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Abstract

In this note we discuss the statistical problem of estimating the mean of a random vector
based on independent, identically distributed data. This classical problem has recently
attracted a lot of attention both in mathematical statistics and in theoretical computer
science and numerous intricacies have been revealed. We discuss some of the recent
advances, focusing on high-dimensional aspects.
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1. Introduction

We consider the statistical problem of estimating the mean of a random vector based
on independent, identically distributed data. This seemingly innocent classical problem has
drawn renewed attention both in mathematical statistics and theoretical computer science.

The problem is formulated as follows: let X1; : : : ; Xn be independent, identically
distributed random vectors taking values in Rd such that their mean � D EX1 exists. Upon
observing these random variables, one would like to estimate the vector �. An estimatorb�n D b�n.X1; : : : ; Xn/ is simply a measurable function of the “data” X1; : : : ; Xn, taking
values in Rd .

Naturally, the standard empirical mean

�n D
1

n

nX
iD1

Xi

is the first estimate that comes to mind. Indeed, the strong law of large numbers guarantees
that �n converges to � almost surely without any further conditions on the distribution.
However, here we are interested in the finite-sample behavior of mean estimators and for any
meaningful statement one needs to make further assumptions on the distribution. Throughout
this note, we assume that the covariance matrix † D E.X1 � �/.X1 � �/T exists.

The empirical mean is known to be sensitive to “outliers” that are inevitably present
in the data when the distribution may be heavy-tailed. This concern gave rise to the area of
robust statistics. Classical references include Huber [19], Huber and Ronchetti [20], Hampel,
Ronchetti, Rousseeuw, and Stahel [14], Tukey [44].

The quality of an estimator may be measured in various ways. While most of the
early statistical work focused on expected risk measures such as the mean-squared error

E
�
kb�n � �k

2
�

(with k � k denoting the Euclidean norm), such risk measures may be misleading. Indeed, if
the distance kb�n ��k is not sufficiently concentrated, the expected value does not necessar-
ily reflect the “typical” behavior of the error. For such reasons, estimators b�n that are close
to � with high probability are desirable.

Thus, our aim is to understand, for any given sample size n and confidence parameter
ı 2 .0; 1/, the smallest possible value " D ".n; ı/ such that

P
®
kb�n � �k > "

¯
� ı:

In Section 2 we briefly discuss the one-dimensional case and lay out some of the
basic ideas behind the more complex high-dimensional estimators. In Section 3 we present
so-called sub-Gaussian estimators that guarantee the optimal order of magnitude for the
accuracy ".n; ı/. Finally, in Section 4 we discuss the more refined requirement of estimators
being close to the mean in each direction.

Bibliographic remark. It is beyond the scope of this note to offer an exhaustive bibliog-
raphy of the topic. We refer the reader to the recent—though already somewhat outdated—
survey of Lugosi and Mendelson [27].
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2. Basic ideas: the one-dimensional case

First consider the case d D 1, that is, when theXi are real-valued random variables.
In this case, if �2 denotes the variance of X1, then the central limit theorem guarantees that
the empirical mean satisfies

lim
n!1

P

²
j�n � �j >

�ˆ�1.1 � ı=2/
p
n

³
D ı;

where ˆ.x/ D P¹G � xº is the cumulative distribution function of a standard normal
random variable G. This implies the slightly loose asymptotic inequality

lim
n!1

P

²
j�n � �j >

�
p
2 log.2=ı/

p
n

³
� ı:

Motivated by this property, we introduce a corresponding nonasymptotic notion as follows:
for a given sample size n and confidence level ı, we say that a mean estimator b�n is L-sub-
Gaussian if there is a constant L > 0, such that, with probability at least 1 � ı,

jb�n � �j �
L�

p
log.2=ı/
p
n

:

As it is pointed out in [11], if one considers the class of distributions with finite variance, the
best accuracy one can hope for is of the order

p
log.1=ı/=n and in this sense sub-Gaussian

estimators are optimal. Perhaps surprisingly, sub-Gaussian estimators exist under the only
assumption that the Xi have a finite second moment.

One such estimator is the so-called median-of-means estimator. It has been proposed
in different forms in various papers, see Nemirovsky and Yudin [41], Jerrum, Valiant, and
Vazirani [21], Alon, Matias, and Szegedy [1].

The definition of the median-of-means estimator calls for partitioning the data into
k groups of roughly equal size, computing the empirical mean in each group, and taking the
median of the obtained values.

