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Abstract

Graph Neural Networks (GNNs), neural network architectures targeted to learning repre-
sentations of graphs, have become a popular learning model for prediction tasks on nodes,
graphs and configurations of points, with wide success in practice. This article summa-
rizes a selection of emerging theoretical results on approximation and learning properties
of widely used message passing GNNs and higher-order GNNs, focusing on representa-
tion, generalization, and extrapolation. Along the way, it summarizes broad mathematical
connections.
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1. Introduction

There has been growing interest in solving machine learning tasks when the input
data is given in form of a graph G D .V;E;X;W / from a set of attributed graphs G , where
X 2Rd�jV j contains vectorial attributes for each node, andW 2Rdw �jE j contains attributes
for each edge (X and W may be empty). Examples include predictions in social networks,
recommender systems and link prediction (given two nodes, predict an edge), property pre-
diction of molecules, prediction of drug interactions, traffic prediction, forecasting physics
simulations, and learning combinatorial optimization algorithms for hard problems. These
examples use two types of task: (1) given a graphG, predict a label F.G/; (2) given a graph
G and node v 2 V.G/, predict a node label f .v/. An edge may be similarly predicted, but
from two nodes instead of one.

Solving these tasks demands a sufficiently rich embedding of the graph or each node
that captures structural properties as well as the attribute information. While graph embed-
dings have been a widely studied topic, including spectral embeddings and graph kernels,
recently, Graph Neural Networks (GNNs) [36,37,39,49,65,83] have emerged as an empirically
broadly successful model class that, as opposed to, e.g., spectral embeddings, allows adapt-
ing the embedding to the task at hand, generalizes to other graphs of the same input type,
and incorporates attributes. Due to space limits, this survey focuses on the popular message
passing (spatial) GNNs, formally defined below, and their rich mathematical connections,
with an excursion into higher-order GNNs.

When learning a GNN, we observeN i.i.d. samples D D ¹Gi ; yiº
N
iD1 2 .G � Y/N

drawn from an underlying distribution P on G � Y. The labels yi are often given by an
unknown target function g.Gi /, and observed with or without i.i.d. noise. Given a (convex)
loss function ` W G � Y � Y ! R that measures prediction error, i.e., mismatch of y and
F.G/, such as the squared loss or cross-entropy, we aim to estimate a model F from our
GNN model class F to minimize the expected loss (population risk) R.F /:

min
F 2F

E.G;y/�P

�
`
�
G; y; F.G/

��
� min

F 2F
R.F /: (1.1)

When analyzing this quantity, three main questions become important:
1. Representational power (Section 2). Which target functions g can be approxi-

mated well by a GNN model class F ? Answers to this question relate to graph isomorphism
testing, approximation theory for neural networks, local algorithms and representing invari-
ance/equivariance under permutations.

2. Generalization (Section 3). Even with sufficient approximation power, we can
only estimate a function OF 2 F from the data sample D . The common learning or training
procedure is to instead minimize the empirical risk bR.F /:

OF 2 arg min
F 2F

1

N

NX
iD1

`
�
Gi ; yi ; F .Gi /

�
� arg min

F 2F

bR.F /: (1.2)

Generalization asks how well OF is performing according to the population risk, i.e., bR. OF /,
as a function ofN and model properties. Good generalization may demand explicit (e.g., via
penalties) or implicit regularization (e.g., via the optimization algorithm, typically variants
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of stochastic gradient descent). Hence, generalization analyses involve the complexity of the
model class F , the target function, the data and the optimization procedure.

3. Generalization under distribution shifts (Section 4). In practice, a learned
model OF is often deployed on data from a distribution Q ¤ P , e.g., graphs of different
size, degree or attribute ranges so that for instance supp.Q/ � supp.P /. In which cases can
we expect successful extrapolation to Q? This depends on the structure of the graphs and the
task, formalizable via graph limits, local structures and algorithmic structures, e.g., dynamic
programming.

Beyond these topics, GNNs have close connections to graph signal processing as
learnable filters, to geometric learning and probabilistic inference.

1.1. Graph Neural Networks (GNNs)
Message passing graph neural networks (MPNNs) follow an iterative scheme [36,

37,39,49,65,83]. Throughout, they maintain a representation (embedding) h.t/
v 2Rdt for each

node v 2 V . In each iteration t , we update each node v’s embedding h.k/
v as a function of its

neighbors’ embeddings and possible edge attributes:

h.0/
v D xv; 8v 2 V; (1.3)

m.t/
v D f

.t/
Agg
�
h.t�1/

v ;
®®
h.t�1/

u ; w.u; v/ j u 2 N .v/
¯̄ �
; 1 � t < T (Aggregate), (1.4)

h.t/
v D fUp

�
h.t/

v ; m.t/
v

�
(Update): (1.5)

The final node representation f .v/D h.T /
v , 8v 2 V is the last iterate, possibly concatenated

with a linear classifier. Here, N .v/ � V denotes the neighborhood of v 2 V , and ¹¹�ºº a
multiset. Via the updates, h.t/

v encodes the t -hop neighborhood of node v, i.e., the subgraph
of all nodes reachable from v within t steps. The number of iterations T is also termed the
GNN depth, and one iteration may be viewed as a layer.

The aggregation function f .t/
Agg W R

dt�1 ! Rdt plays a major role and is shared by
all nodes within an iteration. It is a nonlinear function of the form

f
.t/

Agg
�
h.t�1/

v ;
®®
h.t�1/

u ; w.u; v/ j u 2 N .v/
¯̄ �
D �

.t/
1

� X
u2N .v/

�
.t/
2

�
h.t/

u ; h.t/
v ; w.u; v/

��
:

(1.6)

The sum may also be replaced by an average, degree-normalized sum or coordinate-wise
min or max. In the most general form, the functions �1; �2 are implemented as multilayer
perceptrons (MLPs), neural networks that alternate linear transformations and coordinate-
wise nonlinear activations such as the ReLU (�.a/ D max¹a; 0º) or sigmoid function:

MLP.hI �/ D �
�
W .M/

� � � �
�
W .2/�.W .1/hC b.1//C b.2/

�
� � � C b.M/

�
: (1.7)

The learnable parameters � of the MLP are the weight matricesW .j / and bias vectors b.j /.
The update fUp is typically a weighted combination with learnable weight matrices:

fUp
�
h.t/

v ; m.t/
v

�
D �

�
W

.t/
1 h.t/

v CW
.t/

2 m.t/
v

�
or fUp

�
h.t/

v ; m.t/
v

�
D m.t/

v : (1.8)

5452 S. Jegelka



Finally, if a graph-level prediction is desired, all node representations can be aggregated by
a permutation invariant readout function

F.G/ D fRead
�®®
h.T /

v j v 2 V
¯̄ �
: (1.9)

Here, we assume the readout has the form (1.6) or is a simple sum or average. Typically, all
parameters are learned jointly via stochastic gradient descent minimizing the empirical risk.

Throughout this article, nD jV j denotes the number of nodes andN the number of
training data points.

