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Abstract

Results by van der Vaart (1991) from semi-parametric statistics about the existence of a
non-zero Fisher information are reviewed in an infinite-dimensional non-linear Gaussian
regression setting. Information-theoretically optimal inference on aspects of the unknown
parameter is possible if and only if the adjoint of the linearisation of the regression map
satisfies a certain range condition. It is shown that this range condition may fail in a
commonly studied elliptic inverse problem with a divergence form equation (‘Darcy’s
problem’), and that a large class of smooth linear functionals of the conductivity param-
eter cannot be estimated efficiently in this case. In particular, Gaussian ‘Bernstein von
Mises’-type approximations for Bayesian posterior distributions do not hold in this setting.
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1. Introduction

The study of inverse problems forms an active scientific field at the interface of the
physical, mathematical and statistical sciences and machine learning. A common setting is
where one considers a ‘forward map’ G between two spaces of functions, and the ‘inverse
problem’ is to recover � from the ‘data’ G� � G .�/. In real-world measurement settings, data
is observed discretely, for instance one is given point evaluations G .�/.Xi / of the function
G .�/ on a finite discretisation ¹Xiº

N
iD1 of the domain of G� . Each time a measurement is

taken, a statistical error is incurred, and the resulting noisy data can then be described by
a statistical regression model Yi D G� .Xi / C "i , with regression functions ¹G� W � 2 ‚º

indexed by the parameter space ‚. Such models have been studied systematically at least
since C. F. Gauss [9] and constitute a core part of statistical science ever since.

In a large class of important applications, the family of regression maps ¹G� W � 2‚º

arises from physical considerations and is described by a partial differential equation (PDE).
The functional parameter � is then naturally infinite- (or after discretisation step, high-)
dimensional, and the map � 7! G� is often non-linear, which poses challenges for statistical
inference. Algorithms for such ‘non-convex’ problems have been proposed and developed
in the last decade since influential work by A. Stuart [28], notably based on ideas from
Bayesian inference, where the parameter � is modelled by a Gaussian process (or related)
prior …. The inverse problem is ‘solved’ by approximately computing the posterior mea-
sure ….�j.Yi ; Xi /NiD1/ on ‚ by an iterative (e.g. MCMC) method. While the success of this
approach has become evident empirically, an objective mathematical framework that allows
giving rigorous statistical and computational guarantees for such algorithms in non-linear
problems has only emerged more recently. The types of results obtained so far include sta-
tistical consistency and contraction rate results for posterior distributions and their means,
see [1, 13, 19] and also [14, 16, 21–23], as well as computational guarantees for MCMC based
sampling schemes [3,15,25].

Perhaps the scientifically most desirable guarantees are those for ‘statistical uncer-
tainty quantification’ methods based on posterior distributions, and these are notoriously
difficult to obtain. Following a programme originally developed by [4–6, 26] in classical
‘direct’ regression models, one way to address this issue is by virtue of the so-called
Bernstein–von Mises theorems which establish asymptotically (as N ! 1) exact Gaussian
approximations to posterior distributions. These exploit the precise but delicate machinery
from semi-parametric statistics and Le Cam theory (see [31]) and aim at showing that the
actions h ; �ij.Yi ; Xi /

N
iD1 of infinite-dimensional posterior distributions on a well-chosen

set of test functions  converge – after rescaling by
p
N (and appropriate re-centering) – to

fixed normal N .0; �2
�
. //-distributions (with high probability under the data .Yi ; Xi /NiD1).

The limiting variance �2
�
. / has an information-theoretic interpretation as the Cramér–Rao

lower bound (inverse Fisher information) of the model (see also Section 2.4). Very few
results of this type are currently available in PDE settings. Recent progress in [20] (see also
related work in [12,18,21,22]) has revealed that Bernstein–von Mises theorems may hold true
if the PDE underlying G� has certain analytical properties. Specifically, one has to solve
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‘information equations’ that involve the ‘information operator’ DG �
�
DG� generated by the

linearisation DG� of G� (with appropriate adjoint DG �
�

). The results in [20,21] achieve this
for a class of PDEs where a base differential operator (such as the Laplacian, or the geodesic
vector field) is attenuated by an unknown potential � , and where  can be any smooth test
function.

In the present article we study a different class of elliptic PDEs commonly used to
model steady state diffusion phenomena, and frequently encountered as a ‘fruitfly example’
of a non-linear inverse problem in applied mathematics (‘Darcy’s problem’; see the many
references in [13, 28]). While this inverse problem can be solved in a statistically consistent
way (with ‘nonparametric convergence rates’ to the ground truth, see [13,24]), we show here
that, perhaps surprisingly, semi-parametric Bernstein–von Mises phenomena for posterior
distributions of a large class of linear functionals of the relevant ‘conductivity’ parameter
do in fact not hold for this PDE, not even just locally in a ‘smooth’ neighbourhood of the
standard Laplacian. See Theorems 6 and 7, which imply in particular that the inverse Fisher
information �2

�
. / does not exist for a large class of smooth  ’s. The results are deduced

from a theorem of van der Vaart [30] in general statistical models, combined with a thorough
study of the mapping properties ofDG� and its adjoint for the PDE considered. Our negative
results should help to appreciate the mathematical subtlety underpinning exact Gaussian
approximations to posterior distributions in non-linear inverse problems arising with PDEs.

2. Information geometry in non-linear regression models

In this section we review some by now classical material on information-theoretical
properties of infinite-dimensional regular statistical models [30,31], and develop the details
for a general vector-valued non-linear regression model relevant in inverse problems settings.
Analogous results could be obtained in the idealised Gaussian white noise model (cf. Chapter
6 in [11]) sometimes considered in the inverse problems literature.

2.1. Measurement setup
Let .X;A; �/ be a probability space and let V be a finite-dimensional vector

space of fixed finite dimension pV 2 N with inner product h�; �iV and norm j � jV . We
denote by L1.X/ and L2.X/ D L2

�
.X; V / the bounded measurable and �-square inte-

grable V -valued functions defined on X normed by k � k1 and k � kL2
�
.X/, respectively.

The inner product on L2.X/ is denoted by h�; �iL2.X/. We will also require Hilbert spaces
L2.P / D L2.V � X; P / of real-valued functions defined on V � X that are square inte-
grable with respect to a probability measure P on the produce space V � X, with inner
product h�; �iL2.P /.

We will consider a parameter space ‚ that is subset of a (separable) Hilbert space
.H; h�; �iH/ on which measurable ‘forward maps’

� 7! G .�/ D G� ; G W ‚ ! L2�.X; V /; (2.1)
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are defined. Observations then arise in a general random design regression setup where one
is given jointly i.i.d. random vectors .Yi ; Xi /NiD1 of the form

Yi D G� .Xi /C "i ; "i �
i:i:d N .0; IV /; i D 1; : : : ; N; (2.2)

where the Xi ’s are random i.i.d. covariates drawn from law � on X. We assume that the
covariance IV of each Gaussian noise vector "i 2 V is diagonal for the inner product of V .
[Most of the content of this section is not specific to Gaussian errors "i in (2.2), cf. Exam-
ple 25.28 in [31] for discussion.]