Formally, recall that the median of k real numbers x1; : : : ; xk 2 R is defined as
M.x1; : : : ; xk/ D xi where xi is such thatˇ̌®

j 2 Œk� W xj � xi

¯ˇ̌
�
k

2
and

ˇ̌®
j 2 Œk� W xj � xi

¯ˇ̌
�
k

2
:

(If several indices i fit the above description, we take the smallest one.)
Now let 1 � k � n and partition Œn� D ¹1; : : : ; nº into k blocks B1; : : : ; Bk , each

of size jBi j � bn=kc � 2.
Given X1; : : : ; Xn, compute the sample mean in each block

Zj D
1

jBj j

X
i2Bj

Xi

and define the median-of-means estimator by b�n D M.Z1; : : : ; Zk/.
To grasp intuitively why this estimator works, note that for each block, the empirical

mean is an unbiased estimator of the mean, with controlled standard deviation �=
p
n=k.

Hence, the median of the distribution of the blockwise empirical mean lies within �=
p
n=k

from the expectation. Now the empirical median is a highly concentrated estimator of this

5502 G. Lugosi



median. Now it is easy to derive the following performance bound. For simplicity, assume
that n is divisible by k so that each block has m D n=k elements.

Let X1; : : : ; Xn be independent, identically distributed random variables with mean
� and variance �2. For any ı 2 .0; 1/, if k D d8 log.1=ı/e, and n D mk, then, with
probability at least 1 � ı, the median-of-means estimator b�n satisfies

jb�n � �j � �

r
32 log.1=ı/

n
:

In other words, the median-of-means estimator has a sub-Gaussian performance
with L D

p
32 for all distributions with a finite variance.

An even more natural mean estimator is based on removing possible outliers using
a truncation of X . Indeed, the so-called trimmed-mean (or truncated-mean) estimator is
defined by removing a fraction of the sample, consisting of the "n largest and smallest points
for some parameter " 2 .0; 1/, and then averaging over the rest. This idea is one of the most
classical tools in robust statistics, see, Tukey and McLaughlin [45], Huber and Ronchetti [20],
Bickel [3], Stigler [43] for early work on the trimmed-mean estimator. The nonasymptotic sub-
Gaussian property of the trimmed mean was established recently by Oliveira and Orenstein
[42] who proved that if " is chosen proportionally to log.1=ı/=n, then the trimmed-mean
estimator has a sub-Gaussian performance for all distributions with a finite variance (see
also [27]).

A quite different approach was introduced and analyzed by Catoni [4]. Catoni’s idea
is based on the fact that the empirical mean �n is the solution y 2 R of the equation

nX
iD1

.Xi � y/ D 0:

Catoni proposed to replace the left-hand side of the equation above by another strictly
decreasing function of y of the form

nX
iD1

 
�
˛.Xi � y/

�
;

where  W R ! R is an antisymmetric increasing function and ˛ 2 R is a parameter. The
idea is that if  .x/ increases much slower than x, then the effect of “outliers” present due to
heavy tails is diminished. Catoni offers a whole range of “influence” functions  and proves
that by an appropriate choice of  the estimator has a sub-Gaussian performance.

We close this section by noting that in a recent work Lee and Valiant [23] construct a
sub-Gaussian estimator with the (almost) optimal constant LD

p
2C o.1/. Their estimator

builds on a clever combination of median of means, trimmed mean, and Catoni’s estimator.
A different approach was proposed by Minsker and Ndaoud [39]. Just like median of means,
their mean estimator also starts by computing empirical averages on disjoint blocks of the
data. Then they reweight the block averages in function of their empirical standard deviation.
Using nontrivial properties of self-normalized sums, they obtain an estimator that is not only
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sub-Gaussian but it is also asymptotically efficient, in the sense that the estimator is asymp-
totically normal with an asymptotic variance that is as small as possible in the minimax sense.

3. Multivariate sub-Gaussian estimators

Next we discuss the substantially more complex multivariate problem. Recall that
X is a random vector taking values in Rd with mean � D EX and covariance matrix
†D E.X ��/.X ��/T . Given n independent, identically distributed samplesX1; : : : ;Xn

drawn from the distribution of X , one wishes to estimate the mean vector �.
In order to obtain guidance of what a desirable performance is for a mean estimator,

it is instructive to consider the properties of the empirical mean�n whenX has a multivariate
normal distribution. In that case, it is not difficult to see that the Gaussian concentration
inequality implies that for ı 2 .0; 1/, with probability at least 1 � ı,

k�n � �k �

r
Tr.†/
n

C

r
2�max log.1=ı/

n
:

where Tr.†/ and �max denote the trace and spectral norm of the covariance matrix †.
Inspired by this, we may generalize the definition of a sub-Gaussian mean estimator to the
multivariate setting as follows: we say that for a given confidence level ı 2 .0; 1/ and sample
size n, a mean estimator b�n is sub-Gaussian if there exists a constant C such that, for all
distributions whose covariance matrix exists, with probability at least 1 � ı,

kb�n � �k � C

�r
Tr.†/
n

C

r
�max log.1=ı/

n

�
: (3.1)

