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Abstract

Imaging has been playing a vital role in the development of natural sciences. Advances
in sensory, information, and computer technologies have further extended the scope of
influence of imaging, making digital images an essential component of our daily lives.
Image reconstruction is one of the most fundamental problems in imaging. For the past
three decades, we have witnessed phenomenal developments of mathematical models
and algorithms in image reconstruction. In this paper, we will first review some progress
of the two prevailing mathematical approaches, i.e., the wavelet frame-based and PDE-
based approaches, for image reconstruction. We shall discuss the connections between
the two approaches and the implications and impact of the connections. Furthermore, we
will review how the studies of the links between the two approaches lead us to a math-
ematical understanding of deep convolutional neural networks, which has led to further
developments in modeling and algorithmic design in deep learning and new applications
of machine learning in scientific computing.
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1. Introduction

The development of natural sciences has been heavily relying on visual examina-
tions. Through observations on natural phenomenons made by our naked eyes or via instru-
ments such as cameras, microscopes, telescopes, etc., scientists make a scientific hypothesis
on the underlying principles hidden in the phenomenon, and they later conduct more exper-
iments or resort to mathematical deductions to further verify their hypothesis. Therefore,
images play a central role since they can accurately record the phenomenon of interest and
be further processed and analyzed by algorithms to assist human decision-making. In the
past few decades, we are experiencing rapid advances in information technology, which con-
tribute significantly to the exponential growth of data. Digital images are of no doubt one
of the essential components of data. Advanced computer technology has made it possible to
apply some of the most sophisticated developments in mathematics and machine learning to
the design and implementation of efficient algorithms to process and analyze image data. As a
result, the impact of images has now gone far beyond natural sciences. Image processing and
analysis techniques are now widely adopted in engineering, medicine, technical disciplines,
and social media, and digital images have become an essential element of our daily lives.

Among all tasks within the scope of computer vision, image reconstruction, such as
image denoising, deblurring, inpainting, medical imaging, etc., is one of the most fundamen-
tal ones. Its objective is to obtain high-quality reconstructions of images that are corrupted
in various ways during the process of acquisition, storage, and communication, and enable
us to see crucial but subtle objects that reside in the images. Mathematics has been the main
driven force in the advancement of image reconstruction for the past few decades [7,33,53].
Conversely, image reconstruction also brings to mathematics new challenging problems and
fascinating applications that gave birth to new mathematical tools, whose application has
even gone beyond the scope of image reconstruction.

Image reconstruction can be formulated as the following inverse problem:

f D Au C �: (1.1)

Here, A is a linear operator corresponding to the imaging process. For example, A is an iden-
tity operator for image denoising; a convolution operator for image deblurring; a restriction
operator for image inpainting [13]; a subsampled Fourier transform for magnetic resonance
imaging (MRI) [19]; a subsampled Radon transform for X-ray-based computed tomography
(CT) [22]. Variable u is the unknown image to be reconstructed, and f is the measurements
that are contaminated by additive noise � with known or partially known statistics, e.g.,
Gaussian, Laplacian, Poisson, etc. The main challenge in solving the linear inverse problem
(1.1) is the ill-posedness of the problem. A naive inversion of A, such as pseudoinversion or
via Tikhonov regularization [154], may result in a reconstructed image with amplified noise
and smeared-out edges.

Many existing image reconstruction models and algorithms are transformation-
based. One of the earliest transforms was the Fourier transform, which is effective on signals
that are smooth and sinusoidal-like. However, the Fourier transform is not adequate on
images with multiple localized frequency components. Windowed Fourier transforms [72]
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were introduced to overcome the poor spatial localization of the Fourier transform. How-
ever, the high-frequency coefficients in the transform domain are not ideally sparse for images
due to the fixed time-frequency resolution of the windowed Fourier transforms. This is why
wavelets and wavelet frames are much more effective for images than Fourier or windowed
Fourier transforms because of their varied time-frequency resolution, which enables them
to provide a better sparse approximation to piecewise smooth functions [45,51,110].

Another influential class of methods for image reconstruction that have been devel-
oped through a rather different path from wavelets is the PDE-based approach [33,119,136],
which includes variational and (nonlinear) PDE methods. The basic idea of variational meth-
ods is to characterize images as functions living in a certain function space, such as the BV
space [115, 131] (space of functions with bounded variations), and an energy functional is
designed according to the function space assumption. PDE methods, on the other hand, often
take the observed low-quality image or a coarsely reconstructed image as the initialization
and enhance it by evolving a carefully designed nonlinear PDE that conducts smoothing in
homogeneous regions and edge-preservation or enhancement near edges [120,123].

The two approaches have been developing independently for decades. Although
studies were showing the links between the two approaches [84, 148] using specific models
and algorithms, their general connections were still unknown. Later in [24,26,42,52], funda-
mental connections between wavelet frame-based approach and variational methods were
established. Connections of wavelet frame-based models to the total variation model were
established in [24], to the Mumford–Shah model were established in [26], and to some more
general variational models such as the total generalized variation model [18] were estab-
lished in [42,52]. On the other hand, [49] established a generic connection between iterative
wavelet frame shrinkage and general nonlinear evolution PDEs. We showed that wavelet
frame shrinkage algorithms could be viewed as discrete approximations of nonlinear evo-
lution PDEs. Such connection led to new understandings of both the wavelet frame- and
PDE-based approach and expanded the scope of applications for both. The series of papers
[24,26,42,49,52] essentially merged the two seemingly unrelated areas: wavelet frame-based
and PDE-based approach for image reconstruction, and gave birth to many new image recon-
struction models and algorithms.