We consider a ‘tangent space’H at any fixed � 2‚ such thatH is a linear subspace
of H and such that perturbations of � in directions h 2 H satisfy ¹� C sh; h 2 H; s 2 R;

jsj< �º �‚ for some � small enough. We denote by NH the closure ofH in H and will regard
NH itself as a Hilbert space with inner product h�; �iH. We employ the following assumption

in the sequel.

Condition 1. Suppose G is uniformly bounded sup�2‚ kG .�/k1 � UG . Moreover, for fixed
� 2‚, x 2 X, and every h 2H , suppose that G� .x/ is Gateaux-differentiable in direction h,
that is, for all x 2 X,ˇ̌

G .� C sh/.x/ � G .�/.x/ � sI� Œh�.x/
ˇ̌
V

D o.s/ as s ! 0; (2.3)

for some continuous linear operator I� W .H; k � kH/ ! L2
�
.X; V /, and that for some � > 0

small enough and some finite constant B D B.h; �/,

sup
jsj<�

kG .� C sh/ � G .�/k1

jsj
� B: (2.4)

2.2. The DQM property
We will now derive the semi-parametric ‘score’ and ‘information’ operators (cf. [30,

31]) in the observational model (2.2). If P� is the law of .Y1; X1/ D .G .�/.X1/C "1; X1/

on V � X then (2.2) is an i.i.d. statistical model of product laws

PN D
®
PN� D ˝

N
iD1P� W � 2 ‚

¯
; N 2 N; (2.5)

on .V � X/N , and we can identify all information-theoretic properties in terms of the model
P D P1 D ¹P� W � 2 ‚º for the coordinate distributions. The model P is differentiable in
quadratic mean (DQM) at � 2 ‚ along the tangent space H with score operator

A� W H ! L2.V � X; P� / (2.6)

(cf. (3.2) in [30]) if for each path �s;h D � C sh, h 2 H , we have as s ! 0,Z
V�X

�
1

s

�
dP

1=2

�s;h
� dP

1=2

�

�
�
1

2
A� Œh� dP

1=2

�

�2
! 0 (2.7)

where
dP

1=2

�
.y; x/ D .2�/�pV =4e�jy�G .�/.x/j2V =4 dy dx; y 2 V; x 2 X;

are the square-root probability densities of P� with respect to Lebesgue measure on V � X.
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Theorem 1. Assuming Condition 1, the model (2.5) is differentiable in quadratic mean
(DQM) at � 2 ‚ along every path .� C sh W jsj < �; h 2 H/ with � small enough. The
‘score’ operator A� W H ! L2.V � X; P� / is given by

A� Œh�.y; x/ D
˝
y � G .�/.x/; I� .h/.x/

˛
V
; h 2 H; .y; x/ 2 V � X; (2.8)

which extends to a continuous linear operator A� W NH ! L2.P� /.

Proof. Fix h 2 H . Using that the densities dP� are strictly positive, the left-hand side in
(2.7) equalsZ

V�X

�
1

s

�dP 1=2
�s;h

dP
1=2

�

� 1

�
�
1

2
A� Œh�

�2
dP�

D

Z
V�X

�
1

s

�
eh

y
2 ;G .�s;h/.x/�G .�/.x/iV �

jG .�s;h/.x/j
2
V

�jG .�/.x/j2
V

4 � 1
�

�
1

2
A� Œh�

�2
dP� .y; x/

D

Z
V�X

�
1

s

�
ef .s/ � 1 �

s

2
A� Œh�

��2
dP�

where, for y; x fixed,

f .s/ D

�
y

2
;G .�s;h/.x/ � G .�/.x/

�
V

�
jG .�s;h/.x/j

2
V � jG .�/.x/j2V
4

:

Clearly, f .0/ D 0 and, by Condition 1 and the chain rule, we have

f 0.0/ D

�
y

2
; I� Œh�.x/

�
V

�
hG .�/.x/; I� Œh�.x/iV

2
D
1

2
A� Œh�.y; x/;

so that the last integrand converges to zero for every .y; x/ 2 V � X, as s ! 0. By Condi-
tion 1 and the Cauchy–Schwarz inequality, we see that Œef .s/ � 1�=s is bounded by a constant
multiple of eC jyjV ;C DC.B;UG / <1, uniformly in jsj< �. Furthermore, again from Con-
dition 1, 

A� Œh�




L2.P� /

.
�
EjY jV C UG

�
kI� Œh�kL2

�
. khkH

and
E�
�
eC jY jV C jA� Œh�.Y;X/j

�2
< 1;

so the last limit can be P� -integrated by the dominated convergence theorem to give that the
last displayed integral converges to zero, verifying the DQM property. The first inequality in
the last display also implies that A� extends to a continuous linear map from NH to L2.P� /.

2.3. The adjoint score and information operator
The bounded linear operator A� W . NH; h�; �iH/ ! L2.V � X; P� / has adjoint oper-

ator
A�
� W L2.V � X; P� / !

�
NH; h�; �iH

�
which satisfies

hw;A�hiL2.P� / D
˝
A�
�w; h

˛
H
; for all w 2 L2.V � X; P� /; h 2 NH:
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The information operator is then defined as

A�
�A� W NH ! NH: (2.9)

Note that the ‘complexity’ of the statistical model enters via the choice of ‘tangent space’H
for which the adjoint is computed, but we suppress this in the notation.

In the present model the information operator can be entirely described in terms of
the operator I� W .H; h�; �iH/ ! L2

�
.X; V / from Condition 1, and its adjoint

I�
� W L2�.X; V / !

�
NH; h�; �iH

�
:

Proposition 1. Assuming Condition 1, we have

A�
�A� Œh� D I�

� I� Œh�; 8h 2 H: (2.10)

Proof. Writing � for the pdf of an N .0; IV / distribution, we have from Fubini’s theorem,
for any w 2 L2.P� /,

hA�h;wiL2.P� / D

Z
V

Z
X

˝
y � G� .x/; I� .h/.x/

˛
V
w.y; x/dP� .y; x/

D

Z
X

�
I� .h/.x/;

Z
V

�
y � G� .x/

�
w.y; x/�

�
y � G� .x/

�
dy

�
V

d�.x/

D
˝
I� .h/; E�

��
Y � G� .X/

�
w.Y;X/jX D �

�˛
L2
�

D
˝
h; I�

�

�
E�
��
Y � G� .X/

�
w.Y;X/jX D �

��˛
H
;

that is, the adjoint A�
�

D I�
�

ı E� is the composition of the adjoint I�
�

of I� with the conditional
expectation (projection) operator

E� W L2.P� / ! L2�.X; V /; E� Œw�.x/ D E�
��
Y � G� .X/

�
w.Y;X/

ˇ̌
X D x

�
; x 2 X:

(2.11)
Now for h 2 H , we see for " � N .0; IV / and �-a.e. x 2 X,

E�
�
A� Œh�

�
.x/ D E�

��
Y � G� .X/

�˝
Y � G� .X/; I�h.X/

˛
V

ˇ̌
X D x

�
D E

�
"
˝
"; I�h.x/

˛
V

�
D I�h.x/;

and therefore A�
�
A� Œh� D I�

�
E� ŒA� Œh�� D I�

�
I� Œh�, completing the proof.