Naive attempts to generalize the one-dimensional median-of-means estimator do not neces-
sarily achieve the desired sub-Gaussian property. For example, one may define the geometric
median-of-means estimator defined as follows (see Minsker [37], Hsu and Sabato [18], Lerasle
and Oliveira [25]): we start by partitioning Œn� D ¹1; : : : ; nº into k blocks B1; : : : ; Bk , each
of size jBi j � bn=kc � 2, where k � log.1=ı/. Just like in the univariate case, we compute
the sample mean within each block: for j D 1; : : : ; k, let

Zj D
1

m

X
i2Bj

Xi :

The estimator may be defined as the geometric median of the Zj , defined as

b�n D argmin
m2Rd

kX
j D1

kZi �mk:

This estimator was proposed by Minsker [37] and independently by Hsu and Sabato [18] (see
also Lerasle and Oliveira [25]). Minsker [37] proved that there exists a constant C such that,
whenever the covariance matrix exists, with probability at least 1 � ı,

kb�n � �k � C

r
Tr.†/ log.1=ı/

n
:
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This is quite nice since the inequality does not require any assumption other than the exis-
tence of the covariance matrix. However, it is not quite a sub-Gaussian bound as in (3.1). An
important advantage of the geometric median-of-means estimator is that it can be computed
efficiently by solving a convex optimization problem. See Cohen, Lee, Miller, Pachocki, and
Sidford [8] for a recent result and for the history of the computational problem.

3.1. Median-of-means tournaments
The existence of a sub-Gaussian mean estimator was first proved by Lugosi and

Mendelson [29]. Their estimator is an instance of median-of-means tournaments and may be
defined as follows. LetZ1; : : : ;Zk be the sample means within each block exactly as above.
For each a 2 Rd , let

Ta D
®
x 2 Rd

W 9J � Œk� W jJ j � k=2 such that for all j 2 J; kZj � xk � kZj � ak
¯

(3.2)

and define the mean estimator by

b�n 2 argmin
a2Rd

radius.Ta/;

where radius.Ta/ D supx2Ta
kx � ak. Thus, b�n is chosen to minimize, over all a 2 Rd , the

radius of the set Ta defined as the set of points x 2 Rd for which kZj � xk � kZj � ak for
the majority of the blocks. If there are several minimizers, one may pick any one of them.

The set Ta may be seen as the set of points in Rd that are at least as close to the
point cloud ¹Z1; : : : ; Zkº as the point a. The estimator b�n is obtained by minimizing the
radius of Ta. The sub-Gaussian performance of this estimator is established in [29]:

Let X1; : : : ; Xn be independent, identically distributed random vectors in Rd with
mean � and covariance matrix †. There exist constants c; C > 0 such that for any
ı 2 .0; 1/, if k D cdlog.1=ı/e and n D mk, then, with probability at least 1 � ı,

kb�n � �k � C

�r
Tr.†/
n

C

r
�max log.1=ı/

n

�
:

An equivalent way of defining the median-of-means tournament estimator is

b�n 2 argmin
a2Rd

sup
u2Sd�1

�
Median

®
hZj ; ui

j̄ 2Œk�
� ha; ui

�
:

We may regard this as another notion of multivariate median of the block centersZ1; : : : ;Zk .
Unfortunately, unlike the geometric median, computing this median is hard in the sense
that computing it (at least in its naive implementation) takes time exponential in the dimen-
sion d . However, Hopkins [15] introduced a semidefinite relaxation of the median-of-means
tournament estimator that can be computed in time O.nd C d log.1=ı/c/ for a dimension-
independent constant c and, at the same time, achieves the desired sub-Gaussian guarantee
under the only assumption that the covariance matrix exists. Subsequent improvements man-
aged to decrease the running time further. For example, Cherapanamjeri, Flammarion, and
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Bartlett [7] combined Hopkins’ ideas with gradient-descent optimization to construct an sub-
Gaussian mean estimator that is computable in time O.nd C d log.1=ı/2 C log.1=ı/4/.
Based on ideas of “spectral reweighting” of Cheng, Diakonikolas, and Ge [6], Depersin and
Lecué [9], and Lei, Luh, Venkat, and Zhang [24] further improve the running time. Hopkins,
Li, and Zhang [17] show how spectral reweighting is essentially equivalent to the median
notion introduced above. We refer to these papers for an exhaustive review of the rapidly
growing literature of computational aspects of robust mean estimation.

