control systems (governed
by stochastic differential equations), and SDPSs (typically governed by stochastic partial
differential equations, SPDEs for short). These studies provide a rich source of complex
mathematical problems, which have fundamental impact on the development of many areas
in mathematics.

It is very surprising that the control theory for SDPSs is still in its infancy though
it has been studied for around 60 years. Compared with other directions in mathematical
control theory (including control theory for deterministic and stochastic finite-dimensional
systems and that for distributed parameter systems), many aspects of control theory for
SDPSs are much less understood or even still unknown. Nevertheless, one cannot, by no
means, ignore its importance. On the one hand, the world is full of uncertainties. They enter
the system through noise in sensing/actuation, external disturbances affecting the underly-
ing system, and uncertain dynamics in the system (parameter errors, unmodeled effects, etc.).
For lots of significant physical and biological systems, these uncertainties cannot be ignored,
and the systems should be governed by SPDEs (e.g., [19]). This leads to a major requirement
for the study of the control theory of SDPSs (e.g., [11, 21, 41]). On the other hand, control
theory for deterministic finite-dimensional control systems is relatively mature now, and
there is a huge list of publications for distributed parameter control systems and stochas-
tic finite-dimensional control systems. The study of SDPSs is a natural development of the
mathematical control theory. Then, what slows the pace of the control theory of SDPSs?
In my opinion, it lies in the fact that the complexity of SDPSs introduces extreme difficul-
ties. Firstly, the formulation of the control problems for SDPSs may differ from those for
distributed parameter control systems or stochastic finite-dimensional control systems. Sec-
ondly, many powerful methods and tools developed for the latter two systems mentioned
above cannot work for SDPSs. Thirdly, people know very little about SPDEs although much
progress has been made in recent years. As a result, new notions and mathematical tools
are required, even for some very simple SDPSs. We will demonstrate this by illustrative
examples in Sections 2 and 3.

The most fundamental problem in control theory is to modify the behavior of the
system by means of suitable “control” actions in an “optimal” way. This leads to the for-
mation of controllability and optimal control problems. Roughly speaking, controllability
involves finding one way to steer the state of the system to a desired target from a given
starting point. Optimal control concerns finding the “best way,” according to a given cost
criterion, to achieve the desired goal. In this paper, we mainly focus on some recent progress
on these two topics for SDPSs. We do not attempt to cover the whole field of these topics,

5315 Control theory of SDPSs



which is virtually hopeless. Rather, with admitted bias, we choose subjects that are under-
going rapid change and require new approaches to meet the challenges and opportunities.
No attempt will be made to provide an exhaustive list of all the papers in the corresponding
topics, which would only tend to make the narrative very disjoint.

Although we will deal with SDPSs, it is helpful to introduce some fundamental ideas
in a simpler setting, i.e., for finite-dimensional deterministic control systems. It can also help
readers see the essential differences between the deterministic and stochastic problems.

Let T > 0. Consider the following control system:8<:yt .t/ D Ay.t/C Bu.t/; a.e. t 2 Œ0; T �;

y.0/ D y0;
(1.1)

whereA 2 Rn�n, B 2 Rn�m (n;m 2 N), y is the state, and u 2 L2.0; T I Rm/ is the control.

Definition 1.1. The control system (1.1) is called exactly controllable at time T if for any
y0; y1 2 Rn, there is a control u 2 L2.0; T I Rm/ such that the corresponding state y to (1.1)
satisfies y.T / D y1.

Remark 1.1. Definition 1.1 can be easily extended to more general control systems, for
which the requirement y.T / D y1 may be too restrictive and has to be relaxed. This leads
to the notions of approximate/null/partial controllability, and so on.

The exact controllability problem of (1.1) can be regarded as a two-point boundary
value problem. However, it is clearly ill-posed and cannot be solved by the classical well-
posedness theory of ODEs. To study it, people introduce the adjoint equation of (1.1):18<: zt .t/ D �A>z.t/; t 2 Œ0; T �;

z.T / D zT 2 Rn;
(1.2)

and prove the following result:

Theorem 1.1. The system (1.1) is exactly controllable at time T if and only if solutions
to (1.2) satisfy

jzT j
2
Rn � C

Z T

0

ˇ̌
B>z.t/

ˇ̌2
Rmdt; 8zT 2 Rn: (1.3)

Here and henceforth, unless otherwise stated, we shall write C for a generic positive
constant, which may vary from one place to another.

Remark 1.2. The inequality (1.3) is called an observability estimate for (1.2). Roughly
speaking, it concerns whether the solution of (1.3) can be fully determined from the observa-
tion B>z.t/, t 2 Œ0; T �. Usually, B> is not of full row rank. Hence, one cannot solve for zT

from B>zT directly. In such a case, we do our observation on a time interval Œ0; T �. Besides
the connection with controllability, observability has its own interest in control theory.

1 For any matrix D, denote by D> the transpose of D.
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Remark 1.3. Whether inequality (1.3) holds or not depends on A and B , where A decides
the type of the control system and B reflects the way we control the system. A sufficient and
necessary condition for (1.3) is that .A;B/ fulfills the Kalman rank condition (e.g., [18]).

By Theorem 1.1, the controllability problem of (1.1) is reduced to an a priori esti-
mate of its adjoint equation. This idea is greatly extended to different kinds of control sys-
tems. Most of the controllability results for linear control systems are proved by establishing
suitable observability estimates for their adjoint equations (e.g., [16,21,40,49,50]). However,
it is much more complicated to study the controllability problems for SDPSs. Indeed, as we
will explain in Section 2, we have to handle the observability for backward SPDEs. More-
over, since one may put controls on both drift and diffusion terms in SDPSs (as we shall see
in Section 2, sometimes it is necessary to introduce controls in such a way), the controls will
affect each other. Further, compared with distributed parameter control systems, some new
and unexpected phenomena are found for controllability problems of SDPSs:

(1) One may need stronger conditions to get the approximate controllability than
the null controllability for SDPSs (e.g., [26]).

(2) Two controls are needed to get the exact controllability of stochastic Schrödinger
equations and stochastic transport equations (e.g., [27,29]).

(3) The approximate/null controllability may be sensitive with respect to small per-
turbations of lower order terms (e.g., [8,23]).

(4) To get the exact controllability, the control may be very irregular (e.g., [31]).

(5) The reachable set is very “small” if there is no control in the diffusion term (e.g.,
[47]).

(6) A stochastic hyperbolic equation is not exactly controllable with controls acting
on the whole domain where the equation evolves on (e.g., [37]).

Generally speaking, the controllability properties for different SDPSs are drastically
different. Consequently, when studying controllability problems of SDPSs, we should con-
sider concrete models of SDPSs. There are two prototypical equations needed to be under-
stood first: the stochastic hyperbolic equation and the stochastic parabolic equation. Due to
the limitation of space, we will focus on the former which possesses sufficient complexity to
permit exposition of a wide variety of interesting questions and differs from the controlla-
bility of deterministic hyperbolic equations essentially. Readers are referred to [23,26,40,45]

and the references therein for controllability of the latter equation.
Next, we present a typical optimal control problem. Fix a suitable function

f W Œ0; T � � Rn � Rm ! Rn and a nonempty subset U of Rm. Let

U
�
D
®
u W Œ0; T � ! U j u is Lebesgue measurable

¯
:
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Consider the following control system:8<:yt .t/ D f
�
t; y.t/; u.t/

�
; a.e. t 2 Œ0; T �;

y.0/ D y0;
(1.4)

with a cost functional

J.u/ D

Z T

0

g
�
t; y.t/; u.t/

�
dt C h

�
y.T /

�
; u.�/ 2 U: (1.5)

Here y0 2 Rn, y is the state, and u is the control, valued in Rn and U , respectively; g and
h are suitable functions. The optimal control problem is as follows:

Problem (DOP). Find a Nu 2 U such that

J. Nu/ D inf
u2U

J.u/: (1.6)

Any control Nu 2 U satisfying (1.6) is called an optimal control, and the corresponding state,
denoted by Ny, is called an optimal state, and . Ny; Nu/ is called an optimal pair.