For the past decade, the landscape of research and technological development of
image reconstruction and computer vision is experiencing a significant transformation due
to the advances in machine learning, especially deep learning [71,91,145]. A new set of models
call the convolutional neural networks (CNNs) [65,92] were introduced, where the AlexNet
[89], U-Net [130], ResNet [77], and DenseNet [79] are well-known examples. Most CNNs
have millions to billions of parameters that are trained (or optimized) on large data sets via
stochastic algorithms. One remarkable property of deep neural networks (DNNs) in general
is that they can well approximate nonlinear functions in high-dimensional spaces without
suffering from the curse of dimensionality [36,104,114,142–144,163,164,170]. CNNs were first
shown to be extremely effective in image classification [77, 89]. They were later adopted in
image reconstruction and significantly advanced its state-of-the-art (see, e.g., [38,113,156,159,
172]).
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Why CNNs perform so well in practice and where their capability boundary locates
is arguably the biggest mystery in deep learning for the moment. One possible way of unrav-
eling such mystery, at least for image reconstruction, is to explore the connection between
CNNs and mathematical models we now have a systematic understanding of. More impor-
tantly, what do CNNs do differently to outperform these mathematical models significantly,
and can we combine the wisdom from both sides? Answering these questions can bring new
insights into CNN models and further extend the scope of their applications.

Let F be an image reconstruction operator for the problem (1.1) that takes a coarse
reconstruction of the image as input and the reconstructed image as output. For both wavelet
frame-based and PDE-based models, this mapping F is a discrete dynamical system. As
shown by [49], most of these discrete dynamical systems are various discrete approximations
to differential equations. CNNs, on the other hand, are formed by consecutive compositions
of relatively simple functions, which makes them discrete dynamical systems as well. We use
F‚ to denote a CNN, which is a parameterized dynamical system. One apparent difference
between F and F‚ is that the former is entirely design-based using human knowledge while
the latter has minimal human design and its actual form mostly relies on a large number
of parameters ‚ that are optimized through empirical risk minimization. The dynamics
F and F‚ are two extremes of modeling where the former advocates human knowledge,
which grants solid theoretical foundations and adequate interpretability, while the latter pro-
motes data-driven modeling which can extract features and principles from data that may
be unknown to humans to better assist in decision making. However, in practice, neither
extreme is ideal, which is especially the case in science, economics, and medicine. In these
disciplines, interpretability is mostly required. Also, we have some knowledge to describe
a particular phenomenon but still largely not enough, and we have observational or simula-
tion data but limited in quantity. Therefore, we need to balance between the two extremes
depending on the specific application of interest. Finding connections between F and F‚

may better assist us in this regard.
This motivated us to study connections between CNNs and differential equations.

From the standpoint of dynamical systems, we explored the structural similarities between
numerical differential equations and CNNs in [101,102,107]. In [107], we showed that not only
ResNet could be viewed as a forward-Euler approximation to differential equations as first
pointed out by [74, 162], but many other CNNs with bypass structures (or skip connections)
can also be viewed as a discrete approximation of differential equations. Furthermore, [107]
was the first to draw connections between residual-type CNNs with random perturbations
and stochastic differential equations (SDEs). In fact, [107] suggested numerical ODEs/SDEs
as a systematic framework for designing CNNs for image classification. In [101, 102], we
were among the earliest to explore the structural similarity between CNNs and numeri-
cal PDEs. The key to such structural similarity is also the key to the connections between
wavelet frame-based and PDE-based approaches for image reconstruction. By exploiting
such structural similarity, we proposed a set of new CNNs called PDE-Nets, which can
estimate the analytical form of (time-dependent) PDEs from observed dynamical data with
minor prior knowledge on the underlying mechanism that drives the dynamics. Once trained,
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the PDE-Net also serves as a simulator that can generate more dynamical data accurately and
efficiently.

This paper will review the development of the wavelet frame-based and PDE-based
approaches for image reconstruction. We shall discuss the connections between the two
approaches and demonstrate how the connections lead to new models for image reconstruc-
tion. Furthermore, we will show how these theoretical studies inspired our exploration of
structural similarities between differential equations and CNNs. These findings lead to fur-
ther developments in modeling and algorithmic design in deep learning and new applications
of machine learning in scientific computing.

2. Wavelet frame-based approach for image

reconstruction

We start with a brief introduction to the concept of wavelet frame transform in a
discrete setting. The interested readers should consult [45,46,128,129] for theories of frames
and wavelet frames, [51,140] for a short survey on the theory and applications of frames, and
[53] for a more detailed survey.

In the discrete setting, let an image f be a d -dimensional array. We denote by
Id D RN1�N2�����Nd the set of all d -dimensional images. We denote the d -dimensional fast
.LC 1/-level wavelet frame transform/decomposition with filters ¹q.0/;q.1/; : : : ;q.r/º (see,
e.g., [53]) by

Wu D
®
W`;lu W .`; l/ 2 B

¯
; u 2 Id ; (2.1)

where B D ¹.`; l/ W 1� `� r; 0� l �Lº [ ¹.0;L/º. The wavelet frame coefficients W`;lu 2

Id are computed by W`;lu D q`;l Œ���~ u, where ~ denotes the convolution operator with
a certain boundary condition, e.g., periodic boundary condition, and q`;l is defined as

q`;l D Lq`;l ~ Lql�1;0 ~ � � � ~ Lq0;0 with Lq`;l Œk� D

´
q`Œ2

�lk�; k 2 2lZd ;

0; k … 2lZd :
(2.2)

Similarly, we can define QW u and QW`;lu given a set of dual filters ¹ Qp; Qq1; : : : ; Qqrº. We
denote the inverse wavelet frame transform (or wavelet frame reconstruction) as QW >, which
is the adjoint operator of QW . When the primal filters ¹p; q.1/; : : : ; q.r/º and dual filters
¹ Qp; Qq1; : : : ; Qqrº satisfy the extension principles [128,129], we have the perfect reconstruction
formula

u D QW >Wu; for all u 2 Id :

In particular, when the dual filters are the same as the primal filters with the extension prin-
ciple satisfied, W is the transform associated to a tight frame system, and we simply have
that

u D W >Wu; for all u 2 Id : (2.3)

For simplicity, we will mostly focus our discussions on the case d D 2.
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Two simple but useful examples of filters for univariate tight frame systems, i.e.,
Haar and piecewise linear tight frame system, constructed from B-splines [129] are given as
follows.

Example 2.1. Filters of B-spline tight frame systems.

