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ABSTRACT

Reinforcement learning (RL) has recently achieved tremendous successes in many arti-
ficial intelligence applications. Many of the forefront applications of RL involve mul-

tiple agents, e.g., playing chess and Go games, autonomous driving, and robotics. Unfor-
tunately, the framework upon which classical RL builds is inappropriate for multiagent
learning, as it assumes an agent’s environment is stationary and does not take into account
the adaptivity of other agents. In this review paper, we present the model of stochastic
games [69] for multiagent learning in dynamic environments. We focus on the develop-
ment of simple and independent learning dynamics for stochastic games: each agent is
myopic and chooses best-response type actions to other agents’ strategy without any coor-
dination with her opponent. There has been limited progress on developing convergent
best-response type independent learning dynamics for stochastic games. We present our
recently proposed simple and independent learning dynamics that guarantee convergence
in zero-sum stochastic games, together with a review of other contemporaneous algo-
rithms for dynamic multiagent learning in this setting. Along the way, we also reexamine
some classical results from both the game theory and RL literature, to situate both the
conceptual contributions of our independent learning dynamics, and the mathematical
novelties of our analysis. We hope this review paper serves as an impetus for the resur-
gence of studying independent and natural learning dynamics in game theory, for the more
challenging settings with a dynamic environment.
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1. INTRODUCTION

Reinforcement learning (RL) in which autonomous agents make decisions in un-
known dynamic environments has emerged as the backbone of many artificial intelligence
(AI) problems. The frontier of many Al systems emerges in multiagent settings, including
playing games such as chess and Go [73,74], robotic manipulation with multiple connected
arms [3e], autonomous vehicle control in dynamic traffic and automated warehouses or pro-
duction facilities [68,86]. Further advances in these problems critically depend on developing
stable and agent incentive-compatible learning dynamics in multiagent environment. Unfor-
tunately, the mathematical framework upon which classical RL depends on is inadequate
for multiagent learning, since it assumes an agent’s environment is stationary and does not
contain any adaptive agents.

The topic of multiagent learning has a long history in game theory, almost as long
as the discipline itself. One of the most studied models of learning in games is fictitious play,
introduced by Brown [14], with first rigorous convergence analysis presented by Robinson
[59] for its discrete-time variant and for finite two-player zero-sum games. See also [27,28,33,
49,51,70] and others for the analysis of fictitious play. In fictitious play, each agent is myopic
(i.e., she does not take into account the fact that her current action will have an impact on
the future actions of other players'), and therefore chooses a best response to the opponent’s
strategy, which she estimates to be the empirical distribution of past play. Despite extensive
study on learning in repeated play of static complete-information games (also referred to as
strategic- or normal-form games) and the importance of the issues, there is limited progress
on multiagent learning in dynamic environments (where the environments evolve over time).
The key challenge is to estimate the decision rules of other agents that in turn adapt their
behavior to changing nonstationary environments.

In this review paper, we first present stochastic games, first introduced in [69], as
a model for representing dynamic multiagent interactions in Section 3.? Stochastic games
extend strategic-form games to dynamic settings where the environment changes with play-
ers’ decisions. They also extend single-agent Markov decision problems (Markov decision
processes) to competitive situations with more than one decision-maker. Developing simple
and independent learning rules, e.g., the fictitious-play/best-response type dynamics, for
stochastic games has been an open question for some time in the literature (see [19, 20, 78]
for some negative nonconvergent results due to nonstationarity).

In the second part of the paper in Section 4, we present recently proposed simple and
independent learning rules from [63,64], and show their convergence for zero-sum stochastic
games. Crucially, these rules are based on fictitious play-type dynamics and, unlike ear-
lier works, do not require coordination between agents, leading to fully decentralized and
independent multiagent learning dynamics. We combine ideas from game theory and RL in
developing these learning rules, and consider three different settings: model-based setting

1 Hereafter, we use player and agent interchangeably.
2 The preliminary information on strategic-form games and learning in strategic-form games
with repeated play are provided in Section 2.
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where players know their payoff functions, transition probabilities of the underlying stochas-
tic games, and observe opponent’s actions; model-free setting where players do not know
payoff functions and transition probabilities but can still observe the opponent’s actions; and
the minimal information setting where players do not even observe opponent’s actions. In
all three settings, the players do not know the opponent’s objective, i.e., they do not possess
the knowledge that the underlying game is zero-sum. In the minimal-information setting, the
players may not even know the existence of an opponent.

In Section 5, we have also reviewed several other algorithms/learning dynamics, and
their convergence results for multiagent learning in stochastic games. We cover both results
from the game theory literature that typically assumes knowledge of the model of the players’
payoff functions, and the transition probabilities of the underlying stochastic games, and also
from the RL literature which posit learning dynamics that perform updates without knowing
the transition probabilities. Most of these update rules typically involve coordination and
computationally intensive steps for the players. These algorithms can be viewed more as ones
for computing the Nash equilibrium of the stochastic games, as opposed to natural learning
dynamics that would be adopted by self-interested agents interested in maximizing their own
payoffs given their inferences (as captured in our learning dynamics). Finally, we conclude
the paper with open questions on independent learning in stochastic games in Section 6.

2. PRELIMINARIES: STRATEGIC-FORM GAMES
A two-player strategic-form game can be characterized by a tuple (A', A%, r!,r?),
in which

« the finite set of actions that player i can take is denoted by A,
« the payoff function of player i is denoted by r* : A — R, where 4 := A! x 423

Each player i takes an action from her action set A’ simultaneously and receives the payoff
ri(a',a?).

We let players choose a mixed strategy to randomize their actions independently.
For example, % : A — [0, 1] denotes the mixed strategy of player i such that 7’ (a’) cor-
responds to the probability that player i plays a’. Note that we have ) dieAi 7i(a’) = 1 by
its definition.

We represent the strategy profile and action profile of the players by = = (!, w2)
and a = (a', a?), respectively. Under the strategy profile 7, the expected payoff of player i
is defined by

U' () := Equr {r' (a)}.

3 We can generalize the definition to arbitrary number of players in a rather straightforward
way.
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Note that the expected payoff of player i is affected by the strategy of the opponent. We next
introduce the Nash equilibrium where players do not have any (or large enough) incentive to
change their strategies unilaterally.

Definition 2.1 ((¢-)Nash equilibrium). A strategy profile . is a mixed-strategy e-Nash equi-
librium with ¢ > 0 if we have

Ul(ni,nf) > Ul(nl,yrf) —¢, forall !, (2.1a)

U*(mp.n2) = UP(ny, %) —e, forall w2 (2.1b)
Furthermore, 7, is a mixed-strategy Nash equilibrium if (2.1) holds with ¢ = 0.

The following is the classical existence result for any strategic-form game (e.g., see
[4, THEOREM 3.2]).

Theorem 2.2 (Existence of an equilibrium in strategic-form games). In strategic-form
games (with finitely many players and finitely many actions), a mixed-strategy equilibrium
always exists.

The key question is whether an equilibrium can be realized or not in the interac-
tion of self-interested decision-makers. In general, finding the best strategy against another
decision-maker is not a well-defined optimization problem because the best strategy that
reflects the viewpoint of the individual depends on the opponent’s strategy. Therefore, play-
ers are generally not able to compute their best strategy beforehand. When there exists a
unique equilibrium, we can expect the players to identify their equilibrium strategies as a
result of an introspective thinking process. For example, what would the opponent choose?
What would the opponent have chosen if she knew I am considering what she would pick
while choosing my strategy? And so on. However, many empirical analyses suggest that an
equilibrium would not typically be realized in one shot even with such reasoning (see, e.g.,
[29]).

It is instructive to consider the following well-known example: Consider a game
played among n > 1 students. The teacher asks the students to pick a number between 0 and
100, and submit it within a closed envelope. The winner will be the one who chooses the
number closest to the two-thirds of the average of all numbers picked. It can be seen that the
unique equilibrium is the strategy profile where every player chooses 0. We would expect
the students to pick O as a result of an introspective thinking process, however, empirical
studies show that they typically pick numbers other than zero such that their average ends
up around 30, with its two-thirds around 20 [53]. This results in players who have selected 0
by strategizing their actions introspectively losing the game. However, if the game is played
repeatedly with players observing chosen actions, each player will have a tendency to pick
numbers closer to the winning number (or its two-thirds if they notice that others can also
have such a tendency to pick the number closest to the winning one). This results in conver-
gence to the equilibrium play along repeated play of the game, even when the players have
not engaged in any forward-looking strategy.
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Many games have multiple equilibria which makes coordination and selection
through introspective thinking challenging. On the other hand, empirical studies suggest
even in strategic situations equipped with multiple equilibria, individual agents reach an
equilibrium as long as they engage with each other multiple times and receive feedback to
revise their strategies [29].

In the following, we review the canonical models of learning with multiple agents
through repeated interactions.