One can think of E� in the previous proof as a projection onto the ‘space of residuals’
of the regression equation (2.2), which vanishes in the representation of the information
operator (2.10). In particular, the model (2.2) is LAN (locally asymptotically normal) for
LAN-norm k � kLAN arising from LAN inner product

hh1; h2iLAN WD hI�h1; I�h2iL2
�

D hA�h1;A�h2iL2.P� /; h1; h2 2 NH: (2.12)

Proposition 2. Let DN � .Yi ; Xi /
N
iD1 � PN

�
arise from model (2.2) for some � 2 ‚ and

suppose Condition 1 holds. Then the likelihood ratio process satisfies

log
dPN

�Ch=
p
N

dP�
.DN / !

d
N!1 N

�
�
1

2
khk

2
LAN; khk

2
LAN

�
; h 2 H:
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The proof follows from Theorem 1 in conjunction with Lemma 25.14 in [31] (and the
central limit theorem). This, in particular, justifies the use of the terminology ‘information
operator’ for I�

�
I� instead of A�

�
A� .

In what is to follow, the range of the adjoint score operator A�
�

will play a crucial
role, and we wish to record a few preparatory remarks here. By what precedes, that range
equals

R
�
A�
�

�
D
®
 D I�

�E�w; for some w 2 L2.P� /
¯
; (2.13)

where E� is from (2.11). Since E� maps L2.P� / into L2
�
, a fortiori any  2 R.A�

�
/ has to

satisfy
 2 R

�
I�
�

�
D
®
 D I�

�h; for some h 2 L2�.X; V /
¯
; (2.14)

so R.A�
�
/ � R.I�

�
/. Likewise, taking w.y; x/ D hy � G .�/.x/; h.x/iV 2 L2.P� /, we can

realise (arguing as in the proof of the last proposition) any h 2 L2
�
.X/ as E�w D h and so

if  2 R.I�
�
/ then  2 R.A�

�
/, too. We conclude that

R
�
I�
�

�
D R

�
A�
�

�
: (2.15)

2.4. Lower bounds for estimation of functionals
Suppose the problem is to estimate a linear functional ‰ W ‚ ! R of the unknown

parameter � . Let

PH WD
®
w D A� .h/ W h 2 H

¯
� L2.V � X; P� /

denote the tangent space of the model P induced by H . Suppose further we can find Q � 2

L2.P� / (the ‘efficient influence function’) such that

‰.h/ D h Q � ;A�hiL2.P� /; h 2 H: (2.16)

If such Q � exists, we can always take it to belong to the closure PH of PH in L2.P� /
(simply by L2.P� /-projection onto PH , if necessary). A lower bound for the optimal
efficient asymptotic variance for

p
N -consistent estimators of ‰.�/ over the model ¹� C

h=
p
N; h 2 H º is then given by

sup
0¤w2PH

h Q � ; wi2
L2.P� /

hw;wiL2.P� /
D k Q �k

2
L2.P� /

; (2.17)

with equality holding in view of Q � 2 PH and the Cauchy–Schwarz inequality. Specifically,
by Theorem 25.21 in [31], one has

lim inf
N!1

inf
Q N W.V�X/N!R

sup
h2H;khkH�1=

p
N

NEN�Ch

�
Q N �‰.� C h/

�2
� k Q �k

2
L2.P� /

: (2.18)

If the functional is of the form ‰.h/ D h ; hiH for some fixed test function  , and if A�
�

is
the adjoint of A� from the previous subsection, the requirement (2.16) can be written as

h ; hiH D h Q � ;A�hiL2.P� / D
˝
A�
�

Q � ; h
˛
H
; h 2 H; (2.19)

and hence reduces to  D A�
�

Q � for some Q � 2 L2.P� /, that is,  2 R.A�
�
/ from (2.13).
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2.5. Non-existence of
p

N -consistent estimators of linear functionals
Arguing along the traditional lines of the proof of the Cramer–Rao inequality, the

inverse of

i�;h; WD

kA�hk2
L2.P� /

h ; hi2H

(2.20)

provides an a priori lower bound for the variance of any estimator b‰ of‰.�/D h ;�iH that
is unbiased (i.e. satisfies E�b‰ D ‰.�/) for all � in the one-dimensional model ¹� C sh W

jsj < �º. The efficient Fisher information for estimating ‰ optimally for all elements h 2 H

of the tangent space is then given by

i�;H; WD inf
h2H;h ;hiH¤0

kA�hk2
L2.P� /

h ; hi2H

: (2.21)

Note that when  D A�
�

Q � is in the range of A�
�

then we can rewrite the last number as

inf
h2H;h ;hiH¤0

kA�hk2
L2.P� /

hA�
�

Q � ; hi2H

D inf
h2H;h ;hiH¤0

kA�hk2
L2.P� /

h Q � ;A�hi2
L2.P� /

: (2.22)

Since  2 R.A�
�
/ is orthogonal on ker.A� /, using also (2.17), we thus arrive at

k Q �k
2
L2.P� /

D sup
h2H;A�h¤0

h Q � ;A�hi2
L2.P� /

hA�h;A�hiL2.P� /
D i�1�;H; ; (2.23)

explaining the relationship to the best asymptotic variance in (2.18).
An important observation of van der Vaart (Theorem 4.1 in [30]) is that a necessary

and sufficient condition for the Fisher information for estimating ‰.�/ D h�;  iH to be
non-zero is that  indeed lies in the range of A�

�
.

Theorem 2. For � 2 ‚ and tangent space H , let i�;H; be the efficient Fisher informa-
tion (2.21) for estimating the functional ‰.�/ D h�;  iH,  2 NH . Then i�;H; > 0 if and
only if  2 R.I�

�
/.

If  2 R.I�
�
/ then positivity i�;H; > 0 follows directly from (2.15), (2.22) and the

Cauchy–Schwarz inequality. The converse is slightly more involved – we include a proof
in Section 4.2 below for the case most relevant in inverse problems when the information
operator I�

�
I� from (2.10) is compact on NH (see after Proposition 4 below for the example

relevant here).
It follows that if  … R.I�

�
/ then ‰.�/ cannot be estimated at

p
N -rate.

