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Abstract

The paper is an introduction to the modern theory of adaptive estimation. We introduce
a universal estimation procedure based on a random choice from collections of estima-
tors satisfying a few very general assumptions. In the framework of an abstract statis-
tical model, we present an upper bound for the risk of the proposed estimator (`-oracle
inequality). The basic technical tools here are a commutativity property of some opera-
tors and upper functions for positive random functionals. Since the obtained result is not
related to a particular observation scheme, many conclusions for various problems in dif-
ferent statistical models can be derived from the single `-oracle inequality.
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1. Introduction

Let .V .n/;A.n/;P .n/

f
; f 2 F/, n 2 N�, be a family of statistical experiments gen-

erated by observation X .n/. It means that X .n/ is a V .n/-valued random variable defined on
some probability space, and the probability law ofX .n/ belongs to the family .P .n/

f
; f 2 F/.

Since the probability space on which X .n/ is defined will play no role in the sequel, we will
just assume its existence.

Furthermore, in this paper:

• .D ;D; �/ is a measurable space;

• F is a set of functions f W D ! R. Typical examples of set F are functional
spaces, e.g., F D L2.Rd /, Cb.R

d /, the set of all measurable real functions, etc.;

• G W F ! S, where S is a set endowed with semimetric `.

The goal is to estimate G.f /; f 2 F, from observation X .n/. By an estimator we
mean anyX .n/-measurable S-valued mapping. The accuracy of an estimator QG is measured
by the `-risk

R.`/
n

�
QGIG.f /

�
D
�
E.n/

f

�
`
�

QG;G.f /
��q� 1

q : (1.1)

Here and later, E.n/

f
denotes the mathematical expectation with respect to the probability

measure P .n/

f
and the number q � 1 is supposed to be fixed. Recall that for any X .n/-

measurable map T W V .n/ ! R,

E.n/

f
ŒT � D

Z
V .n/

T .v/P .n/

f
.dv/:

1.1. Examples of models
In these notes we will consider the following statistical models.

Density model. Let P.D ;�/ denote the set of all probability densities with respect to mea-
sure � defined on D and let F � P.D ; �/.

Then the statistical experiment is generated by the observationX .n/ D .X1; : : : ;Xn/;

n 2 N�, where Xi ; i 2 N�, are i.i.d. random vectors possessing unknown density f 2 F.

White Gaussian Noise Model. Let F D L2.D ; �/. Put QD D ¹B 2 D W �.B/ < 1º and
let .W.B/; B 2 QD/ be the white noise with intensity �.

Consider the statistical model generated by the observation X .n/ D ¹Xn.g/; g 2

L2.D ; �/º where

Xn.g/ D

Z
D

f .t/g.t/�.dt /C n�1=2

Z
D

g.t/W.dt /: (1.2)

Recall also that for any g 2 L2.D ; �/,

Xn.g/ v N
�
hg; f i; n�1

hg; gi
�
; (1.3)

where h�; �i is the inner product of L2.D ; �/ and N .�; �/ denotes the normal law on R.
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1.2. Examples of estimation targets G

Global estimation G.f / D f . The goal is to estimate the entire function f . Here S D F,
and the accuracy of estimation is usually measured by the Lp-risk onD� D , i.e., `.g1;g2/D

kg1 � g2kp;D , 1 � p � 1, where

kgk
p
p;D D

Z
D

jgj
p�.dt /; p 2 Œ1;1/; kgk1;D D sup

t2D

ˇ̌
g.t/

ˇ̌
:

Pointwise estimation G.f / D f .t0/, t0 2 D. Here S D R1 and `.a;b/D ja� bj, a;b 2 R,
andD � D . We present this estimation problem separately from the below-discussed prob-
lems of estimation of functionals because it is often used in order to recover the underlying
function itself.

Estimation of functionals. Here S D R1 and `.a; b/ D ja � bj, a; b 2 R, and D � D .
One can consider

• Estimation of a derivative at a given point, G.f / D f .k/.t0/, t0 2 D, k 2 N�;

• Estimation of norms, G.f / D kf kp;D , 1 � p � 1;

• Estimation of extreme points, G.f / D arg maxt2D f .t/;

• Estimation of regular functionals, for example, G.f / D
R

D
f s.t/dt , s 2 N�.

2. Minimax adaptive estimation

Let F be a given subset of F. For any estimator QGn, define its maximal risk on F by

R.`/
n Œ QGnI F � D sup

f 2F
R.`/

n

�
QGnIG.f /

�
and the minimax risk on F is given by

�n.F/ WD inf
QGn

R.`/
n Œ QGnI F �; (2.1)

where the infimum is always taken over all possible estimators. An estimator whose maximal
risk is proportional to �n.F/ is called a minimax on F .

Let ¹F# ; # 2 ‚º be the collection of subsets of F, where # is a nuisance param-
eter which may have very complicated structure (see the examples below). Without further
mentioning, we will consider only scales of functional classes for which a minimax on F#

estimator (usually depending on #) exists for any # 2 ‚.
The problem of adaptive estimation can be formulated as follows: Is it possible to

construct a single estimator OGn which is simultaneously minimax on each class F# ; # 2 ‚,
i.e., such that

lim sup
n!1

��1
n .F#/R

.`/
n Œ OGnI F# � < 1; 8# 2 ‚‹

We refer to this question as the problem of minimax adaptive estimation over the scale of
classes ¹F# ; # 2 ‚º. If such an estimator exists, we will call it optimally-adaptive, or rate-
adaptive.
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The first adaptive results were obtained in [14]. Starting from this pioneering paper,
a variety of adaptive methods were proposed in different statistical models such as den-
sity and spectral density estimation, nonparametric regression, deconvolution model, inverse
problems, and many others. The interested reader can find a very detailed overview of this
topic in [31]. Here we only mention several methods allowing one to construct optimally-
adaptive estimators:

• Extension of Efroimovich–Pinsker method [11,12];

• Lepski method [27] and its extension, namely Goldenshluger–Lepski method [18];

• Unbiased risk minimization [20,21];

• Wavelet thresholding [10];

• Model selection [1,2];

• Aggregation of estimators [3,15,23,37,42,43];

• Exponential weights [9,36,40];

• Risk hull method [7];

• Blockwise Stein method [4,8,39].