3.2. Multivariate trimmed mean
Here we describe a quite different construction that also results in a sub-Gaussian

mean estimator. The estimator, proposed and analyzed by Lugosi and Mendelson [31], is a
multivariate version of the trimmed-mean estimator discussed in Section 2. The construction
is as follows.

First split the data in two halves. For simplicity of the exposure, suppose we have
2n data points X1; : : : ; Xn; Y1; : : : ; Yn. Set " D c

log.1=ı/
n

for an appropriate constant c > 0.
For every v 2 Sd�1, let ˛v and ˇv be the empirical "=2 and 1 � "=2 quantiles based on the
second half of the data Y1; : : : ; Yn. Define

�˛;ˇ .x/ D

8̂̂<̂
:̂
ˇ if x > ˇ;

x if x 2 Œ˛; ˇ�;

˛ if x < ˛:

and for a parameter Q > 0, compute the univariate trimmed estimators

UQ.v/ D
1

n

nX
iD1

�˛v�Q;ˇvCQ

�
hXi ; vi

�
:

Each of these estimators is just the trimmed mean estimator of EhX; vi D h�; vi for a given
direction v. Note that the trimming interval is widened by the global parameter Q whose
role is to make sure that the univariate estimators work simultaneously. In order to convert
the estimators of the projected means into a single vector, define the “slabs”

�.v;Q/ D
®
x 2 Rd

W
ˇ̌
hx; vi � UQ.v/

ˇ̌
� 2"Q

¯
and let

�.Q/ D

\
v2Sd�1

�.v;Q/:

If x 2 �.Q/, then the projection of x to every direction v is close to the trimmed mean
estimator of h�; vi. The main technical result of [31] is that, when

Q � max
�
1

"

r
Tr.†/
n

;

r
�1

"

�
;

the set �.Q/ contains the mean �, with probability 1 � ı. Since the diameter of �.Q/ is
at most 4"Q, this guarantees the sub-Gaussian property of any element of the set �.Q/.
The problem with such an estimator is that its construction requires knowledge of the cor-
rect value of Q that depends on the (unknown) covariance matrix †. This problem may
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be circumvented by a simple adaptive choice of Q: let i� be the smallest integer such thatT
i�i� �.2i / ¤ ;. Then define b�n to be any point in the set\

i2ZWi�i�

�
�
2i

�
:

This choice is sufficient to guarantee the sub-Gaussian property of the estimator.

Remark. In some situations the Euclidean norm is not necessarily the most adequate way of
measuring the accuracy of a mean estimator. Hence, it is natural to ask the following: given
a norm k � k, a confidence parameter ı 2 .0; 1/, and an i.i.d. sample of cardinality n, what is
the best possible accuracy " for which there exists a mean estimator b�n for which

kb�n � �k � " with probability at least1 � ı‹

The optimal order of magnitude of " is now well understood even in this general setting, see
Lugosi and Mendelson [28], Bahmani [2], Depersin and Lecué [10].

4. Direction-dependent accuracy

An equivalent way of formulating the sub-Gaussian inequality (3.1) for a mean esti-
mator b�n is as follows: with probability at least 1 � ı,

8u 2 Sd�1
W hb�n � �; ui � C

�r
�1 log.1=ı/

n
C

r
Tr.†/
n

�
; (4.1)

where �1 � � � � � �d denote the eigenvalues of the covariance matrix † and
Tr.†/ D

Pd
iD1 �i . We refer to the two terms on the right-hand side as the weak and strong

terms. The strong term corresponds to a global component, while the weak term controls
fluctuations in the worst direction, leading to the weak term which involves �1.

If one wanted to estimate the projection h�; ui in a fixed direction u 2 Sd�1 by an
estimator b�n.u/, as discussed in Section 2, the best accuracy one could hope for would beˇ̌b�n.u/ � h�; ui

ˇ̌
� C

r
�2.u/ log.1=ı/

n
;

where �2.u/D Var.hX;ui/. Now it is natural to ask whether one can improve the inequality
of (4.1) in a direction-sensitive way. In particular, a natural question is if the weak term on
the right-hand side of (4.1) can be improved to

p
�2.u/ log.1=ı/=n and if it can, what price

one has to pay in the strong term for such an improvement. This problem was studied by
Lugosi and Mendelson [30] and in this section we recall the main results of that paper.

