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Abstract

Many supervised machine learning methods are naturally cast as optimization problems.
For prediction models which are linear in their parameters, this often leads to convex prob-
lems for which many mathematical guarantees exist. Models which are nonlinear in their
parameters such as neural networks lead to nonconvex optimization problems for which
guarantees are harder to obtain. In this paper, we consider two-layer neural networks with
homogeneous activation functions where the number of hidden neurons tends to infinity,
and show how qualitative convergence guarantees may be derived.
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1. Introduction

In the past 20 years, data in all their forms have played an increasing role: in personal
lives, with various forms of multimedia and social networks, in the economic sector where
most industries monitor all of their processes and aim at making data-driven decisions, and
in sciences, where data-based research is having more and more impact, both in fields which
are traditionally data-driven such as medicine and biology, but also in humanities.

This proliferation of data leads to a need for automatic processing, with striking
recent progress in some perception tasks where humans excel, such as image recognition
or natural language processing. These advances in artificial intelligence were fueled by the
combination of three factors: (1) massive data to learn from, such as millions of labeled
images, (2) increased computing resources to treat this data, and (3) continued scientific
progress in algorithms.

Machine learning is one of the scientific disciplines that have made this progress
possible, by blending statistics and optimization to design algorithms with theoretical gener-
alization guarantees. The goal of this paper is to highlight our recent progress and to present
a few open mathematical problems.

2. Supervised learning

In this paper, we will focus on the supervised machine learning problem, where we
are being given n pairs of observations .xi ; yi / 2 X � Y, i D 1; : : : ; n, for example, images
(X is then the set of all possible images), with a set of labels (Y is then a finite set, which
we will assume to be a subset of R for simplicity). The goal is to be able to predict a new
output y 2 Y, given a previously unobserved input x 2 X.

Following the traditional statistical M-estimation framework [45], this can be per-
formed by considering prediction functions x 7! h.x; �/ 2 R, parameterized by � 2 Rd .
The vector � is then estimated through regularized empirical risk minimization, that is, by
solving

min
�2Rd

1

n

nX
iD1

`
�
yi ; h.xi ; �/

�
C ��.�/; (2.1)

where ` W Y � R ! R is a loss function, and � W Rd ! R is a regularization term that avoids
overfitting (that is, learning a carbon copy of the observed data that does not generalize well
to unseen data).

Typical loss functions are the square loss `.yi ; h.xi ; �// D
1
2
.yi � h.xi ; �//2 for

regression problems, and the logistic loss `.yi ; h.xi ; �// D log.1 C exp.�yi h.xi ; �/// for
binary classification where Y D ¹�1; 1º. In this paper, we will always assume that the loss
function is continuously twice differentiable and convex with respect to the second variable.
This applies to a wide variety of output spaces beyond regression and binary classification
(see [36] and references therein).

When the predictor depends linearly on the parameters, typical regularizers are the
squared Euclidean norm �.�/ D

1
2
k�k2

2 or the `1-norm �.�/ D k�k1, which both lead to
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improved generalization performance, with the `1-norm providing additional variable selec-
tion benefits [14].

2.1. Statistics and optimization
The optimization problem in equation (2.1) leads naturally to two sets of questions,

which are often treated separately. Given that some minimizer O� is obtained (no matter how),
how does the corresponding prediction function generalize to unseen data? This is a statisti-
cal question that requires assumptions on the link between the observed data (usually called
the “training data”), and the unseen data (usually called the “testing data”). It is typical to
assume that the training and testing data are sampled independently and identically from
the same fixed distribution. Then a series of theoretical guarantees applies, based on various
probabilistic concentration inequalities (see, e.g., [31]).

The second question is how to obtain an approximate minimizer O� , which is an
optimization problem, regardless on the relevance of O� on unseen data (see, e.g., [6]). For
high-dimensional problems where d is large (up to millions or billions), classical gradient-
based algorithms are preferred because of their simplicity, efficiency, robustness, and favor-
able convergence properties. The most classical one is gradient descent, which is an iterative
algorithm with iteration

�k D �k�1 � 
rR.�k�1/;

where R.�/ D
1
n

Pn
iD1 `.yi ; h.xi ; �// C ��.�/ is the objective function in equation (2.1),

and 
 > 0 the step-size.
In this paper, where we aim at tackling high-dimensional problems, we will often

consider the two problems of optimization and statistical estimation jointly.

2.2. Linear predictors and convex optimization
In many applications, a prediction function which is linear in the parameter � is

sufficient for good predictive performance, that is, we can write

h.x; �/ D �>ˆ.x/

for some function ˆ W X ! Rd , which is often called a “feature function.” For simplicity, we
have assumed finite-dimensional features, but infinite-dimensional features can also be con-
sidered, with a specific computational argument to allow finite-dimensional computations
through reproducing kernel Hilbert spaces (see, e.g., [40] and references therein).