Problem (DOP) can be regarded as an infinite-dimensional optimization problem.
A principal approach to solve it is to derive necessary conditions satisfied by optimal solu-
tions. Nevertheless, since U may be quite general, the classical variation technique cannot
be applied to Problem (DOP) directly. In [43], L. S. Pontryagin’s group employed the spike
variation to derive the so-called Pontryagin’s Maximum Principle, which states a necessary
condition that any optimal pair must satisfy:

Theorem 1.2. Let . Ny; Nu/ be an optimal pair for Problem (DOP). Then, for a.e. t 2 Œ0; T �,

H
�
t; Ny.t/; Nu.t/; z.t/

�
D max

u2U
H
�
t; Ny.t/; u; z.t/

�
; (1.7)

where z W Œ0; T � ! Rn solves8<: zt .t/ D �fy

�
t; Ny.t/; Nu.t/

�>
z.t/C gy

�
t; Ny.t/; Nu.t/

�
; a.e. t 2 Œ0; T �;

z.T / D �hy

�
Ny.T /

� (1.8)

and

H.t; y; u; p/
�
D
˝
p; f .t; y; u/

˛
Rn � g.t; y; u/; .t; y; u; p/ 2 Œ0; T � � Rn

� U � Rn:

The significance of Theorem 1.2 lies in that the infinite-dimensional optimization
problem (1.6) is reduced to the finite-dimensional optimization problem (1.7) (in the point-
wise sense). Particularly, in many cases, U is a finite set and (1.7) itself allows people to
construct the optimal control.

Compared with Problem (DOP), there are new essential difficulties in establishing
Pontryagin-type Maximum Principle for optimal control problems of SDPSs. The primary
one is the well-posedness of the adjoint equation (a generalization of (1.8)), which is an
operator-valued backward stochastic evolution equation. There is no suitable stochastic inte-
gration theory for general operator-valued stochastic processes. Hence, that equation cannot
be understood as a stochastic integral equation and does not admit a mild or a weak solution.

5318 Q. Lü



To overcome this difficulty, we introduce a new notion, i.e., relaxed transposition solution
and employ the stochastic transposition method to prove the well-posedness of that equation.
More details are provided in Section 3.

In this paper, we consider control problems for SDPSs governed by Itô-type SPDEs.
The system is completely observable (meaning that the controller is able to observe the
system state completely) and the noise is a one-dimensional standard Brownian motion. For
the optimal control problem, the cost functional is an integral over a deterministic time inter-
val. The reasons for these settings are that we would like to show readers some fundamental
structure and properties of control problems for SDPSs in a clean and clear way, and avoid
technicalities caused by more complicated models.

The rest of this paper consists of three parts. The first (resp. second) one is devoted
to controllability (resp. optimal control) problems for SDPSs. At last, in the third part, we
provide some open problems for control theory of SDPSs.

2. Exact controllability of stochastic hyperbolic

equations

For the readers’ convenience, we first recall some basic notations. Let T > 0 and
.�;F ;F;P / (with F D ¹Ft ºt�0 being a filtration) be a complete filtered probability space.
Denote by F the progressive � -field (in Œ0; T � � �) with respect to F. Let X be a Banach
space. For any p; q 2 Œ1;1/, write Lp

Ft
.�IX/ 4

D Lp.�;Ft ;P IX/ (t 2 Œ0; T �), and define

L
q
F

�
0; T ILp.�IX/

�
�
D

´
' W .0; T / �� ! X j '.�/ is F-adapted and

Z T

0

�
E
ˇ̌
'.t/

ˇ̌p
X

� q
p dt < 1

µ
:

Similarly, for 1 � p < 1, we may also define L1
F .0; T ILp.�IX//, Lp

F .0; T IL1.�IX//,
and L1

F .0; T IL1.�I X//. In the sequel, we shall simply denote Lp
F .�ILp.0; T I X/

�
�

L
p
F

�
0; T ILp.�IX// by Lp

F .0; T IX/. For any p 2 Œ1;1/, set

CF

�
Œ0; T �ILp.�IX/

� 4
D
®
' W Œ0; T � �� ! X j ' is F-adapted and

' W Œ0; T � ! L
p

FT
.�IX/ is continuous

¯
:

Similarly, for any k 2 N, one can define the Banach space C k
F .Œ0; T �IL

p.�; X//. Also,
we writeDF .Œ0; T �IL

p.�IX// for the Banach space of all X -valued, F-adapted, stochastic
processes X which are càdlàg in Lp

FT
.�IX/ and jX jL1

F .0;T ILp.�IX// < 1, with the norm
inherited from L1

F .0; T ILp.�IX//.
Throughout this section, we assume that there is a 1-dimensional standard Brownian

motion W.�/ on .�;F ;F;P / and F is the natural filtration generated by W.�/.
Let G � Rn (n 2 N) be a bounded domain with a C 2 boundary � . Let �0 � � be

a nonempty subset satisfying suitable assumptions to be given later. Set Q D .0; T / � G,
† D .0; T / � � , and †0 D .0; T / � �0. Let .ajk/1�j;k�n 2 C 3.GI Rn�n/ be such that
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ajk D akj .j; k D 1; 2; : : : ; n/ and, for some constant s0 > 0,
nX

j;kD1

ajk.x/�j �k
� s0j�j2; 8.x; �/

�
D
�
x; �1; : : : ; �n

�
2 G � Rn:

Fix a1 2 L1
F .0; T IW 1;1.GI Rn//, a2; a3; a4 2 L1

F .0; T IL1.G//, and a5 2 L1
F .0; T I

W
1;1

0 .G//.

2.1. Formulation of the problem
Consider the following controlled stochastic hyperbolic equation:8̂̂̂̂

<̂̂
ˆ̂̂̂:
dyt �

nX
j;kD1

.ajkyxj
/xk
dt D .a1 � ry C a2y C f /dt C .a3y C g/dW.t/ in Q;

y D h on †;

y.0/ D y0; yt .0/ D y1 in G;
(2.1)

where the initial data .y0; y1/ 2 L2.G/�H�1.G/, .y; yt / is the state, and f;g 2 L1
F .0; T ;

H�1.G// and h 2 L2
F .0; T IL2.�// are three controls. As we shall see in Section 2.2, equa-

tion (2.1) admits a unique transposition solution

y 2 CF

�
Œ0; T �IL2

�
�IL2.G/

��
\ C 1

F

�
Œ0; T �IL2

�
�IH�1.G/

��
:

Inspired by the definition of the exact controllability of deterministic hyperbolic
equations and stochastic differential equations, we introduce the following notion.

Definition 2.1. We say that the control system (2.1) is exactly controllable at time T if for
any .y0; y1/ 2 L2.G/�H�1.G/ and .y0

0; y
0
1/ 2 L2

FT
.�IL2.G//�L2

FT
.�IH�1.G//, one

can find controls .f; g; h/ 2 L2
F .0; T IH�1.G// �L2

F .0; T IH�1.G// � L2
F .0; T IL2.�//

such that the corresponding state y to (2.1) satisfies that .y.T /, yt .T // D .y0
0; y

0
1/ a.s.