Once again, we turn to the canonical case of Gaussian vectors to obtain guidance
about what kind of properties one can hope for. One can show (see [30]) that if the Xi are
independent Gaussian vectors, then the empirical mean �n satisfies that, with probability at
least 1 � ı,

8u 2 Sd�1
W h�n � �; ui � C

�r
�2.u/ log.1=ı/

n
C

r
Tr.†/
n

�
;
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where C is a numerical constant. Thus, in the Gaussian case one can indeed obtain a weak
term that scales optimally, without giving up anything in the strong term. In fact, the bound
can be slightly improved to

8u 2 Sd�1
W h�n � �; ui � C

�r
�2.u/ log.1=ı/

n
C

sP
i>k1

�i

n

�
where k1 D c log.1=ı/, for some constant c. This bound is, in fact, the best one can hope for
in the following sense:

Proposition 1. Let �n D .1=n/
Pn

iD1 Xi where the Xi are independent Gaussian vectors
with mean � and covariance matrix †. Suppose that there exists a constant C such that, for
all ı; n; �, and †, with probability at least 1 � ı,

8u 2 Sd�1
W h�n � �; ui � C

r
�2.u/ log.1=ı/

n
C S: (4.2)

Then there exists a constant C 0 depending on C only, such that the “strong term” S has to
satisfy

S � C 0

sP
i>k0

�i

n

where k0 D 1C .2C C
p
2/2 log.1=ı/.

The observation above shows that even in the well-behaved example of a Gaussian
distribution, the strong term needs to be at least of the orderrP

i>k �i

n

where k is proportional to log.1=ı/.
The main result of [30] is that under an additional assumption on the distribution

of X , one can construct an estimator that, up to the optimal strong term, preforms in every
direction as if it were an optimal estimator of the one-dimensional marginal:

Let X1; : : : ; Xn be i.i.d. random vectors, taking values in Rd , with mean � and
covariance matrix † whose eigenvalues are �1 � �2 � � � � �d � 0. Suppose that
there exists q > 2 and a constant � such that, for all u 2 Sd�1,�

E
ˇ̌
hX � �; ui

ˇ̌q�1=q
� �

�
EhX � �; ui

2
�1=2

: (4.3)

Then for every ı 2 .0; 1/ there exists a mean estimator b�n and constants 0 < c; c0;

C < 1 (depending on � and q only) such that, if ı � e�c0n, then, with probability,
at least 1 � ı,

8u 2 Sd�1
W hb�n � �; ui � C

�r
�2.u/ log.1=ı/

n
C

sPd
iDc log.1=ı/ �i

n

�
: (4.4)
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Mean estimators with sub-Gaussian performance of the type (3.1) exist without
assuming anything more than the existence of the covariance matrix. However, to achieve
the improved direction-dependent performance formulated above, we need to assume that
moments of order q exist for some q > 2. Moreover, we assume that theLq norm of each one-
dimensional marginal is related to the L2-norm in a uniform manner, as described by (4.3).
We call this a norm-equivalence condition. This condition is used repeatedly in a crucial way
in the construction of the estimator. It is an intriguing question whether such a condition is
necessary or if there exists a mean estimator satisfying an inequality of the type (4.4) under
the only assumption of finite second moments. The mean estimator and the constants in the
performance bound depend on the values � and q of the norm-equivalence condition.

Next we describe the construction of the mean estimator. It is a quite complex vari-
ation of the trimmed mean estimator described in the previous section. In the form defined
here, it is hopeless to have an algorithm that computes it efficiently, that is, in time polynomial
in the sample size, the dimension, and log.1=ı/. It is an open question how far computation-
ally efficient mean estimators can reach in terms of their statistical performance. In particular,
it would be interesting to understand whether there is a true (i.e., rigorously provable) conflict
between statistical accuracy and computational efficiency in the mean estimation problem.
We note that in the related problem of robust mean estimation under adversarial contamina-
tion, such conflicts indeed seem to exist, see Hopkins and Li [16].

In the first step of the construction of the estimator, we divide the sampleX1; : : : ;Xn

into n=m blocks of size m and compute, for each block

Yj D
1

p
m

mX
iD1

Xm.j �1/Ci :

Here m is chosen to be a constant depending on q and �, the constants appearing in the
norm equivalence condition. The purpose of this “smoothing” is to ensure that the Yj satisfy
certain “small-ball” properties.

Next, for each direction u 2 Sd�1, we compute the trimmed-mean estimators

b�n.u/ D
1

p
m

1

n=m � 2�n=m

X
j 2Œn=m�nJC.u/[J�.u/

Yj ;

where the sets JC.u/ and J�.u/ correspond to the indices of the �n=m smallest and �n=m
largest values of hYj ; ui and � 2 .0; 1=2/ is another constant that depends on q and � only.