Given a convex loss function, the optimization problem is convex and gradient
descent on the objective function, together with its stochastic extensions, has led to a number
of efficient algorithms with strong generalization guarantees of convergence towards the
global optimum of the objective function [6]. For example, for the square or logistic loss,
if the feature function is bounded in `2-norm by R for all observations, and for the squared
Euclidean norm �.�/ D

1
2
k�k2

2, bounds on the number of iterations to reach a certain pre-
cision " (difference between the candidate function value R.�/ and the minimal value) can
be obtained:
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• For gradient descent, R2

�
log 1

"
iterations are needed, but each iteration has a run-

ning time complexity of O.nd/, because the d -dimensional gradients of the n

functions � 7! `.yi ; h.xi ; �//, i D 1; : : : ; n, are needed.

• For stochastic gradient descent, with iteration �k D �k�1 � 
r`.yi.k/; h.xi.k/;

�k�1//, with i.k/ 2 ¹1; : : : ; nº taken uniformly at random, the number of itera-
tions is at most R2

�
1
"
. We lose the logarithmic dependence, but each iteration has

complexity O.d/, which can be a substantial gain when n is large.

• More recent algorithms based on variance reduction can achieve an overall com-
plexity proportional to .n C

R2

�
/ log 1

"
, thus with an exponential convergence rate

at low iteration cost (see [16] and references therein).

In summary, for linear models, algorithms come with strong performance guar-
antees that reasonably match their empirical behavior. As shown below, nonlinear models
exhibit more difficulties.

2.3. Neural networks and nonconvex optimization
In many other application areas, in particular in multimedia processing, linear pre-

dictors have been superseded by nonlinear predictors, with neural networks being the most
classical example (see [15]). A vanilla neural network is a prediction function of the form

h.x; �/ D �>
s �.�>

s�1�
�
� � � �>

2 �.�>
1 x/

�
;

where the function � W R ! R is taken component-wise, with the classical examples being the
sigmoid function �.t/ D .1 C exp.�t //�1 and the “rectified linear unit” (ReLU),
�.t/ D tC D max¹t; 0º. The matrices �1; : : : ; �s are called weight matrices. The simplest
nonlinear predictor is for s D 2, and will be the main subject of study in this paper. See
Figure 1 for an illustration.

Figure 1

Neural network with a single hidden layer, with an input weight matrix �1 2 Rd�m and a output weight vector
�2 2 Rm.
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The main difficulty is that now the optimization problem in equation (2.1) is not
convex anymore, and gradient descent can converge to stationary points that are not global
minima. Theoretical guarantees can be obtained regarding the decay of the norm of the gra-
dient of the objective function, or convergence to a local minimizer may be ensured [21,25],
but this does not exclude bad local minima, and global quantitative convergence guarantees
can only be obtained with exponential dependence in dimension for the class of (potentially
nonconvex) functions of a given regularity [33].

An extra difficulty is related to the number of hidden neurons, also referred to as the
width of the network (equal to the size of �2 when s D 2), which is often very large in practice,
which poses both statistical and optimization issues. We will see that this is precisely this
overparameterization that allows obtaining qualitative global convergence guarantees.

3. Mean field limit of overparameterized one-hidden

layer neural networks

We now tackle the study of neural networks with one infinitely wide hidden layer.
They are also referred to as (wide) two-layer neural networks, because they have two layers of
weights. We first rescale the prediction function by 1=m (which can be obtained by rescaling
�2 by 1=m), and express it explicitly as an empirical average, namely

h.x; �/ D
1

m
�>

2 �.x>�1/ D
1

m

mX
j D1

�2.j / � �
�
x>�1.�; j /

�
;

where �2.j / 2 R is the output weight associated to neuron j , and �1.�; j / 2 Rd the cor-
responding vector of input weights. The key observation is that the prediction function
x 7! h.x; �/ is the average of m prediction functions x 7! �2.j / � �Œ�1.�; j />x�, for
j D 1; : : : ; m, with no sharing of the parameters (which is not true if extra layers of hidden
neurons are added).

In order to highlight this parameter separability, we define

wj D
�
�2.j /; �1.�; j /

�
2 RdC1;

the set of weights associated to the hidden neuron j , and consider

‰.w/ W x 7! w.1/ � �
�
x>w.2; : : : ; d C 1/

�
;

so that the prediction function x 7! h.�; w1; : : : ; wm/, parameterized by w1; : : : ; wm, is now

h.�; w1; : : : ; wm/ D
1

m

mX
j D1

‰.wj /: (3.1)

The empirical risk is of the form

R.h/ D E
�
`
�
y; h.x/

��
;

which is convex in h for convex loss functions (even for neural networks), but typically non-
convex in w. Note that the resulting problem of minimizing a convex function R.h/ for
h D

1
m

Pm
j D1 ‰.wj / applies beyond neural networks, for example, for sparse deconvolu-

tion [7].
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3.1. Reformulation with probability measures
We now define by P .W/ the set of probability measures on W D RdC1. We can

rewrite equation (3.1) as
h D

Z
W

‰.w/d�.w/;

with � D
1
m

Pm
j D1 ıwj

being the average of Dirac measures at each w1; : : : ; wm. Following
a physics analogy, we will refer to each wj as a particle. When the number m of particles
grows, the empirical measure 1

m

Pm
j D1 ıwj

may converge in distribution to a probability
measure with a density, often referred to as a mean field limit. Our main reformulation will
thus be to consider an optimization problem over probability measures.