We will discuss existence of optimally-adaptive estimators in details later. Now let us provide
some example of scales of functional classes over which the adaptation is studied.

2.1. Scales of functional classes
2.1.1. Classes of smooth functions
Let .e1; : : : ; ed / denote the canonical basis of Rd , d 2 N�. For a function

T W Rd ! R1 and real number u 2 R, the first-order difference operator with step size u in
the direction of the variable xj is defined by�u;jT .x/D T .xC uej /� T .x/, j D 1; : : : ; d .
By induction, the kth-order difference operator is

�k
u;jT .x/ D �u;j�

k�1
u;j T .x/ D

kX
lD1

.�1/lCk

 
k

l

!
�ul;jT .x/:

Definition 2.1. For given vectors Ě D .ˇ1; : : : ; ˇd / 2 .0;1/d , Er D .r1; : : : ; rd / 2 Œ1;1�d ,
and EL D .L1; : : : ; Ld / 2 .0;1/d , a function T W Rd ! R1 is said to belong to anisotropic
Nikolskii’s class NEr;d .

Ě; EL/ if kT krj
� Lj for all j D 1; : : : ; d , and there exist natural

numbers kj > ǰ such that�kj

u;jT


rj
� Lj juj ǰ ; 8u 2 R; 8j D 1; : : : ; d:

Let F D
Sd

q�1 Lq.Rd / and

F# D NEr;d .
Ě; EL/; # D . Ě; Er; EL/ 2 ‚ � .0;1/d � Œ1;1�d � .0;1/d ;

where NEr;d .
Ě; EL/ is the anisotropic Nikolskii’s class of functions on Rd ; d � 1.
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2.1.2. Functional classes with structure
Structural models are usually used in estimation of multivariate functions in order

to improve estimation accuracy and to overcome the curse of the dimensionality.

Single index structure. Let F D
Sd

q�1 Lq.Rd / and let Sd�1, d � 2, denote the unit sphere
in Rd . Let also Nr;1.ˇ;L/, r � 1, ˇ > 0, L > 0 be the Nikolskii’s class of functions on R1.

For any � � Sd�1 and any r � 1, ˇ > 0, L > 0, introduce the following functional
class:

F single
r .ˇ;L; �/ D

®
f W Rd

! R1
W f .�/ D F

�
!|

�
�
; F 2 Nr;1.ˇ;L/; ! 2 �

¯
:

The adaptive estimation over the collection

F# D F single
r .ˇ;L; �/; # D .ˇ; r; L; �/ 2 ‚ � .0;1/ � Œ1;1� � .0;1/ � Sd�1

is called the estimation under the single-index constraint.

Additive structure. Let as previously F D
Sd

q�1 Lq.Rd /, d � 2, and let Nr;1.ˇ; L/,
r � 1, ˇ > 0, L > 0 denote the Nikolskii’s class of functions on R1.

For any r � 1, ˇ > 0, L > 0, introduce the following functional class:

F additive
r .ˇ;L; �/ D

´
f W Rd

! R1
W f .x/ D

dX
kD1

Fk.xk/; Fk 2 Nr;1.ˇ;L/

µ
:

The adaptive estimation over the collection

F# D F additive
r .ˇ;L/; # D .ˇ; r; L/ 2 ‚ � .0;1/ � Œ1;1� � .0;1/

is called the estimation under the additive constraint.
The functional classes introduced above are considered in the framework of Gaus-

sian White Noise Model or, more generally, in nonparametric regression context.

Hypothesis of independence. The functional classes introduced below are used in the Den-
sity Model. Let D D Rd , d � 2, � be the Lebesgue measure and recall that F � P.D ; �/.
At last, let Id be the set of all subsets of ¹1; : : : ; dº.

For any I 2 Id and any x 2 Rd , denote xI D ¹xi 2 R; j 2 I º, NI D ¹1; : : : ; dº n I ,
and set for any density f 2 F,

fI .xI / D

Z
R NI

f .x/dx NI ; xI 2 RjI j:

If we denote the coordinates of the random vector Xi by Xi;1; : : : ; Xi;d , we can assert that
fI is the marginal density of the random vector Xi;I WD .Xi;j ; j 2 I / for any i D 1; : : : ; n.
The latter is true because Xi , i D 1; : : : ; n, are identically distributed.

Let … denote the set of all partitions of ¹1; : : : ; dº. The independence hypothe-
sis supposes that there exists a partition P such that the random vectors X1;I , I 2 P , are
mutually independent, meaning that

f .x/ D

Y
I2P

fI .xI /; 8x 2 Rd :
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For given vectors Ě D .ˇ1; : : : ; ˇd / 2 .0; 1/d , Er D .r1; : : : ; rd / 2 Œ1; 1�d , EL D

.L1; : : : ; Ld / 2 .0;1/d and a given partition P 2 …, introduce the following functional
class:

F
indep

Er
. Ě; EL;P / D

²
f W Rd

! RC W f .x/ D

Y
I2P

fI .xI /; fI 2 NrI ;jI j.ˇI ; LI /; I 2 P

³
:

The adaptive estimation over the collection

F# D F
indep

Er
. Ě; EL;P /; # D . Ě; Er; EL/ 2 ‚ � .0;1/d � Œ1;1�d � .0;1/d �…

is called the estimation under hypothesis of independence.