Theorem 3. Consider estimating a functional‰.�/D h ;�iH, 2 NH , based on i.i.d. data
.Yi ; Xi /

N
iD1 in the model (2.2) satisfying Condition 1 for some � 2 ‚ and tangent spaceH .

Suppose i�;H; D 0. Then

lim inf
N!1

inf
Q N W.V�X/N!R

sup
h2H;khkH�1=

p
N

NEN�Ch

�
Q N �‰.� C h/

�2
D 1: (2.24)

The last theorem can be proved following the asymptotic arguments leading to the
proof of (2.18) in Theorem 25.21 in [31]. A proof that follows more directly from the pre-
ceding developments is as follows: Augment the observation space to include measurements
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.Zi ; Yi ;Xi /
N
iD1 � NPN

�
where theZi �i id N .h�; iH; �

2/ are independent of the .Yi ;Xi /’s,
and where �2 is known but arbitrary. The new model NPN D ¹ NPN

�
W � 2‚º has ‘augmented’

LAN norm from (2.12) given by

k NA�hk
2

L2. NP� /
D kA�hk

2
L2.P� /

C ��2
h ; hi

2
H; h 2 NH;

as can be seen from a standard tensorisation argument for independent sample spaces and the
fact that a N .h�; iH; �

2/model has LAN ‘norm’ ��2h ;hi2H, by a direct calculation with
Gaussian densities. In particular, the efficient Fisher information from (2.21) for estimating
h ; �iH from the augmented data is now of the form

Ni�;H; D inf
h

kA�hk2
L2.P� /

C ��2h ; hi2H

h ; hi2H

D i�;H; C ��2
D ��2 > 0:

Note next that mutatis mutandis (2.17), (2.18) and (2.23) all hold in the augmented model
NPN with score operator NA� and tangent space H , and that the linear functional ‰.�/ D

h ; �iH now verifies (2.16) as it is continuous on H for the k NA� Œ��kL2. NP� /
-norm, so that we

can invoke the Riesz representation theorem to the effect that

‰.h/ D h NA Qh; NAhiL2. NP� /
; h 2 H; and some Q � D NA Qh 2 . NP/H :

Thus the asymptotic minimax theorem in the augmented model gives

lim inf
N!1

inf
N N W.R�V�X/N!R

sup
h2H;khkH�1=

p
N

NEN�Ch

�
N N �‰.� C h/

�2
� Ni�1�;H; D �2

(2.25)
for estimators N based on the more informative data. The asymptotic local minimax risk in
(2.24) exceeds the quantity in the last display, and letting �2 ! 1 implies the result.

3. Application to a divergence form PDE

The results from the previous section describe how in a non-linear regression model
(2.2) under Condition 1, the possibility of

p
N -consistent estimation of linear functionals

‰.�/ D h ; �iH essentially depends on whether  lies in the range of I�
�
. A sufficient con-

dition for this is that  lies in the range of the information operator A�
�
A� D I�

�
I� , and the

results in [20] show that the lower bound in (2.18) can be attained by concrete estimators in
this situation. The general theory was shown to apply to a class of PDEs of Schrödinger type
[20,21] and to non-linear X -ray transforms [18,20], with smooth test functions  2 C1.

We now exhibit a PDE inverse problem where the range constraint from Theo-
rem 2 fails, fundamentally limiting the possibility of efficient

p
N -consistent estimation of

‘nice’ linear functionals. In particular, we will show that, unlike for the Schrödinger type
equations considered in [20, 21], for this PDE the inverse Fisher information �2

�
. / does

not exist for a large class of functionals ‰.�/ D h�;  iL2 , including generic examples of
smooth non-negative  2 C1. This implies in particular the non-existence of a ‘functional’
Bernstein–von Mises phenomenon that would establish asymptotic normality of the posterior
distribution of the process ¹h�; iL2 W  2 C1º (comparable to those obtained in [4,5,21]).
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3.1. Basic setting
Let O � Rd be a bounded smooth domain with boundary @O and, for convenience,

of unit volume �.O/ D 1, where � is Lebesgue measure. Denote by C1.O/ the set of all
smooth real-valued functions on O and byC1

0 .O/ the subspace of such functions of compact
support in O. Let L2 D L2

�
.O/ be the usual Hilbert space with inner product h�; �iL2 . The

L2
�
-Sobolev spaces Hˇ D Hˇ .O/ of order ˇ 2 N are also defined in the standard way, as

are the spaces C ˇ .O/ that have all partial derivatives bounded and continuous up to order ˇ.
For a conductivity � 2 C1.O/, source f 2 C1.O/ and boundary temperatures

g 2 C1.@O/, consider solutions u D u� D u�;f;g of the PDE

r � .�ru/ D f in O; (3.1)

u D g on @O:

Here r;�;r� denote the gradient, Laplace and divergence operator, respectively. We ensure
ellipticity by assuming � � �min > 0 throughout O.

We write L� D r � .�r.�// for the ‘divergence form’ operator featuring on the left-
hand side in (3.1). A unique solution u� 2 C1.O/ to (3.1) exists (e.g. Theorem 8.3 and
Corollary 8.11 in [10]). The operator L� has an inverse integral operator

V� W L2�.O/ ! H 2.O/ \ ¹hj@O D 0º (3.2)

for Dirichlet boundary conditions, that is, it satisfies V� Œf � D 0 at @O and L�V� Œf � D f

on O for all f 2 L2
�
.O/. Moreover, the operator V� is self-adjoint on L2

�
.O/. One further

shows that whenever f 2 H 2.O/ satisfies fj@O D 0, then V�L� Œf � D f . These standard
facts for elliptic PDEs can be proved, e.g. as in Section 5.1 in [29] or Chapter 2 in [17].

To define the ‘forward map’ G we consider a model ‚ of conductivities arising as
a Hˇ -neighbourhood of the standard Laplacian of radius � > 0, specifically

‚ D

²
� 2 C1.O/; inf

x
�.x/ >

1

2
; �j@O D 1 W k� � 1kHˇ .O/ < �

³
; ˇ > 1C d: (3.3)

The inverse problem is to recover � from solutions

G W ‚ ! L2�.O/; G .�/ � u� (3.4)

of (3.1) where we emphasise that f; g, as well as �j@O , are assumed to be known (see also
Remark 3). The particular numerical choices 1D �j@O and 1=2D �min are made for notational
convenience. For independent "i �i id N .0; 1/, Xi �i id �, we then observe data

.Yi ; Xi /
N
iD1 2 .R � O/N � PN� ; Yi D u� .Xi /C "i ; (3.5)

from model (2.2). Note that unlike in statistical ‘Calderón problems’ [1], we measure u�
throughout the entire domain O. Before we take a closer look at the local information geom-
etry of the map G arising from the PDE (3.1), let us first give conditions under which the
problem of inferring � from .Yi ; Xi /