The optimization problem we are faced with is equivalent to

inf
�2P .W/

R

�Z
W

‰.w/d�.w/

�
; (3.2)

with the constraint that � is an average of m Dirac measures. In this paper, following a long
line of work in statistics and signal processing [5,23], we consider the optimization problem
without this constraint, and relate optimization algorithms for finite but large m (thus acting
on W D .w1; : : : ; wm/ in Wm) to a well-defined algorithm in P .W/.

Note that we now have a convex optimization problem, with a convex objective in
� over a convex set (all probability measures). However, it is still an infinite-dimensional
space that requires dedicated finite-dimensional algorithms. In this paper we focus on gra-
dient descent on w, which corresponds to standard practice in neural networks (e.g., back-
propagation). For algorithms based on classical convex optimization algorithms such as the
Frank–Wolfe algorithm, see [4].

3.2. From gradient descent to gradient flow
Our general goal is to study the gradient descent recursion on W D .w1; : : : ;

wm/ 2 Wm, defined as
Wk D Wk�1 � 
mrG.Wk�1/; (3.3)

with

G.W / D R
�
h.�; w1; : : : ; wm/

�
D R

 
1

m

mX
j D1

‰.wj /

!
:

In the context of neural networks, this is exactly the back-propagation algorithm. We include
the factor m in the step-size to obtain a well-defined limit when m tends to infinity (see
Section 3.3).

For convenience in the analysis, we look at the limit when the step-size 
 goes to
zero. If we consider a function V W R ! Wm, with values V.k
/ D Wk at t D k
 , and
we interpolate linearly between these points, then we obtain exactly the standard Euler dis-
cretization of the ordinary differential equation (ODE) [44],

PV D �mrG.V /: (3.4)
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This gradient flow will be our main focus in this paper. As highlighted above, and with extra
regularity assumptions, it is the limit of the gradient recursion in equation (3.3) for vanishing
step-sizes 
 . Moreover, under appropriate conditions, stochastic gradient descent, where we
only observe an unbiased noisy version of the gradient, also leads in the limit 
 ! 0 to the
same ODE [24]. This allows applying our results to probability distributions of the data .x;y/

which are not the observed empirical distribution, but the unseen test distribution, where the
stochastic gradients come from the gradient of the loss from a single observation.

Three questions now emerge:

(1) What is the limit (if any) of the gradient flow in equation (3.4) when the number
of particles m gets large?

(2) Where can the gradient flow converge to?

(3) Can we ensure a good generalization performance when the number of param-
eters grows unbounded?

In this paper, we will focus primarily in the next sections on the first two questions, and tackle
the third question in Section 5.

3.3. Wasserstein gradient flow
Above, we have described a general framework where we want to minimize a func-

tion F defined on probability measures,

F.�/ D R

�Z
W

‰.w/d�.w/

�
; (3.5)

with an algorithm minimizing G.w1; : : : ; wm/ D R. 1
m

Pm
j D1 ‰.wj // through the gradient

flow PW D �mrG.W /, with W D .w1; : : : ; wm/.
As shown in a series of works concerned with the infinite-width limit of two-layer

neural networks [8,30,35,38,41], this converges to a well-defined mathematical object called
a Wasserstein gradient flow [2]. This is a gradient flow derived from the Wasserstein metric
on the set of probability measures, which is defined as [39]

W2.�; �/2
D inf


2….�;�/

Z
kv � wk

2
2d
.v; w/;

where ….�; �/ is the set of probability measures on W � W with marginals � and �. In a
nutshell, the gradient flow is defined as the limit when 
 tends to zero of the extension of the
following discrete time dynamics:

�.t C 
/ D inf
�2P .W/

F.�/ C
1

2

W2

�
�.t/; �

�2
:

When applying such a definition in a Euclidean space with the Euclidean metric, we recover
the usual gradient flow P� D �rF.�/, but here with the Wasserstein metric, this defines a
specific flow on the set of measures. When the initial measure is a weighted sum of Diracs,
this is exactly asymptotically (when 
 ! 0) equivalent to backpropagation. When initialized
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with an arbitrary probability measure, we obtain a partial differential equation (PDE), satis-
fied in the sense of distributions. Moreover, when the sum of Diracs converges in distribution
to some measure, the flow converges to the solution of the PDE. More precisely, assuming
‰ W RdC1 ! F , where F is a Hilbert space, and rR.h/ 2 F the gradient of R, we consider
the mean potential

J.wj�/ D

�
‰.w/; rR

�Z
W

‰.v/d�.v/

��
: (3.6)

The PDE is then the classical continuity equation

@t �t .w/ D div
�
�t .w/rJ.wj�t /

�
; (3.7)

which is understood in the sense of distributions. The following result formalizes this behav-
ior (see [8] for details and a more general statement).