2.2. Existence of adaptive estimators. Fundamental problem
It is well-known that optimally-adaptive estimators do not always exist, see [5,13,26,

28]. Formally, the nonexistence of optimally-adaptive estimator means that

lim inf
n!1

inf
QGn

sup
#2¹#1;#2º

��1
n .F#/R

.`/
n Œ QGnI F# � D 1; 8#1; #2 2 ‚: (2.2)

Indeed, since a minimax estimator on F# exists for any # 2 ‚, we can assert that

0 < lim inf
n!1

inf
QGn

��1
n .F#/R

.`/
n Œ QGnI F# � < 1; 8# 2 ‚:

The latter result means that the optimal (from the minimax point of view) family of normal-
izations ¹�n.F#/; # 2 ‚º is attainable for each value # , while (2.2) shows that this family is
unattainable by any estimation procedure simultaneously for any couple of elements from‚.
This, in its turn, implies that optimally-adaptive over the scale ¹F# ; # 2 ‚º does not exist.

However, the question of constructing a single estimator for all values of the nui-
sance parameter # 2‚ remains relevant. Hence, if (2.2) holds, we need to find an attainable
family of normalization and to prove its optimality. The realization of this program dates back
to [27] where the notion of adaptive rate of convergence was introduced. Nowadays there exist
several definitions of adaptive rate of convergence and corresponding to this notion criteria
of optimality, see [25,27,38,41]. Here we present the simplest definition of the adaptive rate
which is the following.

Definition 2.2. A normalization family ¹ n.F#/; # 2 ‚º is called an adaptive rate of con-
vergence over collection of functional classes ¹F# ; # 2 ‚º if

lim inf
n!1

inf
QGn

sup
#2¹#1;#2º

 �1
n .F#/R

.`/
n Œ QGnI F# � > 0; 8#1; #2 2 ‚; (2.3)

and there exists an estimator OGn such that

lim sup
n!1

sup
#2¹#1;#2º

 �1
n .F#/R

.`/
n Œ OGnI F# � < 1; 8#1; #2 2 ‚: (2.4)

The sequence sup#2‚Œ n.#/='n.#/� is called the price to pay for adaptation, and the esti-
mator OGn is called an adaptive estimator.
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Note that (2.4) is equivalent to

lim sup
n!1

 �1
n .F#/R

.`/
n Œ OGnI F# � < 1; 8# 2 ‚

and, therefore, if (2.4) is fulfilled for any n 2 N� with

 n.#/ D c.#/�n.#/; c.#/ < 1; 8# 2 ‚;

then one can assert that OGn is an optimally-adaptive estimator.

Example 2.3. Consider univariate model (1.2), where D D Œ0; 1� and � is the Lebesgue
measure. Let also F# D N1;1.ˇ; L/, # D .ˇ; L/, be the collection of Nikolskii’s classes
with r D 1 (Hölder’s classes). Let b;L > 0 be arbitrary but a priori chosen numbers, and
let ‚ D .0; b� � .0;L�. The goal is to estimate G.f / D f .a/ where a 2 .0; 1/ is a given
point.

The minimax rate of convergence for this problem is given by

�n

�
N1;1.ˇ;L/

�
D .L

1
ˇ =n/

ˇ
2ˇC1 ;

while the adaptive rate of convergence is given, see [26], by

 n

�
N1;1.ˇ;L/

�
D
�
L

1
ˇ ln.n/=n

� ˇ
2ˇC1 :

We conclude that optimally-adaptive estimators do not exist in this estimation problem.

The most challenging problem of the adaptive theory is to understand how the
existence/nonexistence of optimally-adaptive estimators depends on the statistical model,
underlying estimation problem (mapping G), loss functional `, and the collection of con-
sidered classes. An attempt to provide such classification was undertaken in [27, 28], but
the sufficient conditions found there for both the existence and nonexistence of optimally-
adaptive estimators turned out to be too restrictive.

Problem. Find necessary and sufficient conditions of the existence of optimally-adaptive
estimators, i.e., the existence of an estimator OGn satisfying the following property:

lim sup
n!1

��1
n .F#/R

.`/
n Œ OGnI F# � < 1; 8# 2 ‚:

This problem stated in [27] 30 years ago remains unsolved.
It is important to realize that answers to the formulated problem may be different

even if the statistical model and the collection of functional classes are the same and estima-
tion problems have “similar nature.”

Example 2.4. Consider the univariate model (1.2), where D D Œ0; 1� and � is the Lebesgue
measure. Let also F# D N1;1.ˇ; L/, # D .ˇ; L/, be the collection of Nikolskii’s classes
with r D 1 (Hölder’s classes). Let b;L > 0 be arbitrary but a priori chosen numbers, and
let ‚ D .0; b� � .0;L�. Set

G1.f / D kf k1;Œ0;1�; G2.f / D kf k2;Œ0;1�:

The optimally-adaptive estimator ofG1.�/, was constructed in [29]. On the other hand, there
is no optimally-adaptive estimator for G2.�/, see [6].
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2.3. Adaptive estimation via the oracle approach
Let G D ¹ OGh;h 2 Hº be a family of estimators built from the observationX .n/. The

goal is to propose a data-driven (based on X .n/) selection procedure from the collection G

and establish for it an `-oracle inequality.
More precisely, we want to construct an H-valued random element Oh completely

determined by the observation X .n/ and to prove that for any n � 1,

R.`/
n

�
OG Oh

IG.f /
�

� inf
h2T

U .`/
n .f; h/C rn; 8f 2 F: (2.5)

We call (2.5) an `-oracle inequality. Here rn ! 0, n ! 1 is a given sequence which may
depend on F and the family of estimators G only. As to the quantity U .`/

n .�; �/, it is explicitly
expressed, and for some particular problems one can prove inequality (2.5) with

U .`/
n .f; h/ D CR.`/

n

�
OGhIG.f /

�
; (2.6)

where C is a constant which may depend on F and the family of estimators G only.
Historically, inequality (2.5) with U .`/

n .�; �/ given in (2.6) was called the oracle
inequality. The latter means that the “oracle” knowing the true parameter f can construct
the estimator OGh.f / which provides the minimal over the collection G risk for any f 2 F,
that is,

h.f / W R.`/
n

�
OGh.f /IG.f /

�
D inf

h2H
R.`/

n

�
OGhIG.f /

�
:

Since h.f / depends on unknown f , the estimator OGh.f /, called oracle estimator, is not
an estimator in the usual sense and, therefore, cannot be used. The goal is to construct the
estimator OG Oh

which “mimics” the oracle one.
It is worth noting that the `-oracle inequality with U .`/

n .�; �/ given in (2.6) is not
always available, and this is the reason why we deal with a more general definition given
by (2.5).