N
iD1 in (3.5) has a consistent solution.
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3.2. Global injectivity and model examples
Under suitable constellations of f; g in (3.1), the non-linear map � 7! u� can be

injective, and ‘stability’ properties of G are well studied at least since [27], we refer to the
recent contributions [2,13,24] and the many references therein. For instance, one can show:

Proposition 3. Let �1; �2 2 C1.O/ be conductivities such that k�ikC 1 � B , �1 D �2 on
@O, and denote by u�i the corresponding solutions to (3.1). Assume

inf
x2O

�
�u� .x/C �

ˇ̌
ru� .x/

ˇ̌2
Rd

�
� c0 > 0 (3.6)

holds for � D �1 and some � > 0. Then we have for some C D C.B;�; c0;O/ > 0,

k�1 � �2kL2 � Cku�1 � u�2kH2 : (3.7)

Based on (3.7), one can show (see [13,24]) that we can recover � in L2-loss by some
estimator O� D O�..Yi ; Xi /

N
iD1/ at a ‘non-parametric rate’ k O� � �kL2.O/ D OPN

�
.N�
 / for

some 0 < 
 < 1=2, uniformly in ‚. We wish to study here inference on linear functionals

‰.�/ D h ; �iL2.O/;  2 C1
0 .O/:

As we can bound the ‘plug-in’ estimation error jh ; � � O�iL2 j by k O� � �kL2 , the conver-
gence rate N�
 carries over to estimation of ‰. Nevertheless, we will show that there are
fundamental limitations for efficient inference on‰ at the ‘semi-parametric’ rate (
 D 1=2).
This will be illustrated with two model examples for which the ‘injectivity’ condition (3.6)
can be checked.

Example 1 (No critical points). In (3.1), take

f D 2; g D
j � j2

Rd � 1

d
: (3.8)

Then for the standard Laplacian � D 1, we have u1 D g on NO;�u1 D 2, and hence ru1 D

2x=d , which satisfies infx2O jru1.x/jRd � c > 0 for any domain O � Rd separated away
from the origin. This lower bound extends to

inf
�2‚

inf
x2O

ˇ̌
ru� .x/

ˇ̌
Rd � cr > 0 (3.9)

for � small enough in (3.3), by perturbation: arguing as in (3.16) below and from standard
elliptic regularity estimates (Lemma 23 in [24] and as in (3.15)), we have for b > 1C d=2,
ˇ > b C d=2 (such that Hˇ � C b),

ku� � u1kC 1 .


V1�r � Œ.� � 1/ru� �

�


Hb .



.� � 1/ru�



Hb�1

. k� � 1kHb�1ku�kC b � k� � 1kHˇ ku�kHˇ < C�: (3.10)

In view of sup�2‚ k�u�k1 < 1 and (3.9), condition (3.6) is verified for � large enough
and all � 2 ‚.

The situation in Example 1 where the gradient ru� never vanishes is somewhat
atypical, and one may expect u� to possess a finite number of isolated critical points x0
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(where ru� .x0/ vanishes); see, e.g. [2] and references therein. The next example encom-
passes a prototypical such situation with an interior minimum. See also Remark 1 for the
case of a saddle point. Further examples with more than one critical point are easily con-
structed, too.

Example 2 (Interior minimum). Consider the previous example where now O is the unit
disk in R2 centred at the origin. In other words, in (3.1) we have f D 2 and gj@O D 0,
corresponding to a classical Dirichlet problem with source f . In this case u1 takes the same
form as in the previous example but now has a gradient ru1 D x that vanishes at the origin
0 2 R2, corresponding to the unique minimum of u1 on O. The injectivity condition (3.6)
is still satisfied for all � 2 ‚ simply since (3.1) implies

0 < 2 D ��u� C r� � ru� on O;

so that either �u� � 1=.2k�k1/ or jru� .x/jRd � 1=.2k�kC 1/ has to hold on O. In this
example, the constraints that � be small enough as well as that �1 D �2 on @O in Proposition 3
can in fact be removed, see Lemma 24 in [24].

3.3. The score operator and its adjoint
To connect to Section 2, let us regard ‚ from (3.3) as a subset of the Hilbert space

H D L2
�
.O/, and take G .�/ from (3.4); hence we set X D O, V D R, � D dx (Lebesgue

measure).
As ‘tangent space’ H � H, we take all smooth perturbations of � of compact sup-

port,
H D C1

0 .O/; (3.11)

so that the paths �s;h D � C sh, � 2 ‚, h 2 H , lie in ‚ for all s 2 R small enough. The
closure NH ofH for k � kH equals NH D H D L2

�
.O/. We now check Condition 1, restricting

to d � 3 to expedite the proof.

Theorem 4. Assume d � 3. Let‚ be as in (3.3) and let the tangent spaceH be as in (3.11).
The forward map � 7! G .�/ from (3.4) satisfies Condition 1 for every � 2 ‚, with uniform
bound UG D UG .kgk1; kf k1/ and with

I� .h/ � �V�
�
r � .hru� /

�
; h 2 H: (3.12)

In particular, I� extends to a bounded linear operator on H.

Proof. We can represent the solutions u� of (3.1) by a Feynman–Kac-type formula as

u� .x/ D Exg.X�O / � Ex
Z �O

0

f .Xs/ds; x 2 O; (3.13)

where .Xs W s � 0/ is a Markov diffusion process started at x 2 O with infinitesimal generator
L�=2, law Px D Px

�
, and exit time �O from O, see Theorem 2.1 on p. 127 in [8]. As in

the proof of Lemma 20 in [24], one bounds supx2O Ex�O by a constant that depends only
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on O; �min, and we conclude from the last display that therefore

ku�k1 � kgk1 C kf k1 sup
x2O

Ex�O < 1 (3.14)

so that the bound UG for G required in Condition 1 follows.
We will repeatedly use the following elliptic regularity estimates:

V� Œh�

1

� c0


V� Œh�

H2 � c1khkL2 ; ku�kH2 � c2; (3.15)

with constants c0 D c0.O/, c1 D c1.�min;O;ˇ;�/, c2 D c2.UG ;kf kL2 ;kgkH2 ; �min;O;ˇ;�/

that are uniform in � 2 ‚. The first inequality in (3.15) is just the Sobolev imbedding. The
second follows from Lemma 21 in [24], noting also that sup�2‚ k�kC 1 � C.ˇ; �;O/ by
another Sobolev imbedding Hˇ � C 1. The final inequality in (3.15) follows from Theo-
rem 8.12 in [10] and (3.14).