Permutation invariance. An important property of GNNs is permutation invariance of the
graph, and equivariance of the node representations. Let A 2 Rn�n be the adjacency matrix
of a graph G 2 G , and X 2 Rn�d its node features. Permutation invariance/equivariance
means that for all permutation matrices P 2 Rn�n and all G 2 G :

F.PAP>; PX/ D F.A;X/ (1.10)

f .PAP>; PX; v/ D f .A;X; v/ (1.11)

2. Representational power of GNNs

For functions on graphs, representational power has mainly been studied in terms
of graph isomorphism: which graphs a GNN can distinguish. Via variations of the Stone–
Weierstrass theorem, these results yield universal approximation results. Other works bound
the ability of GNNs to compute specific polynomials of the adjacency matrix and to distin-
guish graphons [28, 60]. Observed limitations of MPNNs have inspired higher-order GNNs
(Section 2.3). Moreover, if all node attributes are unique, then analogies to local algorithms
yield algorithmic approximation results and lower bounds (Section 2.2).

2.1. GNNs and graph isomorphism testing
A standard characterization of the discriminative power of GNNs is via the hierarchy

of the Weisfeiler–Leman (WL) algorithm for graph isomorphism testing, also known as color
refinement or vertex classification [75], which was inspired by the work of Weisfeiler and
Leman [93,94]. The WL algorithm does not entirely solve the graph isomorphism problem,
but its power has been widely studied.

A labeled graph is a graph endowed with a node coloring l W V.G/! † for some
sufficiently large alphabet†. Given a labeled graph .G; l/, the 1-dimensional WL algorithm
(1-WL) iteratively computes a node coloring c.t/

l
W V.G/! † for some sufficiently large

alphabet †. Starting with c.0/

l
in iteration t D 0, in iteration t > 0 it sets for all v 2 V ,

c
.t/

l
.v/ D Hash

�
ct�1

l .v/;
®®
ct�1

l .u/ j u 2 N .v/
¯̄ �
; (2.1)

where Hash is an injective map from the input pair to†, i.e., it assigns a unique color to each
neighborhood pattern. To compare two graphs G;G0, the algorithm compares the multisets
¹¹c

.t/

l
.v/ j v 2 V.G/ºº and ¹¹c.t/

l
.u/ j u 2 V.G0/ºº in each iteration. If the sets differ, then it
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determines that G ¤ G0. Otherwise, it terminates when the number of colors in iteration t
and t � 1 are the same, which occurs after at most max¹jV.G/j; jV.G0/jº iterations.

The computational analogy between the 1-WL algorithm and MPNNs is obvious.
Since the WL algorithm uniquely colors each neighborhood, the coloring c.t/

l
.v/ always

refines the coloring h.t/
v from a GNN.

Theorem 1 ([66, 95]). If for two graphs G; G0 a message passing GNN outputs fG.G/ ¤

fG.G
0/, then the 1-WL algorithm will determine that G ¤ G0.

For any t , there exists an MPNN such that c.t/

l
� h.t/. A sufficient condition is that

the aggregate, update, and readout operations are injective multiset functions.

GNNs that use the degree for normalization in the aggregation [49] can be equivalent
to the 1-WL agorithm too, but with one more iteration in the WL algorithm [35].

2.1.1. Representing multiset functions
Theorem 1 demands the neighbor aggregation fAgg to be an injective multiset func-

tion. Theorem 2 shows how to universally approximate multiset functions.

Theorem 2 ([92,95]). Any multiset function G on a countable domain can be expressed as

G.S/ D �1

�X
s2S

�2.s/
�
; (2.2)

where �1 W Rd1 ! Rd2 and �2 W Rd2 ! R are nonlinear functions.

The proof idea is to show that there exists an injective function
P

s2S �.s/. The
above result is an extension of a universal approximation result for set functions [72,73,101],
and suggests a neural network model for sets where �1; �2 are approximated by MLPs. The
Graph Isomorphism Network (GIN) [95] implements this sum decomposition in the aggre-
gation function to ensure the ability to express injective operations.

Here, the latent dimension d2 plays a role. Proofs for countable domains use a dis-
continuous mapping �1 into a fixed-dimensional space, whereas MLPs universally approx-
imate continuous functions [25]. Continuous set functions on R�M (i.e., jS j � M ) can be
sum-decomposed as above with continuous �1; �2 and latent dimension at least d2 D M .
The dimension is a necessary and sufficient condition for universal approximation [92]. For
GNNs, this means d2 must be at least the maximum degree deg.G/ of the input graph G.

2.1.2. Implications for graph distinction
Theorem 1 allows directly transferring any known result for 1-WL to MPNNs. For

instance, 1-WL succeeds in distinguishing graphs sampled uniformly from all graphs on n
nodes with high probability, and failure probability going to zero as n ! 1 [8, 9]. 1-WL
can also distinguish any nonisomorphic pair of trees [42]. It fails for regular graphs, as all
node colors will be the same. The graphs that 1-WL can distinguish from any nonisomorphic
graph can be recognized in quasilinear time [6]. See also [6, 18,48] for more detailed results
on the expressive power of variants of the WL algorithm.
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Figure 1

Graphs G1 (left, 2 connected components) and G2 (middle) with node attributes indicated by letters. The
computation tree rooted at the node with arrow (right) agrees in both graphs, and likewise for the other nodes.
Hence, 1-WL and MPNNs cannot distinguish G1 and G2. Figure adapted from [33].

2.1.3. Computation trees and structural graph properties
To further illustrate the implications of GNNs’ discriminative power, we look at

some specific examples. The maximum information contained in any embedding h.t/
v can

be characterized by a computation tree T .h
.t/
v /, i.e., an “unrolling” of the message passing

procedure. 1-WL essentially colors computation trees. The tree T .h
.t/
v / is constructed recur-

sively: let T .h
.0/
v / D xv for all v 2 V . For t > 0, construct a root with label xv and, for any

u 2 N .v/ construct a child subtree T .h
.t�1/
u /. Figure 1 illustrates an example.

Proposition 1. If for two nodes u ¤ v, we have T .h
.t/
v / D T .h

.t/
u /, then h.t/

v D h
.t/
u .

Comparing computation trees directly implies that MPNNs cannot distinguish reg-
ular graphs. It also shows further limitations with practical impact (Fig. 1), in particular for
learning combinatorial algorithms, and for predicting properties of molecules, where func-
tional groups are of key importance. We say a class of models F decides a graph property
if there exists an F 2 F such that for any two G;G0 that differ in the property, we obtain
F.G/ ¤ F.G0/.

Proposition 2. MPNNs cannot decide girth, circumference, diameter, radius, existence of
a conjoint cycle, total number of cycles, and existence of a k-clique [33]. MPNNs cannot
count induced (attributed) subgraphs for any connected pattern of 3 or more nodes, except
star-shaped patterns [22].

Motivated by these limitations, generalizations of GNNs were proposed that prov-
ably increase their representational power. Two main directions are to (1) introduce node IDs
(Section 2.2), and (2) use higher-order functions that act on tuples of nodes (Section 2.3).