(1) Haar. Let p D
1
2
Œ1;1� be the refinement mask of the piecewise constant B-spline

B1.x/ D 1 for x 2 Œ0; 1� and 0 otherwise. Define q1 D
1
2
Œ1;�1�.

(2) Piecewise linear. Let p D
1
4
Œ1; 2; 1� be the refinement mask of the piece-

wise linear B-spline B2.x/ D max .1 � jxj; 0/. Define q1 D

p
2

4
Œ1; 0;�1� and

q2 D
1
4
Œ�1; 2;�1�.

The key to the success of wavelet frames in image reconstruction is their capabil-
ity to provide a sparse approximation to images. In other words, the high-frequency band
Bn¹.0; L/º of the wavelet frame transform Wu of a typical image u is sparse. Large (in
magnitude) wavelet frame coefficients encode image features such as edges, while the coef-
ficients are small in smooth regions. This is mainly due to the short support and high order
of vanishing moments of wavelet frames that make them behave like differential operators
(we will come back to this in Section 4).

Wavelet frame-based image reconstruction started from the seminal work [32]. The
basic idea is as follows: Consider the linear inverse problem (1.1). After an initial recon-
struction of the image u, edges might be blurred, and noise is still present in the image.
Since a clean image should be sparse in the wavelet frame domain, one of the simplest ways
to sharpen the image and remove noise at the same time is to set small high-frequency coeffi-
cients to zero. When we reconstruct the image using the processed wavelet frame coefficients,
it will no longer be consistent with the data, i.e., Au may be far away from f . The simplest
way to correct it is by moving u closer to the hyperplane Au D f . Then, we iterate this pro-
cedure till convergence. This leads to a wavelet frame-based iterative algorithm, which was
later analyzed by [23] and revealed its relation to the following wavelet frame-based balanced
model:

min
d

1

2

AW >d � f
2

2
C
�

2

.I � W W >/d
2

2
C k� � dk1: (2.4)

The balanced model also takes the analysis model [25,55,147]

min
u

1

2
kAu � f k

2
2 C k� � Wuk1; (2.5)

and the synthesis model [47,59,60,63,64]

min
d

1

2

AW >d � f
2

2
C k� � dk1 (2.6)

as special cases. The balanced, analysis and synthesis models (and their variants) are among
the most commonly used models in image reconstruction.

The objective functions in (2.4)–(2.6) are all convex, and can be efficiently opti-
mized by convex optimization algorithms. For example, both the balanced and synthesis
models can be solved efficiently by proximal forward–backward splitting (PFBS) [20,35,44,
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122,155] and can be further accelerated by Nesterov’s approach [10,141]. The analysis model
can be solved efficiently using the alternating direction method of multipliers (ADMM)
[16,25,66,68,69] and the primal dual hybrid gradient (PDHG) method [30,58,176].

3. PDE-based approach for image reconstruction

In the past few decades, many variational and PDE models have been proposed
with success in different tasks in image reconstruction. In this section, we shall refer to
them both as the PDE-based approach. Successful examples of the PDE-based approach
include the total variation (TV) model [131], total generalized variation model [18], Mumford–
Shah model [115], shock-filter [120], Perona–Malik (PM) equation [123], anisotropic diffusion
models [161], fluid dynamics model [12], etc. In this section, we will recall the TV model and
the PM equation.

Regularization is crucial in solving ill-posed inverse problems. In 1963, Tikhonov
proposed the so-called Tikhonov regularization [154] that penalizes the H 1 seminorm of
the image to be reconstructed. Tikhonov regularization can effectively remove noise while
it smears out important image features such as edges as well. This is essentially because
H 1 is not an appropriate function space to model images. It has such a strong regularity
requirement that functions with jump discontinuities are not allowed in the function space.
To overcome such drawbacks, Rudin, Osher, and Fatemi proposed the refined TV model that
penalizes the total variation of the function to be reconstructed so that jump discontinuities
can be well-preserved and noise can be adequately removed. This is because the BV space is
large enough to include functions with discontinuities but not too large, so that noise is still
excluded.

Now, we first recall the definition of TV and the BV space. Let� � R2 be an open
set and u 2 L1.�/. Then, the total variation of u is defined as

TV.u/ WD sup
²Z

�

u div v dx W v 2 C 1
c .�;R

2/; kvkL1.�/ � 1

³
; (3.1)

where C 1
c .�;R

2/ is the space of all compactly supported continuously differentiable func-
tions on�. Another convenient notation for the TV of a functionu is TV.u/D

R
�

jDu.x/jdx,
where Du is the distributional derivative of u. Intuitively speaking, the TV of a function u
records the total amount of fluctuation of the function on domain �. If u is differentiable,
then TV.u/ D

R
� jru.x/j dx. We define the BV space as

BV.�/ D
®
u 2 L1.�/ W TV.u/ < C1

¯
:

We now consider the function version of the image reconstruction problem (1.1),
namely

f D AuC �:

We use nonbold characters to denote functions and linear operators in contrast to the bold
characters that denote arrays and matrices. Then, the TV model for image reconstruction
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reads as follows:
min
u2BV

TV.u/C
�

2

Z
�

�
Au.x/ � f .x/

�2dx; (3.2)

where � > 0 is a preselected hyperparameter that balances the amount of regularization
from the first term and data consistency from the second term. Ways of solving the TV
model include solving the associated Euler–Lagrange equation or the gradient flow, or we
can discretize the model first and then use a convex optimization algorithm (e.g., one of those
described in the previous section). Note that (3.2) is similar in form to (2.5). The difference is
that in (2.5), we penalize the `1-norm of the wavelet frame transform of u, while in (3.2) we
penalize theL1-norm ofDu. This is an indication that (3.2) and (2.5) may be closely related.
For convenience, we shall call the variational model (3.2) and its variants as differential
operator-based analysis model, and (2.5) the wavelet frame-based analysis model.