Theorem 1. Assume that R W F ! Œ0; C1Œ and ‰ W W D RdC1 ! F are (Fréchet) dif-
ferentiable with Lipschitz differentials, and that R is Lipschitz on its sublevel sets. Con-
sider a sequence of initial weights .wj .0//j �1 contained in a compact subset of W and let
�t;m WD

1
m

Pm
j D1 wj .t/ where .w1.t/; : : : ;wm.t// solves the ODE (3.4). If �0;m weakly con-

verges to some �0 2 P .W/ then �t;m weakly converges to �t where .�t /t�0 is the unique
weakly continuous solution to (3.7) initialized with �0.

In the following section, we will study the solution of this PDE (i.e., the Wasserstein
gradient flow), interpreting it as the limit of the gradient flow in equation (3.4), when the
number of particles m tends to infinity.

4. Global convergence

We consider the Wasserstein gradient flow defined above, which leads to the PDE in
equation (3.7). Our goal is to understand when we can expect that when t ! 1, �t converges
to a global minimum of F defined in equation (3.5). Obtaining a global convergence result
is not out of the question because F is a convex functional defined on the convex set of
probability measures. However, it is nontrivial because with our choice of the Wasserstein
geometry on measures, which allows an approximation through particles, the flow has some
stationary points which are not the global optimum (see the examples in Section 4.4).

We start with an informal general result without technical assumptions before stating
a formal simplified result.

4.1. Informal result
In order to avoid too many technicalities, we first consider an informal theorem in

this paper and refer to [8] for a detailed set of technical assumptions (in particular smoothness
assumptions). This leads to the informal theorem:

Theorem 2 (Informal). If the support of the initial distribution includes all directions in
RdC1, and if the function ‰ is positively 2-homogeneous then, if the Wasserstein gradient
flow weakly converges to a distribution, it can only be to a global optimum of F .
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In [8] another version of this result that allows for partial homogeneity (e.g., with
respect to a subset of variables) of degree 1 is proven, at the cost of a more technical assump-
tion on the initialization. For neural networks, we have ‰.wj /.x/ D m�2.j / � �Œ�1.�; j />x�,
and this more general version applies. For the classical ReLU activation function
u 7! max¹0; uº, we get a positively 2-homogeneous function, as required in the previous
statement. A simple way to spread all directions is to initialize neural network weights from
Gaussian distributions, which is standard in applications [15].

From qualitative to quantitative results? Our result states that for infinitely many par-
ticles, we can only converge to a global optimum (note that we cannot show that the flow
always converges). However, it is only a qualitative result in comparison with what is known
for convex optimization problems in Section 2.2:

• This is only for m D C1, and we cannot provide an estimation of the number of
particles needed to approximate the mean field regime that is not exponential in t

(see such results, e.g., in [28]).

• We cannot provide an estimate of the performance as the function of time, that
would provide an upper bound on the running time complexity.

Moreover, our result does not apply beyond a single hidden layer, and understanding
the nonlinear infinite-width limits for deeper networks is an important research area [3,12,13,

19,34,42,48].

From informal to formal results. Beyond the lack of quantitative guarantees, obtaining a
formal result requires regularity and compactness assumptions which are not satisfied for
the classical ReLU activation function u 7! max¹0; uº, which is not differentiable at zero
(a similar result can be obtained in this case but under stronger assumptions on the data
distribution and the initialization [9, 47]). In the next section, we will consider a simplified
formal result, with a detailed proof.

4.2. Simplified formal result
In order to state a precise result, we will cast the flow on probability measures on

W D RdC1 to a flow on measures on the unit sphere

�d
D
®
w 2 RdC1; kwk2 D 1

¯
:

This is possible when the function ‰ is positively 2-homogeneous on W D RdC1, that is,
such that ‰.�w/ D �2‰.w/ for � > 0. We can use homogeneity by reparameterizing each
particle wj in polar coordinates as

wj D rj �j ; with rj 2 R and �j 2 �d :

Using homogenetity, we have a prediction function

h D
1

m

mX
j D1

‰.wj / D
1

m

mX
j D1

r2
j ‰.�j /:
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Moreover, the function J defined in equation (3.6) is also 2-homogeneous, and its gradient
then 1-homogeneous. The flow from equation (3.4), can be written as

Pwj D �rJ.wj j�/; with � D
1

m

mX
iD1

ıwj
:

A short calculation shows that the flow8<: Prj D �2rj J.�j j�/;