The important remark is that inequality (2.5) provides a very simple criterion allow-
ing one to assert that the selected estimator OG Oh

is optimally-adaptive, or adaptive with respect
to the scale of functional classes ¹F# ; # 2 ‚º. Indeed, let us assume that

(i) rn � C inf#2‚ �n.F#/ for some C > 0 (verified for all known problems);

(ii) 9# 7! h.#/ and c.#/ > 0 such that

sup
f 2F#

U .`/
n

�
f; h.#/

�
� c.#/�n.F#/; 8# 2 ‚:

Hence we deduce from (2.5) that, for any # 2 ‚,

sup
f 2F#

R.`/
n

�
OG Oh

IG.f /
�

� sup
f 2F#

U .`/
n

�
f; h.#/

�
C rn �

�
c.#/C C

�
�n.F#/;

and, therefore, we can assert that OG Oh
is optimally-adaptive. If (i) and (ii) hold with  n.F#/

instead of �n.F#/, where  n.F#/ is the adaptive rate of convergence, we can state that OG Oh

is an adaptive estimator.
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3. Universal selection rule and `-oracle inequality

Our objective now is to propose a data-driven selection rule from a family of esti-
mators satisfying few very general assumptions and to establish for it an `-oracle inequality
(2.5). It is important to emphasize that we provide an explicit expression of the functional
U

.`/
n .�; �/ that allows us to derive various adaptive results from the unique oracle inequality.

The proposed approach can be viewed as a generalization of several estimation procedures
developed by the author and his collaborators during last 20 years, see [16–19,22,24,30,31,34].

3.1. Assumptions
Let Hn, n 2 N�, be a sequence of countable subsets of H. Let ¹ OGh; h 2 Hº and

¹ OGh;�; h; � 2 Hº be the families of X .n/-measurable S-valued mappings possessing the
properties formulated below. Both OGh and OGh;� usually depend on n, but we will omit this
dependence for the sake of simplicity of notations.

Let "n ! 0, n ! 1, and ın, n ! 1, be two given sequences. Suppose there exist
collections of S-valued functionals ¹ƒh.f /; h 2 Hº, ¹ƒh;�.f /; h; � 2 Hº, and a collection
of positiveX .n/-measurable random variables‰n D ¹‰n.h/;h 2 Hº for which the following
conditions hold (the functionalsƒh andƒh;� may depend on n (not necessarily) but we will
omit this dependence in the notations):

(Apermute) For any f 2 F and n � 1,

either .i/ OGh;�.f / D OG�;h.f /; 8�; h 2 HI

or .ii/ sup
h;�2Hn

`
�
ƒh;�.f /;ƒ�;h.f /

�
� ın:

(Aupper) For any f 2 F and n � 1,

.i/ E.n/

f

�
sup

h2Hn

�
`
�

OGh; ƒh.f /
�

�‰n.h/
�q

C

�
� "q

nI

.ii/ E.n/

f

�
sup

h;�2Hn

�
`
�

OGh;�; ƒh;�.f /
�

�
®
‰n.h/ ^‰n.�/

¯�q
C

�
� "q

n:

Some remarks are in order.
1) Assumption .Apermute/.i/was called in [18] the commutativity property. The selec-

tion rule presented in the next section was proposed in [33] and an `-oracle inequality was
established under Assumptions .Aupper/.i/ and .Apermute). However, it turned out that for
some estimator collections Assumption .Apermute/.i/ is not verified. So our main objec-
tive is to prove the same (up to absolute constants) `-oracle inequality under assumptions
.Apermute/.ii/ and .Aupper/.

2) For many statistical models and problems,

ƒh.f / D E.n/

f
. OGh/; ƒh;�.f / D E.n/

f
. OGh;�/:

In this case `. OGh;ƒh.f // and `. OGh;�;ƒh;�.f // can be viewed as stochastic errors related to
the estimators OGh and OGh;� , respectively. Hence, following the terminology used in [32], we
can say that ¹‰n.h/; h 2 Hº and ¹‰n.h/ ^‰n.�/; h; � 2 Hº are upper functions of level "n

for the collection of corresponding stochastic errors. Often the collection ¹‰n.h/;h 2 Hº is

5486 O. V. Lepski



not random. This is typically the case when a statistical problem is studied in the framework
of white Gaussian noise or regression model.

3) We consider countable Hn in order not to discuss of the measurability of the
supremum inside the mathematical expectation appearing in Assumption .Aupper/. The
theory developed in the next section remains valid for any parameter set over which the
corresponding supremum is X .n/-measurable.

3.2. Universal selection rule and corresponding `-oracle inequality
Our objective is to propose the selection rule from an arbitrary collection G .Hn/ D

¹ OGh; h 2 Hnº satisfying hypotheses .Apermute/ and .Aupper/, and establish for it the `-oracle
inequality (2.5).

Define, for any h 2 Hn,

ORn.h/ D sup
�2Hn

�
`. OG�; OGh;�/ � 2‰n.�/

�
C
:

Let Oh.n/ 2 Hn be an arbitrary X .n/-measurable random element satisfying

ORn

�
Oh.n/

�
C 2‰n

�
Oh.n/

�
� inf

h2Hn

®
ORn.h/C 2‰n.h/

¯
C "n:

Our final estimator is OG Oh.n/ . In order to bound from above its risk, introduce the following
notation: for any f 2 F , h 2 Hn and n � 1,

B.n/.f; h/ D `
�
ƒh.f /;G.f /

�
C 2 sup

�2Hn

`
�
ƒh;�.f /;ƒ�.f /

�
;

 n.f; h/ D
�
E.n/

f

®
‰q

n.h/
¯� 1

q :

Theorem 3.1 ([33]). Let .Apermute/.i/ and .Aupper/ be fulfilled. Then, for any f 2 F and
n � 1,

R.`/
n

�
OG Oh.n/ IG.f /

�
� inf

h2Hn

®
B.n/.f; h/C 5 n.f; h/

¯
C 6"n:

Thus, the `-oracle inequality is established with rn D 6"n and

U .`/
n .f; h/ D B.n/.f; h/C 5 n.f; h/:

Our goal now is to prove the following result.