In contrast to variational models for image reconstruction, designing PDE models is
less restrictive and more intuitive to incorporate local geometric structures of images in the
design. The scale-space theory tells us that using PDEs to model image reconstruction is a
reasonable option. Let us use a set of nonlinear operators ¹Tt ºt�0 with u.t; x/ D .Ttu0/.x/

to denote the flow of image reconstruction starting from an initial estimation u0.x/. If the
set of operators satisfies certain axioms, such as recursivity, regularity, locality, translation
invariance, etc., then there exists a second-order nonlinear evolution PDE such that u.t; x/
is its viscosity solution [3]. The PM equation is one of the well-known PDE models that
are effective in image reconstruction (originally for image denoising but can be extended
to general image reconstruction problems). It imposes a different amount of diffusion, even
backward diffusion, in different regions of the images depending on local regularity and the
orientation of edges. In the following, we will recall the idea of the original design of the
PM equation for image denoising. Interested readers should consult [7,123] for more details.

Given an observed noisy image u0.x/, the PM equation takes the following form:8̂̂<̂
:̂
ut D div

�
g
�
jruj2

�
ru
�
; on .0; T / ��;

@u
@En
.t; x/ D 0; on .0; T / � @�;

u.0; x/ D u0.x/; on �;

where the diffusivity function g is a scalar function satisfying8̂̂<̂
:̂
g W Œ0;1/ 7! .0;1/ is monotonically decreasingI

g.0/ D 1I g.x/ ! 0 as x ! 1I

g.x/C 2xg0.x/ > 0 for x � KI g.x/C 2xg0.x/ < 0 for x > K:

(3.3)

The specific design of the diffusivity function g is to impose not only a spatially variant
diffusion, but also different amount of diffusion in different directions at any given location.
Commonly used examples of the diffusivity function g include

g.s/ D e
� s

2�2 ; or g.s/ D
1

1C sp=�2
; p >

1

2
; � > 0:

From (3.3), we can see that g.jruj2/ is relatively large at smooth regions of the
image u where jruj is relatively small. Thus, the PM equation applies stronger smoothing
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in smooth regions of the image. In contrast, jruj is relatively large near edges, and hence
g.jruj2/ is relatively small. Then, the PM equation applies less smoothing near edges which
can reduce the amount of blurring. On the other hand, if we decompose the PM equation
along the tangential and normal direction of the level sets of u, we can rewrite the original
PM equation as

ut D g
�
jruj

2
�
uT T C Qg

�
jruj

2
�
uNN ;

with
Qg.x/ D g.x/C 2xg0.x/; N D

ru

jruj
; and T D N?; jT j D 1:

Here, T and N are two unit vector fields that record, respectively, the tangential and normal
directions of the level sets of function u. Further, uT T and uNN are the second-order deriva-
tives along the tangential direction T and normal direction N , respectively. We can see
from (3.3) that the PM equation imposes forward diffusion along the tangential direction
to remove noise, while imposing backward diffusion along the normal direction near edges
for enhancement. This, however, makes the PM equation an ill-posed PDE. This problem was
later resolved by [28] where a modification of the PM equation was proposed and analyzed.

4. Connections between wavelet frame-based and

PDE-based approaches

In this section, we will summarize the main findings from the work [24] that estab-
lished the connections between the differential operator-based and wavelet frame-based anal-
ysis models, and the work [49] that established the connections between nonlinear evolution
PDEs and iterative wavelet frame-based shrinkage algorithms. Extensions of these results
can be found in [26,42,52].

4.1. Wavelet frame transform and differential operators
Wavelet frame transform is a collection of convolution operators with both low- and

high-pass filters. For a given multiresolution analysis (MRA) based wavelet frame system,
the low-pass filters are associated with the refinable functions, while the high-pass filters
are associated with wavelet functions. Key properties of both refinable and wavelet func-
tions, such as smoothness and vanishing moments, can be characterized by their associated
filters. The key observation that eventually leads to the connections between wavelet frame
and PDE-based approaches is the link between vanishing moments of wavelet functions and
differential operators in discrete and continuum settings. This observation was first made in
[24] and was further exploited in [26,42,49,52].

For a high-pass filter q, let bq.!/ D
P

k2Z2 qŒk�e�ik! be its two-scale symbol.
Throughout this paper, for a multiindex ˛ D .˛1; ˛2/ 2 Z2

C and ! 2 R2, write

˛Š D ˛1Š˛2Š; j˛j D ˛1 C ˛2; D˛ D
@˛

@!˛
D

@˛1C˛2

@!
˛2
2 @!

˛1
1

:

5428 B. Dong



We say that q (and bq.!/) has vanishing moments of order ˛ D .˛1; ˛2/, where ˛ 2 Z2
C,

provided that X
k2Z2

kˇqŒk� D i jˇj @
ˇ

@!ˇ
bq.!/ˇ̌̌̌

!D0

D 0 (4.1)

for all ˇ 2 Z2
C with jˇj < j˛j and for all ˇ 2 Z2

C with jˇj D j˛j but ˇ 6D ˛. We say that
q has total vanishing moments of order K with K 2 ZC if (4.1) holds for all ˇ 2 Z2

C with
jˇj < K. Suppose K � 1. If (4.1) holds for all ˇ 2 Z2

C with jˇj < K except for ˇ 6D ˇ0

with certain ˇ0 2 Z2
C and jˇ0j D J < K, then we say that q has total vanishing moments

of order Kn¹J C 1º.
To have a better understanding of the concept of vanishing moments, let us look at

one example. Letbq1.!/ D ei!1 � e�i!1 , which is the first high-pass filter of the piecewise
linear B-spline tight wavelet frame system in Example 2.1. Then,

bq1.0/ D 0;
@

@!1

bq1.0/ D 2i 6D 0;
@

@!2

bq1.0/ D 0:

Thusbq1.!/ has vanishing moments of order .1; 0/. In addition, we have

@2

@!2
1

bq1.0/ D 0;
@2

@!1@!2

bq1.0/ D 0;
@2

@!2
2

bq1.0/ D 0:

Therefore, q1 has total vanishing moments of order 3n¹j.1; 0/j C 1º, or 3n¹2º (it does not
have total vanishing moments of order 4n¹2º since @3

@!3
1

bq1.0/ D �2i 6D 0).
The following proposition from [49] describes the relation between the vanishing

moments of high-pass filters and finite difference approximations of differential operators.
This proposition was later applied to the work of PDE-Net [101,102] that explores and exploits
structure similarities between deep convolutional neural networks and numerical PDEs.