2.2. Node IDs, local algorithms, combinatorial optimization, and lower bounds
The major weaknesses of MPNNs arise from their inability to identify nodes as

the origin of specific messages. Hence, MPNNs can be strengthened by making nodes more
distinguishable. The gained representational power follows from connections with local algo-
rithms, where the input graph defines both the computational problem and the network
topology of a distributed system: each node v 2 V is a local machine and generates a local
output, and all nodes execute the same algorithm, without faults.
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Approximation algorithms. Sato et al. [80] achieve a partial node distinction by transfer-
ring the idea of a port numbering from local algorithms. Edges incident to each node are
numbered as outgoing ports. In each round, each node simultaneously sends a message to
each port, but the messages can differ across ports:

m.t/
v D f

.t/
Agg
�®®�

port.u; v/; port.v; u/; h.t�1/
u

�
j u 2 N .v/

¯̄ �
: (2.3)

Permutation invariance, though, is not immediate. This corresponds to the vector–vector
consistent (VVC ) model for local algorithms [41]. The VVC analogy allows transferring
results on representing approximation algorithms. CPNGNN is a specific VVC GNN model.

Theorem 3 ([80]). There exists a CPNGNN that can compute a .deg.G/C 1/-approximation
for the minimum dominating set problem, a CPNGNN that can compute a 2-approximation
for the minimum vertex cover problem, but no CPNGNN can do better. No CPNGNN can
compute a constant-factor approximation for the maximum matching problem.

Adding a weak vertex 2-coloring leads to further results. Despite the increased
power compared to MPNN, CPNGNNs retain most limitations of Proposition 2 [33].

A more powerful alternative is to endow nodes with fully unique identifiers [59,81].
For example, augmenting the GIN model (a maximally expressive MPNN) [95] with random
node identifiers yields a model that can decide subgraphs that MPNN and CPNGNN cannot
[81]. This model can further achieve better approximation results for minimum dominating set
(H.deg.G/C 1/C "), where H is the harmonic number) and maximum matching (1C ").

Turing completeness. Analogies to local algorithms imply that MPNNs with unique node
IDs are Turing complete, i.e., they can compute any function that a Turing machine can
compute, including graph isomorphism. In particular, the proof shows an equivalence to the
Turing universal LOCAL model from distributed computing [3,57,69].

Theorem 4 ([59]). If fUp and fAgg are Turing complete functions and the GNN gets unique
node IDs, then GNN and LOCAL are equivalent. For any MPNN F there exists a local
algorithm A of the same depth, such that F.G/ D A.G/, and vice versa.

Corollary 1 ([59]). Under the conditions in Theorem 4, if the GNN depth (number of iter-
ations) is at least diameter.G/ and the width is unbounded, then MPNNs can compute any
Turing computable function over connected attributed graphs.

Lower bounds. The width of a GNN refers to the dimensionality of the embeddings h.t/
v .

For bounded size, GNNs lose computational power. Via analogies to the CONGEST model
[70], which bounds message sizes, one can transfer results on decision, optimization and
estimation problems on graphs. These lead to lower bounds on the product of depth and
width of the GNN. Here, the nodes do not have access to a random generator.

Theorem 5 ([59]). If a problem cannot be solved in less than T rounds in CONGEST
using messages of at most b bits, then it cannot be solved by an MPNN of width w �
.b � log2 n/=p D O.b= logn/ and depth T , where p D ‚.n/.
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Theorem 5 directly implies lower bounds for solving combinatorial problems, e.g.,
Tw D�.n= logn/ for cycle detection and computing diameter, and T

p
w D�.

p
n= logn/

for minimum spanning tree, minimum cut, and shortest path [59].
Moreover, we can transfer ideas from communication complexity. The communica-

tion capacity cf of an MPNN f (with unique node IDs) is the maximum number of symbols
that the MPNN can transmit between any two disjoint sets V1; V2 � V of nodes when viewed
as a communication network: cf � cut.V1; V2/

PT
tD1 min¹mt ; wtº C

PT
tD1 t , where T is

the GNN depth, wt the width of layer t , mt the size of the messages, and t the size of a
global state that is maintained. The communication capacity of the MPNN must be at least
cf D�.n/ to distinguish all trees, and cf D�.n2/ to distinguish all graphs [58]. By relating
discrimination and function approximation (Section 2.4), these results have implications for
function approximation, too.

Random node IDs. While unique node IDs are powerful in theory, in many practical exam-
ples the input graphs do not have unique IDs. An alternative is to assign random node IDs
[1, 27]. This can still yield GNNs that are essentially permutation invariant: while their out-
puts are random, the outputs for different graphs are still sufficiently separated [1]. This leads
to a probabilistic universal approximation result:

Theorem 6 ([1]). Let h W G !R be a permutation invariant function on graphs of size n� 1.
Then for all ";ı > 0 there exists an MPNNF with access to a global readout and with random
node IDs such that for every G 2 G it holds that Pr.jF.G/ � h.G/j � "/ � 1 � ı.

The proof builds on a result by [10] that states that any logical sentence in FOC2 can
be expressed by the addressed GNN. The logic considered here is a fragment of first-order
(FO) predicate logic that allows to incorporate counting quantifiers of the form 9�kx .x/,
i.e., there are at least k elements x satisfying  , but is restricted to two variables. FOC2 is
tightly linked with the 1-WL test: for any nodes u; v 2 V in any graph, 1-WL colors u and v
the same if and only if they are classified the same by all FOC2 classifiers [19].

2.3. Higher-order GNNs
Instead of adding unique node IDs, one may increase the expressive power of GNNs

by encoding subsets of V that are larger than the single nodes used in MPNNs. Three
such directions are: (1) neural network versions of higher-dimensional WL algorithms, (2)
(non)linear equivariant operations, and (3) recursion. Other strategies that could not be cov-
ered here use, e.g., simplicial and cell complexes [16, 17] or augment node attributes with
topological information (e.g., persistent homology) [102].

Most of these GNNs act on k-tuples s 2 V k , and may be written in a unified form
via tensors H .t/ 2 Rnk�dt , where the first k coordinates index the tuple, and H .t/

s;W 2 Rdt is
the representation of tuple s in layer t . For MPNNs, which use node and edge information,
H .0/ 2 Rn�n�.dC1/. The first d channels ofH .0/ encode the node attributes:H .0/

v;v;1Wd
D xv

andH .0/

u;v;1Wd
D 0 for u¤ v. The final channel captures the adjacency matrix A of the graph:
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H
.0/

W;W;.dC1/
D A. Node embeddings are computed by a permutation equivariant network:

f .G/ D m ı SE ı F
.T /
ı � � � ı F .1/

ı shape.G/; (2.4)

where m W RdT ! Rdout is an MLP that is applied to each representation hT
v separately,

SE W Rnk�dT ! Rn�dT is a reduction SE .H/v;W D
P

s2V k Ws1Dv Hs;W, and each layer F .t/ W

Rnk�dt�1 ! Rnk�dt is a message passing (aggregation and update) operation for MPNNs,
and will be defined for higher-order networks. The first operation shapes the input into
the correct tensor form, if needed. For a graph embedding, we switch to a reduction SI W

Rnk�dT ! RdT , SI .H/ D
P

s2V k Hs;W and apply the MLP m to the resulting vector:
F.G/ D m ı SI ı F

.T / ı � � � ı F .1/ ı shape(G). The GNNs differ in their layers F .t/.