2.1. Learning in strategic-form games with repeated play

Suppose that players know the primitives of the game, i.e., (4!, A2, r!, r2). If play-
ers knew the opponent’s strategy, computation of the best strategy is a simple optimization
problem where they pick one of the maxima among linearly ordered finitely many elements.
However, players do not know the opponent’s strategy. When they play the same game repeat-
edly and observe the opponent’s actions in these games, they have a chance to reason about
what the opponent would play in the next repetition of the game. Therefore, they can estimate
the opponent’s strategy based on the history of the play. However, the opponent is not neces-
sarily playing according to a stationary strategy since she is also a strategic decision-maker
who can adapt her strategy according to her best interest.

Fictitious play is a simple and stylist learning dynamic where players (erroneously)
assume that the opponent plays according to a stationary strategy.* This assumption lets
players form a belief on the opponent’s strategy based on the history of the play, e.g., the
empirical distribution of the actions taken. Then, the players can adapt their strategies based
on the belief constructed.

Fictitious play, since its first introduction by [14], has become the most appealing
best-response type learning dynamics in game theory. Formally, at iteration k, player i main-
tains a belief on the opponent’s strategy, denoted by 7, ! € A(A™"). For example, the belief
can correspond to the empirical average of the actions taken in the past. Note that we can
view an action a’ as a deterministic strategy in which the action is played with probability 1,
ie.,a’ € A(A") with slight abuse of notation. Then, the empirical average is given by

A 1 —i
Al = mZ“K'~ 2.2)

The belief frk_j_l can be computed iteratively using bounded memory according to

o

ey = A+ e @ - A7), 3
+ k+1

with arbitrary initialization 7757 € A(A™"). In other words, players do not have to remember
every action taken by the opponent in the past. Moreover, player i selects her action following

. i1 2
ap € argmax ]Ea_iwﬁk—i {r’(a ,a )}, 2.4)
ateAl
4 It is called fictitious play because [14] introduced it as an introspective thinking process that
a player can play by herself.
5 We represent the probability simplex over a set A by A(A).
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with an arbitrary tie-breaking rule, playing a greedy best-response to the belief she maintains
on opponent’s strategy.

We say that fictitious play dynamics converge to an equilibrium if beliefs formed
converge to a Nash equilibrium when all players follow the fictitious play dynamics (2.3)—
(2.4). We also say that a class of games has fictitious play property if fictitious play converges
in every game of that class. The following theorem is about two important classes of games
from two extremes of the game spectrum: two-player zero-sum strategic-form games, where
r(a) +r?(a) = 0foralla € A, and n-player identical-interest strategic-form games, where
there exists a common payoff function  : A — R such that 7% (a) = r(a) for alla € A and
for each player i.

Theorem 2.3 (Fictitious play property of zero-sum and identical-interest games).
* The two-player zero-sum strategic-form games have fictitious play property [59].

o The n-player identical-interest strategic-form games have fictitious play property
[51].

As an alternative to the insightful proofs in [59] and [51], we can establish a con-
nection between fictitious play and continuous-time best response dynamics to characterize
its convergence properties. For example, [31] provided a proof for the continuous-time best-
response dynamics in zero-sum strategic-form games through a Lyapunov function formula-
tion. This convergence result also implies the convergence of fictitious play in repeated play
of the same zero-sum strategic-form game. We next briefly describe the approach in [31] to
convergence analysis for continuous-time best-response dynamics.

In continuous-time best response dynamics, the strategies (7!, 72) evolve according
to the following differential inclusion:

14
i{i + 7' € argmaxE i, {r'(a',a?)} (2.5)
! aleAl

for i = 1, 2. We highlight the resemblance between (2.3) and (2.5) because we can view (2.5)
as the limiting flow of (2.3) as 1/(k 4+ 1) — 0. Note also that there exists an absolutely con-
tinuous solution to this differential inclusion [31]. To characterize the convergence properties

of this flow, [31] showed that the function
V() = Z (r_nax_ D — {ri(al, az)} —Egn {ri(a)}) (2.6)

ateAl

i=1,
is a Lyapunov function when r!(a) 4+ r?(a) = 0 for all a € A.° This yields that
V(z(t)) = V(x(t')) for all ¢’ > ¢t and V(x(¢)) > V(= (t')) if V(x(¢)) > 0. Correspond-
ingly, we have V(x(¢t)) — 0 as ¢t — oo. This implies that the continuous-time best response
dynamics converge to the equilibrium of the zero-sum game. Since the terms in parentheses

6 Note that Eq {r' (@)} + Eg~r {r2(a)} = 0 when r!(a) + r2(a) = O foralla € A.
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in (2.6) are nonnegative, V() = 0 yields that they are equal to zero for eachi = 1,2, which
is indeed the definition of the Nash equilibrium.

Generally, the convergence of the limiting flow would not lead to the convergence of
the discrete-time update. However, based on tools from differential inclusion approximation
theory [5], the existence of such a Lyapunov function yields that the fictitious play dynam-
ics converge to an equilibrium since its linear interpolation after certain transformation of
the time axis can be viewed as a perturbed solution to the differential inclusion (2.5) with
asymptotically negligible perturbation while the existence of Lyapunov function yields that
any such perturbed solution also converges to the zero-set of the Lyapunov function, i.e.,
{7 : V() = 0}.

The fictitious play dynamics enjoy the following desired properties [29]: (i) The
dynamics do not require knowledge of the underlying game’s class, e.g., the opponent’s
payoff function, and is not specific to any specific class of games; (ii) Players attain the best-
response performance against an opponent following an asymptotically stationary strategy,
i.e., the learning dynamics is rational; (iii) If the dynamics converge, it must converge to an
equilibrium of the underlying game.

Unfortunately, there exist strategic-form games that do not have fictitious play prop-
erty as shown by [7e] through a counterexample. The classes of strategic-form games with
fictitious play property have been studied extensively, e.g., see [6,7,48-52,59,65]. Variants
of fictitious play, including smoothed fictitious play [27] and weakened fictitious play [81]
have also been studied extensively. However, all these studies focus on the repeated play
of the same strategic-form game at every stage. There are very limited results on dynamic
games where players interact repeatedly while the game played at a stage (called stage-game)
evolves with their actions. Note that players need to consider the impact of their actions in
their future payoffs as in dynamic programming or optimal control when they have utilities
defined over infinite horizon.

In the next section, we introduce stochastic games, a special (and important class)
of dynamic games where the stage-games evolve over infinite horizon based on the current
actions of players.

3. STOCHASTIC GAMES

Stochastic games (also known as Markov games), since their first introduction by
Shapley [69]1, have been widely used as a canonical model for dynamic multiagent interac-
tions (e.g., see the surveys [16,89]). At each time k = 0, 1, ..., players play a stage game
that corresponds to a particular state of a multistate environment. The stage games evolve
stochastically according to the transition probabilities of the states controlled jointly by the
actions of both players. The players receive a payoff which is some aggregate of the stage
payoffs; a typical model is to assume the players receive a discounted sum of stage payofts
over an infinite horizon.

Formally, a two-player stochastic game is characterized by a tuple (S, A', A%, r!,r2,
p,V), in which:
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* The finite set of states is denoted by S.
« The finite set of actions that player i can take at any state is denoted by A?.7

* The stage payoff function of player i is denoted by r’ : S x A — R, where
A=Al x A%,

« For any pair of states (s, s") and action profile a € A, we define p(s'|s, a) as the
transition probability from s to s’ given action profile a.

» The players also discount the impact of future payoff in their utility with the dis-
count factor y € [0, 1).

The objective of player i is to maximize the expected sum of discounted stage-payoffs col-
lected over infinite horizon, given by

JE{Z y"r"(sk,ak)}, 3.1)
k=0

where a; € A denotes the action profile played at stage k, {so ~ Po,Sk+1 ~ P(- | Sk, ax),
k > 0} is a stochastic process representing the state at each stage k and p, € A(.S) is the initial
state distribution. The expectation is taken with respect to randomness due to stochastic state
transitions and actions mixed independently by the players.

The players can play an infinite sequence of (mixed) actions. When they have perfect
recall, they can mix their actions independently according to a behavioral strategy in which
the probability of an action is taken depends on the history of states and action profiles, e.g.,
hr = {so, a0, 51,41, ...,Sk—1,ak—1, Sk} at stage k. This results in an infinite-dimensional
strategy space, and therefore, the universal result for the existence of an equilibrium, The-
orem 2.2, does not apply here. On the other hand, stochastic games can also be viewed as
a generalization of Markov decision processes (MDPs) to multiagent cases since state tran-
sition probabilities depend only on the current state and current action profile of players.
Behavioral strategies that depend only on the final state of the history (which corresponds
to the current state) are known as Markov strategies. Furthermore, we call a Markov strat-
egy by a stationary strategy if it does not depend on the stage, e.g., see [71, SECTION 6.2]. In
(discounted) MDPs, there always exists an optimal strategy that is stationary, e.g., see [23].
Shapley [69] showed that this can be generalized to two-player zero-sum stochastic games.