P�j D �r�J.�j j�/ D .I � �j �>
j /rJ.�j j�/;

with � D
1

m

mX
iD1

r2
j ı�j

; (4.1)

where r� denotes the gradient of functions defined on the sphere �d , leads to exactly the
same dynamics. Indeed, by homogeneity of ‰, the two definitions of � and � (through the
wj ’s, or the �j ’s and rj ’s) lead to the same functions J.�j�/ and J.�j�/, and we get

Pwj D Prj �j C rj P�j D �2rj J.�j j�/�j � rj .I � �j �>
j /rJ.�j j�/

D �rj rJ.�j j�/ � rj

�
2J.�j j�/ � �>

j rJ.�j j�/
�
�j

D �rJ.wj j�/;

because w 7! rJ.wj�/ is 1-homogeneous, and we have used the Euler identity for the 2-
homogeneous function w 7! J.wj�/ D J.wj�/.

Moreover, the flow defined in equation (4.1) is such that �j remains on the sphere
�d . We will study this flow under the assumption that the function ‰ is sufficiently regular,
which excludes ReLU neural networks, but makes the proof easier (see more details in [7]).

We first derive a PDE analogous to equation (3.7). We consider a smooth test func-
tion f W �d ! R, and the quantity

a D

Z
�d

f .�/d�.�/ D
1

m

mX
j D1

r2
j f .�j /:

We have

Pa D
1

m

mX
j D1

2rj Prj f .�j / C
1

m

mX
j D1

r2
j r�f .�j />

P�j

D �
1

m

mX
j D1

4r2
j J.�j j�/f .�j / �

1

m

mX
j D1

r2
j r�f .�j />

r�J.�j j�/

D �4

Z
�d

f .�/J.�j�/d�.�/ �

Z
�d

r�f .�/>
r�J.�j�/d�.�/: (4.2)

This shows that we have the PDE for the density �t at time t

@t �t .�/ D �4�t .�/J.�j�t / C div�

�
�t .�/r�J.�j�t /

�
(4.3)

satisfied in the sense of distributions (see e.g. [39, Prop. 4.2]). We can now state our main
result.

Theorem 3. Assume the function ‰ W �d ! F is d -times continuously differentiable.
Assume �0 is a nonnegative measure on the sphere �d with finite mass and full support. Then
the flow defined in (4.3) is well defined for all t > 0. Moreover, if �t converges weakly to
some limit �1, then �1 is a global minimum of the function � 7! F.�/ D R.

R
�d ‰.�/d�.�//

over the set of nonnegative measures.
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4.3. Proof of Theorem 3
The global optimality conditions for minimizing the convex functional F is that on

the support of �1 then J.�j�1/ D 0, while on the entire sphere J.�j�1/ > 0. The proof,
adapted from [7], then goes as follows:

• The existence and uniqueness of the flow .�t /t�0 can be proved by using the
equivalence with a Wasserstein gradient flow .�t /t�0 in P .RdC1/ and the theory
of Wasserstein gradient flows [2]. As a matter of fact, .�t /t�0 is itself a gradient
flow for a certain metric between nonnegative measures, that is, in a certain sense,
the inf-convolution between the Wasserstein and Hellinger metrics, see the dis-
cussion in [7].

• The flow �t has a full support at all time t . This can be deduced from the repre-
sentation of the solutions to equation (4.3) as

�t D X.t; �/#

 
�0 exp

 
�4

Z t

0

J
�
X.s; �/j�s

�
ds

!!
;

where X W Œ0;C1Œ � �d ! �d is the flow associated to the time-dependent vector
field �r�J.� j �t /, i.e., it satisfies X.0;�/ D � and d

dt
X.t;�/ D �r�J.X.t;�/j�t /

for all � 2 �d , see, e.g., [27]. Under our regularity assumptions, standard stability
results for ODEs guarantee that at all time t , X.t; �/ is a diffeomorphism of the
sphere. Thus �t is the image measure (this is what the “sharp” notation stands for)
by a diffeomorphism of a measure of the form �0 exp.: : : / which has full support
and thus �t has full support.

• We assume that the flow converges to some measure �1 (which could be singular).
From equation (4.1), this imposes by stationarity of �1 that J.�j�1/ D 0 on the
support of �1, but nothing is imposed beyond the support of �1 (and we need
nonnegativity of J.�j�1/ for all � 2 �d ).
In order to show that min�2�d J.�j�1/ > 0, we assume that it is strictly negative
and will get a contradiction. We first need a v < 0 such that v > min�2�d J.�j�1/,
and the gradient r�J.�j�1/ does not vanish on the v-level-set ¹� 2 �d ;

J.� j �1/ D vº of J.�j�1/. Such a v exists because of Morse–Sard lemma
which applies because under our assumptions, J.�j�/ is d -times continuously
differentiable for any finite nonnegative measure �.
We then consider the set K D ¹� 2 �d ; J.� j �1/ 6 vº, which has some boundary
@K, such that the gradient r�J.�j�1/ has strictly positive dot-product with an
outward normal vector to the level set at � 2 @K.
Since �t converges weakly to �1, there exists t0 > 0 such that for all t > t0,
sup�2K J.�j�t / < v=2, while on the boundary r�J.�j�1/ has nonnegative dot-
product with an outward normal vector. This means that for all t > t0, applying
equation (4.2) to the indicator function of K, if at D �t .K/,

a0.t/ > �4 sup
�2K

J.�j�t /a.t/:
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By the previous point, a.t0/ > 0 and thus, by Grönwall’s lemma, a.t/ diverges,
which is a contradiction with the convergence of �t to �1.