2.3.1. Higher-order WL networks
Extending analogies of MPNNs and the 1-WL algorithm [66, 95], the first class

of higher-order GNNs imitates versions of the k-dimensional WL algorithm. The k-WL
algorithms are defined on k-tuples of nodes, and different versions differ in their aggrega-
tion and definition of neighborhood. In iteration 0, the k-WL algorithm labels each k-tuple
s 2 V k by a unique ID for its isomorphism type. Then it aggregates over neighborhoods
N WL

i .s/ D ¹.s1; s2; : : : ; si�1; v; siC1; : : : ; sk/ j 8v 2 V º for 1 � i � k:

c
.t/
i .s/ D

®®
c.t�1/

�
s0
�
j s0
2 N WL

i .s/
¯̄
; 1 � i � k; s 2 V k ; (2.5)

c.t/.s/ D Hash
�
c.t�1/.s/; c

.t/
1 .s/; c

.t/
2 .s/; : : : ; c

.t/

k
.s/
�
8s 2 V k : (2.6)

For two graphs G;G0 the k-WL algorithm then decides “not isomorphic” if ¹¹c.t/.s/ j s 2

V.G/kºº ¤ ¹¹c.t/.s0/ j s0 2 V.G0/kºº for some t , and returns “maybe isomorphic” otherwise.
Like 1-WL, k-WL decides “not isomorphic” only if G © G0. The Folklore k-WL algorithm
(k-FWL) differs in its update rule, which “swaps” the order of the aggregation steps [19]:

c.t/
u .s/ D .c

.t�1/

.u;s2;:::;sk/
; c

.t�1/

.s1;u;s3;:::;sk/
; : : : ; c

.t�1/

.s1;:::;sk�1;u/
/ 8u 2 V; s 2 V k ; (2.7)

c.t/.s/ D Hash
�
c.t�1/.s/;

®®
c.t/

u .s/ j u 2 V
¯̄ �

8s 2 V k : (2.8)

The 1-WL and 2-WL test are equivalent, and for k � 2, .k C 1/-WL can distinguish strictly
more graphs than k-WL [19]. The k-FWL is as powerful as the .k C 1/-WL for k � 2 [38].

Set-WL GNN. Since computations on k-tuples are expensive, [66] consider a GNN that
corresponds to a set version of a k-WL algorithm. For any set S � V with jS j D k, let
N set.S/ D ¹T � V; jT j D k j jS \ T j D k � 1º. The set-based WL test (k-SWL) then
updates as

c.t/.S/ D Hash
�
c.t�1/.S/;

®®
c.t�1/.T / j T 2 N set.S/

¯̄ �
I (2.9)

its GNN analogue uses the aggregation and update (cf. equations (1.6) and (1.8))

h
.tC1/
S D �

�
W

.t/
1 h

.t/
S C

X
T 2N set.S/

W
.t/

2 h
.t/
T

�
; (2.10)

where � is a coordinatewise nonlinearity (e.g., sigmoid or ReLU). This family of GNNs is
equivalent in power to the k-SWL test [66] (Theorem 8). For computational efficiency, a local
version restricts the neighborhood of S to sets T such that the nodes ¹u; vº D S�T in the
symmetric difference are connected in the graph. This local version is weaker [1].
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Folklore WL GNN. In analogy to the k-FWL algorithm, Maron et al. [62] define k-FGNNs
with aggregations

h.tC1/
s D f

.tC1/
Up

 
h.t/

s ;
X
v2V

kY
iD1

f
.tC1/

i

�
h

.t/

.s1;:::;si�1;v;siC1;:::;sk/

�!
: (2.11)

For k D 2, this model can be implemented via matrix multiplications. The input to the aggre-
gation, for all pairs of nodes simultaneously, is a tensorH 2Rn�n�dt , withH.u;v/;W D h.u;v/.
The initial H .0/ 2 Rn�n�.dC1/ is defined as in the beginning of Section 2.3.

To compute the aggregation layer, first, we apply three MLPsm1;m2 W Rd1 ! Rd2

and m3 W Rd1 ! Rd3 to each embedding h.u;v/ in H : ml .H/.u;v/;W D ml .H.u;v/;W/ for 1 �
l � 3. Then one computes an intermediate representation H 0 2 Rn�n�d2 by multiplying
matching “slices” of the outputs ofm1;m2:H 0

W;W;i Dm1.H/W;W;i �m2.H/W;W;i . The final output
of the aggregation is the concatenation .m3.H/; H

0/ 2 Rn�n�.d2Cd3/. A variation of this
model, a low-rank global attention model, was shown to relate attention and the 2-FWL
algorithm via algorithmic alignment, which we discuss in Section 3.3 [71]. Attention in neural
networks introduces learned pair-wise weights in the aggregation function.

The family of k-FGNNs is a class of nonlinear equivariant networks, and is equiv-
alent in power to the k-FWL test and the .k C 1/-WL test [7,62] (Theorem 8).

2.3.2. Linear equivariant layers
While the models discussed so far rely on message passing, the GNN definition (2.4)

only requires permutation equivariant or invariant operations in each layer. The k-linear
(equivariant) GNNs (k-LEGNNs), introduced in [63], allow more general linear equivariant
operations. In k-LEGNNs, each layer F .t/ D � ıL.t/ W Rnk�dt�1 ! Rnk�dt is a concatena-
tion of a linear equivariant function L.t/ and a coordinatewise nonlinear activation function.
The function � may also be replaced with a nonlinear function f .t/

1 W RdtC1=2 ! RdtC1 (an
MLP) applied separately to each tuple embedding L.t/.H .t�1//s;W.

Characterizations of equivariant functions or networks were studied in [40,52,53,74].
Maron et al. [63] explicitly characterize all invariant and equivariant linear layers, and show
that the vector space of linear invariant or equivariant functions f W Rnk

! Rn` has dimen-
sion b.k/ and b.k C `/, respectively, where b.k/ is the kth Bell number. When including
multiple channels and bias terms, one obtains the following bounds.

Theorem 7 ([63]). The space of invariant (equivariant) linear layers Rnk�d ! Rd 0

(Rnk�d ! Rnk�d 0 ) has dimension dd 0b.k/C d 0 (for equivariant, dd 0b.2k/C d 0b.k/).

The GNN model uses one parameter (coefficient) for each basis tensor. Importantly,
the number of parameters is independent of the number of nodes. The proof for identifying
the basis tensors sets up a fixed point equation with Kronecker products of any permutation
matrix that any equivariant tensor must satisfy. The solutions to these equations are defined
by equivalence classes of multiindices in Œn�k . Each equivalence class is represented by a
partition  of Œk�, e.g.,  D ¹¹1º; ¹2; 3ºº includes all multiindices .i1; i2; i3/where i1 ¤ i2; i3
and i2 D i3. The basis tensors B 2 ¹0; 1ºn

k are then such that B
s D 1 if and only if s 2  .
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Linear equivariant GNNs of order k (k-LEGNNs) parameterized with the full basis
are as discriminative as the k-WL algorithm [62] (Theorem 8). To achieve this discriminative
power, each entry H .0/

s;W in the input tensor encodes an initial coloring of the isomorphism
type of the subgraph indexed by the k-tuple s.