To verify (2.4), notice that the difference u�Csh � u� solves (3.1) with g D 0 and
appropriate right-hand side, specifically we can write

G .� C sh/ � G .�/ D �sV�
�
r � .hru�Csh/

�
; h 2 H; (3.16)

for jsj small enough. Then (2.4) follows from (3.15) since

V� �r � .hru�Csh/
�



1
.


r � .hru�Csh/




L2

. khru�CshkH1

. khkC 1 sup
�2‚

ku�kH2 � B < 1:

We will verify (2.3) by establishing a stronger ‘k � k1-norm’ differentiability result:
fix � 2 ‚ and any h 2 H such that � C h 2 ‚. Denote by DG� Œh� the solution v D vh of
the PDE

r � .�rv/ D �r � .hru� / on O;

v D 0 on @O

where u� is the given solution of the original PDE (3.1). Then the function wh D u�Ch �

u� �DG� Œh� solves the PDE

L�Chwh D �r �
�
hrV� Œr � .hru� /�

�
on O;

wh D 0 on @O:

As a consequence, applying (3.15) and standard inequalities repeatedly, we have

u�Ch � u� �DG� Œh�




1
D


V�Ch

�
r �

�
hrV� Œr � .hru� /�

��


1

.


r �

�
hrV� Œr � .hru� /�

�


L2

. khkC 1


V� �r � .hru� /

�


H2

. khkC 1


r � .hru� /




L2

. khk
2
C 1

ku�kH2 D O
�
khk

2
C 1

�
: (3.17)

5528 R. Nickl and G. P. Paternain



In particular DG� Œsh� D I� Œsh� is the linearisation of the forward map � 7! G .�/ D u�

along any path � C sh; jsj > 0, h 2 H . Finally, by duality, self-adjointness of V� and the
divergence theorem (Proposition 2.3 on p. 143 in [29]), we can bound for every h 2 H ,

kI�hkL2 D sup
k�kL2�1

ˇ̌̌̌ Z
O

�V�
�
r � .hru� /

�ˇ̌̌̌
D sup

k�kL2�1

ˇ̌̌̌ Z
O

rV� Œ�� � hru� �

ˇ̌̌̌
. sup

k�kL2�1



V� Œ��

H1khkL2ku�kC 1 . khkL2 ;

using also (3.15) and that ku�kC 1 < 1 (here for fixed � ) as u� is smooth. By continuity
and since H is dense in L2

�
D H, we can extend I� to a bounded linear operator on H,

completing the proof.

Theorem 1 gives the score operator A� mappingH intoL2.R � O;P� / of the form

A� Œh�.x; y/ D
�
y � u� .x/

�
� I� .h/.x/; y 2 R; x 2 O: (3.18)

For the present tangent spaceH , we have NH D H. To apply the general results from Section 2,
we now calculate the adjoint I�

�
W L2

�
.O/ ! NH D L2

�
.O/ of I� W NH ! L2.O/.

Proposition 4. The adjoint I�
�

W L2
�
.O/ ! L2

�
.O/ of I� is given by

I�
� Œg� D ru� � rV� Œg�; g 2 L2�.O/: (3.19)

Proof. Since I� from (3.12) defines a bounded linear operator on the Hilbert spaceL2
�

D H,
a unique adjoint operator I �

�
exists by the Riesz representation theorem. Let us first show that˝

h;
�
I �
� � I�

�

�
g
˛
L2

D 0; 8h; g 2 C1
0 .O/: (3.20)

Indeed, sinceV� is self-adjoint forL2
�

and satisfies ŒV�g�j@O D 0, we can apply the divergence
theorem (Proposition 2.3 on p. 143 in [29]) with vector field X D hru� to deduce˝

h; I �
� g
˛
L2.O/

D hI�h; giL2.O/ D �
˝
V�
�
r � .hru� /

�
; g
˛
L2.O/

D �

Z
O

�
r � .hru� /

�
V� Œg�d�

D

Z
O

hru� � rV� Œg�d� D
˝
h; I�

�g
˛
L2.O/

;

so that (3.20) follows. Since C1
0 .O/ is dense in L2

�
.O/ and since I �

�
, I�
�

are continuous on
L2
�
.O/ (by construction in the former case and by (3.15), u� 2 C1.O/, in the latter case),

the identity (3.20) extends to all g 2 L2
�
.O/ and hence I �

�
D I�

�
, as desired.

Note further that for � 2 ‚ fixed, using (3.15), u� 2 C1 and L2-continuity of I� ,
we have kI�

�
I�hkH1 . kI�hkL2 . khkL2 . The compactness of the embeddingH 1 �L2 now

implies that the information operator I�
�
I� is a compact and self-adjoint operator on L2.O/.

3.4. Injectivity of I� , I�
�
I�

Following the developments in Section 2, our ultimate goal is to understand the
range R.I�

�
/ of the adjoint operator I�

�
. A standard Hilbert space duality argument implies

that
R
�
I�
�

�?
D ker.I� /; (3.21)
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that is, the ortho-complement (in H) of the range of I�
�

equals the kernel (null space) of I�
(in H). Thus if  is in the kernel of I� then it cannot lie in the range of the adjoint and the
non-existence of the inverse Fisher information in Theorem 2 for such  can be attributed
simply to the lack of injectivity of I� .

We first show that under the natural ‘global identification’ condition (3.6), the map-
ping I� from (3.12) is injective on the tangent spaceH (and hence on our parameter space‚).
The proof (which is postponed to Section 4.1) also implies injectivity of the information oper-
ator I�

�
I� on H , and in fact gives an H 2 � L2 Lipschitz stability estimate for I� .

Theorem 5. In the setting of Theorem 4, suppose also that (3.6) holds true. Then for I�
from (3.12), every � 2 ‚ and some c D c.�; c0; �;O/,

I� Œh�




H2 � ckhkL2 8h 2 H: (3.22)

In particular, I� .h/ D 0 or I�
�
I� .h/ D 0 imply h D 0 for all h 2 H .

Using (3.15), one shows further that the operator I� is continuous from H 1.O/ !

H 2.O/ and, by taking limits in (3.22), Theorem 5 then extends to all h 2 H 1
0 .O/ obtained

as the completion of H for the H 1.O/-Sobolev norm.
Of course, the kernel in (3.21) is calculated on the Hilbert space H D L2.O/, so the

previous theorem does not characteriseR.I�
�
/?, yet. Whether I� is injective on all ofL2.O/

depends on finer details of the PDE (3.1). Let us illustrate this in the model examples from
above.