Remark 2.1. Compared with Definition 1.1, Definition 2.1 looks much more complex. This
is due to the complexity of the control system. The two definitions share the same spirit, that
is, using controls to steer the state of the system to the desired destination. Here and in what
follows, we use adapted stochastic processes as controls according to two reasons:

(1) In stochastic control systems, “uncertainty” is critical, i.e., there is some pos-
sible variations in the system’s behavior. The controls have to take different
possibilities into account.

(2) We cannot use information from the future. Thus, the control at time t has to be
measurable with respect to the � -algebra Ft , which reflects the information we
can obtain at time t .

Three controls are applied in (2.1). One may expect the exact controllability to be
correct. However, surprisingly enough, we have the following negative result.
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Theorem 2.1 ([37, Theorem 2.1]). The system (2.1) is not exactly controllable for any T > 0.

Remark 2.2. Both Theorem 2.1 and Theorem 2.2 below are negative results, which have
their own interests. Indeed, one aspect of control theory that is particularly important is the
exploration of fundamental limits of the control ability for a given control system, since
trade-offs between the cost we pay for controls and the performance of the behavior of the
system will be the primary design challenge for a control system.

The controls we introduce into (2.1) are the strongest possible ones. Theorem 2.1
shows that the controllability property of stochastic hyperbolic equations differs signifi-
cantly from the well-known controllability property for deterministic hyperbolic equations
(e.g., [50]). Motivated by this, we consider the following refined version of controlled stochas-
tic hyperbolic equation:8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

dy D Oydt C .a4y C f /dW.t/ in Q;

d Oy �

nX
j;kD1

.ajkyxj
/xk
dt D .a1 � ry C a2y C a5g/dt C .a3y C g/dW.t/ in Q;

y D �†0h on †;

y.0/ D y0; Oy.0/ D Oy0 in G:
(2.2)

Here .y0; Oy0/ 2 L2.G/ � H�1.G/, .y; Oy/ is the state, and f 2 L2
F .0; T I L2.G//,

g 2 L2
F .0; T I H�1.G//, and h 2 L2

F .0; T I L2.�0// are controls. As we shall see in
Section 2.2, the system (2.2) admits a unique transposition solution .y; Oy/2CF .Œ0;T �IL

2.�I

L2.G/// � CF .Œ0; T �I L
2.�I H�1.G///. Readers are referred to [37] for the derivation

of (2.2).

Remark 2.3. Usually, if we put a control in the diffusion term, it may affect the drift term
in one way or another. Here we assume that the effect is in the form of “a5gdt” as that in
the second equation of (2.2). One may consider a more general case, say, by adding a term
like “a6fdt” (in which a6 2 L1

F .0; T IL1.G//) into the first equation of (2.2). However,
except for n D 1, the corresponding controllability problem is still unsolved (e.g., [39]).

Definition 2.2. We say that the system (2.2) is exactly controllable at time T if for any
.y0; Oy0/ 2 L2.G/�H�1.G/ and .y1; Oy1/ 2 L2

FT
.�IL2.G//�L2

FT
.�IH�1.G//, one can

find controls .f; g; h/ 2 L2
F .0; T IL2.G// � L2

F .0; T IH�1.G// � L2
F .0; T IL2.�0// such

that the corresponding solution .y; Oy/ to (2.2) satisfies that .y.T /; Oy.T // D .y1; Oy1/.

Under some assumptions, we can show that (2.2) is exactly controllable (see The-
orem 2.3). Hence, from the viewpoint of controllability, (2.2) is a more reasonable model
than (2.1).

2.2. Well-posedness of stochastic hyperbolic equations with boundary controls
Both (2.1) and (2.2) are SPDEs with nonhomogeneous boundary values. They may

not have weak or mild solutions. Therefore, as the deterministic case (e.g., [22]), solutions
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to them are understood in the sense of a transposition solution. To this end, we need the
following backward stochastic hyperbolic equation:8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

dz D Ozdt CZdW.t/ in Q� ;

d Oz �

nX
j;kD1

.ajkzxj
/xk
dt D .b1 � rz C b2z C b3Z C b4

OZ/dt C OZdW.t/ in Q� ;

z D 0 on †� ;

z.�/ D z� ; Oz.�/ D Oz� in G;
(2.3)

where � 2 .0; T �, Q�
�
D.0; �/ � G, †�

�
D.0; �/ � � , .z� ; Oz� / 2 L2

F�
.�IH 1

0 .G/ � L2.G//,
b1 2 L1

F .0; T ; W 1;1.GI Rn//, and bi 2 L1
F .0; T IL1.G// (i D 2; 3; 4).

For any .z� ; Oz� / 2 L2
F�
.�IH 1

0 .G// � L2
F�
.�IL2.G//, the system (2.3) admits a

unique solution .z;Z; Oz; OZ/ 2CF .Œ0; ��IH
1
0 .G//�L2

F .0; � IH 1
0 .G//�CF .Œ0; ��IL

2.G//�

L2
F .0; � IL2.G// (e.g., [40, Theorem 4.10]), which satisfies the following hidden regularity:

Proposition 2.1 ([37, Proposition 3.1]). The solution .z; Oz; Z, OZ/ to (2.3) satisfies
@z
@�

j� 2 L2
F .0; � ; L2.�// andˇ̌̌̌

@z

@�

ˇ̌̌̌
L2

F .0;� IL2.�//

� C
�ˇ̌
z�
ˇ̌
L2

F�
.�IH 1

0 .G//
C
ˇ̌
Oz�
ˇ̌
L2

F�
.�IL2.G//

�
; (2.4)

where the constant C is independent of � and .z� ; Oz� / 2L2
F�
.�IH 1

0 .G//�L2
F�
.�IL2.G//.

Definition 2.3. A stochastic process y 2 CF .Œ0; T �IL
2.�; L2.G/// \ C 1

F .Œ0; T �IL
2.�;

H�1.G/// is called a transposition solution to (2.1) if for any � 2 .0; T � and .z� ; Oz� / 2

L2
F�
.�IH 1

0 .G// � L2
F�
.�IL2.G//, it holds that

E
˝
yt .�/; z

�
˛
H �1.G/;H 1

0 .G/
� E

˝
y.�/; Oz�

˛
L2.G/

�
˝
Oy0; z.0/

˛
H �1.G/;H 1

0 .G/
C
˝
y0; Oz.0/

˛
L2.G/

D E

Z �

0

hf; ziH �1.G/;H 1
0 .G/dt C E

Z �

0

hg;ZiH �1.G/;H 1
0 .G/dt � E

Z �

0

Z
�0

h
@z

@�
d�ds;

where .z; Oz;Z; OZ/ solves (2.3) with b1 D �a1, b2 D �diva1 C a2, b3 D a3, and b4 D 0.
A pair of stochastic processes .y; Oy/ 2 CF .Œ0; T �I L

2.�I L2.G/// � CF .Œ0; T �;
L2.�;H�1.G/// is called a transposition solution to (2.2) if for any � 2 .0;T � and .z� ; Oz� /2

L2
F�
.�; H 1

0 .G// � L2
F�
.�; L2.G//, it holds that

E
˝
Oy.�/; z�

˛
H �1.G/;H 1

0 .G/
� E

˝
y.�/; Oz�

˛
L2.G/

�
˝
Oy0; z.0/

˛
H �1.G/;H 1

0 .G/
C
˝
y0; Oz.0/

˛
L2.G/

D �E

Z �

0

hf; OZiL2.G/dt C E

Z �

0

hg; a5z CZiH �1.G/;H 1
0 .G/dt � E

Z �

0

Z
�0

h
@z

@�
d�ds;

where .z; Oz;Z; OZ/ solves (2.3) with b1 D �a1, b2 D �diva1 C a2, b3 D a3, and b4 D �a4.