We denote the stationary mixed strategy of player i by % : S — A(A’), implying
that she takes actions according to the mixed strategy specific to state s, i.e., 7 (s) € A(A?).
We represent the strategy profile of players by 7 := {z!, 72}. Correspondingly, the expected
discounted sum of stage payoffs of player i under the strategy profile = is defined by

00
U'(m) = E{Z y"r"(sk,ak)}, (3:2)
k=0
7 The formulation can be generalized to the case where the action spaces depend on state in a

rather straightforward way.
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where ap ~ 7(sx), and the expectation is taken with respect to the all randomness. We next
introduce the Nash equilibrium (more specifically, Markov perfect equilibrium [44,45]) where
players do not gain any utility improvement by unilateral changes in their stationary strategies
regardless of the initial state, e.g., see [71, SECTION 6.2].

Definition 3.1 (Stationary (¢-)Nash equilibrium). We say that a stationary strategy profile
7 is a stationary mixed-strategy -Nash equilibrium with ¢ > 0 if we have

U'(n',n?) > U (7", n%) —¢ forall 7', (3.32)
U?(n'.n?) = U?(x". 7%) —¢ forall 7°. (3.3b)

We say that 7 is a stationary mixed-strategy Nash equilibrium if (3.3) holds with ¢ = 0.
We next state an important existence result for discounted stochastic games.

Theorem 3.2 (Existence of a stationary equilibrium in stochastic games [24]). In stochastic
games (with finitely many players, states, and actions, and discount factor y € [0, 1)), a
stationary mixed-strategy equilibrium always exists.

The proof for two-player zero-sum stochastic games is shown by Shapley [69] while
its generalization to n-player general-sum stochastic games is proven by Fink [24] and Taka-
hashi [77] concurrently. Shapley [69] had also presented an iterative algorithm to compute the
unique equilibrium value of a two-player zero-sum stochastic game. To describe the algo-
rithm, let us first note that in a zero-sum strategic-form game, there always exists a unique
equilibrium value for the players (though there may exist multiple equilibria). For example,
given a zero-sum strategic-form game (A', A%, u', u?), we denote the equilibrium values of
player 1 and player 2, respectively, by

al'lu'] = max — min E,. u' (@)}, 3.4
\% [ ] JtleA()ill)ﬂZEAl(AZ) a (7[1,7{2){ (a)} ( )
val’[u?] = max min = E, 1 22 {4 (@)} (3.5)

n2eA(42) nleA(AY)

It is instructive to examine the following thought experiment. Imagine that players are at the
edge of the infinite horizon. Then the players’ continuation payoff would be determined by
the stage game at state s since there would not be any future stages to consider. The unique
equilibrium values they would get would be val’ [ (s, -)]. Then, at the stage just before the last
one, they would have played the strategic-form game (A', A2, Q1(s,-), Q?(s,-)) at state s,
where

0'(s,)=ri(s,)+y Z p(s'ls, ) val' [ri (s, )] (3.6)

s'eS

Shapley [69] showed that if we follow this backward induction, we can always compute the

equilibrium values associated with a stationary equilibrium. To this end, he introduced the
operator 7 defined by

(Tivi)(s) = val’ [ri(s,-) +y Z p(s|s,~)vi(s/)i|, Vs € S, 3.7

s'eS
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which is a contraction with respect to the £q,-norm when y € (0, 1) since val’ is a nonex-
pansive mapping, i.e.,

|val’ (u') — val’ (ii")| < ma/>1(|ui(a) — i (a)|,

forany u’ : A — R and i’ : A — R, similar to the maximum function in the Bellman operator.
Therefore, the iteration
vén_H) = Tlvzn), Vn >0, (3.8)

starting from arbitrary véo) converges to the unique fixed point of the operator. Further inspec-
tion of the fixed point reveals that it is indeed the equilibrium values of states associated with
some stationary equilibrium of the underlying two-player zero-sum stochastic game. There
does not exist a counterpart of this iteration for the computation of equilibrium values in
general-sum stochastic games, since the value of a game is not uniquely defined for general-
sum stochastic games, and involves a fixed point operation, which is hard to compute at each
stage of an algorithm. However, Shapley’s iteration is still a powerful method to compute
equilibrium values in a two-player zero-sum stochastic game.

In the following section, we examine whether a stationary equilibrium would be
realized as a consequence of nonequilibrium adaptation of learning agents as in Section 2.1
but now for stochastic games instead of repeated play of the same strategic-form game.

4. LEARNING IN STOCHASTIC GAMES

Fictitious play dynamics is a best-response type learning dynamics where each
player aims to take the best response against the opponent by learning the opponent’s strat-
egy based on the history of the play. This stylist learning dynamic can be generalized to
stochastic games as players (again erroneously) assume that the opponent plays according to
a stationary strategy (which depends only on the current state). Hence, they can again form a
belief on the opponent’s stationary strategy based on the history of the play. Particularly, they
can form a belief on the opponent’s mixed strategy specific to a state based on the actions
taken at that state only due to the stationarity assumption on the opponent’s strategy. Given
that belief on the opponent’s strategy, players can also compute the value of each state-action
pair based on backward induction since their actions determine both the stage payoff and the
continuation payoff by determining the state transitions. Therefore, they essentially play an
auxiliary stage-game at each stage specific to the current state, which can be represented by
Gy = (A', A%, Q' (s, ), Q?%(s,-)), where the payoff or the Q-function, Q'(s,-) : A — R
is determined according to the backward induction given 7~ the belief of player i about
player —i’s strategy, and therefore, it satisfies the following fixed-point equation:

Q' (s.a) =r'(s,a) +y Z p(s'ls.a) max Epimn-is){Q'(s" a", a?)}. @.1)
al 1

s'eS

For notational convenience, we also define the value function vi:S >R by

V' (s) := max Ea_iN,,_i(s){Qi(s,al,az)}. 4.2)

al€Al
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At each stage k, player i has a belief on player —i’s strategy, which we denote
by 7, I Player i also forms a belief on the payoff function for the auxiliary game, or the
Q-function, denoted by QA;c Let s be the current state of the stochastic game. Then, player i
selects her action a;_according to

ak € argmax E amindy l(s){Qk(s a,a )} 4.3)
aleAl
Observing the opponent’s action a;- I, player i forms her belief on player —i’s strategy for
the current state s as a weighted emp1r1cal average, which can be constructed iteratively as

Ri1(8) = 7 (5) + ey (ai” — 7' (5)). 4.4)
Here «, € [0, 1] is a step size and it vanishes with cg (s) indicating the number of visits to
state s rather than time. Note that if there was a single state, c (s) would correspond to the
time, i.e., ¢ (s) = k, as in the classical fictitious play. The update (4.4) can also be viewed
as taking a convex combination of the current belief ft,f (s) and the observed action ai while
the step size a, (5) is the (vanishing) weight of the action observed. Vanishing step size as
a function of the number of visits implies that, the players give less weight to their current
belief than the observed action by using a large step size if that state has not been visited
many times. This means that the players will still give less weight to their current belief even
at later stages if the specific state has not been visited many times, and indicating, they have
not been able to strengthen their belief enough to rely more on it.
Simultaneously, player i updates her belief on her own Q-function for the current
state s according to

Q;;H(s,a):Q;;<s,a>+ﬁck<s>( a)+r Y o |savk(S)—Qk(sa)) Vaed,

s'eS
4.5)
where we define ﬁ,‘; 1§ — R as the value function estimate given by
0% (s) = max Ea;i,vﬁ];i ©) {QA;C (s.a', az)}, (4.6)
al

and B, € [0, 1] is another step size that also vanishes with c (s). Similar to (4.4), the update
of the belief on the Q-function (4.5) can be viewed as a convex combination of the current
belief Q' (s,a) and the new observation ri (s,a) +y Yy p(s'|s. @) (s'). Such vanishing
step size again implies that the players are relying on their beliefs more if they have had many
chances to strengthen them.

The key feature of this learning dynamic is that the players update their beliefs on
their Q-functions at a slower timescale than the update of their beliefs on the opponent
strategy. This is consistent with the literature on evolutionary game theory [22, 62] (which
postulates players’ choices to be more dynamic than changes in their preferences) since we
can view Q-functions in auxiliary games as slowly evolving player preferences. Particularly,
the two-timescale learning framework implies that the players take smaller and smaller steps
at (4.5) than the steps at (4.4) such that the ratio of the step sizes, B./a., goes to zero with
the number of visits to the associated state. Note that this implies that 8. goes to zero faster
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than ¢, does, implying slower update of the Q-function estimate compared to the opponent’s
strategy estimate. This weakens the dependence between evolving beliefs on opponent strat-
egy and Q-function.