Proposition 4.1. Let q be a high-pass filter with vanishing moments of order ˛ 2 Z2
C. Then

for a smooth function F.x/ on R2, we have
1

"j˛j

X
k2Z2

qŒk�F .x C "k/ D C˛

@˛

@x˛
F.x/CO."/;

where C˛ is the constant defined by

C˛ D
1

˛Š

X
k2Z2

k˛qŒk� D
i j˛j

˛Š

@˛

@!˛
bq.!/ˇ̌̌̌

!D0

:

If, in addition, q has total vanishing moments of orderKn¹j˛j C 1º for someK > j˛j, then
1

"j˛j

X
k2Z2

qŒk�F .x C "k/ D C˛

@˛

@x˛
F.x/CO."K�j˛j/:

Similar results can be written in terms of wavelet frame functions which is given by
the following proposition of [42]. Note that a version of the same result for B-splines wavelet
frames was proposed earlier in [24].
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Proposition 4.2. Let a tensor product wavelet frame function  ˛ 2 L2.R2/ have vanishing
moments of order ˛ with j˛j � s, and let supp. ˛/ D Œa1; a2� � Œb1; b2�. Then, there exists
a unique '˛ 2 L2.R2/ such that '˛ is differentiable up to order ˛ a.e.,

c˛ D

Z
R2

'˛ ¤ 0 and  ˛ D @˛'˛:

Furthermore, for n 2 N and k 2 Z2 with supp. ˛;n�1;k/ � �, we have

hu; ˛;n�1;ki D .�1/j˛j2j˛j.1�n/
˝
@˛u; '˛;n�1;k

˛
for every u belonging to the Sobolev space W s

1 .�/. Here,

 ˛;n�1;k D 2n�2 ˛

�
2n�1

� �k=2
�

and '˛;n�1;k is defined similarly.

Note that Proposition 4.1 is more convenient to use in addressing the connections
between wavelet frame shrinkage algorithm and nonlinear evolution PDEs. In contrast,
Proposition 4.2 is more convenient to use in addressing the connections between wavelet
frame-based and differential operator-based analysis models.

4.2. Connections between wavelet frame-based analysis model and TV model
The wavelet frame-based analysis model considered by [24] is given as

inf
u2W s

1 .�/
En.u/ WD �k�n � W Tnuk1 C

1

2
kAnTnu � Tnf k

2
2; (4.2)

and the differential operator-based analysis model is given as

inf
u2W s

1 .�/
E.u/ WD �kDuk1 C

1

2
kAu � f k

2
L2.�/: (4.3)

Here, W denotes the wavelet frame transform defined by (2.1) and (2.2), Tn is the sampling
operator generated by the refinable function corresponding to the underlying wavelet frame
system, An is a discrete approximation of the operator A, D is a certain linear differential
operator with highest order s (e.g., for the TV model, D D r and s D 1). We denote by
W r

p .�/ the Sobolev space with functions whose r th order weak derivatives belong toLp.�/

and which is equipped with the norm kf kW r
p .�/ WD

P
j˛j�r kD˛f kp .

From the form of En and E, we can see a similarity between the two functionals. It
was proved in [24] thatEn converges toE pointwise onW s

1 .�/. However, since we are inter-
ested in the (approximated) minimizers of these functionals, pointwise convergence does
not guarantee a relation between their associated (approximated) minimizers. Therefore, �-
convergence [17] was used in [24] to draw a connection between the problems minu En.u/

and minuE.u/. We first recall the definition of �-convergence.

Definition 4.1. Given En.u/ W W s
1 .�/ 7! NR and E.u/ W W s

1 .�/ 7! NR, we say that En �-
converges to E if:

(i) for every sequence un ! u in W s
1 .�/, E.u/ � lim infn!1En.un/;

(ii) for every u 2 W s
1 .�/, there is a sequence un ! u in W s

1 .�/, such that
E.u/ � lim supn!1En.un/.
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Then, based on the link between wavelet frame transform and differential operators
given by Proposition 4.2, the main result of [24] is given as follows:

Theorem 4.1. Given the variational problem (4.3), there exists a set of coefficients �n, such
that the functional En of the problem (4.2) �-converges to the functional E of the prob-
lem (4.3) in W s

1 .�/. Let u?
n be an "-optimal solution to the problem (4.2), i.e., En.u

?
n/ �

infuEn.u/C � (� > 0). We have that

lim sup
n!1

En.u
?
n/ � inf

u
E.u/C �;

and any cluster point of ¹u?
nºn is an "-optimal solution to the problem (4.3).

Theorem 4.1 goes beyond the theoretical justifications of the linkage of (4.2) and
(4.3). Since the differential operator-based analysis model (4.3) has strong geometric inter-
pretations, this connection brings geometric interpretations to the wavelet frame-based
approach (4.2) as well. This also leads to even wider applications of the wavelet frame-
based approach, e.g., image segmentation [27, 48, 99] and 3D surface reconstruction [50].
Conversely, the theorem also grants a new perspective of sparse approximation to the PDE-
based approach supplementing its current function space perspective. On the other hand,
not only the wavelet frame-based analysis model can be viewed as a discrete approxima-
tion of the differential operator-based analysis model, but such discretization can also be
superior to standard finite difference discretization commonly used in PDE-based methods.
Taking the Haar wavelet frame-based analysis model as an example, its regularization term
has the property of 45-degree rotation invariance. In contrast, the standard finite difference
discretization for TV regularization does not have such an invariance. This enables Haar
wavelet frame-based analysis model to generate better reconstructed images than the TV
model with the standard discretization.

4.3. Connections between wavelet shrinkage algorithms and nonlinear
evolutional PDEs
In [49], general connections between wavelet frame shrinkage algorithms and non-

linear evolution PDEs (e.g., PM equation, shock-filters, anisotropic diffusions) were estab-
lished. The links between the two approaches provide new and inspiring interpretations of
themselves that enable us to derive new PDE models and (better) wavelet frame shrinkage
algorithms for image restoration. Here, we will recall some of the main results from [49].