Remark 2.4. By Proposition 2.1, the term “E
R �

0

R
�0
h @z

@�
d�ds” makes sense. The above

definitions of transposition solutions to (2.1) and (2.2) are the generalization of the transpo-
sition solution to deterministic hyperbolic equation (e.g., [22]).
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Proposition 2.2 ([37, Propositions 4.1 and 4.2]). The system (2.1) (resp. (2.2)) admits a
unique transposition solution y (resp. .y; Oy/).

2.3. The controllability results
We have introduced three controls (f , g, and h) in the system (2.2). At first glance,

it seems unreasonable that especially the controls f and g in the diffusion terms of (2.2) are
acting on the whole domain G. One may ask whether localized controls are enough or the
boundary control can be dropped. However, the answers are “NO.”

Theorem 2.2 ([37, Theorem 2.3]). For any open subset �0 of � and open subsetG0 ofG, the
system (2.2) is not exactly controllable at any time T > 0, provided that one of the following
three conditions is satisfied:

(1) a4 2 CF .Œ0; T �IL
1.�IL1.G///, G nG0 ¤ ;, and f is supported in G0;

(2) a3 2 CF .Œ0; T �IL
1.�IL1.G///, G nG0 ¤ ;, and g is supported in G0;

(3) h D 0.

To get a positive controllability result for the system (2.2), the time T should be large
enough due to the finite propagation speed of solutions to stochastic hyperbolic equations.
On the other hand, noting that the deterministic wave equation is a special case of (2.2),
by [2], we see that exact controllability of (2.2) is impossible without conditions on �0 and
.ajk/1�j;k�n. Hence, to continue, we introduce the following assumptions:

Condition 2.1. There exists a positive function '.�/ 2 C 3.G/ satisfying the following:

(1) For some constant �0 > 0 and all .x; �1; : : : ; �n/ 2 G � Rn,
nX

j;kD1

nX
j 0;k0D1

�
2ajk0

.aj 0k'xj 0 /xk0 � ajk
xk0
aj 0k0

'xj 0

�
�j �k

� �0

nX
j;kD1

ajk�j �k :

(2) The function '.�/ has no critical point in G, i.e., jr'.x/j > 0 for x 2 G.

We shall choose the set �0 as follows:

�0
�
D

´
x 2 �

ˇ̌̌ nX
j;kD1

ajk'xj
.x/�k.x/ > 0

µ
:

Also, write
R1

�
D

r
max
x2G

'.x/; R0
�
D

r
min
x2G

'.x/:

Clearly, if '.�/ satisfies Condition 2.1, then for any given constants ˛ � 1 and ˇ 2 R, so does
Q'D ˛'Cˇ with�0 replaced by ˛�0. Therefore we may choose ';�0; c0; c1 and T such that

Condition 2.2. The following inequalities hold:

(1) 1
4

nP
j;kD1

ajk.x/'xj
.x/'xk

.x/ � R2
1, 8x 2 G;
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(2) T > T0
�
D 2R1;

(3) .2R1

T
/2 < c1 <

2R1

T
;

(4) �0 � 4c1 � c0 > c0 C 2R1.1C ja5j2
L1

F .0;T IL1.G//
/.

Remark 2.5. As we have explained before Condition 2.2, this condition can always be
satisfied. We put it here merely to emphasize the relationship among c0, c1, �0 and T .

Remark 2.6. To ensure that (4) in Condition 2.2 holds, c1 andT depend on ja5jL1
F .0;T IL1.G//.

This seems to be reasonable because a5 stands for the effect of the control in the diffusion
term to the drift term. One needs time to get rid of such an effect. Nevertheless, this does
not happen when n D 1 (e.g., [39]).

The exact controllability result for the system (2.2) is stated as follows:

Theorem 2.3 ([37, Theorem 2.2]). System (2.2) is exactly controllable at time T if Condi-
tions 2.1 and 2.2 hold.

Remark 2.7. Although it is necessary to put controls f and g on the whole domain G,
one may suspect that Theorem 2.3 is trivial and give a possible “proof” of Theorem 2.3 as
follows: Choosing f D �a4y and g D �a3y, the system (2.2) becomes8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

dy D Oydt in Q;

d Oy �

nX
j;kD1

.ajkyxj
/xk
dt D .a1 � ry C a2y � a5a3y/dt in Q;

y D �†0h on †;

y.0/ D y0; Oy.0/ D Oy0 in G:

(2.5)

This is a hyperbolic equation with random coefficients. If one regards the sample point !
as a parameter, then for every given ! 2 �, there is a control h.�; �; !/ such that the solu-
tion to (2.5) fulfills .y.T; x; !/; Oy.T; x; !// D .y1.x; !/; Oy1.x; !//. However, it is unclear
whether the control constructed in this way is adapted to the filtration F or not. If it is not
the case, then to determine the value of the control at present, one needs to use information
from the future, which is meaningless in the stochastic framework.

In order to prove Theorem 2.3, by a standard duality argument, it suffices to establish
the following observability estimate for the adjoint equation (2.3).

Theorem 2.4. Under the assumptions of Theorem 2.3, all solutions to equation (2.3) with
� D T satisfyˇ̌�

zT ; OzT
�ˇ̌

L2
FT

.�IH 1
0 .G/�L2.G//

� C

�ˇ̌̌̌
@z

@�

ˇ̌̌̌
L2

F .0;T IL2.�0//

C ja5z CZj
2
L2

F .0;T IH 1
0 .G//

C j OZj
2
L2

F .0;T IL2.G//

�
:
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Remark 2.8. Although Theorem 2.4 is much more complex than Theorem 1.1, it has the
same features in common with Theorem 1.1, that is, a solution of an equation can be fully
determined by a suitable observation of the solution.

Remark 2.9. The proof of Theorem 2.4 is almost the same as that of [37, Theorem 7.1]. We
do not provide the explicit dependence of the constant C on the observation time T and the
coefficients bi (1 � i � 4). Interested readers are referred to [37].

2.4. Carleman estimate
Theorem 2.4 is an observability estimate of equation (2.3). Generally speaking, there

are three main approaches to establish the observability estimate for multidimensional deter-
ministic hyperbolic equations.

The first is the multiplier techniques (e.g., [21]). Two key points for applying this
method are the time reversibility of the equation and the time independence of the coeffi-
cients. Equation (2.3) does not fulfill the second property above.

The second approach is based on the microlocal analysis (e.g., [2]), which gives
a sharp sufficient condition, i.e., the Geometric Control Condition, for the observability
estimate of hyperbolic equations. It is interesting to generalize this method to study the
observability estimate of equation (2.3).

The last one is the global Carleman estimate (e.g., [15,49]). It has been generalized
to study the observability estimate for stochastic hyperbolic equations recently (e.g., [28,34,
48,49]). Theorem 2.3 is also proved likewise. The key is the following identity.