Now one can prove that the directional mean estimatesb�n.u/work as desired, simul-
taneously for all u 2 Sd�1. More precisely, there exist constants c; C 0 > 0 depending on �
and q such that, with probability at least 1 � ı, for all u 2 Sd�1,

ˇ̌b�n.u/ � h�; ui
ˇ̌

� C 0

�r
�2.u/ log.1=ı/

n
C

sPd
iDc log.1=ı/ �i

n

�
:

Once we have the “directional” mean estimators b�n.u/ with the desired property, similarly
to the multivariate trimmed-mean estimator discussed in Section 3 above, we need to find a
vector b�n such that hb�n; ui is close to b�n.u/ for all u 2 Sd�1 (at the appropriate direction-
dependent scale).

5509 Mean estimation in high dimension



To this end, similarly to the case of the trimmed-mean estimator, we define “slabs.”
In order to define slabs of the correct width, we need to estimate the directional variances
�2.u/. This is the problem of covariance estimation that has received quite a lot of atten-
tion, see Catoni [5], Giulini [13], Koltchinskii and Lounici [22], Lounici [26], Mendelson [35],
Mendelson and Zhivotovksiy [36], Minsker [38], Minsker and Wei [40] for a sample of the
relevant literature.

For our purposes, we only need to accurately estimate the variances �2.u/ in those
directions u 2 Sd�1 in which the variance is “not too small,” meaning that it is above a
certain critical level. Below the critical level, all we need is that the estimator detects that the
variance is small. More precisely, we construct an estimator  n.u/, such that, on an event of
probability at least 1 � e�cn,

1

4
�2.u/ �  n.u/ � 2�2.u/ 8u 2 Sd�1 such that �2.u/ � r2,

 n.u/ � Cr2 otherwise.

Here c and C are constants depending on � and q only and

r D

s
c0

n

X
i�c0n

�i

for another constant c0 > 0 depending on � and q.
Once such a covariance estimator  n.u/ is constructed, for a parameter � > 0, we

may define the slabs

Eu;� D

²
v 2 Rd

W
ˇ̌b�n.u/ � hv; ui

ˇ̌
� �C 2C 0

r
 n.u/ log.1=ı/

n

³
and let

S� D

\
u2Sd�1

Eu;�:

Since � > 0, the set S� is compact, and therefore the set

S D

\
�>0WS�¤;

S�

is not empty. We may now define the mean estimator as any element b�n 2 S . This estimator
satisfies the announced property.

It remains to define the variance estimator  n.u/. To this end, first we define

QXi D
Xi �X 0

i

2
; i 2 Œn�

(defined on a sample of size 2n that is independent of that used to construct the directional
mean estimators b�n.u/) to obtain a sample of centered vectors with the same covariance
as X .

Next we divide this sample into n=m equal blocks, where m is an appropriately
chosen constant (depending on � and q). For each block, we compute

Zj D
1

p
m

mX
iD1

QXm.j �1/Ci :
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The purpose of this step is to guarantee a certain “small-ball” property of the distribution,
similarly to the definition of b�n.u/. Once again,  n.u/ is a trimmed-mean estimator. More
precisely, for every u 2 Sd�1, if we denote by JC.u/ the set of indices of the �n=m largest
values of hZj ; ui, we define

 n.u/ D
1

n=m

X
j 2Œn=m�nJC.u/

hZj ; ui
2:

The proof of the desired properties of both the directional mean estimator b�n.u/ and direc-
tional variance estimator  n.u/ relies on novel bounds for the ratio of empirical and true
probabilities that hold uniformly over certain classes of random variables. The main tech-
nical machinery that leads to the necessary directional control requires bounds for ratios of
empirical and true probabilities that hold uniformly in a class of functions. Informally, one
needs to control

sup
¹f 2F ;kf kL2

�rº

sup
t WP¹f .X/>tº��

ˇ̌̌̌
n�1

Pn
iD1 1f .Xi />t

P¹f .X/ > tº
� 1

ˇ̌̌̌
for appropriate values of r and �.

In other words, in [30] it is shown that, under minimal assumptions on the class F ,
the empirical frequencies of level sets of every f 2 F are close, in a multiplicative sense, to
their true probabilities, as long as kf kL2 D

p
Ef .X/2 and P¹f .X/ > tº are large enough.

Estimates of this flavor had been derived before, but only in a limited scope. Examples
include the classical inequalities of Vapnik–Chervonenkis in VC theory, dealing with small
classes of binary-valued functions (see also, Giné and Koltchinskii [12] for some results for
real-valued classes). Existing ratio estimates are often based on the restrictive assumption
that the collection of level sets, say of the form ¹¹x W f .x/ > tº W f 2 F ; t � t0º, is small
in the VC sense.