2.3.3. Summary of representational power via WL
The following theorem summarizes equivalence results between the GNNs dis-

cussed so far and variants of the WL test. Following [7], we here use equivalence relations,
as they suffice for universal approximation in Section 2.4. For a set F of functions defined
on G , define an equivalence relation � via the joint discriminative power of all F 2 F , i.e.,
for any G;G0 2 G :

.G;G0/ 2 �.F / ” 8F 2 F ; F .G/ D F.G0/: (2.12)

Theorem 8. The above GNN families have the following equivalences:

�.MGNN/ D �.2-WL/ [95], (2.13)

�.k-set-GNN/ D �.k-SWL/ [66], (2.14)

�.k-LEGNN/ D �.k-WL/ [34,63], (2.15)

�.k-FGNN/ D �..k C 1/-WL/ [7,62]. (2.16)

Analogous results hold for equivariant models (for node representations), with the
exception of equality (2.15), which becomes an inclusion: �.k-LEGNNE /� �.k-WLE / [7].

2.3.4. Relational pooling
One option to obtain nonlinear permutation invariant functions is to average permu-

tation-sensitive functions over the permutation group …n. Murphy et al. [67, 68] propose
such a model, inspired by joint exchangeability of random variables [2, 29]. Concretely, if
A 2 Rn�n denotes the adjacency matrix of the input graph G and X 2 Rn�d the matrix of
node attributes, then

FRP.G/ D
1

nŠ

X
�2…n

g.A�;� ; X�/ D g.� �H
.0//; (2.17)

where X� is X with permuted rows, and H .0/ is the tensor combining adjacency matrix
and node attributes. Here, g is any permutation-sensitive function, and may be modeled
via various nonlinear function approximators, e.g., neural networks such as fully connected
networks (MLPs), recurrent neural networks or a combination of a convolutional network
applied to A and an MLP applied to X . In particular, this model allows implementing graph
isomorphism testing via node IDs (cf. Section 2.2) if g is a universal approximator [68]. For
instance, node IDs may be permuted over nodes and concatenated with the node attributes:

FRP.G/ D
1

nŠ

X
�2…n

�
A�;� ; ŒX� ; In�

�
D

1

nŠ

X
�2…n

g
�
A;
�
X; .In/�

��
; (2.18)

where In 2Rn�n is the identity matrix. If g is an MPNN, the resulting model is strictly more
powerful than the 1-WL test and hence g by itself.
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The drawback of the Relational Pooling (2.17) is its computational intractability.
Various approximations have been considered, e.g., defining canonical orders, stochastic
approximations, and applying g to all possible k-subsets of V . In the latter case, increasing
k strictly increases the expressive power. Local Relational Pooling is a variant that applies
relational pooling to the k-hop subgraphs centered at each node, and then aggregates the
results. This operation provably allows to identify and count subgraphs of size up to k [22].

2.3.5. Recursion
A general strategy for encoding a graph is to encode a collection of subgraphs, and

then aggregate these encodings. When doing so, an important bit of information are node
correspondences across subgraphs [15,86]. Otherwise, this process includes the reconstruc-
tion hypothesis [46,88], i.e., the question whether any graphG can be reconstructed from the
collection of its subgraphs G n ¹vº, for all v in G.

Indeed, the expressive power of such a model depends on the set of subgraphs, the
type of subgraph encodings and the aggregation. Tahmasebi et al. [86] show that recursion can
be a powerful tool: instead of iterative message passing or layering, a recursive application of
the above subgraph embedding step, even with a simple set aggregation like (1.6), can enable
a GNN that can count any bounded-size subgraphs, as opposed to MPNNs (Proposition 2).

Let Nr .v/ be the r-hop neighborhood of v in G. Recursive neighborhood pooling
(RNP) encodes intersections of such neighborhoods of different radii. Given an input graph
G with node attributes ¹hin

u ºu2V.G/ and a sequence .r1; : : : ; rt / of radii, RNP recursively
encodes the node-deleted r1-neighborhoods Gv D Nr1.v/ n ¹vº of all nodes v 2 V after
marking the deletion in augmented representations haug

u , u 2 V . It then combines the results,
and returns node representations of all nodes. I.e., for each node v 2 V , it computes Gv and

haug
u D

�
hin

u ; 1
�
.u; v/ 2 E.Gv/

��
8u 2 V.Gv/; (2.19)®®

h0
v;u

¯̄
u2Gv

 RNP-GNN
�
Gv;

®®
haug

u

¯̄
u2Gv

; .r2; r3; : : : ; rt /
�
; (recursion) (2.20)

return hout
v D f

.t/
Agg
�
hin

v ;
®®
h0

v;u

¯̄
u2Gv

�
; 8v 2 V: (2.21)

If the sequence of radii is empty (base case), then the algorithm returns the input attributes
hin

u . In contrast to iterative message passing, the encoded subgraphs here correspond to inter-
sections of local neighborhoods. Together with the node deletions and markings that retain
node correspondences, this maintains more structural information. If the radii sequence dom-
inates a covering sequence for a subgraph H of interest, then, with appropriate parameters,
RNP can count the induced and noninduced subgraphs ofG isomorphic toH [86]. The com-
putational cost isO.nk/ for recursion depth k, and better for very sparse graphs, in line with
computational lower bounds.

2.4. Universal approximation
Distinguishing given graphs is closely tied to approximating continuous functions

on graphs. In early work, Scarselli et al. [82] take a fixed point view and show a universal
approximation result for infinite-depth MPNNs whose layers are contraction operators, for
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functions on equivalence classes defined by computation trees. Dehmamy et al. [28] analyze
the ability of GNNs to compute polynomial functions of the adjacency matrix.

Later works derive universal approximation results for graph and permutation-equi-
variant functions from graph discrimination results via extensions of the Stone–Weierstrass
theorem [7, 23,47, 64]. For instance, H -invariant networks (for a permutation group H ) can
universally approximateH -invariant polynomials [64], which in turn can universally approx-
imate any invariant function [98]. Keriven and Peyré [47] do not fix the size of the graph and
show that shallow equivariant networks can, with a single set of parameters, well approxi-
mate a function on graphs of varying size. Both constructions involve very large tensors.

More generally, the Stone–Weierstrass theorem (for symmetries) allows translating
Theorem 8 into universal approximation results. Let CI .X;Y/ be the set of invariant con-
tinuous functions from X to Y. Then a class F of GNNs is universal if its closure F (in
uniform norm) on a compact set K is the entire CI .K;Rp/.