Lemma 2.1 ([37, Lemma 6.1]). Let z be an H 2.Rn/-valued Itô process and Oz be an L2.Rn/-
valued Itô process such that for some Z 2 L2

F .0; T IH 1.Rn//, dz D Ozdt C ZdW.t/ in
.0; T / � Rn. Let `;‰ 2 C 2..0; T / � Rn/. Set � D e`, v D �z and Ov D � Oz C `tv. Then, for
a.e. x 2 Rn,

�

 
�2`t Ov C 2

nX
j;kD1

ajk`xj
vxk

C‰v

!"
d Oz �

nX
j;kD1

�
ajkzxj

�
xk
dt

#

C

nX
j;kD1

"
nX

j 0;k0D1

�
2ajkaj 0k0

`xj 0vxj
vxk0 � ajkaj 0k0

`xj
vxj 0vxk0

�
� 2`ta

jkvxj
Ov C ajk`xj

Ov2
C‰ajkvxj

v �
‰xj

2
ajkv2

� Aajk`xj
v2

#
xk

C d

"
`t

nX
j;kD1

ajkvxj
vxk

C `t Ov2
� 2

nX
j;kD1

ajk`xj
vxk

Ov �‰v Ov C

�
A`t C

‰t

2

�
v2

#

D

´"
`t t C

nX
j;kD1

�
ajk`xj

�
xk

�‰

#
Ov2

C

nX
j;kD1

cjkvxj
vxk

C Bv2

� 2

nX
j;kD1

��
ajk`xk

�
t

C ajk`txk

�
vxj

Ov C

 
�2`t Ov C 2

nX
j;kD1

ajk`xj
vxk

C‰v

!2µ
dt
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C `t .d Ov/2 � 2

nX
j;kD1

ajk`xj
dvxk

d Ov �‰dvd Ov C `t

nX
j;kD1

ajk.dvxj
/.dvxk

/

C A`t .dv/
2

�

´
�

 
�2`t Ov C 2

nX
j;kD1

ajk`xj
vxk

C‰v

!
`tZ

�

"
2

nX
j;kD1

ajk.�Z/xk
`xj

Ov � �‰tvZ C �‰ OvZ

#

C 2

"
nX

j;kD1

ajkvxj
.�Z/xk

C �AvZ

#
`t

µ
dW.t/; a.s.; (2.6)

where .dv/2 and .d Ov/2 denote the quadratic variation processes of v and Ov, respectively,
and 8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

cjk �
D
�
ajk`t

�
t

C

nX
j 0;k0D1

�
2ajk0�

aj 0k`xj 0

�
xk0

�
�
ajkaj 0k0

`xj 0

�
xk0

�
C‰ajk ;

A
�
D.`2

t � `t t / �

nX
j;kD1

�
ajk`xj

`xk
�
�
ajk`xj

�
xk

�
�‰;

B
�
D A‰ C .A`t /t �

nX
j;kD1

�
Aajk`xj

�
xk

C
1

2

"
‰t t �

nX
j;kD1

�
ajk‰xj

�
xk

#
:

Remark 2.10. The derivation of (2.6) requires a fairly complex but elementary computation.
Identities in the spirit of (2.6) are widely used to solve observability problems for determin-
istic and stochastic PDEs (e.g., [14,15,39,40]).

Choosing `.t;x/D�Œ'.x/�c1.t�
T
2
/2� and‰D`t t C

nP
j;kD1

.ajk`xj
/xk

�c0� in (2.6),

integrating (2.6) in Q and taking the mathematical expectation, after some technical com-
putations, one can prove Theorem 2.3.

The above not only gives a sketch of the proof of Theorem 2.3, but also presents a
methodology of getting the observability estimates for SPDEs and backward SPDEs: indeed,
one has to establish a suitable pointwise identity and choose a suitable weight function.
Almost all observability estimates for SPDEs and backward SPDEs are obtained in this way
(e.g., [14,27–29,34,39,40,45,48,49]). That said, we do not mean that the proofs of these observ-
ability estimates are similar; rather we want to emphasize the common ground in the idea of
the proofs.

3. Pontryagin-type stochastic maximum principle and

stochastic transposition method

This section is devoted to the Pontryagin-type stochastic maximum principle (PMP
for short) for optimal control problems of semilinear SDPSs. There is a long history for the
study of this topic. We refer to [3] for a pioneering result and to [17, 44] and the references
therein for subsequent results. These works addressed three special cases: (1) the diffusion
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term does not depend on the control variable; (2) U is convex; (3) the second-order deriva-
tives of g and h with respect to y in (3.2) below are Hilbert–Schmidt operator-valued. On
the one hand, under the first two assumptions (resp. the third assumption), the PMP and
their proofs are similar to those of the distributed parameter control systems (resp. stochas-
tic finite-dimensional control systems). On the other hand, when one puts a control in the
drift term, it will affect the diffusion term, i.e., the control could influence the scale of uncer-
tainty. Hence, it is important to study PMP for SDPSs with control-dependent diffusion terms
and nonconvex control domains. This was done in [33] (some generalizations were given in
[35,36,39]).

3.1. Formulation of the optimal control problem
Unlike in Section 2, we will formulate our system in an abstract framework. Through-

out this section, T > 0, .�;F ; F; P / (with F �
D¹Ft ºt2Œ0;T �) is a fixed filtered probability

space satisfying the usual conditions, on which a 1-dimensional standard Brownian motion
W.�/ is defined, andH is a separable Hilbert space. Denote by F the progressive � -field (in
Œ0; T � ��) with respect to F.

Let A be a linear operator (with the domain D.A/ � H ), which generates a C0-
semigroup ¹S.t/ºt�0 on H . Denote by A� the adjoint operator of A, which generates the
adjoint C0-semigroup of ¹S.t/ºt�0. Let U be a separable metric space. Put

UŒ0; T �
�
D
®
u W Œ0; T � �� ! U j u is F-adapted

¯
:

We assume the following condition:

(A1). The maps a; b W Œ0; T � � H � U ! H satisfy (for ' D a; b): (i) for any .y; u/ 2

H � U , '.�; y; u/ W Œ0; T � ! H is Lebesgue measurable; (ii) for any .t; y/ 2 Œ0; T � �H ,
'.t; y; �/ W U ! H is continuous; and (iii) there is a constant CL > 0 such that8<:
ˇ̌
'.t; y1; u/ � '.t; y2; u/

ˇ̌
H

� CLjy1 � y2jH ;ˇ̌
'.t; 0; u/

ˇ̌
H

� CL;
8.t; y1; y2; u/ 2 Œ0; T � �H �H � U:

Consider the following controlled stochastic evolution equation:8<: dy.t/ D
�
Ay.t/C a.t; y; u/

�
dt C b.t; y; u/dW.t/; a.e. t 2 .0; T �;

y.0/ D �;
(3.1)

where u 2 UŒ0;T � is control, y is state, and � 2L8
F0
.�IH/. The control system (3.1) admits

a unique mild solution y 2 CF .Œ0; T �IL
8.�IH// (e.g., [40, Theorem 3.13]).

Remark 3.1. In (3.1), the diffusion term depends on the control. This means that the control
could influence the scale of uncertainty (as is indeed the case in many practical systems,
especially in the system of mesoscopic scale). In such a setting, the stochastic problems
essentially differ from the deterministic ones.

Also, we need the following condition:

5327 Control theory of SDPSs



(A2). The maps g.�; �; �/ W Œ0;T ��H �U ! R and h.�/ WH ! R satisfy: (i) for any .y;u/ 2

H � U , g.�; y; u/ W Œ0; T � ! R is Lebesgue measurable; (ii) for any .t; y/ 2 Œ0; T � � H ,
g.t; y; �/ W U ! R is continuous; and (iii) there is a constant CL > 0 such that8<:

ˇ̌
g.t; y1; u/ � g.t; y2; u/

ˇ̌
H

C
ˇ̌
h.y1/ � h.y2/

ˇ̌
H

� CLjy1 � y2jH ;ˇ̌
g.t; 0; u/

ˇ̌
H

C
ˇ̌
h.0/

ˇ̌
H

� CL;

8.t; y1; y2; u/ 2 Œ0; T � �H �H � U:

Define a cost functional J.�/ (for the control system (3.1)) as follows:

J.u/
�
D E

"Z T

0

g
�
t; y.t/; u.t/

�
dt C h

�
y.T /

�#
; 8u 2 UŒ0; T �; (3.2)

where y is the state of (3.1) corresponding to u. Consider an optimal control problem:

Problem (OP). Find a Nu 2 UŒ0; T � such that

J. Nu/ D inf
u2UŒ0;T �

J.u/: (3.3)

Any Nu satisfying (3.3) is called an optimal control. The corresponding state Ny is
called an optimal state, and . Ny; Nu/ is called an optimal pair.