Let d WD Wu be the wavelet frame transform of u, QW >d be the inverse wavelet
frame transform defined by (2.1) and (2.2) with the corresponding filters satisfying the exten-
sion principles [128,129]. Then, we have QW >W D I . For simplicity, we only consider 1-level
wavelet frame transform. Given wavelet frame coefficients d D ¹d`;n W n 2 Z2; 0 � ` � Lº

and a threshold �.d/ D ¹�`;n.d/ W n 2 Z2; 0 � ` � Lº, the shrinkage operator S�.d/ is
defined as follows:

S�.d/ D
®
S�`;n.d/.d`;n/ D d`;n

�
1 � �`;n.d/

�
W n 2 Z2; 0 � ` � L

¯
: (4.4)
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Two well-known examples of the shrinkage operator (4.4) are the isotropic and anisotropic
soft-thresholding operators [24,49,54].

Given the shrinkage operator S�, a generic wavelet frame shrinkage algorithm takes
the form

uk
D QW >S�k�1.Wuk�1/; k D 1; 2; : : : (4.5)

Note that, for simplicity, we have dropped the term of data fidelity. More general versions of
the algorithm can be found in [49]. Now, consider the following nonlinear evolution PDE:

ut D

LX
`D1

@˛`

@x˛`
ˆ`.Du; u/; D D

�
@ˇ1

@xˇ1
; : : : ;

@ˇL

@xˇL

�
: (4.6)

The PDE (4.6) is defined on R2, and j˛`j; jˇ`j � 0, 1� `�L. Thus, it covers most nonlinear
parabolic and hyperbolic equations that we use for image reconstruction.

One key results of [49] can be summarized as follows: Given a PDE that takes the
form (4.6), then we can construction wavelet frame transforms W and QW , and a shrinkage
operator S� such that the wavelet frame shrinkage algorithm (4.5) is an approximation of the
PDE (4.6). When the PDE (4.6) is a well-posed anisotropic diffusion, the discrete solution
obtained from (4.5) converges to the solution of the PDE. This result is a consequence of
Proposition 4.1.

Let us consider a simple example. Consider the PDE

ut D
@ˆ1

@x1

�
@u

@x1

;
@u

@x2

; u

�
C
@ˆ2

@x2

�
@u

@x1

;
@u

@x2

; u

�
:

Let W`, ` D 1; 2, be the Haar wavelet frame transform corresponding to the first two high-
frequency bands. By Proposition 4.1, we have the following discretization of the above PDE:

uk
D uk�1

� � Q1W >
1 ˆ1.1W1uk�1; 2W2uk�1;uk�1/

� � Q2W >
2 ˆ2.1W1uk�1; 2W2uk�1;uk�1/;

with parameters ` and Q` being properly chosen such that `W` �
@

@x`
and Q`W >

`
�

@
@x`

.
On the other hand, the iterative algorithm (4.5) can be rewritten as

uk
D uk�1

� W >
1

�
W1uk�1

� �1.W1uk�1;W2uk�1;uk�1/
�

� W >
2

�
W2uk�1

� �2.W1uk�1;W2uk�1;uk�1/
�
:

Comparing the above two iterative formulas, we can see that if we define the operator � D

¹S` W ` D 1; 2º as

S`.�1; �2; �/ WD �` � � Q`ˆ`.�1; �2; �/ D �`

�
1 � � Q`ˆ`.�1; �2; �/=�`

�
; �`; � 2 R;

(whenever ˆ`.�1; �2; �/=�` is well defined), then there is an exact correspondence between
the two iterative formulas. Note that the threshold level in the original definition (4.4) is
given by � Q`ˆ`.�1; �2; �/=�`. In particular, when

ˆ`

�
@u

@x1

;
@u

@x2

; u

�
D g`

�
jruj

2; u
� @u
@x`

;
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we have
S`.�1; �2; �/ D �`

�
1 � � Q`g`.�

2
1 C �2

2 ; �/
�
:

It is interesting to observe that the threshold level given by � Q`g`.�
2
1 C �2

2 ; �/ is proportional
to the diffusivity g`.

Other than showing that the wavelet frame shrinkage algorithms can be viewed as
a discrete approximation of PDEs, [49] also presented examples of new PDEs that can be
derived from wavelet frame shrinkage algorithms. Conversely, new wavelet shrinkage algo-
rithms that better exploit local image geometry can also be derived. Here, we recall one such
example.

Consider the accelerated wavelet frame shrinkage algorithm [93,116,117]

uk
D .I � �A>A/W >S˛k�1

�
.1C k�1/Wuk�1

� k�1Wuk�2
�

(4.7)

C �A>f ; k D 1; 2; : : :

When we properly choose the wavelet frame transform W and the parameters � and k , the
iterative algorithm (4.7) leads to the following PDE:

ut t C Cut D

LX
`D1

.�1/1Cjˇ`j @
ˇ`

@xˇ`

�
g`

�
u;
@ˇ1u

@xˇ1
; : : : ;

@ˇLu

@xˇL

�
@ˇ`

@xˇ`
u

�
(4.8)

� �A>.Au � f /:

What makes equation (4.8) interesting is the presence of both ut and ut t . The term ut makes
the PDE parabolic-like so that the first term on the right-hand side regularizes the solution
u; the term ut t makes the PDE hyperbolic-like so that the evolution of u is accelerated. The
idea of using a hyperbolic equation to speed up convergence was proposed in [111] for sparse
signal reconstruction from noisy, blurry observations. Furthermore, related findings was also
given by [149,150]. It also inspired more recent studies in machine learning that established
connections between numerical ODEs and CNNs [107].