4.4. Experiments
In order to illustrate1 the global convergence result from earlier sections, we consider

a supervised learning problem on R2, with Gaussian input data x, and output data given by
a “teacher” neural network

y D

m0X
j D1

�2.j / max¹�1.W; j />x; 0º

for some finite m0 and weights �1 and �2. We consider R.h/ the expected square loss and
stochastic gradient descent with fresh new samples .xi ; yi / and a small step-size.

We consider several number m of hidden neurons, to assess when the original neu-
rons can be recovered. In Figure 2, for large m (e.g., m D 100 or m D 1000), all learned
neurons converge to the neurons that generated the function which is in accordance with our
main global convergence result (note that in general, recovering the neurons of the teacher is
not a necessary condition for optimality, but it is always sufficient), while for m D 5 > m0,
where the global optimum will lead to perfect estimation, we may not recover the global opti-
mum with a gradient flow. An interesting open question is to characterize mathematically the
case m D 20, where we obtain the global optimum with moderate m.

In Figure 3, we consider several random initializations and random “teacher” net-
works and compute the generalization performance of the neural network after optimization.
We see that for large m, good performance is achieved, while when m is too small, local
minima remain problematic. This experiment suggests that the probability of global conver-
gence quickly tends to 1 as m increases beyond m0 in this setting, even in moderately high
dimension.

5. Generalization guarantees and implicit bias for

overparameterized models

A shown above, overparameterization—which takes the form of a large number of
hidden neurons in our context—is a blessing for optimization, as it allows ensuring conver-
gence to a global minimizer. When stochastic gradient descent with fresh observations at
each iteration is used, then the predictor will converge to the optimal predictor (that is, it
will minimize the performance on unseen data), but will do so potentially at a slow speed,
and with the need for many observations. In this context, overparameterization does not lead
to overfitting, but may rather underfit.

In practice, several passes over a finite amount of data (n observations) are used,
and then overparameterization can in principle lead to overfitting. Indeed, among all predic-
tors that will perfectly predict the training data, some will generalize, some will not. In this

1 The code to reproduce Figures 2 and 3 is available on the webpage https://github.com/
lchizat/2021-exp-ICM.
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Figure 2

Gradient flow on a two-layer ReLU neural network with m D 5, m D 20, m D 100, and m D 1000, respectively.
The position of the particles is given by j�2.j /j � �1.�; j / and the color depends on the sign of �2.j /. The dashed
directions represent the neurons of the network that generates the data distribution (with m0 D 4). The unit circle,
where the particles are initialized, is plotted in black and the radial axis is scaled by tanh to improve readability.

section, we show that the predictor obtained after convergence of the gradient flow can in
certain cases be characterized precisely.

To obtain the simplest result, following [17,18,43], this will be done for binary clas-
sification problems with the logistic loss. We will first review the implicit bias for linear
models before considering neural networks.

5.1. Implicit bias for linear logistic regression
In this section, we consider a linear model h.x; �/ D �>ˆ.x/ and we consider the

minimization of the unregularized empirical risk with the logistic loss, that is,

R.�/ D
1

n

nX
iD1

log.1 C exp
�
�yi �

>ˆ.xi /
�
: (5.1)

5410 F. Bach and L. Chizat



Figure 3

SGD on the square loss in the “teacher–student” setting (104 iterations, batch size 100, learning rate 0:005,
d D 100, the teacher has m0 D 10 neurons): (left) risk (expected square loss) after training as a function of m

over 30 random repetitions; (right) success rate as a function of m over 30 repetitions (success means that the risk
after training is below 10�3).

We consider a separable problem where there exists a linear function in ˆ.x/, �>ˆ.x/ such
that yi �

>ˆ.xi / > 0 for all i 2 ¹1; : : : ; nº. By rescaling, we may equivalently assume that
there exists � 2 Rd such that

8i 2 ¹1; : : : ; nº; yi �
>ˆ.xi / > 1:

This means that the objective function in equation (5.1) has an infimal value of zero, which
is not attained for any � , since it is strictly positive. However, taking any � that separates the
data as above, it holds that R.t�/ converges towards 0 as t tends to infinity. There are thus
in general an infinite number of directions towards which � can tend to reach zero risk.