3.2. Transposition solution and relaxed transposition solution to backward
stochastic evolution equation
We first recall that the key idea in the proof of Theorem 1.2 is as follows: One

first perturbs an optimal control by means of the spike variation, then considers the first-
order term in a sort of Taylor expansion with respect to this perturbation. By sending the
perturbation to zero, one obtains a kind of variational inequality. The Pontryagin’s maximum
principle then follows from a duality argument. When applying this idea to study PMP for
Problem (OP), one encounters an essential difficulty, which, roughly speaking, is that the
Itô stochastic integral

R tC"

t
rdW.s/ is only of order

p
" (rather than " as with the Lebesgue

integral). To overcome this difficulty, we should study both the first and second order terms
in the Taylor expansion of the spike variation. In such case, inspired by [42], we need to
introduce two adjoint equations. The first is8<: dz D �A�zdt C F.t; z; Z/dt CZdW.t/ in Œ0; T /;

z.T / D zT :
(3.4)

In (3.4), F W Œ0; T � �H �H ! H is Lebesgue measurable with respect to t and Lipschitz
continuous with respect to z and Z.

Neither the usual natural filtration condition nor the quasi-left continuity is assumed
for the filtration F, and the operator A is only assumed to generate a general C0-semigroup.
Hence, equation (3.4) may not have a weak or mild solution. Similar to equation (2.1), we
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should introduce new notion of solution to (3.4). To this end, consider the following stochas-
tic evolution equation:8<: d' D .A' C  /ds C Q dW.s/ in .t; T �;

'.t/ D �;
(3.5)

where t 2 Œ0; T /,  2 L1
F .t; T IL2.�IH//, Q 2 L2

F .t; T IH/, and � 2 L2
Ft
.�IH/. Equa-

tion (3.5) admits a unique (mild) solution ' 2CF .Œt;T �IL
2.�IH// (e.g., [40, Theorem 3.13]).

Definition 3.1. We call .z;Z/ 2DF .Œ0;T �IL
2.�IH//�L2

F .0;T IH/ a transposition solu-
tion to (3.4) if for any t 2 Œ0;T �, 2L1

F .t;T IL2.�IH//, Q 2L2
F .t;T IH/, � 2L2

Ft
.�IH/,

and the corresponding solution ' 2 CF .Œt; T �IL
2.�IH// to (3.5), it holds that

E
˝
'.T /; zT

˛
H

� E

Z T

t

˝
'.s/; f

�
s; z.s/; Z.s/

�˛
H
ds

D E
˝
�; z.t/

˛
H

C E

Z T

t

˝
 .s/; z.s/

˛
H
ds C E

Z T

t

˝
Q .s/;Z.s/

˛
H
ds: (3.6)

Remark 3.2. On the one hand, if (3.4) admits a strong solution .z; Z/ 2 ŒCF .Œ0; T �I

L2.�IH// \L2
F .0; T ID.A//� � L2

F .0; T IH/, then, we can get (3.6) by Itô’s formula
(e.g., [40, Theorem 2.142]). On the other hand, (3.6) can be used to get the PMP for Problem
(OP). These are the reasons for introducing Definition 3.1. The main idea of this definition is
to interpret the solution to a less understood equation by means of another well-understood
one.

Theorem 3.1 ([33, Theorem 3.1]). Equation (3.4) has a unique transposition solution .z; Z/
and ˇ̌

.z; Z/
ˇ̌
DF .Œ0;T �IL2.�IH//�L2

F .0;T IH/

� C
�ˇ̌
F.�; 0; 0/

ˇ̌
L1

F .0;T IL2.�IH//
C jzT jL2

FT
.�IH/

�
:

The proof of Theorem 3.1 is based on a Riesz-type representation theorem obtained
in [31].

The second adjoint equation is28̂̂<̂
:̂
dP D

�
�.A�

C J �/P � P.AC J / �K�PK � .K�QCQK/C F
�
dt CQdW.t/

in Œ0; T /;

P.T / D PT :

(3.7)

where F 2 L1
F .0; T IL2.�I L.H///, PT 2 L2

FT
.�I L.H//, and J;K 2 L4

F .0; T ; L1.�I

L.H///.

2 In this paper, for any operator-valued process R, we denote by R� its pointwise dual
operator-valued process.
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Equation (3.7), as written, is a rather formidable operator-valued backward stochas-
tic evolution equation. When H D Rn, (3.7) is an Rn�n matrix-valued backward stochas-
tic differential equation, and therefore, the desired well-posedness follows from that of
an Rn2 (vector)-valued backward stochastic differential equation. However, in the infinite-
dimensional setting, although L.H/ is still a Banach space, it is neither reflexive nor
separable even ifH itself is separable. There exists no stochastic integration/evolution equa-
tion theory that can be employed to treat the well-posedness of (3.7) even if the filtration F is
generated byW.�/ (e.g., [46]). Hence, we should employ the stochastic transposition method
again and define the solution to (3.7) in the transposition sense. To this end, we need the
following stochastic evolution equation:8<: d' D .AC J /'ds C  ds CK'dW.s/C Q dW.s/ in .t; T �;

'.t/ D �:
(3.8)

Here � 2L4
Ft
.�IH/ and ; Q 2L2

F .t;T IL4.�IH//. Also, we should introduce the solution
space for (3.7). Write

P Œ0; T �
�
D
®
P W Œ0; T � �� ! L.H/ j jP jL.H/ 2 L1

F

�
0; T IL2.�/

�
and for every

t 2 Œ0; T � and � 2 L4
Ft
.�IH/;P � 2 DF

�
Œt; T �IL

4
3 .�IH/

�
and

jP�j
DF .Œt;T �IL

4
3 .�IH//

� C j�jL4
Ft

.�IH/

¯
and

QŒ0; T �
�
D
®�
Q.�/; OQ.�/

�
j for any t 2 Œ0; T �; both Q.t/ and OQ.t/ are bounded linear

operators from L4
Ft
.�IH/ � L2

F

�
t; T IL4.�IH/

�
� L2

F

�
t; T IL4.�IH/

�
to

L2
F

�
t; T IL

4
3 .�IH/

�
and Q.t/.0; 0; �/� D OQ.t/.0; 0; �/

¯
:

Definition 3.2. We call .P.�/;Q.�/; OQ.�// 2 P Œ0; T � � QŒ0; T � a relaxed transposition solu-
tion to (3.7) if for any t 2 Œ0; T �, �1; �2 2 L4

Ft
.�IH/, and  1;  2; Q 1; Q 2 2 L2

F .t; T I

L4.�IH//, it holds that

E
˝
PT '1.T /; '2.T /

˛
H

� E

Z T

t

˝
F.s/'1.s/; '2.s/

˛
H
ds

D E
˝
P.t/�1; �2

˛
H

C E

Z T

t

˝
P.s/ 1.s/; '2.s/

˛
H
ds C E

Z T

t

˝
P.s/'1.s/;  2.s/

˛
H
ds

C E

Z T

t

˝
P.s/K.s/'1.s/; Q 2.s/

˛
H
ds C E

Z T

t

˝
P.s/ Q 1.s/;K.s/'2.s/C Q 2.s/

˛
H
ds

C E

Z T

t

˝
Q 1.s/; OQ.t/.�2;  2; Q 2/.s/

˛
H
ds C E

Z T

t

˝
Q.t/.�1;  1; Q 1/.s/; Q 2.s/

˛
H
ds;

Here, for j D 1; 2, 'j solves (3.8) with �,  , and Q replaced by �j ,  j , and Q j , respectively.