Theorem 3.2. Let .Apermute/.ii/ and .Aupper/ be fulfilled. Then, for any f 2 F and n � 1,

R.`/
n

�
OG Oh.n/ IG.f /

�
� inf

h2Hn

®
B.n/.f; h/C 9 n.f; h/

¯
C 10"n C ın:

Thus, the `-oracle inequality is established with rn D 10"n C ın and

U .`/
n .f; h/ D B.n/.f; h/C 9 n.f; h/:

Proof. We break the proof into three short steps and, for the simplicity of notations, we will
write Oh instead of Oh.n/. Set

�1 D sup
�2Hn

�
`. OG�; ƒ�/ �‰n.�/

�
C
; �2 D sup

h;�2Hn

�
`. OGh;�; ƒh;�/ �

®
‰n.h/ ^‰n.�/

¯�
C
:
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1) Our first goal is to prove that for any h; � 2 Hn,

`. OGh; OGh;�/ � ORn.�/C 6‰n.h/C 2�1 C 2�2 C ın: (3.1)

Indeed, the following chain od inequalities is obtained from the triangle inequality:

`. OGh; OGh;�/ � `. OGh; ƒh/C `.ƒh; OGh;�/

� `. OGh; ƒh/C `.ƒh; ƒh;�/C `. OGh;�; ƒh;�/

� `.ƒh; ƒh;�/C 2‰n.h/C �1 C �2: (3.2)

Similarly, taking into account .Apermute/.ii/, we get

`.ƒh; ƒh;�/ � `.ƒh; ƒ�;h/C ın

� `. OGh; ƒh/C `. OGh; OG�;h/C `. OG�;h; ƒ�;h/C ın

� `. OGh; OG�;h/C 2‰n.h/C �1 C �2 C ın: (3.3)

It remains to note that in view of the definition of ORn.�/,

`. OGh; OG�;h/ � 2‰n.h/C
�
`. OGh; OG�;h/ � 2‰n.h/

�
C

� 2‰n.h/C ORn.�/:

This, together with (3.2) and (3.3), implies (3.1).
2) Let h 2 Hn be fixed. We have in view of the definition of ORn.�/ that

`. OG Oh
; OG

h; Oh
/ � 2‰n. Oh/C

�
`. OG Oh

; OG
h; Oh
/ � 2‰n. Oh/

�
C

� 2‰n. Oh/C ORn.h/: (3.4)

Here we have also used that Oh 2 Hn by its definition.
Applying (3.1) with � D Oh, we obtain

`. OGh; OG
h; Oh
/ � ORn. Oh/C 6‰n.h/C 2�1 C 2�2 C ın: (3.5)

We get from (3.4), (3.5), and the definition of Oh that

`. OG Oh
; OG

h; Oh
/C `. OGh; OG

h; Oh
/ � ORn. Oh/C 2‰n. Oh/C ORn.h/C 6‰n.h/C 2�1 C 2�2 C ın

� 2 ORn.h/C 8‰n.h/C 2�1 C 2�2 C "n C ın: (3.6)

3) We have, in view of the triangle inequality, for any h 2 Hn that

ORn.h/ � sup
�2Hn

`
�
ƒh;�.f /;ƒ�.f /

�
C �1 C �2: (3.7)

Thus, we obtain from (3.6) and (3.7), for any h 2 Hn,

`. OG Oh
; OG

h; Oh
/C `. OGh; OG

h; Oh
/

� 2 sup
�2Hn

`
�
ƒh;�.f /;ƒ�.f /

�
C 8‰n.h/C 4�1 C 4�2 C "n C ın: (3.8)

Obviously, for any h 2 Hn,

`
�

OGh; G.f /
�

� `
�
ƒh.f /;G.f /

�
C‰n.h/C �1:

By the triangle inequality, this yields, together with (3.8), for any h 2 Hn that

`
�

OG Oh
; G.f /

�
� B.n/.f; h/C 9‰n.h/C 5�1 C 4�2 C "n C ın; 8f 2 F:
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Taking into account Assumption .Aupper/, we get for any h 2 Hn and any f 2 F,®
E.n/

f

�
`
�

OG Oh
; G.f /

��q¯ 1
q � B.n/.f; h/C 9 n.f; h/C 10"n C ın:

Noting that the left-hand side of the obtained inequality is independent of h, we come to the
assertion of the theorem.

We finish this section with simple, but very useful (in minimax and minimax adap-
tive estimation) consequence of Theorems 3.1–3.2.

For any F � F, set

n.F/ D inf
h2H

sup
f 2F

�
B.n/.f; h/C  n.f; h/

�
:

The quantity n.F/ is often called the bias–variance tradeoff.

Corollary 1. Let .Aupper/ be fulfilled. Assume also that either .Apermute/.i/ holds or
.Apermute/.ii/ is verified with ın D "n. Then, for any F � F and n � 1,

R.`/
n Œ OG Oh.n/ I F � � 9n.F/C 11"n:

The proof of the corollary is elementary and can be omitted.

4. Examples of estimator collections satisfying

Assumption (Apermute)

4.1. Estimator collections in the density model
First example. Let D D Rd , d � 1, and � be the Lebesgue measure. LetK W Rd ! R be
a function from L1.Rd / and

R
R K D 1. Let H � .0; 1�d , and define for any h D .h1; : : : ;

hd / 2 H,

Kh.t/ D V �1
h K.t1=h1; : : : ; td=hd /; t 2 Rd ; Vh D

dY
j D1

hj : (4.1)

Introduce the following estimator collection:

G D

´
OGh.x/ D n�1

nX
iD1

Kh.Xi � x/; x 2 Rd ; h 2 H

µ
: (4.2)

The estimator OGh.�/ is called the kernel estimator with bandwidth h. Kernel estimators
are used in estimating the underlying density at a given point, as well as in estimating the
entire f . Also, they are used as a building block for constructing estimators of many func-
tionals of density mentioned in Section 1.2. Selection from the family G , usually referred to
as bandwidth selection, is one of the central problems in nonparametric density estimation.