We say that this two-timescale fictitious play dynamics converge to an equilibrium
if beliefs on opponent strategies converge to a Nash equilibrium which associates with the
auxiliary games while the beliefs on Q-functions converge to the Q-functions for a stationary
equilibrium of the underlying stochastic game. Particularly, given an equilibrium 7, the
associated Q-function of player i satisfies

Q'(s.a)=r'(s, a)+yz s'|s,a meajl(E —zw,,*x(s){Qi(s’,al,aZ)}, VY(s,a)e S x A.

s'eS
Recall that players are playing a dynamically evolving auxiliary game at each state repeat-
edly, but update their beliefs on the Q-functions and opponent strategies only when that
state is visited. Therefore, the players are updating their beliefs on the opponent strategy
and Q-function specific to that state only during these visits. Hence, we make the follow-
ing assumption ensuring that players have sufficient time to revise and improve their beliefs
specific to a state.

Assumption 4.1 (Markov chain). Each state is visited infinitely often.

Stochastic games reduce to the repeated play of the same strategic-form game if
there exists only one state and the discount factor is zero. Correspondingly, Assumption 4.1
always holds in such a case. However, when there are multiple states, Assumption 4.1 does
not necessarily hold, e.g., since some states can be absorbing by preventing transitions to
others. In the following, we exemplify four Markov chain configurations with different gen-
erality:

* Case (i) The probability of transition between any pair of states is positive for
any action profile. This condition is also known as irreducible stochastic games
[4e].

e Case (ii) The probability of transition between any pair of states is positive for

at least one action profile. Case (ii) includes Case (i) as a special case.®

* Case (iii) There is positive probability that any state can be reached from any state
within a finite number of stages for any sequence of action profiles taken during
these stages. Case (iii) includes Case (i) as a special case but not necessarily
Case (ii).

e Case (iv) There is positive probability that any state can be reached from any
state within a finite number of stages for at least one sequence of action pro-

8 Another possibility in between Cases (i) and (ii) is that the probability of transition between
any pair of states is positive for at least one action of one player and any action of the oppo-
nent. In other words, the opponent cannot prevent the game to transit from any state to any
state.
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files taken during these stages. Case (iv) includes Cases (ii) and (iii) as special
9
cases.

Note that Assumption 4.1 holds under Case (iii) but not necessarily under Case (ii) or (iv).
Recall that in the classical fictitious play, the beliefs on opponent strategy are formed
by the empirical average of the actions taken by the opponent. The players can also form
their beliefs as a weighted average of the actions while the weights may give more (or less)
importance to recent ones depending on the player’s preferences, e.g., as in (4.4). In other
words, we let a, take values other than 1/(c + 1) for ¢ = 0, 1, ... Furthermore, the two-
timescale learning scheme imposes that B./a. goes to zero as ¢ goes to infinity. In the
following, we specify conditions on step sizes that are sufficient to ensure convergence of the
two-timescale fictitious play in two-player zero-sum stochastic games under Assumption 4.1.

Assumption 4.2 (Step sizes). The step sizes {«,} and { B} satisfy the following conditions:

(a) They vanish at a slow enough rate such that

Yae=) pe=o0

c>0 c>0

while ¢, — 0 and B, — 0 as ¢ — oo.

(b) They vanish at two separate timescales such that

lim & =0.
c—00
The following theorem shows that the two-timescale fictitious play converges in

two-player zero-sum stochastic games under these assumptions.

Theorem 4.3 ([63]). Given a two-player zero-sum stochastic game, suppose that players
follow the two-timescale fictitious play dynamics (4.4) and (4.5). Under Assumptions 4.1
and 4.2, we have

(fr,i ﬁ’,?) — (xl, 7% and (QA]i QA]%) — (0L, 02), with probability 1, 4.7)

as k — oo for some stationary equilibrium 1w, = (1}, 72) of the underlying stochastic game
and (Q1, Q?) denote the associated Q-functions.

Before delving into the technical details of the proof, it is instructive to compare the
two-timescale fictitious play with both the classical fictitious play and the Shapley’s iteration.
For example, the update of 7, I, described in (4.4), differs from the classical fictitious play
dynamics (2.3) since the auxiliary game depends on the belief Q; while the belief (and
therefore the payoffs of the auxiliary games) evolves in time with new observations, quite

9 Another possibility in between Cases (iii) and (iv) is that there is positive probability that
any state can be reached from any state within a finite number of stages for at least one
sequence of actions of one player and for any sequence of actions taken by the opponent
during these stages. In other words, the opponent cannot prevent the player to reach any
state from any state within a finite number of stages.
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contrary to the classical scheme (2.4). In general, this constitutes a challenge in directly
adopting the convergence analysis for the classical scheme to stochastic games. However,
the two-timescale learning scheme weakens this coupling, enabling us to characterize the
asymptotic behavior specific to a state separately from the dynamics in other states as if
(QAIIc (s, "), QA]% (s,-)) is stationary.

Moreover, even with the two-timescale learning scheme, we still face a challenge
in directly adopting the convergence analysis of fictitious play specific to zero-sum games,
e.g., [31,59]. Particularly, players form beliefs on their Q-functions independently based on
the backward induction that they will always look for maximizing their utility against the
opponent strategy. Due to this independent update, the auxiliary games can deviate from the
zero-sum structure even though the underlying game is zero-sum. Hence we do not necessar-
ily have QA,i(s, a) + QA]%(S, a) = 0forall a € A and for each s € S. This poses an important
challenge in the analysis since an arbitrary general-sum game does not necessarily have fic-
titious play property in general.

Next, we compare the two-timescale fictitious play with Shapley’s value iteration.
We can list the differences between the update of Q 2’ described in (4.5), and the Shapley’s
iteration (3.8) as follows:

* The Shapley’s iteration is over the value functions, however, it can be turned into
an iteration over the Q-functions with the operator
(F O (s,a) =r'(s,a) +y Z p(s'ls,a) val' (Q'(s',)), V(s.a) e S x 4,
s'eS
4.8)
as derived in [76]. The transformed iteration is given by an = Fi &n) starting
from arbitrary QEO). Furthermore, the Shapley’s iteration does not involve a step
size, however, a step size can be included if we view Q(,, ) = ' 0, as the
one
Qi) = Qe T B (F" Qi) = Qi) “.9)
with the step size B(,) = 1 for all n.

* The Shapley’s iteration updates the value function at every state at each stage
while (4.5) takes place only when the state is visited. Therefore, we face the asyn-
chronous update challenge in the convergence analysis of (4.5) together with (4.4),
which can take place only when the associated state is visited. To address this, we
can resort to the asynchronous stochastic approximation methods, e.g., see [8e]
(also upcoming Theorem 4.5).

* More importantly, the convergence of the Shapley’s iteration benefits from the
contraction property of the operator (3.7) (or its transformed version (4.8)) based
on the nonexpansive mapping val’ (-). However, in the update (4.5), we have

0} (s) = max Egizmio{0' (5.0, a®)}
aleA!

rather than val’ (Qi (s,)), which need not lead to a contraction.
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The proof of Theorem 4.3 follows from exploiting the two-timescale learning
scheme to analyze the evolution of the beliefs on opponent strategies specific to a state
in isolation as if the beliefs on Q-functions are stationary and then showing that 9 k (s) tracks
val’ (Qi (s, -)) while addressing the deviation from the zero-sum structure via a novel Lya-
punov function construction. The two-timescale learning scheme yields that the limiting
flow of the dynamics specific to a state is given by

i

dz'(s) +7t € argmax E, —t,\,”—l(s){Q (s, a'.a )} (4.10)
dt aleAl

dQ'(s.a)

T S 4.11
- 0. (4.11)

for all (s,a) € S x Aandi = 1,2. The function (2.6) presented in [31] for continuous-time
best response dynamics in zero-sum games is no longer a valid Lyapunov function since
Zi:m Q' (s, a) is not necessarily zero for all s and a. Therefore, we modify this function to
characterize the asymptotic behavior of this flow in terms of the deviation from the zero-sum
structure, e.g., maXged | ) ;=5 Q' (s, a)|. The new function is defined by

> 0a)) |
i=1,2 +

where A is a fixed scalar satisfying A € (1, 1/y). The lower bound on A plays a role in its

V*(n(s), of(s, )) = ( Z rl_neajlci Ea_iN,,_i(s){Qi(s,al,az)} — )Lr;lea;(
i=1,2¢

validity as a Lyapunov function when maxgea |} _;—; » Q' (s,a)| # 0 while the upper bound
will play a role later when we focus on the evolution of Zi:m Q' (s, a) to show that the
sum converges to zero, i.e., the auxiliary stage games become zero-sum, almost surely.