5. Going beyond image reconstruction

Differential equations, especially partial differential equations (PDEs), play a promi-
nent role in physics, chemistry, biology, economics, engineering, etc., to describe the govern-
ing laws underlying virtually every physical, technical, or biological process. The application
of differential equations in image reconstruction and computer vision is a relatively new field
that started around 1990. In Section 4, we have unified the prevailing models in image recon-
struction, from which we can see that most effective image reconstruction algorithms are
various discrete approximations of differential equations. In this section, we shall bridge the
design of certain types of CNNs with numerical differential equations. More specifically, the
bridge between numerical ODEs/SDEs and CNNs was established by [107] and the bridge
between numerical PDEs and CNNs was established by [101, 102]. In this line of work, we
regard CNNs as a discrete dynamical system, and the flow of features from the very first layer
to the last layer of the CNNs is the underlying dynamical process. We argue that different
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numerical schemes of differential equations lead to different architectures of CNNs, which
inherit certain properties from the differential equations. By connecting CNNs with numer-
ical differential equations, we can bring in tools from applied mathematics and physics to
shed light on the interpretability of CNNs; and we can also bring in tools from deep learning
to further advance not only image reconstruction but also a much broader field of scientific
computing.

5.1. ODE-Nets: exploring structural similarity between numerical ODEs and
CNNs
One of the central tasks in deep learning is designing effective deep architectures

with strong generalization potential and are easy to train. The first ultra-deep CNN is the
ResNet [77] where skip connections were introduced to keep feature maps in different layers
on the same scale and to avoid gradient vanishing. Structures other than the skip connec-
tions of the ResNet were also introduced to prevent gradient vanishing, such as the dense
connections [79] and fractal path [90].

Observe that each residual block of ResNet can be written as

ukC1
D uk

C�tF.uk ; tk/; (5.1)

where k is the index for the residual block F . As first suggested by [74, 162], each residual
block of ResNet is one step of the forward-Euler discretization of the ODE Pu D F.u; t/.
In [107], we further showed that many state-of-the-art deep network architectures, such as
PolyNet [174], FractalNet [90], and RevNet [70], which can be considered as different dis-
cretizations of ODEs. From the perspective of [107], the success of these networks is mainly
due to their ability to efficiently approximate dynamical systems.

Taking PolyNet as an example, a PolyInception module was introduced in each
residual block. The PolyInception model includes polynomial compositions that can be
described as

.I C F C F 2/ � x D x C F.x/C F
�
F.x/

�
:

We observed in [107] that PolyInception model can be interpreted as an approximation to
one step of the backward-Euler (implicit) scheme, ukC1 D .I ��tF /�1uk . Indeed, we can
formally rewrite .I ��tF /�1 as

I C�tF C .�tF /2 C � � � C .�tF /k C � � � :

Therefore, the architecture of PolyNet can be viewed as an approximation to the backward-
Euler scheme solving the ODE ut D F.u; t /. Note that the implicit scheme allows a larger
step size [6], which in turn allows fewer residual blocks.

Furthermore, for residual-type networks with random perturbations, such as ResNet
with shake-shake regularization [67] and stochastic depth [80], it was shown by [107] that
these networks can be viewed as weak approximations [118] to certain SDEs, which links the
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training of such networks with mean-field stochastic optimal control

min E.x;y/�P

 
E

 
`.XT ;y/C

Z T

0

r.s; Xs; �s/

!
ds

!
s.t. dXt D f .Xt ; �t /dt C g.Xt ; �t /dBt ; X0 D x;

where `.�; �/ is a certain loss function measuring the distance between the two input argu-
ments, r.�; �; �/ is a running cost that regularizes the dynamics and P is the distribution of the
data. Note that the SDE and stochastic optimal control perspective on ResNet with dropout
[146] was later proposed by [151].

In [107], we argued that we could exploit numerical ODEs to design new residual-
type CNNs with state-of-the-art classification accuracy. Here, we shall call these deep
residual-type CNNs inspired by numerical schemes of ODEs as ODE-Nets. As an exam-
ple, we proposed to use a linear two-step scheme for ODEs to design a new ODE-Net, called
LM-ResNet, as follows:

ukC1
D .1 � ˛k/u

k
C ˛kuk�1

C F.uk ; tk/; ˛k 2 R: (5.2)

The difference between the LM-ResNet (5.2) and the original ResNet (5.1) is revealed by
the modified equation analysis [160]. Modified equations are commonly used in numerical
analysis to describe numerical behaviors of numerical schemes. The modified equations of
the ResNet and the LM-ResNet are as follows:8<: Puk C

�t
2

Ruk D F.uk ; tk/; ResNet;

.1C ˛k/ Puk C .1 � ˛k/
�t
2

Ruk D F.uk ; tk/; LM-ResNet:
(5.3)

Here, uk D u.tk/ and similarly for Puk and Ruk . Comparing the two modified equations in
(5.3), we can see that when ˛k � 0, the second-order term Ru of the modified equation of LM-
ResNet is bigger than that of the original ResNet. Note that the term Ru represents acceleration
which leads to acceleration of the convergence of uk when F D �rG, which was observed
earlier for F.u/ taking a particular form in (4.8). This was our original motivation to select
(5.2) among numerous other numerical ODE schemes, since we believed the depth of the
corresponding ODE-Net could be reduced compared to the original ResNet because of the
acceleration mechanisms induced by the term Ruk . It turned out that it was indeed the case, and
LM-ResNet managed to reduce the depth of the original ResNet (the versions with stochastic
perturbations as well) by a factor of 2–10 without hurting classification accuracy. This was
empirically validated on image classification benchmarks CIFAR10/100 and ImageNet.

The bridge between numerical schemes and architectures of neural networks can
not only inspire various designs of ODE-Nets [34,94,108,177], concepts from the numerical
analysis can also be introduced to enforce the ODE-Nets to satisfy certain desired properties.
For example, [41] utilized a symplectic scheme to enforce the learned network to preserve
the physic structure, and [173] boosted the stability and adversarial robustness of ResNet
through stability analysis on the underlying dynamical system. The bridge also inspired the
work on the neural ODE [37, 97] in which ODEs and SDEs were used as machine learn-
ing models, and they have achieved huge success in generative modeling. The validity of
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using dynamical systems as machine learning models was provided by [96] where the uni-
versal approximation property of these models was established. This line of research also
inspired more applications of ODE-Nets in time series prediction [87] and physical system
identification [73,127,168]. By regarding training ResNet as an optimal control problem, [95]
discovered that the BP-based optimization algorithm could be viewed as an iterative solver
for the maximal principle of the optimal control problem. Based on this observation, [98,171]
designed new accelerated training algorithms for ODE-Nets inspired by the theory of opti-
mal control. Although the structural similarity between numerical ODEs and CNNs is mostly
formal, theoretical analysis regarding the depth limit of ODE-Nets has become a vibrant and
fast-moving field of research [43,106,121,125,153].