For any h 2 H, set

ƒh.f; �/ D E.n/

f

�
OGh.�/

�
D

Z
D

Kh.t � �/f .t/dt

and consider two possible constructions of the collection OGh;�.�/, h; � 2 H.
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Construction based on the convolution product. Define Kh;� W Rd ! R by

Kh;�.�/ D

Z
Rd

K�.� � t /Kh.t/dt DW ŒKh �K��.�/

and set
OGh;�.�/ D n�1

nX
iD1

Kh;�.Xi � �/; ƒh;�.f; �/ D E.n/

f

�
OGh;�.�/

�
:

Since obviously Kh;� � K�;h, we can assert that OGh;� � OG�;h and, therefore, Assumptions
.Apermute/.i/ and .Apermute/.ii/ are both fulfilled.

Construction based on the coordinatewise maximum. Define Kh;� W Rd ! R by

Kh;�.�/ D Kh_�.�/; h _ � D .h1 _ �1; : : : ; hd _ �d /;

and set
OGh;�.�/ D n�1

nX
iD1

Kh;�.Xi � �/; ƒh;�.f; �/ D E.n/

f

�
OGh;�.�/

�
:

Since obviously Kh;� � K�;h, we can assert that OGh;� � OG�;h and, therefore, Assumptions
.Apermute/.i/ and .Apermute/.ii/ are both fulfilled.

Second example. Consider now the estimator collection related to the density estimation
under hypothesis of independence presented in Section 2.1.2.

Here, as previously, D D Rd , d � 2, and � is the Lebesgue measure. Recall that
F � P.D ;�/, Id is the set of all subsets of ¹1; : : : ; dº, and… denotes the set of all partitions
of ¹1; : : : ; dº.

Let K W R1 ! R1 be a univariate kernel, that is, K 2 L1.R1/ and
R

R1 K D 1.
For any h D .0; 1�d and any I 2 Id , set

KhI
.u/ D V �1

hI

Y
j 2I

K.uj =hj /; VhI
D

Y
j 2I

hj :

Since the independence hypothesis assumes that there exists a partition P such that

f .x/ D

Y
I2P

fI .xI /; 8x 2 Rd ;

the idea is to estimate each marginal density by the kernel method and use the product of
these estimators as the final one. Thus, define for any x 2 Rd , h 2 H, and any I 2 Id ,

OfhI
.xI / D n�1

nX
iD1

KhI
.XI;i � xI /

and introduce the following family of estimators:

G D

²
OGh.x/ D

Y
I2P

OfhI
.xI /; x 2 RD; h D .h;P / 2 Œ0; 1�d �… DW H

³
:

Let � denote the convolution operator on R. Set for any x 2 Rd , h; h0 2 .0; 1�d , and any
I 2 Id ,

ŒKhI ? Kh0
I
� D

Y
j 2I

ŒKhj
� Kh0

j
�
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and introduce
OfhI ;h0

I
.xI / D n�1

nX
iD1

ŒKhI
? Kh0

I
�.XI;i � xI /;

Let us endow the set … with the operation “˘” putting for any P ;P 0 2 …,

P ˘ P 0
D
®
I \ I 0

¤ ;; I 2 P ; I 0
2 P 0

¯
2 …:

Introduce for any h; � 2 H the estimator
OGh;�.x/ D

Y
I2P ˘P 0

OfhI ;h0
I
.xI /; x 2 Rd :

Obviously, OGh;� � OG�;h and, therefore, Assumption .Apermute/.i/ is fulfilled. On the
other hand, see [30], functionals ƒh and ƒh;� are so complicated that the verification of
.Apermute/.ii/ does not seem possible. We are not even sure that it holds for sufficiently
small ın.

Third example. Let us now consider the family of estimators which appears in adaptive
estimation under the following structural assumption. Let D D R2 and � be the Lebesgue
measure. Let Q denote the set of all 2 � 2 rotational matrices and P

sym
1 denote the set of all

symmetric probability densities on R1. Set

A D
®
a W R2

! R1
W a.�; �/ D a1.�/a2.�/; a1; a2 2 P

sym
1

¯
;

and assume that there exist a 2 A and M 2 Q such that f .�/ D a.M T �/. The latter means
that

Xi D M�i ; i D 1; : : : ; n;

where �i , i D 1; : : : ; n, are i.i.d. random vectors with a common density a.
If M is known then �i D M TXi ; : : : ; �n D M TXn are observable i.i.d. random

vectors with independent coordinates. Indeed, the density of �1 is a1.�/a2.�/. Hence the esti-
mation of a is the estimation under hypothesis of independence, which, as it was mentioned
above, allows one to improve the accuracy of estimation of the density a, and, therefore, of the
density f as well. However, ifM is unknown, the sequence �i DM TXi ; : : : ; �n DM TXn is
not observable anymore and the estimation of f can be viewed as the problem of adaptation
to an unknown rotation of the coordinate system.