It turns out that gradient descent selects a particular one: the iterate of gradient
descent will diverge, but its direction (that is, the element of the sphere it is proportional to)
will converge [43] to the direction of a maximum margin classifier defined as [46] a solution to

min
�2Rd

k�k
2
2 subject to 8i 2 ¹1; : : : ; nº; yi �

>ˆ.xi / > 1: (5.2)

The optimization problem above has a nice geometric interpretation (see Figure 4). These
classifiers with a large margin has been shown to have favorable generalization guarantees
in a wide range of contexts [22].

5.2. Extension to two-layer neural networks
We will now extend this convergence of gradient descent to a minimum norm clas-

sifier beyond linear models. We consider the minimization of the logistic loss

1

n

nX
iD1

log.1 C exp
�
�yi h.xi /

�
;

where h.x/ D
1
m

Pm
j D1 �2.j / max¹�1.W; j />x; 0º is a two-layer neural network. We will

consider two regimes: (1) where only the output weights �2.j /, j D 1; : : : ;m are optimized,
and (2) where all weights are optimized. In these two situations, we will let the width m
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Figure 4

Geometric interpretation of equation (5.2) with a linearly separable binary classification problem in two
dimensions (with each observation represented by one of the two labels � or �): among all separating hyperplanes
going through zero, that with the largest minimal distance from observations to the hyperplane will be selected.

go to infinity and consider the infinite-dimensional resulting flows. As shown in the previ-
ous section, when they converge, these flows converge to the global optimum of the objective
function. But in the separable classification setting, the functions h should diverge. We essen-
tially characterize towards which directions they diverge, by identifying the norms that are
implicitly minimized [9].

5.3. Kernel regime
In this section, we consider random input weights �1.W;j /, sampled from the uniform

distribution on the sphere, and kept fixed throughout the optimization procedure. In other
words, we only run the gradient flow with respect to the output weights �2 2 Rm.

Since the model is a linear model with feature vectors in m dimensions with com-
ponents

ˆ.x/j D
1

p
m

max
®
�1.W; j />x; 0

¯
;

we can apply directly the result above from [43], and the resulting classifier will minimize
implicitly k�2k2

2, that is, the direction of �2 will tend to a maximum margin direction.
In order to study the situation when the number of features m tends to infin-

ity, it is classical within statistics and machine learning to consider the kernel function
Ok W Rd � Rd ! R defined as

Ok.x; x0/ D ˆ.x/>ˆ.x0/ D
1

m

mX
j D1

max
®
�1.W; j />x; 0

¯
max

®
�1.W; j />x0; 0

¯
:

When m tends to infinity, the law of large number implies that Ok.x; x0/ tends to

k.x; x0/ D E
�
max

®
�>x; 0

¯
max

®
�>x0; 0

¯�
;

for � uniformly distributed on the sphere.
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Thus, we should expect that in the overparameterized regime, the predictor behaves
like predictors associated with the limiting kernel function [32,37]. It turns out that the kernel
k can be computed in closed form [11], and that the reproducing kernel Hilbert space (RKHS)
functional norm k � k associated to the kernel k is well understood (see below for a formula
that defines it). In particular, this norm is infinite unless the function is at least d=2-times
differentiable [4], and thus very smooth in high dimension (this is to be contrasted with the
fact that each individual neuron leads to a nonsmooth function). We thus expect smooth
decision boundaries at convergence (see experiments below). This leads to the following
result (see details in [9]):

Theorem 4 (Informal). When m; t ! C1 (limits can be interchanged), the predictor asso-
ciated to the gradient flow converges (up to normalization) to the function in the RKHS that
separates the data with minimum RKHS norm k � k, that is, the solution to

min
f

kf k
2 subject to 8i 2 ¹1; : : : ; nº; yi f .xi / > 1:

Note that the minimum RKHS norm function can also be found by using the finite-
dimensional representation f .x/ D

Pn
iD1 ˛i k.x;xi / and minimizing

Pn
i;j D1 ˛i j̨ k.xi ; xj /

under the margin constraint, which is a finite-dimensional convex optimization problem.
A striking phenomenon is the absence of catastrophic overfitting, where the observed

data are perfectly classified but with a very irregular function that would potentially not gen-
eralize well. Despite the strong overparameterization, the classifier selected by gradient
descent can be shown to generalize through classical results from maximum margin estima-
tion. See [29] for a related result where the performance as a function of m, and not only for
infinite m, is considered in special settings. We will see a similar behavior when optimizing
the two layers, but with a different functional norm.

5.4. Feature learning regime
We now consider the minimization with respect to both input and output weights.

This will correspond to another functional norm that will not anymore be an RKHS norm,
and will allow for more adaptivity, where the learned function can exhibit finer behaviors.