3.4.1. Example 1 continued; on the kernel in L2.O/

In our first example, I� starts to have a kernel already when hj@O ¤ 0. Indeed, from
the proof of Theorem 5, a function h 2 C1. NO/ is in the kernel of I� if and only if

T� .h/ D r � .hru� / D rh � ru� C h�u� D 0: (3.23)

Now fix any � 2 ‚ with u� satisfying (3.9). The integral curves 
.t/ in O associated to the
smooth vector field ru� ¤ 0 are given near x 2 O as the unique solutions (e.g. [29, p. 9]) of
the vector ODE

d


dt
D ru� .
/; 
.0/ D x: (3.24)

Since ru� does not vanish, we obtain through each x 2 O a unique curve .
.t/ W 0� t � T
 /

originating and terminating at the boundary @O, with finite ‘travel time’T
 �T .O; cr/ <1.
Along this curve, (3.23) becomes the ODE

d

dt
h
�

.t/

�
C h

�

.t/

�
�u�

�

.t/

�
D 0; 0 < t < T
 :

Under the constraint hj@O D 0 for h 2 H , the unique solution of this ODE is h D 0, which
is in line with Theorem 5. But for other boundary values of h, non-zero solutions exist.
One can characterise the elements h 2 C1. NO/ in the kernel of I� as follows. Since the
vector field ru� is non-trapping, there exists (see [7, Theorem 6.4.1]) r 2 C1. NO/ such that
ru� � rr D �u� . Thus

ru� � r.her / D erT� .h/
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and it follows that T� .h/ D 0 iff her is a first integral of ru� . Observe that the set of first
integrals of ru� is rather large: using the flow of ru� , we can pick coordinates .x1; : : : ; xd /
in O such that t 7! .t C x1; x2; : : : ; xd / are the integral curves of ru� and thus any function
that depends only on x2; : : : ; xd is a first integral.

3.4.2. Example 2 continued; injectivity on L2.O/

We now show that in the context of Example 2, the injectivity part of Theorem 5
does extend to all of L2.O/.

Proposition 5. Let I� be as in (3.12) where u� solves (3.1) with f;g as in (3.8) and O is the
unit disk in R2 centred at .0; 0/. Then for � D 1, the map I1 W L2.O/ ! L2.O/ is injective.

Proof. Let us write I D I1 and suppose I.f /D 0 for f 2L2.O/. Then for any h 2 C1.O/

we have by Proposition 4

0 D hIf; hiL2.O/ D hf; I �hiL2.O/ D
˝
f;XV1Œh�

˛
L2.O/

(3.25)

with vector field X D ru1 � r.�/ D x1@x1 C x2@x2, .x1; x2/ 2 O. Choosing h D �g for
any smooth g of compact support, we deduce thatZ

O

X.g/f d� D 0; 8g 2 C1
0 .O/; (3.26)

and we now show that this implies f D 0. A somewhat informal dynamical argument would
say that (3.26) asserts that fd� is an invariant density under the flow ofX . Since the flow of
X in backward time has a sink at the origin, the density can only be supported at .x1; x2/D 0

and thus f D 0.
One can give a distributional argument as follows. Suppose we consider polar coor-

dinates .r; #/ 2 .0; 1/� S1 and functions g of the form �.r/ .#/, where � 2 C1
0 .0; 1/ and

 2 C1.S1/. In polar coordinates X D r@r , and hence we may write (3.26) asZ 1

0

 
r2

 Z 2�

0

f .r; #/ .#/ d#

!
@r�

!
dr D 0: (3.27)

By Fubini’s theorem, for each  we have an integrable function

F .r/ WD

Z 2�

0

f .r; #/ .#/ d#

and thus r2F defines an integrable function on .0; 1/ whose distributional derivative satis-
fies @r .r2F / D 0 by virtue of (3.27). Thus r2F D c (using that a distribution on .0; 1/
with zero derivative must be a constant). Now consider  2 C1.S1/ also as a function in
L2.O/ and compute the pairing

.f;  /L2.O/ D

Z 1

0

rF .r/ dr D c 

Z 1

0

r�1 dr D ˙1

unless c D 0. Thus f D 0.

By perturbation (similar as in (3.10)) and the Morse lemma, we can show that
u� ; � 2 ‚, has a gradient u� that vanishes only at a single point in a neighbourhood of
0, and so the proof of the previous theorem extends to any � 2 ‚.
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3.5. The range of I�
�

and transport PDEs
From (3.21) we see R.I�

�
/ D ker.I� /?, but in our infinite-dimensional setting care

needs to be exercised as the last identity holds in the (complete) Hilbert space H D L2.O/

rather than in our tangent space H (on which the kernel of I� is trivial). We will now show
that the range R.I�

�
/ remains strongly constrained. This is also true in Example 2 when

ker.I� / D ¹0º: the range may not be closed R.I�
�
/ ¤ R.I�

�
/, and this ‘gap’ can be essential

in the context of Theorems 2 and 3. To understand this, note that from Proposition 4 we have

R
�
I�
�

�
D
®
 D ru� � rV� Œg�; for some g 2 L2�.O/

¯
: (3.28)

The operator V� maps L2
�

intoH 2
0 D ¹y 2 H 2 W yj@O D 0º and hence if  is in the range of

I�
�

then the equation

ru� � ry D  on O; (3.29)

y D 0 on @O

necessarily has a solution y D y 2 H 2
0 . The existence of solutions to the transport PDE

(3.29) depends crucially on the compatibility of  with geometric properties of the vector
field ru� , which in turn is determined by the geometry of the forward map G (via f; g; � )
in the base PDE (3.1). We now illustrate this in our two model Examples 1 and 2.

3.5.1. Example 1 continued; range constraint
Applying the chain rule to y 2 H 2.O/ and using (3.24), we see
d

dt
y
�

.t/

�
D
d
.t/

dt
� ry

�

.t/

�
D .ru� � ry/

�

.t/

�
; 0 < t < T
 :

Hence along any integral curve 
 of the vector field ru� , the PDE (3.29) reduces to the ODE
dy

dt
D  : (3.30)

Now suppose  2 R.I�
�
/. Then a solution y 2 H 2

0 to (3.29) satisfying yj@O D 0 must exist.
Such y then also solves the ODE (3.30) along each curve 
 , with initial and terminal values
y.0/ D y.T
 / D 0. By the fundamental theorem of calculus (and uniqueness of solutions),
this forces Z T


0

 
�

.t/

�
dt D 0 (3.31)

to vanish. In other words,  permits a solution y to (3.29) only if  integrates to zero along
each integral curve (orbit) induced by the vector field ru� . Now consider any smooth (non-
zero) nonnegative in the tangent spaceH D C1

0 .O/, and take x 2 O such that � c > 0

near x. For 
 the integral curve passing through x, we then cannot have (3.31) as the inte-
grand never takes negative values while it is positive and continuous near x. Conclude by
way of contradiction that  … R.I�

�
/. Applying Theorems 2 and 3, we have proved:

Theorem 6. Consider estimation of the functional‰.�/D h�; iL2.O/ from data .Yi ;Xi /NiD1
drawn i.i.d. fromPN

�
in the model (3.5) where f;g in (3.1) are chosen as in (3.8), the domain

O is separated away from the origin, and‚ is as in (3.3) with � small enough and ˇ > 1C d ,
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d � 3. Suppose 0 ¤  2 C1
0 .O/ satisfies  � 0 on O. Then for every � 2 ‚, the efficient

Fisher information for estimating ‰.�/ satisfies

inf
h2H;hh; iL2¤0

kI�hk2
L2
�

h ; hi2
L2
�

D 0: (3.32)

In particular, for any � 2 ‚,

lim inf
N!1

inf
Q N W.R�O/N!R

sup
� 02‚;k� 0��kH�1=

p
N

NEN� 0

�
Q N �‰.� 0/

�2
D 1: (3.33)

Let us notice that one can further show that (3.31) is also a sufficient condition for
 to lie in the range of I�

�
(provided  is smooth and with compact support in O). As this

condition strongly depends on � via the vector field ru� , it seems difficult to describe any
choices of  that lie in

T
�2‚R.I

�
�
/.