Note that Vi (-) reduces to V(-), described in (2.6), if Y ;_; , Q' (s,a) = 0 for all
a € A. Furthermore, it is a valid Lyapunov function for any Q!(s,-) and Q?(s, -) since we
have

d

i= 12
=) 0'(s.ax) - Z max i) { Q' (5. @)}, (4.12)
i=1,2 2%

where a, = (al,a?) are the maximizing actions in (4.10), and we always have

Y. 0'(s.a)

i=1,2

> 0'(s.a.) < Amax
a€A

i=1,2

if it is not zero-sum, since A > 1. In other words, the term inside ()« in the new Lyapunov
function always decreases along the flow when it is nonnegative and cannot be positive once
it becomes nonpositive.
If we let 0 := 9} + 07 and Qg := QA,i + QA,%, the new Lyapunov function yields
that
(ﬁk(s)—)kmax|Q_k(s,a)|) -0 (4.13)
acA +
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as k — oo for each s € S. On the other hand, we always have ¥ (s) > —A maxge4 | Ok (s, a)
by the definition of ﬁ,"c. These bounds imply that Q (s, a) — 0, and therefore ¥ (s) — 0 for
all (s,a) € S x A, because the evolution of Qy for the current state s is given by

Ok+1(s,a) = Qk(s.a) + Bey(s) (V > p(sls.a)ve(s") — Qk(s,a)), VYae A (4.14)
s’'eS
by (4.5), while the upper bound on A ensures that Ay € (0, 1), and therefore, O (s, a) con-
tracts at each stage until it converges to zero for all s € S and a € A. The asynchronous update
and the asymptotic upper bound on vg, as described in (4.13), constitute a technical chal-
lenge to draw this conclusion, however, they can be addressed via asynchronous stochastic
approximation methods, e.g., see [8e].
Furthermore, the saddle point equilibrium yields
max Ep2 21Ok (5. @)} = val' (04 (s.) = agleiﬂzEauﬁ;(s){Qi(&“)}s (4.15)

and the right-hand side is bounded from below by

min, Egiip ol 0i(s.@)} = min, Egiip =0k (. )} + min, Eiat i Qk(s,a)}

a’e
(4.16)
A, _
2z — max Bz {Q(s. @)} —max|Ok(s.a).  (4.17)
These bounds lead to
0 = i (s) — val' (O (s.)) = Te(s) + max [ Qi(s. ). (4.18)
ae

Since the right-hand side goes to zero as k — oo, we have that 9 k (s) tracks val’ (QA;C (s,))-
Based on this tracking result, the update of QA;( can be viewed as an asynchronous version
of the iteration

an+1) = Qén) + ﬁ(n)(j:l an) + an) - an))’ 4.19)
where the tracking error eén) is asymptotically negligible almost surely and the operator ¥,
as described in (4.8), is a contraction similar to the Shapley’s operator, described in (3.7).
This completes the sketch of the proof for Theorem 4.3.

4.1. Model-free learning in stochastic games

We next consider scenarios where players do not know the transition probabilities
and their own stage payoff function, however, they can still observe their stage payoffs (asso-
ciated with the current action profile), the opponent’s action, and the current state visited.
Therefore, the players can still form beliefs on opponent strategy and their Q-functions.

The update of the belief on opponent strategy does not depend on the model knowl-
edge. Therefore, the players can update their beliefs 77~ " as in (4.4) also in the model-free
case. However, the update of O} necessitates the model knowledge by depending on the
stage payoff function and transition probabilities. The same challenge arises also in model-
free solution of Markov decision processes (MDPs)—a single player version of stochastic
games.
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For example, Q-learning algorithm, introduced by [82], can be viewed as a model-
free version of the value iteration in MDPs and the update rule is given by

G (5.0) = Gi(s.0) + Bis.0) (i + y max e 6.) — 5., (420

where the triple (s, a, §) denotes the current state s, current action @, and the next state §,
respectively, the payoff r; corresponds to the payoff received, i.e., rx = r(s, a), and
Bir(s,a) €]0,1] is a step size specific to the state-action pair (s, @). The entries corre-
sponding to the pairs (s’,a’) # (s,a) do not get updated, i.e., Grr1(s’,a’) = G (s, a’).
Watkins and Dayan [82] provided an ingenious (direct) proof for the almost sure
convergence of Q-learning algorithm. Alternatively, it is also instructive to establish a con-
nection between Q-learning algorithm and the classical value iteration to characterize its
convergence properties. For example, the differences between them can be listed as follows:

e In Q-learning, agents use the value function estimate for the next state s, i.e.,
0% (3), in place of the expected continuation payoff "¢ p(s’ls, @)0% (s"). This
way, they can sample from the state transition probabilities associated with the
current state—action pair by observing the state transitions. Correspondingly, this
update takes place only after the environment transitions to the next state.

» The update can take place only for the current state—action pair because the agent
can sample only from the transition probabilities associated with the current state-
action pair by letting the environment do the experimentation.

Therefore, the Q-learning algorithm can be viewed as an asynchronous Q-function version
of the value iteration

Gk+1 = qr + Pi(Fodk + w41 — qr). (4.21)
where the Q-function version of the Bellman operator is given by
(Foie)0.) = r(5.0) 7 3, p(¥ls.a) may s o' (422)
and the stochastic approximation error w4 is defined by
wk41(s,a) 1=y (glea} Gr(5.a) — SZ&; p(s'ls.a) max g (s', a’)), (4.23)

with § denoting the next state at stage k. Note that (4.21) turns into an asynchronous update
if Br(s,a) is just zero when §x (s, a) is not updated. Though these error terms {wg }x>o
do not form an independent sequence, they form a finite-variance martingale difference
sequence conditioned on the history of parameters. The following well-known result shows
that the weighted sum of such martingale difference sequences vanishes asymptotically
almost surely.

Lemma 4.4 ([58]). Let {Fi}k>0 be an increasing sequence of o-fields. Given a sequence
{wk } k>0, suppose that wy_; is Fr-measurable random variable satisfying E|wy|Fx] = 0
and E[w,ﬂ?k] < K for some K. Then, the sequence {Wy}r>¢ evolving according to

Wis1 = (1 — o) Wi + oo, (4.24)
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vanishes to zero asymptotically almost surely, i.e., limg_. oo Wi = 0 with probability 1, pro-
vided that ay € [0, 1] is a vanishing step size that is ¥y -measurable, square-summable
> reo oz,% < 0o while Y_z2 o ax = 0o with probability 1.

This is a powerful result to characterize the convergence properties of stochastic
approximation algorithms having the structure

X1 = Xk + g (F(xp) — xx + w)

where xj is an n-dimensional vector, F : R” — R” is a Lipschitz function, oy € [0, 1] is
a step size, and wy is a stochastic approximation error term forming a finite-variance mar-
tingale difference sequence conditioned on the history of parameters. Note that every entry
of the vector x; gets updated synchronously. If we also have that the iterate is bounded, we
can characterize the convergence properties of this discrete-time update based on its limiting
ordinary differential equation via a Lyapunov function formulation [11]. If the entries do not
get updated synchronously, the asynchronous update challenge can be addressed based the
averaging techniques [38]. In the case of Q-learning, this corresponds to assuming that dif-
ferent state—action pairs occur at well-defined average frequencies, which can be a restriction
in practical applications [8e]. Instead, [8e] showed that we do not need such an assumption
if the mapping F has a contraction-like property based on the asynchronous convergence
theory [8,9].

Theorem 4.5 ([8e]). Given an MDP, let an agent follow the Q -learning algorithm, described
in (4.20), with vanishing step sizes Pi (s, a) € [0, 1] satisfying Y i~ Br(s,a) = oo and
> k=0 Br(s,a)? < oo for each (s,a) € S x A. Suppose that the entries corresponding to
each (s, a) gets updated infinitely often. Then, we have

qi(s,a) — q«(s,a), with probability 1, (4.25)
foreach (s,a) € S x A, as k — oo, where qx is the unique Q-function solving the MDP.

Tsitsiklis [8e] considered a more general case where agents receive random payoffs.
In general, such randomness can result in unbounded parameters. However, this is not the
case for Q-learning algorithm, i.e., the iterates in the Q-learning algorithm remains bounded.
Furthermore, the boundedness of the iterates plays a crucial role in the proof of Theorem 4.5.
Particularly, consider the deviation between the iterate g and the unique solution ¢, i.e.,
dx = 4x — q«, which evolves according to

Grk+1 = Gk + B (Fogk + wr1 — i) (4.26)

by (4.21) and since Foq« = ¢«. Boundedness of the iterates gy yields that Gy, is also bounded.
For example, let |Gk (s,a)| < D for all (s,a) and k. Furthermore, by the contraction property
of ¥y with respect to the maximum norm, we have

max |(Fodk) (s, a)| < y max |Gk (s, a)|.
(s,a) (s,a)
Therefore, we can show that the absolute value of new iterates are bounded from above by

|Gk (s, @)| < Yi(s,a) + Wit (s, a), (4.27)
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where {Y (s,a)} k>0 and {Wi1 (s, a) }x>0 are two sequences evolving, respectively, accord-

ing to
Yiy1(s.a) = (1= Br(s.a)) D + Bi(s.a)yD (4.28)
starting from Yy = D, and
Wk+1(S,a) = (l - ,Bk(s,a))Wk(s,a) + ﬂk(s,a)a)k(s,a), (429)

starting from Wi (s, a) = 0 for all (s, a). For each (s, a), the sequence {Yx (s, a)}x>o con-
verges to yD while {Wy11(s, a)}r>o converges to zero with probability 1 by Lemma 4.4
due to the assumptions on the step size and the infinitely often update of every entry. Letting
k — oo for both sides of (4.27), we obtain that the shifted iterates are asymptotically bounded
from above by yD. This yields that there exists a stage where the iterates remain bounded
from above by (y + €) D where € > 0 is sufficiently small such that y + € < 1. By following
the same lines, we can find a smaller asymptotic bound on the iterates. Therefore, we can
induce that the shifted iterates converge to zero and the iterates converge to the solution of
the MDP even with the asynchronous update.