The method developed in [30] is based on a completely different argument that builds
on the so-called small-ball method pioneered by Mendelson [32–34].

5. Conclusion

The problem of estimating the mean of a random vector has received a lot of recent
attention both in mathematical statistics and in theoretical computer science. Understanding
the possibilities and limitations of general mean estimation is an intriguing problem and the
computational aspects enrich the area further with many nontrivial and exciting questions.
In spite of the significant progress, many interesting questions remain to be explored. The
lessons learnt from this prototypical statistical problem are expected to infuse other areas of
statistics and machine learning with valuable ideas.

Acknowledgments

Shahar Mendelson was my coauthor and main driving force behind a series of papers that
form the basis of this article. Thanks Shahar for all the fun!

5511 Mean estimation in high dimension



Funding

This work was supported by the Spanish Ministry of Economy and Competitiveness,
Grant PGC2018-101643-B-I00 and by “Google Focused Award Algorithms and Learning
for AI”.

References

[1] N. Alon, Y. Matias, and M. Szegedy, The space complexity of approximating the
frequency moments. J. Comput. System Sci. 58 (2002), 137–147.

[2] S. Bahmani, Nearly optimal robust mean estimation via empirical characteristic
function. Bernoulli 27 (2021), no. 3, 2139–2158.

[3] P. Bickel, On some robust estimates of location. Ann. Math. Stat. 36 (1965),
847–858.

[4] O. Catoni, Challenging the empirical mean and empirical variance: a deviation
study. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012), no. 4, 1148–1185.

[5] O. Catoni, Pac-Bayesian bounds for the Gram matrix and least squares regression
with a random design. 2016, arXiv:1603.05229.

[6] Y. Cheng, I. Diakonikolas, and R. Ge, High-dimensional robust mean estimation
in nearly-linear time. In Proceedings of the thirtieth annual ACM–SIAM sympo-
sium on discrete algorithms, pp. 2755–2771, SIAM, 2019.

[7] Y. Cherapanamjeri, N. Flammarion, and P. Bartlett, Fast mean estimation with
sub-Gaussian rates. 2019, arXiv:1902.01998.

[8] M. Cohen, Y. Lee, G. Miller, J. Pachocki, and A. Sidford, Geometric median in
nearly linear time. In Proceedings of the 48th annual ACM SIGACT symposium on
theory of computing, pp. 9–21, ACM, 2016.

[9] J. Depersin and G. Lecué, Robust subgaussian estimation of a mean vector in
nearly linear time. 2019, arXiv:1906.03058.

[10] J. Depersin and G. Lecué, Optimal robust mean and location estimation via
convex programs with respect to any pseudo-norms. 2021, arXiv:2102.00995.

[11] L. Devroye, M. Lerasle, G. Lugosi, and R. Oliveira, Sub-Gausssian mean estima-
tors. Ann. Statist. 44 (2016), 2695–2725.

[12] E. Giné and V. Koltchinskii, Concentration inequalities and asymptotic results for
ratio type empirical processes. Ann. Probab. 34 (2006), no. 3, 1143–1216.

[13] I. Giulini, Robust dimension-free Gram operator estimates. Bernoulli 24 (2018),
3864–3923.

[14] F. Hampel, E. Ronchetti, P. Rousseeuw, and W. Stahel, Robust statistics: the
approach based on influence functions. Wiley Ser. Probab. Stat. 196, John Wiley
& Sons, 1986.

[15] S. Hopkins, Sub-Gaussian mean estimation in polynomial time. Ann. Statist. 48
(2020), no. 2, 1193–1213.

[16] S. B. Hopkins and J. Li, How hard is robust mean estimation? In Conference on
learning theory, pp. 1649–1682, PMLR, 2019.

5512 G. Lugosi

https://arxiv.org/abs/1603.05229
https://arxiv.org/abs/1902.01998
https://arxiv.org/abs/1906.03058
https://arxiv.org/abs/2102.00995


[17] S. B. Hopkins, J. Li, and F. Zhang, Robust and heavy-tailed mean estimation made
simple, via regret minimization. 2020, arXiv:2007.15839.

[18] D. Hsu and S. Sabato, Loss minimization and parameter estimation with heavy
tails. J. Mach. Learn. Res. 17 (2016), 1–40.

[19] P. Huber, Robust estimation of a location parameter. Ann. Math. Stat. 35 (1964),
no. 1, 73–101.