Remark 3.3. Due to the very weak characterization of Q, a relaxed transposition solution
is more like a half-measure rather than the natural solution to (3.7). We believe that a more
suitable definition should be as follows:

Let OQŒ0; T �
�
D
®
Q W Œ0; T � �� ! L.H/ j jQjL.H/ 2 L2

F

�
0; T IL2.�/

�¯
.
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We call .P.�/;Q.�// 2 P Œ0; T �� OQŒ0; T � a transposition solution to (3.7) if for any
t 2 Œ0; T �, �1; �2 2 L4

Ft
.�IH/, and  1;  2; Q 1; Q 2 2 L2

F .t; T IL4.�IH//, it holds that

E
˝
PT '1.T /; '2.T /

˛
H

� E

Z T

t

˝
F.s/'1.s/; '2.s/

˛
H
ds

D E
˝
P.t/�1; �2

˛
H

C E

Z T

t

˝
P.s/ 1.s/; '2.s/

˛
H
ds C E

Z T

t

˝
P.s/'1.s/;  2.s/

˛
H
ds

C E

Z T

t

˝
P.s/K.s/'1.s/; Q 2.s/

˛
H
ds C E

Z T

t

˝
P.s/ Q 1.s/;K.s/'2.s/C Q 2.s/

˛
H
ds

C E

Z T

t

˝
Q.s/ Q 1.s/; '2.s/

˛
H
ds C E

Z T

t

˝
Q.s/'1.s/; Q 2.s/

˛
H
ds:

Here, for j D 1; 2, 'j solves (3.8) with �,  , and Q replaced by �j ,  j , and Q j , respectively.
If (3.7) admits a transposition solution, then it has a relaxed transposition solution (e.g.,
[40, Remark 12.11]). Until now, we have no idea how to prove the existence of a transposition
solution to (3.7). In such a case, sometimes, we introduce another kind of solution, namely,
the V -transposition solution to (3.7), as a substitute (e.g., [12,32,38,39]).

Remark 3.4. Only the first term P of the solution to (3.7) appears in the PMP for Prob-
lem (OP). Nevertheless, the characterization of Q has its own interest. On the one hand,
Q is used to get higher-order necessary conditions and to solve operator-valued backward
stochastic Riccati equations (e.g., [12, 32, 38, 39]). On the other hand, the information about
the whole solution helps us understand the first part of the solution.

Theorem 3.2 ([33, Theorem 6.1]). Suppose thatL2
FT
.�IR/ is separable. Then equation (3.7)

admits a unique relaxed transposition solution .P.�/;Q.�/; OQ.�//. Furthermore,

jP jP Œ0;T � C
ˇ̌�
Q.�/; OQ.�/

�ˇ̌
QŒ0;T �

� C
�
jF jL1

F .0;T IL2.�IL.H/// C jPT jL2
FT

.�IL.H//

�
:

3.3. Pontryagin-type maximum principle
Let us assume a further condition:

(A3). For any .t; u/ 2 Œ0; T � � U , the maps a.t; �; u/, b.t; �; u/, g.t; �; u/, and h.�/ are C 2,
such that for ' D a; b, and  D g; h, 'x.t; x; �/,  x.t; x; �/, 'xx.t; x; �/, and  xx.t; x; �/ are
continuous for any .t; x/ 2 Œ0; T � �H . Moreover, there exists a constant CL > 0 such that8<:
ˇ̌
'x.t; x; u/

ˇ̌
L.H/

C
ˇ̌
 x.t; x; u/

ˇ̌
H

� CL;ˇ̌
'xx.t; x; u/

ˇ̌
L.H;H IH/

C
ˇ̌
 xx.t; x; u/

ˇ̌
L.H/

� CL;
8.t; x; u/ 2 Œ0; T � �H � U:

Remark 3.5. Condition (A3) is a little restrictive. When theC0-semigroup ¹S.t/ºt�0 enjoys
some smoothing effect, it can be relaxed (e.g., [37]). Due to (A3), Theorem 3.3 cannot be
applied to stochastic linear quadratic optimal control problems for SDPSs directly. Never-
theless, following the proof of Theorem 3.3, we can get the PMP for that problem (e.g., [35]).

Let H.t; x; �; k1; k2/
4
D
˝
k1; a.t; x; �/

˛
H

C
˝
k2; b.t; x; �/

˛
H

� g.t; x; �/ for .t; x; �;
k1; k2/ 2 Œ0; T � �H � U �H �H .
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Theorem 3.3. Suppose that L2
FT
.�I R/ is separable and (A1)–(A3) hold. Let . Ny.�/; Nu.�//

be an optimal pair of Problem (OP), .z.�/; Z.�// be the transposition solution to (3.4)
with F.t; z; Z/ D �ay.t; Ny.t/; Nu.t//�z � by.t; Ny.t/; Nu.t//�Z C gy.t; Ny.t/; Nu.t//,
zT D �hy. Ny.T //, and .P.�/;Q.�/; OQ.�// be the relaxed transposition solution to (3.7) with8<:PT D �hyy. Ny.T //; J.t/ D ay.t; Ny.t/; Nu.t//;

K.t/ D by.t; Ny.t/; Nu.t//; F .t/ D �Hyy.t; Ny.t/; Nu.t/; z.t/; Z.t//:

Then, for a.e. .t; !/ 2 Œ0; T � �� and for all � 2 U ,

H
�
t; Ny.t/; Nu.t/; z.t/; Z.t/

�
� H

�
t; Ny.t/; �; z.t/; Z.t/

�
�
1

2

˝
P.t/

�
b
�
t; Ny.t/; Nu.t/

�
� b

�
t; Ny.t/; �

��
; b
�
t; Ny.t/; Nu.t/

�
� b

�
t; Ny.t/; �

�˛
H

� 0:

Remark 3.6. Compared with Theorem 1.2, the main difference in Theorem 3.3 is the appear-
ance of the term P . This reflects that, in the stochastic situation, the controller has to balance
the scale of control and the degree of uncertainty if the control affects the volatility of the
system. If b is independent of u, then we do not need P and one adjoint equation, say (3.4),
is enough to get the PMP for Problem (OP) (e.g., [40, Theorem 12.4]).

PMP is a necessary condition for optimal controls, which gives a minimum qualifi-
cation for the candidates of optimal controls. It is natural to ask whether it is also sufficient.
To this end, let us introduce the following assumption.

(A4). The control domain U is a convex subset with a nonempty interior of a separable
Hilbert space QH . The maps a; b, and g are locally Lipschitz in u, and their derivatives in x
are continuous in .x; u/.

Theorem 3.4. Suppose the assumptions of Theorem 3.3 and (A4) hold. Let u 2 UŒ0; T � and
y be the corresponding state of (3.1). Let .z; Z/ be the transposition solution to (3.4) with
F.t; z; Z/ D �ay.t; y.t/; u.t//

�z � by.t; y.t/; u.t//
�Z C gy.t; y.t/; u.t//,

zT D �hy.y.T //, and .P.�/;Q.�/, OQ.�// be the relaxed transposition solution to (3.7) with8<:PT D �hyy.y.T //; J.t/ D ay.t; y.t/; u.t//;

K.t/ D by.t; y.t/; u.t//; F .t/ D �Hyy.t; y.t/; u.t/; z.t/; Z.t//:

Suppose that h.�/ is convex, H.t; �; �; z.t/; Z.t// is concave for all t 2 Œ0; T � a.s., and

H
�
t; y.t/; u.t/; z.t/; Z.t/

�
� H

�
t; y.t/; �; z.t/; Z.t/

�
�
1

2

˝
P.t/

�
b
�
t; y.t/; u.t/

�
� b

�
t; y.t/; �

��
; b
�
t; y.t/; u.t/

�
� b

�
t; y.t/; �

�˛
H

� 0

for all � 2 U , then .y.�/; u.�// is an optimal pair of Problem (OP).