Let the kernel K W R1 ! R1 be the same as in the previous example and setKh.�/D

h�1K.�=h/, h 2 .0; 1�. Later on Q 2 Q will be presented as

Q D .q; q?/ D

 
q1 �q2

q2 q1

!
;

where q; q? 2 S1. For any h WD .h;Q/ 2 Œ0; 1� � Q and x 2 R2, set

OGh.x/ D

"
n�1

nX
kD1

Kh

�
qT .Xk � x/

�#"
n�1

nX
kD1

Kh

�
qT

?.Xk � x/
�#
;

and introduce the following family of estimators:

G D
®

OGh.x/; x 2 R2; h 2 H � Œ0; 1� � Q
¯
:

In order to construct estimator OGh;�.�/, h; � 2 H, we will need the following notation.
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For any Q;D 2 Q, define

p.D;Q/ D qT d?; �.D;Q/ D qT d:

Set also Kh.t/ D Kh.t1/Kh.t2/, t 2 R2, h 2 .0; 1�, and let

� D

 
1 0

0 �1

!
; � D

 
0 1

1 0

!
;

Define, see [35], for any h D .h;Q/ 2 H and � D .~;D/ 2 H,

OGh;�.x/ D
1

n.n � 1/

nX
k;lD1;k¤l

Kh_~

�
p.D;Q/��Xk C �.D;Q/Xl ���QD�x

�
and let

ƒh;�.f; �/ D E.n/

f

�
OGh;�.�/

�
:

Note that for any D;Q 2 Q,

p.D;Q/ D �p.Q;D/; �.D;Q/ D �.Q;D/; DQ D QD: (4.3)

Obviously, OGh;�.�/ ¤ OG�;h.�/ and, therefore, Assumption .Apermute/.i/ does not hold.
On the other hand,

ƒh;�.f; �/ D

Z
R2

Z
R2

Kh_~

�
p.D;Q/��uC �.D;Q/v ���QD�x

�
f .u/f .v/dudv:

Since f .�/ D a.M T �/ and a is symmetric, f is a symmetric function as well, and we have

ƒh;�.f; �/ D

Z
R2

Z
R2

Kh_~

�
�p.D;Q/��uC �.D;Q/v ���QD�x

�
f .u/f .v/dudv

D

Z
R2

Z
R2

Kh_~

�
p.Q;D/��uC �.Q;D/v ���DQ�x

�
f .u/f .v/dudv

D ƒ�;h.f; �/:

To get the penultimate equality, we have used (4.3). We conclude that Assumption
.Apermute/.ii/ holds with any ın whatever the semimetric ` is considered.

4.2. Estimator collections in White Gaussian Noise Model
First example. Let D be a set endowed with the Borel measure � and �.D/ < 1. Recall
that the observation X .n/ D ¹Xn.g/; g 2 L2.D ; �/º is given in (1.2).

Let ¹ m; m 2 Mº be an orthonormal basis in L2.D ; �/ and let H D ¹h D .hm;

m 2 M/º be a given subset of l2. Introduce, for any t; x 2 D ,

Kh.t; x/ D

X
m2M

hm m.t/ m.x/; h 2 H;

and consider the following estimation collection:

G D
®

OGh.x/ D Xn

�
K.�; x/

�
; x 2 D ; h 2 H

¯
:
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The estimator OGh.�/ is used in the estimation of unknown f under L2-loss, that is, S D F,
G.f / D f , and `.f; g/ D kf � gk2;D , f; g 2 F � L2.D ; �/. Let

ƒh.f; �/ D E.n/

f

�
OGh.�/

�
D

Z
D

Kh.t; �/f .t/�.dt / D

X
m2M

hm m.�/

Z
D

 m.t/f .t/�.dt /:

Denoting the mth Fourier coefficient of f by fm, we get

ƒh.f; �/ D

X
m2M

hmfm m.�/:

In particular, in view of Parseval’s identity,ƒh.f / � f


2;D
D

X
m2M

.hm � 1/2f 2
m:

For any h; � 2 H, set

Kh;�.t; x/ D

Z
D

Kh.t; y/K�.y; x/�.dy/; t; x 2 D ;

and put, for any x 2 D ,
OGh;�.x/ D Xn

�
Kh;�.�; x/

�
:

Noting that, for any t; x 2 D ,

Kh;�.t;x/D

X
m2M

X
j 2M

hm�j m.t/ j .x/

Z
D

 m.y/ j .y/�.dt /D

X
m2M

hm�m m.t/ m.x/;

we can assert that Kh;� � K�;h. This implies OGh;� � OG�;h and, therefore,

ƒh;� WD E.n/

f
Œ OGh;�� � E.n/

f
Œ OG�;h� DW ƒ�;h:

Hence, Assumptions .Apermute/.i/ and .Apermute/.ii/ are both fulfilled.

Second example. Here and later,D D Rd , d � 1, � is the Lebesgue measure, and X .n/ D

¹Xn.g/; g 2 L2.Rd ; �/º is given in (1.2).
Let b > 0 be given and denote by H.b/ the set of all Borel functions h W .�b; b/d !

.0; 1�d . As before let K W Rd ! R, K 2 L1.Rd / be a function satisfying
R
K D 1.

With any h 2 H.b/, we associate the function

Kh.x/.t; x/ D V �1
h .x/K

�
t � x

h.x/

�
; t 2 Rd ; x 2 .�b; b/d ;

where Vh.x/ D
Qd

iD1 hi .x/ and h.�/ D .h1.�/; : : : ; hd .�//.
Consider the family of estimators

G D
®

OGh.x/.x/ D Xn

�
Kh.x/.�; x/

�
; h 2 H.b/; x 2 .�b; b/d

¯
: (4.4)

The estimators from this collection are called kernel estimators with varying bandwidth. Let

ƒh.�/.f; �/ D E.n/

f

�
OGh.�/.�/

�
D

Z
Rd

Kh.�/.t; �/f .t/�.dt /:

For any h; � 2 H.b/, set

OGh.x/_�.x/.x/ D Xn

�
Kh.x/_�.x/.�; x/

�
; x 2 .�b; b/d ;
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where as previously h.�/ _ �.�/ D .h1.�/ _ �1.�/; : : : ; hd .�/ _ �d .�//. Let also

OGh.�/_�.�/.�/ D E.n/

f
Œ OGh.�/� D

Z
Rd

Kh.�/.t; �/f .t/�.dt /:

Since obviously Kh_� � K�_h for any h; � 2 H.b/, we can assert that both Assumptions
.Apermute/.i/ and .Apermute/.ii/ are fulfilled whatever the semimetric ` is considered.