Theorem 9 ([7]). LetKdisc � Gn �Rd0�n,K � Rd0�n be compact sets, where Gn is the set
of all unweighted graphs on n nodes. Then

MGNN D
®
f 2 CI

�
Kdisc;R

p
�
W �.2-WL/ � �.f /

¯
; (2.22)

k-LEGNN D
®
f 2 CI .K;R

p/ W �.k-WL/ � �.f /
¯
; (2.23)

k-FGNN D
®
f 2 CI .K;R

p/ W �..k C 1/-WL) � �.f /
¯
: (2.24)

Analogous relations hold for equivariant functions, except for

k-LEGNNE D
®
f 2 CE .K;R

n�p/ W �.k-LEGNNE / � �.f /
¯
;

which is a superset of ¹f 2 CE .K;Rn�p/ W �.k-WLE / � �.f /º.

3. Generalization

Beyond approximation power, a second important question in machine learning is
generalization. Generalization asks how well the estimated function OF is performing accord-
ing to the population risk, i.e., R. OF /, as a function of the number of data pointsN and model
properties. Good generalization may demand explicit (e.g., via a penalty term) or implicit
regularization (e.g., via the optimization algorithm). Hence, generalization analyses involve
aspects of the complexity of the model class F , the target function we aim to learn, the data
and the optimization procedure. This is particularly challenging for neural networks, due to
the nested functional form and the nonconvexity of the empirical risk.

A classic learning theoretic perspective bounds the generalization gap R. OF / �bR. OF / via the complexity of the model class F (Section 3.1). These approaches do not take
into account possible implicit regularization via the optimization procedure. One possibil-
ity to do so is via the Neural Tangent Kernel approximation (Section 3.2). Finally, for more
complex, structured target functions, e.g., algorithms or physics simulations, one may want
to also consider the structure of the target task. One such option is Algorithmic Alignment
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(Section 3.3). Another strategy for obtaining generalization bounds is via algorithmic sta-
bility, the condition that, if one data point is replaced, the outcome of the learning algorithm
does not change much. This strategy led to some early bounds for spectral GNNs [91].

3.1. Generalization bounds via complexity of the model class
Vapnik–Chervonenkis dimension. The first GNN generalization bound was based on
bounding the Vapnik–Chervonenkis (VC) dimension [89] of the GNN function class F .
The VC dimension of F expresses the maximum size of a set of data points such that for
any binary labeling of the data, some GNN in F can perfectly fit, i.e., shatter, the set. The
VC dimension directly leads to a bound on the generalization gap. Here, we only state the
results for sigmoid activation functions.

Theorem 10 ([84]). The VC dimension of GNNs with p parameters, H hidden neurons (in
the MLP) and input graphs of size n is O.p2H 2n2/.

Strictly speaking, Theorem 10 is for node classification with one hidden layer in
the aggregation function MLPs. The VC dimension directly yields a bound on the gener-
alization gap: for a class F with VC dimension D, with probability 1 � ı, it holds that
R. Of /� bR. Of / � O.qD

N
log N

D
/C

q
1

2N
log 1

ı
. Interestingly, in these bounds, GNNs are a

generalization of recurrent neural networks [84]. The VC dimension bounds for GNNs are
the same as for recurrent neural networks [50]; for fully connected MLPs, they are missing
the factor n2 [45].

Rademacher complexity. Bounds that are in many cases tighter can be obtained via Rade-
macher complexity. The empirical Rademacher complexity bRS .F / of a function class
F measures how well it can fit “noise” in the form of uniform random variables � D
.�1; : : : ; �N / in ¹�1;C1º: bRS .F /DE� ŒsupF 2F

1
N

PN
iD1 �iF.xi /�, for a fixed data sample

S D ¹x1; : : : ; xN º. Similarly to VC dimension, bRS .F / provides a bound on the probability
of error under the full data distribution: P Œerror.F /� � bR.F / C 2bRS .J/ C 3

q
log.2=ı/

2N
,

where J is the class of functions F 2 F concatenated with the loss. Garg et al. [33] analyze
a GNN that applies a logistic linear binary classifier at each node, averages these predic-
tions for a graph-level prediction, and uses a mean field update [26]: ht

v D �.W1xv C

W2�.
P

u2N.v/ g.h
t�1
u ///, where �; �; g are nonlinear functions with bounded Lipschitz

constant that are zero at zero (e.g., tanh), and kW1kF ; kW2kF � B . The logistic predictor
outputs a “probability” for the label 1, and is evaluated by a margin loss function that gives
a (scaled) penalty if the “probability” of the correct label is below a threshold ( C1

2
).

Theorem 11 ([33]). Let C be the product of the Lipschitz constants of �; �; g, and B; T
the number of GNN iterations; w the dimension of the embeddings ht

v , and d the maximum
branching factor in the computation tree. Then the generalization gap of the GNN can be
bounded as: QO. wdp

N 
/ for C < 1=d , QO. wdTp

N 
/ for C D 1=d , and QO.wd

p
wTp

N 
/ for C > 1=d .

The factor d is equal to maxv2G deg.v/� 1. For recurrent neural networks, the same
bounds hold, but with d D 1 [21]: a sequence is a tree with branching factor 1. In comparison,
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for the VC bounds in this setting, with H D w, n > d and p is the size of the matrices W
(about w2), we obtain a generalization bound of QO.w3n=

p
N/, ignoring log factors. Later

work tightens the bounds in Theorem 11 by using a PAC-Bayesian approach [56].

3.2. Generalization bounds via the Neural Tangent Kernel
Infinitely-wide neural networks can be related to kernel learning techniques [4,5,31,

32, 43]. Du et al. [30] extend this analysis to a broad class of GNNs. The main idea under-
lying the Neural Tangent Kernel (NTK) is to approximate a neural network F.�; G/ with
a kernel derived from the training dynamics. Assume we fit F.�; G/ with the squared loss
L.�/D

PN
iD1 `.F.�;Gi /; yi /D

1
2
.F.�;Gi /� yi /

2, where � 2 Rm collects all parameters
of the network. If we optimize with gradient descent with infinitesimally small step size, i.e.,
d�.t/

dt
D�rL.�.t//, then the network outputs u.t/D .F.�.t/;Gi //

N
iD1 follow the dynamics

du

dt
D �H.t/

�
u.t/ � y

�
; where H.t/ij D

�
@F.�.t/; Gi /

@�
;
@F.�.t/; Gj /

@�

�
: (3.1)

Here, y D .yi /
N
iD1. If � is sufficiently large (i.e., the network sufficiently wide), then it was

shown that the matrix H.t/ 2 RN �N remains approximately constant as a function of t . In
this case, the neural network becomes approximately a kernel regression [85]. If the parame-
ters �.0/ are initialized as i.i.d. Gaussian, then the matrixH.0/ converges to a deterministic
kernel matrix QH , the Neural Tangent Kernel, with closed form regression solution F QH .G/.
Given this approximation, one may analyze generalization via kernel learning theory.

Theorem 12 ([11]). Given N i.i.d. training data points and any loss function ` W R �R!