Similar to the generalization of the value iteration to Q-learning for model-free
solutions, [42] generalized the Shapley’s iteration to Minimax-Q learning to compute equi-
librium values in two-player zero-sum stochastic games in a model-free way. The update rule
is given by

QA};H(s,a) = QA};(s,a) + Br(s,a)(ry + yval"[QA};(E)] - QA};(s,a)), (4.30)

for the current state s, current action profile a, and next state § with a step size B (s,a) € [0, 1]
vanishing sufficiently slow such that Y, ., Bk (s,a) = oo and Y 4., Br(s,a)? < oo with
probability 1. The payoff r,"c corresponds_ to the payoff received for the current state and
action profile, i.e., r; = r'(s, a). The Minimax-Q algorithm converges to the equilibrium
Q-functions of the underlying two-player zero-sum stochastic game almost surely if every
state and action profile occur infinitely often.

In model-free methods, the assumption that every state—action pair occur infinitely
often can be restrictive for practical applications. A remedy to this challenge is that agents
explore at random instances by taking any action with uniform probability. Such random
exploration results in that every state-action pair gets realized infinitely often if every state is
visited infinitely often. Indeed, random exploration will also yield that each state gets visited
infinitely often if there is always positive probability that any state is reachable from any
state within a finite number of stages for at least one sequence of actions taken during these
stages. This corresponds to Case (iv) described in Section 4.

In the model-free two-timescale fictitious play, players play the best response in the
auxiliary game with probability (1 — €) while experimenting with probability € by playing
any action with uniform probability. They still update the belief on the opponent strategy
as in (4.4). Furthermore, they update their beliefs on the Q-function for the current state s,
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current action profile a and next state s’ triple (s, a, s”) according to

0} 41(5.a) = 04(5.@) + By (1 + ¥ max Ego sz {0450 )} = Ok (s.) ).
(4.31)

where B¢, (s.a) € [0, 1] is a step size vanishing with the number of times (s, @) is realized
and the payoft r,: corresponds to the payoff associated with the current state s and action
profile a, i.e., r,i = rl(s,a).

Recall that the two-timescale learning scheme plays an important role in the conver-
gence of the dynamics. Particularly, the step size . used in the update of the belief 7, i(s)
goes to zero slower than the step size B used in the update of the belief QA;C(S, -). Since
both step size depend on the number of visits to the associated state, the assumption that
B /ae — 0as ¢ — oois sufficient to ensure this timescale separation. However, in the model-
free case, the asynchronous update of QA;c (s, a) for different action profiles can undermine
this timescale separation because the step size . specific to the update of Q; (s, a) depends
the number of times the state and action profile (s, a), i.e., ¢k (s, a), is realized. Therefore, we
make the following assumption ensuring that the step size in the update of Q ;{ (s,a) vanishes
still faster than the step size in the update of 77, " (s) as long as ¢ (s, a) is comparable with
cr (s), i.e., liminfy oo ci (s, a)/cx (s) > 0 with probability 1.

Assumption 4.6 (Step sizes). The step sizes {a.} and {f.} satisfy the following conditions:

(a) They vanish at a slow enough rate such that
ZaC=Z/3€=oo, and Za3<oo, Zﬁf<oo
c>0 c>0 c>0 c=0

while o — 0 and B, — 0 as ¢ — 0o.'”

(b) The sequence {B.}.>0 is monotonically decreasing. For any m € (0, 1], we
have'!
lim —ﬂLmCJ =
c—>00

0.

When we have lim infy_, o, cx (s, @) /cr (s) > 0 with probability 1 for all (s, @), the
Zx&9 — () with probability 1 for all

Qe (s)
(s,a). Indeed, Assumptions 4.2 and 4.6 are satisfied for the usual (vanishing) step sizes such

second part of Assumption 4.6 ensures that limg_; o

as
1 8 1
O = —mmm——— = —
NG e+ s
where 1/2 < py < pg < 1.
10 We have the additional assumption that the step size B, is square summable to ensure that

the stochastic approximation error terms have finite variance conditioned on the history of
the parameters.
11 Perkins and Leslie [54] made a similar assumption that sup, ﬂ%ﬂ < M forallm € (0, 1)
c

and % — 0 for two-timescale asynchronous stochastic approximation.
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When players do random experimentation in the model-free case, they do not take
the best response with certain probability. Therefore, we do not have convergence to an
exact equilibrium as in the model-based case. However, the players still converge to a near
equilibrium of the game with linear dependence on the experimentation probability and the
following theorem provides an upper bound on this approximation error.

Theorem 4.7 ([63]). Given a two-player zero-sum stochastic game, suppose that players
follow the model-free two-timescale fictitious play dynamics with experimentation probabil-

ity € > 0. Under Assumptions 4.1 and 4.6, we have

. . 14y
limsup v}, (s) — V' (s)| < eD———, (4.32)
k—o00 | k | V(l - y)2
lim sup max }QA};(s,a) - Qi(s,a)} < eDH_—y, (4.33)
k—>o0o 4€EA - (1 — )/)2

with probability 1, where D = ﬁ Y Max(s,q) |ri(s,a)|, where vi and Q' denote, respec-
tively, the value function and Q-function of player i for some stationary equilibrium of the
stochastic game.

Even though the random experimentation can prevent convergence to an exact equi-
librium, it provides an advantage for the applicability of this near-convergence result because
every state gets visited infinitely often, and therefore, Assumption 4.1 holds, if the underly-
ing Markov chain satisfies Case (iv), i.e., there is positive probability that any state can be
reached from any state within a finite number of stages for at least one sequence of action
profiles taken during these stages.

The dynamics can converge to an exact equilibrium also in the model-free case if
players let the experimentation probability vanish at certain rate. However, there are technical
details that can limit the applicability of the result for Case (iv).

4.2. Radically uncoupled learning in stochastic games

Finally, we consider minimal-information scenarios where players do not even
observe the opponent’s actions in the model-free case. Each player can still observe its
own stage payoff received and the current state visited. The players also do not know the
opponent’s action set. Indeed, they may even be oblivious to the presence of an opponent.
The learning dynamics under such minimal information case is known as radically uncou-
pled learning in the learning in games literature, e.g., see [25].

Without observing the opponent’s actions and knowing her action space, players
are not able to form beliefs on opponent strategy as in the fictitious play. This challenge is
present also in the repeated play of the same strategic-form game. For example, consider the
strategic-form game (A!, A2, r!, r?) and define ¢’ : A* — R by

q'(@") :=Egpip-i{ri(@a'.a®)}, Va' € A’ (4.34)
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given the opponent’s strategy 7 . Then, the computation of the best response is a simple
optimization problem for player 7, given by
a' e argmax ¢’ (a').
ateA?

Player i would be able to compute her best response a’, even when she does not know the
opponent strategy 7~ and her payoff function r’ if she knew the function ¢ (-). Hence, the
question is whether the computation of g’ (-) can be achieved without observing the oppo-
nent’s action.

Suppose that players are playing the same strategic-form game repeatedly and player
i makes the forward induction that the opponent will play as how he has played in the past
similar to the fictitious play dynamics. If that were the case, i.e., the opponent were playing
according to a stationary strategy 7 ', then at each stage the payoff received by player i

would be the realized payoff 7 (a', a?), where a=* ~ 7~ and a’ is the current action she
has taken. Correspondingly, player i can form a belief about ¢’ (a') for all ' € A* and update
q' (-) associated with the current action based on the payoff she received. For example, let
c?,ic, a;c and r,i denote, respectively, the belief of player i on g¢*, her current action and the
current payoff she received. Similar to the update of the belief on opponent’s strategy, the

update of t?llc is given by

qu'H.l(ai) = {

where ay (a') € [0, 1] is a vanishing step size specific to the action a’. However, this results

g (a’) + a(a') (g — gi (@) ifa’ =a,
q k (a’) otherwise,

in an asynchronous update of gy, for different actions quite contrary to the synchronous belief
update (2.3) in the fictitious play. There is no guarantee that it would converge to an equilib-
rium even in the zero-sum case. On the other hand, such an asynchrony issue is not present
and the update turns out to be synchronous in expectation if players take smoothed best
response while normalizing the step size by the probability of the current action taken [39].
Given !, the smoothed best response BR;, € A(A') is given by
BR; := argmax (Ei_i {Gh(a’)} + v’ (1)), (4.35)
uieA(AY)

where ¥ : A(A") — R is a smooth and strictly concave function whose gradient is unbounded
at the boundary of the simplex A(A?) [29]. The temperature parameter r > 0 controls the
amount of perturbation on the smoothed best response. Note that the smooth perturbation
ensures that there always exists a unique maximizer in (4.35). Since players take smoothed
best response rather than best response, we use an equilibrium concept different from the
Nash equilibrium. This new definition is known as Nash distribution or quantal response
equilibrium [46].