5. One example of estimator collection satisfying

Assumption (Aupper)

In this section we continue to consider the estimator family given in (4.4). Our objec-
tive here is to find Hn � H.b/ and ¹‰n.h/; h 2 Hnº for which Assumption .Aupper/ can be
checked in the case where ` is the Lp-norm on .�b; b/d , 1 � p < 1.

For any h 2 H.b/, define

�h.x/.x/ D

Z
Rd

Kh.x/.t; x/W.dt /; x 2 .�b; b/d ;

and note that, in view of (1.2),

`
�

OGh; ƒh.f /
�

D n� 1
2 k�hkp;.�b;b/d :

We remark that �h.�/.�/ is independent of f and n. Hence, Assumption .Aupper/ will be
checked if we find Hn and nonrandom ¹‰�

n.h/; h 2 Hnº such that

E
�

sup
h2Hn

�
k�hkp;.�b;b/d �‰�

n.h/
�q

C

�
� "q

nn
q
2 I (5.1)

E
�

sup
h;�2Hn

�
k�h_�kp;.�b;b/d �

®
‰�

n.h/ ^‰�
n.�/

¯�q
C

�
� "q

nn
q
2 : (5.2)

Here and later, E denotes the mathematical expectation with respect to the law of W . Also,
furthermore, we will assume that

K.x/ D

dY
iD1

K.xi /; 8x 2 Rd ;

where K W R1 ! R1 is such that
R

K D 1, supp.K/ � Œ�1; 1�, and, for some M > 0,ˇ̌
K.s/ � K.t/

ˇ̌
� M js � t j; 8s; t 2 R:

5.1. Functional classes of bandwidths
Let ˛n ! 0, n ! 1, be a given sequence and let

!n D e�
p

j ln.˛n/j; �n D eln2.˛n/:

SetHn D ¹hs D e�s; s 2 Nº \ .0;!n� and denote by H1;n the set of all measurable functions
defined on .�b; b/d and taking values in Hd

n . Obviously, H1;n � H.b/. For any h 2 H1;n

and any s D .s1; : : : ; sd / 2 Nd , define

‡sŒh� D

d\
j D1

‡sj
Œhj �; ‡sj

Œhj � D
®
x 2 .�b; b/d W hj .x/ D hsj

¯
:
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Let � 2 .0; 1/ and L > 0 be given constants. Define

Hn.�; L/ D

²
h 2 H1;n W

X
s2Nd

��
�
‡sŒh�

�
� L

³
:

Set Np D ¹bpc C 1; bpc C 2; : : :º and introduce

H2;n D

[
r2Np

Hn.r/; Hn.r/ D
®
h 2 H1;n W

V � 1
2

h


rp

r�p ;.�b;b/d � �n

¯
:

We will establish (5.1) and (5.2) with Hn D H�
n.�; L/ WD H2;n \ Hn.�; L/.

5.2. Verification of (5.1)
For any h 2 H2;n, define

Np;n.h/ D Np \ Œrn.h/;1/; rn.h/ D inf
®
r 2 Np W h 2 Hn.r/

¯
:

Obviously, rn.h/ < 1 for any h 2 H2;n. For any h 2 H2;n. define

‰n.h/ D inf
r2Np;n.h/

C.r; �; L/
V � 1

2

h


rp

r�p ;.�b;b/d ;

where C.r; �;L/; � 2 .0; 1/,L > 0, can be found in [32, Section 3.2.2]. Here we only mention
that C.r; �; L/ is finite for any given r; �; L but limr!1 C.r; �; L/ D 1.

Note also that the condition h 2 H2;n guarantees that ‰n.h/ < 1.

Theorem 5.1 ([32, Corollary 1]). For any � 2 .0; 1/ and q � 1, one can find n.�; q/ such
that for any n � n.�; q/,

E
°

sup
h2H�

n.�;L/

�
k�hkp;.�b;b/d �‰n.h/

�
C

±q

� .c˛n/
q;

where c depends on K; p; q; b, and d only.

Choosing ˛n D c�1"n

p
n, we can assert that is (5.1) holds for any‰ �n .�/�‰n.�/.

5.3. Verification of (5.2)
The verification of (5.2) is mostly based on two facts.
First, the following result has been proved in [31, Lemma 1].

Lemma 5.2. For any d � 1, � 2 .0; 1=d/, and L > 0, there exist n.�; d; L/ such that for
all n � n.�; L; d/,

h _ � 2 Hn

�
d�; .2L/d

�
; 8h; � 2 Hn.�; L/:

Hence, setting

‰�
n.h/ D inf

r2Np;n.h/
C �.r; �; L/

V � 1
2

h


rp

r�p ;.�b;b/d ;

where C �.r; �; L/ D C.r; �;L/ _ C.r; d�; .2L/d /, we can assert that the statement of The-
orem 5.1 remains true for ‰�

n.�/ as well if � > 1=d . This follows from the fact that ‰�
n.�/ �

‰n.�/.
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Moreover, in view of Theorem 5.1, for all n large enough,

E
°

sup
h2H�

n.d�;.2L/d /

�
k�hkp;.�b;b/d �‰�

n.h/
�

C

±q

� .c˛n/
q : (5.3)

Since, in view Lemma 5.2, if � > 1=d , we have

sup
h;�2H�

n.�;L/

�
k�h_�kp;.�b;b/d �‰�

n.h _ �/
�

C
� sup

�2H�
n.d�;.2L/d /

�
k��kp;.�b;b/d �‰�

n.�/
�

C
;

we deduce from (5.3) that

E
°

sup
h;�2H�

n.�;L/

�
k�h_�kp;.�b;b/d �‰�

n.h _ �/
�

C

±q

� .c˛n/
q : (5.4)

It remains to note that for any 1 � t < 1 and any h 2 H,V � 1
2

h_�


t;.�b;b/d �

V � 1
2

h


t;.�b;b/d ^

V � 1
2

�


t;.�b;b/d ;

which implies
‰�

n.h _ �/ � ‰�
n.h/ ^‰�

n.�/; 8h; � 2 H: (5.5)

Inequality (5.2) follows now from (5.4) and (5.5) if one chooses ˛n D c�1"n

p
n.
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