[20] P. Huber and E. Ronchetti, Robust statistics. Wiley, New York, 2009.
[21] M. Jerrum, L. Valiant, and V. Vazirani, Random generation of combinatorial

structures from a uniform distribution. Theoret. Comput. Sci. 43 (1986), 186–188.
[22] V. Koltchinskii and K. Lounici, Concentration inequalities and moment bounds

for sample covariance operators. Bernoulli 23 (2017), no. 1, 110–133.
[23] J. C. Lee and P. Valiant, Optimal sub-gaussian mean estimation in R. 2020,

arXiv:2011.08384.
[24] Z. Lei, K. Luh, P. Venkat, and F. Zhang, A fast spectral algorithm for mean esti-

mation with sub-Gaussian rates. In Conference on learning theory,
pp. 2598–2612, PMLR, 2020.

[25] M. Lerasle and R. I. Oliveira, Robust empirical mean estimators. 2012,
arXiv:1112.3914.

[26] K. Lounici, High-dimensional covariance matrix estimation with missing observa-
tions. Bernoulli 20 (2014), no. 3, 1029–1058.

[27] G. Lugosi and S. Mendelson, Mean estimation and regression under heavy-tailed
distributions—a survey. Found. Comput. Math. 19 (2019), no. 5, 1145–1190.

[28] G. Lugosi and S. Mendelson, Near-optimal mean estimators with respect to gen-
eral norms. Probab. Theory Related Fields 175 (2019), 957–973.

[29] G. Lugosi and S. Mendelson, Sub-Gaussian estimators of the mean of a random
vector. Ann. Statist. 47 (2019), 783–794.

[30] G. Lugosi and S. Mendelson, Multivariate mean estimation with direction-
dependent accuracy. 2020, arXiv:2010.11921.

[31] G. Lugosi and S. Mendelson, Robust multivariate mean estimation: the optimality
of trimmed mean. Ann. Statist. 49 (2021), 393–410.

[32] S. Mendelson, Learning without concentration. J. ACM 62 (2015), 21.
[33] S. Mendelson, An optimal unrestricted learning procedure. 2017,

arXiv:1707.05342.
[34] S. Mendelson, Learning without concentration for general loss functions. Probab.

Theory Related Fields 171 (2018), no. 1–2, 459–502.
[35] S. Mendelson, Approximating the covariance ellipsoid. Commun. Contemp. Math.

22 (2020), no. 08, 1950089.
[36] S. Mendelson and N. Zhivotovskiy, Robust covariance estimation under L4–L2

norm equivalence. 2018, arXiv:1809.10462.
[37] S. Minsker, Geometric median and robust estimation in Banach spaces. Bernoulli

21 (2015), 2308–2335.

5513 Mean estimation in high dimension

https://arxiv.org/abs/2007.15839
https://arxiv.org/abs/2011.08384
https://arxiv.org/abs/1112.3914
https://arxiv.org/abs/2010.11921
https://arxiv.org/abs/1707.05342
https://arxiv.org/abs/1809.10462


[38] S. Minsker, Sub-Gaussian estimators of the mean of a random matrix with heavy-
tailed entries. Ann. Statist. 46 (2018), 2871–2903.

[39] S. Minsker and M. Ndaoud, Robust and efficient mean estimation: approach based
on the properties of self-normalized sums. 2020, arXiv:2006.01986.

[40] S. Minsker and X. Wei, Robust modifications of U-statistics and applications to
covariance estimation problems. Bernoulli 26 (2020), no. 1, 694–727.

[41] A. Nemirovsky and D. Yudin, Problem complexity and method efficiency in opti-
mization. Wiley, 1983.

[42] R. I. Oliveira and P. Orenstein, The sub-Gaussian property of trimmed means esti-
mators. Tech. rep., IMPA, 2019.

[43] S. Stigler, The asymptotic distribution of the trimmed mean. Ann. Statist. 1
(1973), 472–477.

[44] J. Tukey, Mathematics and the picturing of data. In Proceedings of the Interna-
tional Congress of Mathematicians, Vancouver, 1975, pp. 523–531, 1975.

[45] J. Tukey and D. McLaughlin, Less vulnerable confidence and significance proce-
dures for location based on a single sample: trimming/winsorization 1. Sankhya,
Ser. A 25 (1963), 331–352.

Gábor Lugosi

Department of Economics and Business, Pompeu Fabra University, ICREA, Pg. Lluís
Companys 23, 08010 Barcelona, Spain, and Barcelona School of Economics, Barcelona,
Spain, gabor.lugosi@gmail.com

5514 G. Lugosi

https://arxiv.org/abs/2006.01986
mailto:gabor.lugosi@gmail.com



	1. Introduction
	2. Basic ideas: the one-dimensional case
	3. Multivariate sub-Gaussian estimators
	3.1. Median-of-means tournaments
	3.2. Multivariate trimmed mean

	4. Direction-dependent accuracy
	5. Conclusion
	References