Definition 4.8 (Nash distribution). We say that a strategy profile r is a Nash distribution
if we have

nl = argmax (E(ai’a—i)N(ui’”;i){r]i (@} + v (u')) (4.36)
i EA(AD)

for each i.
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An example to the smooth function is v/ (') := —E i i {log(it (a'))}, also known
as the entropy [34], and the associated smoothed best response has the following analytical

form: e
exp(§y (a’)/7)

BRy (a") = Y aicai exp(g(@)/v)’

which is positive for all a’ € A. _

When player i takes her action according to the smoothed best response ﬁ;, any
action will be taken with some positive probability ﬁ; (a') > 0. Hence she can update her
belief according to

4 (@) + BRy (@) ek (rf, — gL (@) ifa’ =,

o 4.37)
gy (a") otherwise,

C?]iﬁ-l(ai) = {

where oz € (0, 1) is a step size vanishing with k and not specific to any action. This asyn-
chronous update rule, also known as individual Q -learning, turns out to be synchronous in
the expectation. Particularly, the new update rule is given by

4r (@) =gi(a") + o (Ea,iwﬁ;i {r'@'.a®)} —g;(a") + wj(a')), VYa' €A’ (4.38)
and a),’( (a') is the stochastic approximation error defined by
wp(a'):= l{ai=a;'€}BRk(al) ! (re — qk(a’)) —E, 5x, {1{ai=a§€}BRk (a)™! (r,’c — q,’{(a’))},
where BR;, = (ﬁ}c, ﬁi), because we have

r—1 P . ~i . . N .
E,-5x, {l{aiza;c}BRk(a‘) Y(rf — dp(a))} = ]Ea_iwmi {r (a',a)} — g, (da").

Furthermore, the stochastic approximation error term forms a martingale difference sequence
conditioned on the history of iterates while the boundedness of the iterates ensure that it has

finite variance. Therefore, we can invoke Lemma 4.4 to characterize the convergence prop-
erties of (4.38)—a rewritten version of (4.37) with the stochastic approximation term a),‘(

Theorem 4.9 ([39]). In two-player zero-sum (or identical-payoff) strategic-form games
played repeatedly, if both player follows the individual Q-learning algorithm, described
in (4.37), then their estimate cjl’c converges to g\, for all a* € A? satisfying

qi(ai) = Ea_i~ﬂ;i {ri (a', az)}

for some Nash distribution my« = (7}, 72) under the assumption that the iterates remain
bounded. Correspondingly, their smoothed best response also converges to m*.

Recall that in stochastic games, players are playing an auxiliary stage-game specific
to the current state 5 = (A', A2, Q'(s,-), Q%(s,-)), where Q" satisfies (4.1). Therefore, in
the minimal information case, each player i can form a belief about the associated

qi(s,ai) = ]Ea*iwr*i(s){Qi(sval’az)}’

which is now specific to state s contrary to (4.34), and update it based on the stage payoffs
received as in the individual Q-learning dynamics. We can view ¢’ as the local Q-function
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since it is defined over individual actions rather than action profiles. We denote player i’s
belief on ¢* by c},i. Let s be the current state of the stochastic game. Then, player i selects
her action a}'c according to smoothed best response

BR; (5,-) = argmax (Egi,i {G; (s,a")} + vv' (1)),

uieA(AY)

ie., afc ~ ﬁ{;c (s, -). The smoothed best response depends only on the belief on the local
Q-function, i.e., cj}c (s,-). Observing the stage reward r]i and the next state s’, player i can
update her belief according to
" . — iN—1 . " A. . e i
i oaiy = | B0+ BRAa) o 0 0 £y 05) — o) e’ = .

é,’c (s,a’) otherwise,

(4.39)

where o, € (0, 1) is a vanishing step size and recall that ¢ (s) denotes the number of visits to
state s until and including stage k. The update (4.39) differs from (4.37) due to the additional
term y 0 ;{ (s”) corresponding to an unbiased estimate of the continuation payoff in the model-
free case. Due to this additional term, the individual Q-learning dynamics in auxiliary stage-
games specific to each state are coupled with each other. A two-timescale learning framework
can weaken this coupling if players estimate ﬁ,’; at a slower timescale according to

ﬁ]i(.l,.l(s) = ﬁ]l((s) + ,Bck(s) (Eai,\,ﬁ;{(s,,) {é;c (S,ai)} - ﬁ]lc(s))v (4.40)

where 8. € (0, 1) is a vanishing step size that goes to zero faster than ¢, rather than ﬁ,"{ (s) =
Eairvﬁ;c(s;) {C}Ilc (S, ai)}~

This decentralized Q-learning dynamics, described in (4.39) and (4.40), have con-
vergence properties similar to the two-timescale fictitious play even in this minimal infor-
mation case. Furthermore, random exploration is inherent in the smoothed best response.
Therefore, Assumption 4.1 holds if the underlying Markov chain satisfies Case (iv). How-
ever, due to the smoothed best response, the dynamics does not necessarily converge to an
exact Nash equilibrium.

Theorem 4.10 ([64]). Given a two-player zero-sum stochastic game, suppose that players
follow the decentralized Q-learning dynamics. In addition to Assumptions 4.1 and 4.6, we
assume that y_ ..o > < oo and the iterates are bounded. Let Q% and vi denote the unique
equilibrium Q-fb_mction and value function of player i. Then, we have

li;nsup |ﬁ,i€(s) — vi(s)| < rlog(|A1||A2|)g(y), (4.41)

Jor all (i,s) € {1,2} x S, with probability 1, where g(1) := % with some A €
(1. 1/y).

Furthermore, let frk (5) € A(AY) be the weighted time-average of the smoothed best
response updated as

ha1(8) = AE(S) + Lismg) @y (5) (BRR (5, ) — 74 ().
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Then, we have
lilfn sup | max IEa,,-Nﬁ;i(s){Qi(s,a)} — vl (s)] < tlog(|A'||A%|)h(y). (4.42)
oo 4 i
for all (i,s) € {1,2} x S, with probability 1, where h(y) := g(y)(1 + y) — 1. In other
words, these weighted-average strategies converge to near Nash equilibrium strategies of
the stochastic game.

The iterates would be bounded inherently if players update the local Q-function
(4.37) by thresholding the step BR}, (a’) ' e, (s) from above by 1. Furthermore, the dynam-
ics could converge to an exact equilibrium if players let their temperature parameter t > 0
vanishes over time at a certain rate, e.g., see [64]. With vanishing temperature, Assump-
tion 4.1 holds if the underlying Markov chain satisfies Case (iii).

5. OTHER LEARNING ALGORITHMS

Previous sections have focused on a detailed description of best-response/fictitious-
play type learning dynamics, together with Q-learning dynamics, for stochastic games. In
this section, we summarize several other algorithms in the learning in games literature, with
a focus on independent/decentralized learning for stochastic games (also belonging to the
area of multiagent reinforcement learning in the machine learning literature).

5.1. Classical algorithms

For stochastic games, other than Q-learning-type algorithms presented in Sec-
tion 4.1, [1e] also established the asymptotic convergence of an actor—critic algorithm to
a weaker notion of generalized Nash equilibrium. Another early work [13] proposed R-
MAX, an optimism-based RL algorithm for average-reward two-player zero-sum stochastic
games, with polynomial time convergence guarantees. However, convergence to the actual
Nash equilibrium is not guaranteed from the regret definition in the paper.

For strategic-form games, besides fictitious play, several other decentralized learn-
ing dynamics have also been thoroughly studied. A particular example is the no-regret learn-
ing algorithms'? from the online learning literature. It is a folklore theorem that: If both
players of a game use some no-regret learning dynamics to adapt their strategies to their
opponent’s strategies, then the time-average strategies of the players constitute a Nash equi-
librium of the zero-sum strategic-form game [18, 61]. Popular no-regret dynamics include
multiplicative weights update [26,41], online gradient descent [91], and their generalizations
[47,67]. These no-regret learning dynamics are uncoupled in that a player’s dynamics does
not explicitly rely on the payoffs of other players [32]. They are also posited to be a rational
model of players’ rational behavior [6e,75]. In addition, [39] proposed individual Q-learning,
a fully decentralized learning dynamics where each player’s update rule requires no obser-
vation of the opponent’s actions, with convergence to the Nash equilibrium distribution of

12 See [18] for formal definitions and results of no-regret learning.
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certain two-player games. Notably, these decentralized learning dynamics are only known to
be effective for strategic-form games.