Œ0; 1� that is 1-Lipschitz in the first argument with `.y; y/ D 0, with probability 1 � ı the
population risk of the Graph Neural Tangent predictor is bounded as

R.F QH / D O

�
1

N

q
y> QH�1y � tr. QH/C

r
1

N
log.1=ı/

�
:

In contrast to the results in Section 3.1, the complexity measure y> QH�1y of the
target function is data-dependent. If the target function to be learned follows a simple GNN
structure with a polynomial, then this bound can be polynomial:

Theorem 13 ([30]). Let Nhv D cv

P
u2N .v/[¹vº hu. If the labels yi , 1 � i � N , satisfy

yi D ˛1

X
v2V.Gi /

ˇ>
1
Nhv C

1X
lD1

˛2l

X
v2V

�
ˇ>

2l
Nhv

�2l

for ˛k 2 R, ˇk 2 Rd , then y> QH�1y � 2j˛1j � kˇ1k2 C
P1

lD1

p
2�.2l � 1/j˛2l j � kˇ2lk

2l
2 .

With n D maxi V.Gi /, we have tr. QH/ D O.n2N/.

3.3. Generalization via algorithmic alignment
The Graph NTK analysis shows a polynomial sample complexity if the function

to be learned is close to the computational structure of the GNN, in a simple way. While
this applies to mainly simpler learning tasks, the idea of an “alignment” of computational
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structure carries further. Recently, there has been growing interest in learning scientific tasks,
e.g., given a set of particles or planets along with their location, mass and velocity, predict
the next state of the system [12,78,79], and in “algorithmic reasoning,” e.g., learning to solve
combinatorial optimization problems in particular over graphs [20]. In such cases, the target
function corresponds to an algorithm, e.g., dynamic programming.

While many neural network architectures have the power to represent such tasks,
empirically, they do not learn them equally well from data. In particular, GNNs perform well
here, i.e., their architecture encodes suitable inductive biases [13,96]. As a concrete example,
consider the Shortest Path problem. The computational structure of MPNNs matches that
of the Bellman–Ford (BF) algorithm [14] very well: both “algorithms” iterate, and in each
iteration t , update the state as a function of the neighboring nodes and edge weightsw.u; v/:

.BF/ d Œt �Œv� D min
u2N .v/

dŒt � 1�Œu�C w.u; v/;

.GNN/ ht
v D

X
u2N .v/

MLP
�
ht�1

u ; ht�1
v ; w.u; v/

�
:

(3.2)

Hence, the GNN can simulate the BF algorithm if it uses sufficiently many iterations, and if
the aggregation function approximates the BF state update. Intuitively, this is a much simpler
function to learn than the full algorithm as a black box, i.e., the GNN encodes much of the
algorithmic structure, sparsity and invariances in the architecture. More generally, MPNNs
match the structure of many dynamic programs in an analogous way [96].

The NTK results formalize simplicity by a small function norm in the RKHS asso-
ciated with the Graph NTK; this can become complicated with more complex tasks and
multiple layers. To quantify structural match, Xu et al. [96] define algorithmic alignment by
viewing a neural network as a structured arrangement of learnable modules – in a GNN,
the (MLPs in the) aggregation functions – and define complexity via sample complexity of
those modules in a PAC-learning framework. Sample complexity in PAC learning is defined
as follows: We are given a data sample ¹.xi ; yi /º

N
iD1 drawn i.i.d. from a distribution P that

satisfies yi D g.xi / for an underlying target function g. Let f DA.¹xi ; yiº
N
iD1/ be the func-

tion output by a learning algorithm A. For a fixed error " and failure probability 1 � ı, the
function g is .N; "; ı/-PAC learnable with A if

Px�P

�ˇ̌
f .x/ � g.x/

ˇ̌
< "

�
� 1 � ı: (3.3)

The sample complexity CA.g; "; ı/ is the smallest N so that g is .N; "; ı/-learnable with A.

Definition 1 (Algorithmic alignment [96]). Let g be a target function and N a neural network
with M modules Ni . The module functions f1; : : : ; fM generate g for N if, by replacing
Ni with fi , the network N simulates g. Then N .N; "; ı/-algorithmically aligns with g if
(1) f1; : : : ; fM generate g and (2) there are learning algorithms Ai for the Ni ’s such that
M �maxi CAi

.fi ; "; ı/ � N .

Algorithmic alignment resembles Kolmogorov complexity [51]. Thus, it can be hard
to obtain the optimal alignment between a neural network and an algorithm. But, any algo-
rithmic alignment yields a bound, and any with acceptable sample complexity may suffice.
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The complexity of the MLP modules in GNNs may be measured with a variety of techniques.
One option is the NTK framework. The module-based bounds then resemble the polynomial
bound in Theorem 13, since both are extensions of [5]. However, here, the bounds are applied
at a module level, and not for the entire GNN as a unit. Theorem 14 translates these bounds,
in a simplified setting, into sample complexity bounds for the full network.

Theorem 14 ([96]). Fix " and ı. Suppose ¹.Gi ; yi /º
N
iD1 � P , where jV.Gi /j < n, and yi D

g.Gi / for some g. Suppose N1; : : : ;NM are network N ’s MLP modules in sequential order
of processing. Suppose N and g .N; "; ı/-algorithmically align via functions f1; : : : ; fM

for a constant M . Under the following assumptions, g is .N;O."/;O.ı//-learnable by N .

(a) Sequential learning. We train Ni ’s sequentially: N1 has input samples ¹ Ox.1/
i ;

f1. Ox
.1/
i /ºNiD1, with Ox.1/

i obtained from Gi . For j > 1, the input Ox.j /
i for Nj are

the outputs of the previous modules, but labels are generated by the correct func-
tions fj �1; : : : ; f1 on Ox.1/

i .

(b) Algorithm stability. Let A be the learning algorithm for the Ni ’s, f DA.¹xi ; yiº
N
iD1/,

and Of D A.¹ Oxi ; yiº
N
iD1/. For any x, kf .x/ � Of .x/k � L0 � maxi kxi � Oxik, for

some L0 <1.

(c) Lipschitzness. The learned functions Ofj satisfy k Ofj .x/ � Ofj . Ox/k � L1kx � Oxk, for
some L1 <1.

The big O notation here hides factors including the Lipschitz constants, number of
modules, and graph size. When measuring module complexity via the NTK, Theorem 14,
e.g., indeed yields a gap between fully connected networks and GNNs in simple cases [96],
supporting empirical results. While some works use sequential training [90], empirically,
better alignment improves learning and generalization in practice even with more common
“end-to-end” training, i.e., optimizing all parameters simultaneously [13,96].

At a general level, these alignment results indicate that it is not only possible to learn
combinatorial algorithms and physical reasoning tasks with machine learning, but how, in
turn, incorporating expert knowledge, e.g., in algorithmic techniques or physics, into the
design of the learning method can improve sample efficiency.

4. Extrapolation

Section 3 summarizes results for in-distribution generalization, i.e., how well a
learned model performs on data from the same distribution P as the training data. Yet, in
many practical scenarios, a model is applied to data from a different distribution.
A strong case of such a distribution shift is extrapolation. It considers the expected loss
E.G;y/�QŒ`.G; y; F.G//� under a distribution Q with different support, e.g., supp.Q/ �
supp.P /. For graphs, Q may entail graphs of different sizes, different degrees, or with node
attributes in different ranges from the training graphs. As no data has been observed in
the new domain parts, extrapolation can be ill-defined without stronger assumptions on the
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task and model class. What assumptions are sufficient? Theoretical results on extrapolation
assume the graphs have sufficient structural similarity and/or the model class is sufficiently
restricted to extrapolate accurately. Empirically, while extrapolation has been difficult, sev-
eral works achieve GNN extrapolation in tasks like predicting the time evolution of physical
systems [12], learning graph algorithms [90], and solving equations [54].