5.2. PDE-Nets: exploring structural similarity between numerical PDEs and
CNNs
The original motivation of the work PDE-Nets [101, 102] was to design transpar-

ent CNNs to uncover hidden PDE models from observed dynamical data with minor prior
knowledge on the mechanisms of the dynamics and to perform accurate predictions at the
same time. Learning PDEs from observation or measurement data is a typical task in inverse
problems in which machine learning methods have recently attracted tremendous attention
[5]. However, existing CNNs designed for computer vision tasks primarily emphasize pre-
diction accuracy. They are generally considered black-boxes and cannot reveal the hidden
PDE model that drives the dynamical data. Therefore, we need to carefully design the CNN
by exploring the structure similarity between numerical PDEs and CNNs.

Assume that the PDE to be uncovered takes the following generic form:

ut D F.u;Du/; x 2 � � R2; t 2 Œ0; T �;

where D was defined in (4.6). In a nutshell, PDE-Nets are designed as feedforward networks
by discretizing the above PDE using forward-Euler (or any other temporal discretization) in
time and finite-difference in space. The forward-Euler approximation of the temporal deriva-
tive makes PDE-Nets residual-type neural networks. As has been extensively discussed in
Section 4, the finite-difference approximation to the differential operator D can realized by
convolutions with properly chosen convolution kernels (i.e., filters). In fact, not only finite-
difference approximations can be realized by convolutions, any discretization of D based
on an approximation of u using translation-invariant basis functions can also be realized by
convolutions [39]. The nonlinear response function F is approximated by a symbolic neural
network denoted as SymNet (or a regular DNN as in [102] that is more expressive but less
interpretable). Let ukC1 be the predicted value at time tk C �t based on uk . Then, the
PDE-Nets take the following dynamical form:

ukC1
D uk

C�t � SymNetnm.Q00uk ;Q01uk ;Q10uk ; : : : /; k D 0; 1; : : : ; K � 1: (5.4)

Here, the operators ¹Qij º denote convolution operators with the underlying filters denoted by
qij , i.e.,QijuD qij ~ u. The operatorsQ10,Q01,Q11, etc., approximate differential oper-
ators, i.e., Qiju �

@iCj u
@i x@j y

. In particular, Q00 is a certain averaging operator. The symbolic
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neural network SymNetnm is introduced to approximate the multivariate nonlinear response
function F . The design of SymNetnm is motivated by [135]. It can accurately estimate func-
tion F that is formed or can be well approximated by multivariate polynomials. Details on
SymNetnm and its properties can be found in [101]. All the parameters of the SymNet and the
filters ¹qij º are jointly learned from data.

A key difference from existing works (e.g., [14,21,100,133,137,138,167]) on discovering
PDE models from observation data prior to [101, 102] is that the filters corresponding to the
specific finite-difference approximations to D are learned jointly with the estimation of the
nonlinear response function F . The benefits of doing such joint learning in both system
identification and prediction were empirically demonstrated in [101]. More importantly, in
order to grant desired interpretability to the PDE-Nets, proper constraints are enforced on
the filters. These constraints are motivated from Proposition 4.1 which we now elaborate.

In [101,102], the moment matrix associated to a given filter q was introduced to easily
enforce constraints on the filter during training. Recall that the moment matrix M.q/ of an
N �N filter q is defined by

M.q/ D .mi;j /N �N ; (5.5)

where

mi;j D
1

iŠj Š

N �1
2X

k1;k2D� N �1
2

ki
1k

j
2 qŒk1; k2�; i; j D 0; 1; : : : ; N � 1: (5.6)

Then, by examining (5.6), (4.1), and Proposition 4.1, it is not hard to see that, with a properly
chosen N , filter q can be designed to approximate any differential operator with prescribed
order of accuracy by imposing constraints on M.q/.

For example, if we want to approximate @u
@x

(up to a constant) by convolution q ~ u

where q is a 3 � 3 filter and u is the evaluation of u on a regular grid, we can consider the
following constrains on M.q/:0B@ 0 0 ?

1 ? ?

? ? ?

1CA or

0B@ 0 0 0

1 0 ?

0 ? ?

1CA : (5.7)

Here, ?means no constraint on the corresponding entry which allows one degree of freedom
for learning. The constraints described by the moment matrix on the left of (5.7) guarantee
that the approximation accuracy is at least of first order, and that on the right guarantees
an approximation of at least second order. In particular, when all entries of M.q/ are con-
strained, the corresponding filter is uniquely determined. In the PDE-Nets, all filters are
learned subjected to partial constraints on their associated moment matrices. Similar ideas
on learning constrained filters to approximate differential operators were later used in [9]

to design data-driven solvers for PDEs, and in [31] to design data-driven discretizations for
total variations. A more extended discussion on the connections between numerical PDEs
and neural networks was given in [2].

Exploiting the links between PDEs and CNNs has become a popular line of research
that has led to many new designs of CNN models for machine learning and computer vision
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tasks [4, 76, 113, 134, 152, 175]. It can also be used to improve the efficiency of CNNs [57]. On
the other hand, this line of research also drives the development of data-driven modeling
in scientific computing including efficient solvers for PDEs [9, 11, 39, 40, 85, 105, 158], model
reduction of complex systems [109,112,126,165,166,169], system identification from observa-
tion or simulation data [8, 15, 40, 75, 81, 83, 103, 124, 132], control of physical systems [78, 157],
inverse problems [5,61,62,86], and applications in seismology [88]. In addition, building PDE
models on unstructured data for machine learning and scientific computing tasks is now an
emerging branch of research [1,29,56,82,139].
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