5.2. Multiagent reinforcement learning

There has been a flurry of recent works on multiagent RL in stochastic games with
focuses on nonasymptotic performance guarantees. The authors of [56,57] proposed batch RL
algorithms to find an approximate Nash equilibrium using approximate dynamic program-
ming analysis. Wei et al. [83] studied online RL, where only one of the player is controlled,
and develops the UCSG algorithm with sublinear regret guarantees that improves the results
in [13], though still without guarantees of finding the Nash equilibrium. Subsequently, [72]
provided near-optimal sample complexity for solving turn-based two-player zero-sum finite
stochastic games, when a generative model that enables sampling from any state—action
pair is available. Under the same setting, the near-optimal sample complexity for general
two-player zero-sum finite stochastic games was then established in [87]. Without a gener-
ative model, [2,85] presented optimistic value iteration-based RL algorithms for two-player
zero-sum stochastic games, with efficient exploration of the environment, and finite-time
regret guarantees. The two players need some coordination to perform the algorithms, and
the focus in these two works is the finite-horizon episodic setting. Later, [3] and [43] provided
tighter regret bounds for the same setting, with model-free and model-based RL methods,
respectively. Liu et al. [43] has also studied the general-sum setting, with finite-sample guar-
antees for finding the Nash equilibrium, assuming some computation oracle for finding the
equilibrium of general-sum strategic-form games at each iteration. Contemporaneously, [35,
37] studied multiagent RL with function approximation in finite-horizon episodic zero-sum
stochastic games, with also the optimism principle and regret guarantees.

In addition, policy-based RL algorithms have also been developed for solving
stochastic games. The authors of [15, 88] developed double-loop policy gradient methods
for solving zero-sum linear quadratic dynamic games, a special case of zero-sum stochas-
tic games with linear transition dynamics and quadratic cost functions, with convergence
guarantees to the Nash equilibrium. Later, [9e] also studied double-loop policy gradient
methods for zero-sum stochastic games with general function approximation. Note that
these double-loop algorithms are not symmetric in that they require one of the players to
wait for the opponent to update her policy parameter multiple steps while updating her own
policy for one step, which necessarily requires some coordination between players. Finally,
[66] developed an Explore—-Improve—Supervise approach, which combines ideas from Monte
Carlo Tree Search and Nearest Neighbors methods, to find the approximate Nash equilib-
rium value of continuous-space turn-based zero-sum stochastic games. The two players are
coordinated to learn the minimax value jointly.

Notably, as minimax Q-learning, these multiagent RL algorithms are mostly focused
on the computational aspect of learning in stochastic games: compute the Nash equilibrium
without knowing the model, using possibly as few samples as possible. Certain level of
coordination among the players is either explicitly or implicitly assumed when implement-
ing these algorithms, even for the zero-sum setting where the players compete against each
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other. For human-like self-interested players, these update rules may not be sufficiently ratio-
nal and natural to execute. Indeed, as per [12], a preferable multiagent RL algorithm should
be both rational and convergent: a rational algorithm ensures that the iterates converge
to the opponent’s best-response if the opponent converges to a stationary policy; while a
convergent algorithm ensures convergence to some equilibrium if all the agents apply the
learning dynamics. In general, a rational algorithm, in which each player adapts to the (pos-
sibly nonstationary) behavior of other players and uses only /ocal information she observes
without the aid of any central coordinator, does not lead to the equilibrium of the game.
In fact, investigating whether a game-theoretical equilibrium can be realized as a result of
nonequilibrium adaptation dynamics is the core topic in the literature of learning in games
[29]. These multiagent RL. works have thus motivated our study of independent learning
dynamics presented in Section 4.

5.3. Decentralized learning in stochastic games

Decentralized learning in stochastic games has attracted increasing research inter-
est lately. In [1], decentralized Q-learning has been proposed for weakly acyclic stochastic
games, which include stochastic teams (identical-interest stochastic games) as a special case.
The update rule for each player does not need to observe the opponent players’ actions, and
is even oblivious to the presence of other players. However, the players are implicitly coordi-
nated to explore every multiple iterations (in the exploration phase) without changing their
policies, in order to create a stationary environment for each player. The key feature of the
update rule is to restrict player strategies to stationary pure strategies. Since there are only
finitely many stationary pure strategy, players can create a huge-game matrix for each sta-
tionary pure strategy and a pure-strategy equilibrium always exists when this huge-game is
weakly acyclic with respect to best response. However, in the model-free case, players do not
know the payoffs of this huge-game and the two-phase update rule addresses this challenge.
Perolat et al. [55] developed actor—critic-type learning dynamics that are decentralized and of
fictitious-play type, where the value functions are estimated at a faster timescale (in the critic
step), and the policy is improved at a slower one (in the actor step). Nonetheless, the learning
dynamics only applies to a special class of stochastic games with a “multistage” structure,
in which each state can only be visited once. In [21], an independent policy gradient method
was investigated for zero-sum stochastic games with convergence rate analysis, where two
players use asymmetric stepsizes in their updates with one updates faster than the other.
This implicitly requires some coordination between players to determine who shall update
faster. Contemporaneously, [79] studied online RL in unknown stochastic games, where only
one player is controlled and the update rule is fully decentralized. The work focused on the

t13

efficient exploration aspect of multiagent RL, by establishing the regret'” guarantees of the

proposed update rule. The work considered only the finite-horizon episodic setting, and it

13 The regret defined in [79] is weaker than the normal one with the best-in-hindsight com-
parator. See [79, SECT. 2] for a detailed comparison.
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is also unclear if the learning dynamics converge to any equilibrium when all players apply
it.!

With symmetric and decentralized learning dynamics, [17, 40, 84] are, to the best
our knowledge, the latest efforts on learning in stochastic games. Leslie et al. [4e] stud-
ied continuous-time best-response dynamics for zero-sum stochastic games, with a rwo-
timescale update rule: at the slower timescale, a single continuation payoff (common among
the players) is updated, representing time average of auxiliary game payoffs up to time k; at
the faster timescale, each player updates its strategy in the direction of its best response to
opponent’s current strategy in the auxiliary game. The common continuation payoff update
ensures that the auxiliary game is always zero-sum, allowing the use of the techniques for
the strategic-form game setting [31]. The dynamics update the mixed strategies at every
state at every time. Alternatively, the work also considered a continuous-time embedding
of the actual play of the stochastic game where game transitions according to a controlled
continuous-time Markov chain. Both [84] and [17] studied the genuine infinite-horizon dis-
counted zero-sum stochastic games, and provided last-iterate convergence rate guarantees
to approximate Nash equilibrium. To this end, [84] developed an optimistic variant of gra-
dient descent-ascent update rule; while [17] focused on the entropy-regularized stochastic
games, and advocated the use of policy extragradient methods. Though theoretically strong
and appealing, these update rules assume either exact access or sufficiently accurate estimates
of the continuation payoffs under instantaneous joint strategies and/or the instantaneous strat-
egy of the opponent. In particular, to obtain finite-time bounds, the players are coordinated
to interact multiple steps to estimate the continuation payoffs in the learning setting [84].

By and large, ever since the introduction of fictitious play [14] and stochastic games
[69], it remains a long-standing problem whether an equilibrium in a stochastic game can be
realized as an outcome of some natural and decentralized nonequilibrium adaptation, e.g.,
fictitious play (except the contemporaneous work [4e] with some continuous-time embed-
dings). Hence, our solutions in Section 4 serve as an initial attempt towards settling the
argument positively.

6. CONCLUSIONS AND OPEN PROBLEMS

In this review paper, we introduced multiagent dynamic learning in stochastic
games, an increasingly active research area where artificial intelligence, specifically rein-
forcement learning, meets game theory. We have presented the fundamentals and background
of the problem, followed by our recent advances in this direction, with a focus on studying
independent learning dynamics. We believe our work has opened up fruitful directions for
future research, on developing more natural and rational multiagent learning dynamics for

14 The same update rule with different stepsize and bonus choices and a certified policy tech-
nique, however, can return a non-Markovian approximate Nash equilibrium policy pair in
the zero-sum setting; see [3], and the very recent and more complete treatment [36], for
more details.
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stochastic games. In particular, several future/ongoing research directions include: (1) estab-
lishing convergence guarantees of our independent learning dynamics for other stochastic
games, e.g., identical-interest ones; (2) establishing nonasymptotic convergence guarantees
of our learning dynamics, or other independent learning dynamics, for stochastic games;
(3) developing natural learning dynamics that also account for the large state—action spaces
in practical stochastic games, e.g., via function approximation techniques.
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