Structural similarity of graphs. One possibility to guarantee successful extrapolation to
larger graphs is to assume sufficient structural similarity between the graphs in P and Q,
in particular, structural properties that matter for the GNN family under consideration. For
spectral GNNs, which learn functions of the graph Laplacian, this assumption has been
formalized as the graphs arising from the same underlying topological space, manifold or
graphon. Under such conditions, spectral GNNs – with conditions on the employed filters –
can generalize to larger graphs [55,76,77].

For message passing GNNs, whose representations rely on computation trees as
local structures (Section 2.1), an agreement in the distributions of the computation trees in
the graphs sampled from P and Q is necessary [99]. This is violated, for instance, if the
degree distribution is a function of the graph size, as is the case for random graphs under the
Erdős–Rényi or Preferential Attachment models. The computation tree of depth t rooted at
a node v corresponds to the color c.t/.v/ assigned by the 1-WL algorithm.

Theorem 15 ([99]). Let P and Q be finitely supported distributions of graphs. Let P t be
the distribution of colors c.t/.v/ over P and similarly Qt for Q. Assume that any graph in
Q contains a node with a color in Qt nP t . Then, for any graph regression task solvable by
a GNN with depth t there exists a GNN with depth at most t C 3 that perfectly solves the task
on P and predicts an answer with arbitrarily large error on all graphs from Q.

The proof exploits the fact that GNN predictions on nodes only depend on the asso-
ciated computation tree, and that a sufficiently flexible GNN (depth at least t C 2 layers and
width max¹.max deg.G/ C 1/t � jC j; 2

p
jP jº, where the max degree refers to any graph

in the support, jC j is the finite number of possible input node attributes and P the set of
colors encountered in graphs in the support) can assign arbitrary target labels to any compu-
tation tree [66,99]. That is, the available information allows for multiple local minima of the
empirical risk. A similar result can be shown for node prediction tasks.

Conditions on the GNN. If one cannot guarantee sufficient structural similarity of the input
graphs, then further restrictions on the GNN model can enable extrapolation to different
graph sizes, structures and ranges of input node attributes. If there are no training observa-
tions in a certain range of attributes or local structures, then the predictions of the learned
model depend on the inductive biases induced by the model architecture, loss function and
training algorithm. In other words, which, out of multiple fitting functions (minima), a model
will choose, depends on these biases.

Xu et al. [97] analyze such biases to obtain conditions on the GNN for extrapolation.
Taking the perspective of algorithmic alignment (Section 3.3), they first analyze how indi-
vidual module functions, i.e., the MLPs in the aggregation function of a GNN, extrapolate,
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and then transfer this to the entire GNN. The aggregation functions enter the extrapolation
regime, e.g., if the node attributes, node degrees or computation trees are different in Q, as
they determine the inputs to the aggregations. The following theorem states that, away from
supp.P /, MLPs implement directionally linear functions.

Theorem 16 ([97]). Suppose we train a two-layer MLP f W Rd ! R with ReLU activation
functions with squared loss in the NTK regime. For any direction v 2 Rd , let x0 D tv.
As t ! 1, f .x0 C hv/ � f .x0/ ! ˇv � h for any h > 0, where ˇv is a constant linear
coefficient. Moreover, given " > 0, for t D O.1

"
/, we have jf .x0Chv/�f .x0/

h
� ˇvj < ".

The linear function and the constant terms in the convergence rate depend on the
training data and the direction v. The proof of Theorem 16 relies on the fact that a neural net-
work in the NTK regime learns a minimum-norm interpolation function [4,5,43]. Although
Theorem 16 uses a simplified setting of a wide 2-layer network, similar results hold empiri-
cally for more general MLPs [97].

To appreciate the implications of this result in the context of GNNs, consider the
example of Shortest Path in equation (3.2). For the aggregation function to mimic the
Bellman–Ford algorithm, the MLP must approximate a nonlinear function. But, in the extrap-
olation regime, it implements a linear function and therefore is expected to not approximate
Bellman–Ford well any more. Indeed, empirical works that successfully extrapolate GNNs
for Shortest Path use a different aggregation function of the form [13,90]

h.t/
u D min

v2N .u/
MLP.t/

�
h.t�1/

u ; h.t�1/
v ; w.v;u/

�
: (4.1)

Here, the nonlinear parts do not need to be learned, allowing to extrapolate with a linear
learned MLP. More generally, the directionally linear extrapolation suggests that the (1)
architecture or (2) input encoding should be set up such that the target function can be approx-
imated by MLPs learning linear functions (linear algorithmic alignment). An example for
(2) may be found in forecasting physical systems, e.g., predicting the evolution of n objects
in a gravitational system, and the node (object) attributes are mass, location, and velocity
at time t . The position of an object at time t C 1 is a nonlinear function of the attributes
of the other objects. When encoding the nonlinear function as transformed edge attributes,
the function to be learned becomes linear. Indeed, many empirical works that successfully
extrapolate implement the idea of linear algorithmic alignment [24,44,61,87,97,100].

Finally, the geometry of the training data also plays an important role. Xu et al. [97]
show empirical results and initial theoretical results for learning max-degree, suggesting that,
even with linear algorithmic alignment, sufficient diversity in the training data is needed to
identify the correct linear functions.

For the case when the target test distribution Q is known, Yehudai et al. [99] propose
approaches for combining elements of P and Q to enhance the range of the data seen by the
GNN.

5468 S. Jegelka



5. Conclusion

This survey covered three main topics in understanding GNNs: representation, gen-
eralization, and extrapolation. As GNNs are an active research area, many results could not
be covered. For example, we focused on MPNNs and main ideas for higher-order GNNs,
but neglected spectral GNNs, which closely relate to ideas in graph signal processing. Other
emergent topics include adversarial robustness, optimization behavior of the empirical risk
and its improvements, and computational scalability and approximations. Moreover, GNNs
have a rich set of mathematical connections, a selection of which was summarized here.

For function approximation, the limitations of MPNNs motivated powerful higher-
order GNNs. However, these are still computationally expensive. What efficiency is theoret-
ically possible? Moreover, most applications may not require full graph isomorphism power,
or k-WL power for large k. What other measures make sense? Do they allow better and
sharper complexity results? Initial works consider, e.g., subgraph counting [22,86].

The generalization results so far need to use simplifications in the analysis. To
what extent can they be relaxed? Do more specific tasks or graph classes allow sharper
results? Which modifications of GNNs would allow them to generalize better, and how
do higher-order GNNs generalize? Similar questions pertain to extrapolation and reliability
under distribution shifts, a topic that has been studied even less than GNN generalization.

In general, revealing further mathematical connections may enable the design of
richer models and enable a more thorough understanding of GNNs’ learning abilities and
limitations, and potential improvements.
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