We first provide an alternative formulation of the RKHS norm as [4]

kf k
2

D inf
a.�/

Z
�d�1

ja.�/j2d�.�/ such that f .x/ D

Z
�d�1

.�>x/Ca.�/d�.�/;

where the infimum is taken over all square-integrable functions on the sphere �d�1, and �

is the uniform probability measure on the sphere. This formulation highlights that functions
in the RKHS combine infinitely many neurons.

We can then define the alternative variation norm [23] as

�.f / D inf
a.�/

Z
�d�1

ja.�/jd�.�/ such that f .x/ D

Z
�d�1

.�>x/Ca.�/d�.�/;

where the infimum is now taken over all integrable functions on �d�1. Going from squared
L2-norms to L1-norms enlarges the space by adding nonsmooth functions. For example,
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a single neuron corresponds to a.�/d�.�/ tending to a Dirac measure at a certain point, and
thus has a finite variation norm.

This leads to the following result (see the details and full set of assumptions in [9]).

Theorem 5 (Informal). When m; t ! C1, if the predictor associated to the gradient flow
converges (up to normalization), then the limit is the function that separates the data with
minimum variation norm �.f /, that is, the solution to

min
f

�.f / subject to 8i 2 ¹1; : : : ; nº; yi f .xi / > 1:

Compared to the RKHS norm result, there is no known finite-dimensional convex
optimization algorithms to efficiently obtain the minimum variation norm algorithm. More-
over, the choice of an L1-norm has a sparsity-inducing effect, where the optimal a.�/d�.�/

will often corresponds to singular measure supported by a finite number of elements of the
sphere. These elements can be seen as features learned by the algorithm: neural networks
are considered as methods that learn representations of the data, and we provide here a jus-
tification with a single hidden layer. Such feature learning can be shown to lead to improved
prediction performance in a series of classical situations, such as when the optimal function
only depends on a few of the d original variables [4,9].

5.5. Experiments
In this section, we consider a large ReLU network with m D 1000 hidden units, and

compare the implicit bias and statistical performances of training both layers, which leads to
a max margin classifier with the variation norm, versus the output layer, which leads to max
margin classifier in the RKHS norm. These experiments are reproduced from [9].

Setting. Our data distribution is supported on Œ�1=2; 1=2�d and is generated as follows. In
dimension d D 2, the distribution of input variables is a mixture of k2 uniform distributions
on disks of radius 1=.3k � 1/ on a uniform 2-dimensional grid with step 3=.3k � 1/, see
Figure 6(a) for an illustration with k D 3. In dimension larger than 2, all other coordinates
follow a uniform distribution on Œ�1=2; 1=2�. Each cluster is then randomly assigned a class
in ¹�1; C1º.

Low dimensional illustrations. Figure 5 illustrates the differences in the implicit biases
when d D 2. It represents a sampled training set and the resulting decision boundary between
the two classes for 4 examples. The variation norm max-margin classifier is nonsmooth and
piecewise affine, which comes from the fact that the L1-norm favors sparse solutions. In
contrast, the max-margin classifier for the RKHS norm has a smooth decision boundary,
which is typical of learning in a RKHS.

Performance. In higher dimensions, we observe the superiority of training both layers by
plotting the test error versus m or d on Figures 6(b) and 6(c). We ran 20 independent experi-
ments with k D 3 and show with a thick line the average of the test error P .yf .x/ < 0/ after
training. For each m, we ran 30 experiments using fresh random samples from the same data
distribution.
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Figure 5

Comparison of the implicit bias of training (top) both layers versus (bottom) only the output layer for wide
two-layer ReLU networks with d D 2 and for 4 different random training sets.

Figure 6

(a) Projection of the data distribution on the two first dimensions, (b) test error as a function of n with d D 15,
and (c) test error as a function of d with n D 256.

6. Discussion

In this paper, we have presented qualitative convergence guarantees for infinitely-
wide two layer neural networks. These were obtained with a precise scaling—in the number
of neurons—of the prediction function, the initialization and the step-size used in the gradi-
ent flow. With those scalings, the mean-field limit exhibits feature learning capabilities, as
illustrated in binary classification where precise functional spaces could be used to analyze
where optimization converges to. However, this limit currently does not lead to quantitative
guarantees regarding the number of neurons or the convergence time, and obtaining such
guarantees remains an open problem. This is an active area of research with, in particular,
recent results concerning the local convergence [1,7,49] or global convergence under strong
assumption on the data [26]. Moreover, extending this analysis to more than a single hidden
layer or convolutional networks remains difficult.

Different scalings lead to different behaviors [10]. In particular, there is a scaling for
which the limit behaves as a kernel method (even though all layers are trained, and not just the
output layer) leading to another RKHS norm with a larger space than that from Section 5.3,
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see [20]. While not leading to representation learning, extensions to deeper networks are
possible with this scaling and provide one of few optimization and statistical guarantees
for these models. Some recent progress has been made in the categorization of the various
possible scalings for deep networks [48], and this emerging general picture calls for a large
theoretical effort to understand the asymptotic behaviors of wide neural networks.
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