4. Open problems

SDPSs offers challenges and opportunities for the study of the mathematical control
theory. There are many interesting problems in this topic. Some of them are listed below,

5332 Q. Lü



which is by no means an exhaustive list and only reflects our research taste. We believe that
new mathematical results and even fundamentally new approaches will be required.

(1) Null and approximate controllability of stochastic hyperbolic equations. We have
shown that the system (2.1) is not exactly controllable for any T > 0 and �0 � � . It is natural
to ask whether it is null/approximately controllable. Of course, for these problems, fewer
controls should be employed. The difficulty to do that lies in proving suitable observability
estimate of equation (2.3), in which Z and OZ do not appear in the right-hand side.

(2) Exact controllability for stochastic wave-like equations with more regular controls.
Is the system (2.2) exactly controllable when g 2 L2

F .0; T IL2.G//? The desired controlla-
bility is equivalent to the following observability estimate:ˇ̌�

zT ; OzT
�ˇ̌

L2
FT

.�IH 1
0 .G//�L2

FT
.�IL2.G//

� C

�ˇ̌̌̌
@z

@�

ˇ̌̌̌
L2

F .0;T IL2.�0//

C ja5z CZjL2
F .0;T IL2.G// C j OZjL2

F .0;T IL2.G//

�
; (4.1)

where .z; Z; Oz; OZ/ is the solution to (2.3) with � D T and final datum .zT ; OzT /. But one
cannot mimic the method in [37] to prove (4.1).

(3) Null/approximate controllability for stochastic parabolic equations with one con-
trol. One needs two controls to get the null/approximate controllability for stochastic para-
bolic equations (e.g., [45]). We believe that one control is enough. However, except for some
special cases (e.g., [23,26]), we have no idea on how to prove that.

(4) The cost for the approximate controllability for SDPSs. It is shown in [45] that
stochastic parabolic equations are approximately controllable. But it does not give any esti-
mate for the cost of the control. Can one generalize the results in [10] to stochastic parabolic
equations? Furthermore, it deserves to study the cost of the approximate controllability for
general SDPSs.

(5) Controllability for semilinear SDPSs. In [9], based on sharp estimates on the depen-
dence of controls for the underlying linear equation perturbed by a potential and fixed point
arguments, it was proved that semilinear parabolic and hyperbolic equations are null con-
trollable with nonlinearities that grow slower than s log.s/ 3

2 . Whether such results can be
obtained for semilinear stochastic parabolic/hyperbolic equations is open. On the other hand,
for nonlinearities growing at infinity as s log.s/p with p > 2, one cannot get the null con-
trollability due to the blow-up of solutions. However, this does not exclude controllability
for some particular classes of nonlinear terms (e.g., [7]). More generally, there are lots of
interesting results for controllability of semilinear distributed parameter systems (e.g., [6]).
So a systematic study of controllability problems for semilinear SDPSs deserves attention.

(6) Stabilization of SDPSs. Stabilization for distributed parameter control systems is a well-
studied area. In recent years, some progresses were obtained for SDPSs (e.g., [1,4]). However,
this problem is far from being well understood. For example, as far as we know, there is no
result for the stabilization of stochastic hyperbolic equations with localized damping.
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(7) Optimal control problems for SDPSs with endpoint/state constraints. For some spe-
cial constraints, such as y.T / belonging to some nonempty open subset of L2

FT
.�IH/, one

can use the Ekeland variational principle to establish a Pontryagin-type maximum principle
with nontrivial Lagrange multipliers. Nevertheless, for the general case, one does need some
further conditions to obtain nontrivial results. For deterministic optimal control problems,
people introduce the so-called finite codimensionality condition to guarantee the nontriv-
iality of the Lagrange multiplier (e.g., [20, 25]). There are some attempts to generalize this
condition to the stochastic framework (e.g., [24]). Another way is to use some tools from the
set-valued analysis (e.g., [12]). However, the existing results are still not satisfactory so far.

(8)Well-posedness of (3.7) in the sense of transposition solution. It would be quite impor-
tant for some optimal control problems to prove that equation (3.7) admits a unique transpo-
sition solution. So far this is only done for a very special case (e.g., [33, Theorem 4.1]).

(9) Higher-order necessary conditions for optimal controls. Similar to calculus, in addi-
tion to the first-order necessary conditions (PMP), sometimes higher-order necessary con-
ditions should be established to distinguish optimal controls from the candidates satisfying
the first-order necessary conditions trivially. Some results in this direction for SDPSs can
be found in [12,13,32]. However, these results were obtained only under very strong assump-
tions which should be relaxed. To this end, we believe one should first show the existence of
a transposition solution to equation (3.7).

(10) Existence of optimal controls. We have discussed the necessary conditions for opti-
mal controls without proving the existence of an optimal control, which is a very difficult
problem. There are two general approaches available to study it. One is to prove the verifica-
tion theorem, the other is to show that a minimizing sequence of controls is compact. Both
methods have not been developed well for SDPSs. Except for some trivial cases, such as

• U is a closed and convex subset of a reflective Banach spaceV , and the functionals
g and h are convex and for some ı, � > 0,

g.x; u; t/ � ıjujV � �; h.x/ � ��; 8.x; u; t/ 2 H � V � Œ0; T �I

• U is a closed, convex and bounded subset of a reflective Banach space V , and the
functionals g and h are convex;

there is no further result for that problem.

(11) The relationship between PMP and dynamic programming for SDPSs. PMP and
dynamic programming serve as two of the most important tools in solving optimal con-
trol problems. Both of them provide some necessary conditions for optimal controls. There
should exist a basic link between them. This link is established for finite dimensional stochas-
tic control systems (e.g., [47]). A possible relationship unavoidably involves the derivatives
of the value functions, which could be nonsmooth in even very simple cases (e.g., [5]).

(12) The connection between controllability and optimal control. The survey divides
itself naturally into two parts—controllability and optimal control. There should be a close
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relationship between these two topics. Some initial findings are given in [24], in which a new
link between (finite-codimensional exact) controllability and optimal control problems for
SDPSs with endpoint state constraints is presented. However, lots of things are to be done,
which are by no means easy tasks.

(13) Numerics of the controllability and optimal control problems for SDPSs. By gen-
eralizing J.-L. Lions’ HUM (e.g., [16]), one can find the numerical solution to controllability
problems of SDPSs by solving suitable adjoint equations numerically (e.g., [40, Section 7.4]).
On the other hand, by Theorem 3.4, one can obtain an optimal control by solving suitable
forward–backward stochastic evolution equation. Unfortunately, the numerical approxima-
tion of the equations mentioned above can be quite cumbersome. We refer the readers to [30]

and references therein for some recent works on this. There are lots of things to be done.

(14) What can we benefit from the uncertainty? From Sections 2 and 3, we see that the
uncertainty in SDPSs places many disadvantages for controlling the systems. Nevertheless,
sometimes, surprisingly, it provides advantages (e.g., [34,39]). What can we benefit from the
uncertainty in SDPSs is far from being understood. We believe that the study for that problem
will lead to new insights into uncertainty.
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