3.5.2. Example 2 continued; range constraint
We showed in the setting of Example 2 that I� is injective on all ofL2.O/, and hence

any  2 L2.O/ lies in closure of the range of I�
�
. Nevertheless, there are many relevant

 ’s that are not contained in R.I�
�
/. In Example 2, the gradient of u� vanishes and the

integral curves 
 associated to ru� D .x1; x2/ emanate along straight lines from .0; 0/

towards boundary points .z1; z2/ 2 @O where y..z1; z2// D 0. If we parameterise them as
¹.z1e

t ; z2e
t / W �1 < t � 0º, then as after (3.30) we see that if a solution y 2 H 2

0 to (3.29)
exists then  must necessarily satisfyZ 0

�1

 
�
z1e

t ; z2e
t
�
dt D 0 � y.0/ D const: 8.z1; z2/ 2 @O: (3.34)

This again cannot happen, for example, for any non-negative non-zero  2 H that vanishes
along a given curve 
 (for instance if it is zero in any given quadrant of O), as this forces
const D 0. Theorems 2 and 3 again yield the following for Example 2:

Theorem 7. Consider the setting of Theorem 6 but where now O is the unit disk centred at
.0; 0/, and where 0 �  2 C1

0 .O/,  ¤ 0, vanishes along some straight ray from .0; 0/ to
the boundary @O. Then (3.32) and (3.33) hold at � D 1.

Arguing as after Proposition 5, the result can be extended to any � 2 ‚ by an appli-
cation of the Morse lemma.

3.6. Concluding remarks
Remark 1 (Interior saddle points of u� ). To complement Examples 1, 2, suppose we take
� D 1, f D 0 in (3.1) so that uD u1 D x21 � x22 if gD u@O (and O is the unit disk, say). Then
ru D 2.x1;�x2/ and the critical point is a saddle point. In this case we can find integral
curves 
x running through x away from .0; 0/ between boundary points in finite time. Then
is  is nonnegative and supported near x it cannot integrate to zero along 
x . An analogue
of Theorem 6 then follows for this constellation of parameters in (3.1), too. Note that in this
example, the kernel of I� contains at least all constants.
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Remark 2 (Local curvature of G ). The quantitative nature of (3.22) in Theorem 5 is com-
patible with ‘gradient stability conditions’ employed in [3, 25] to establish polynomial time
posterior computation time bounds for gradient based Langevin MCMC schemes. Specifi-
cally, arguing as in Lemma 4.7 in [25], for a neighbourhood B of �0 one can deduce local
average ‘curvature’

inf
�2B

�minE�0
�
�r

2`.�/
�

� c2D
�4=d ;

of the average-log-likelihood function ` when the model ‚ is discretised in the eigenbasis
ED � .en W n � D/ � H arising from the Dirichlet Laplacian. In this sense (using also
the results from [13]) one can expect a Bayesian inference method based on data (2.2) and
Gaussian process priors to be consistent and computable even in high-dimensional settings.
This shows that such local curvature results are not sufficient to establish (and hence distinct
from) Gaussian ‘Bernstein–von Mises-type’ approximations.

Remark 3 (Boundary constraints on � ). As the main flavour of our results is ‘negative’, the
assumption of knowledge of the boundary values of � in (3.3) strengthens our conclusions
– it is also natural as the regression function u D g is already assumed to be known at @O.
In the definition of the parameter space ‚, we could further have assumed that all outward
normal derivatives up to order ˇ � 1 of � vanish at @O. This would be in line with the
parameter spaces from [13,24]. All results in this section remain valid because our choice of
tangent space H in (3.11) is compatible with this more constrained parameter space.

Remark 4 (Ellipticity). The Bernstein–von Mises theorems from [18,20,21] exploit ellipticity
of the information operator I�

�
I� in their settings, allowing one to solve for y in the equation

I�
�
I�y D  so that R.I�

�
/ contains at least all smooth compactly supported  (and this is

so for any parameter � 2 ‚). In contrast, in the present inverse problem arising from (3.1),
the information operator does not have this property and solutions y to the critical equation
I�
�
y D  exist only under stringent geometric conditions on  . Moreover, these conditions

exhibit a delicate dependence on � , further constraining the set
T
�2‚ R.I

�
�
/ relevant for

purposes of statistical inference.

4. Appendix

For convenience of the reader we include here a few more proofs of some results of
this article.

4.1. Proofs of Theorem 5 and Proposition 3
Define the operator

T� .h/ D r � .hru� /; h 2 H;

so that (3.12) becomes I� D V� ı T� . The map u 7! .L�u; uj@O/ is a topological isomor-
phism between H 2.O/ and L2.O/ �H 3=2.@O/ (see [17], Theorem II.5.4), and hence with
u D V� Œw� we deduce kV� Œw�kH2 & kwkL2 for all w 2 C1.O/. As a consequence, using
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also Lemma 1,
kI� Œh�kH2 & kT� .h/kL2 & khkL2 ; h 2 H;

which proves the inequality in Theorem 5. Next, as I� is linear, we see that whenever I� Œh1�D

I� Œh2� for h1; h2 2 H we have I� Œh1 � h2� D 0, and so by the preceding inequality h D

h1 � h2 D 0 in L2, too. Likewise, if h1; h2 2 H are such that I�
�
I�h1 D I�

�
I�h2, then 0 D

hI�
�
I� .h1 � h2/; h1 � h2iL2

�
D kI� .h1 � h2/k

2
L2
�

so I�h1 D I�h2 and thus by what precedes
h1 D h2.

Lemma 1. We have kT� .h/kL2 D kr � .hru� /kL2 � ckhkL2 for all h 2 H and some con-
stant c D c.�;B; c0/ > 0, where B � ku�k1.

Proof. Applying the Gauss–Green theorem to any v 2 C 1.O/ vanishing at @O gives˝
�u� ; v

2
˛
L2

C
1

2

˝
ru� ;r

�
v2
�˛
L2

D
1

2

˝
�u� ; v

2
˛
L2
:

For v D e��u�h, h 2 H , with � > 0 to be chosen, we thus have
1

2

Z
O

r
�
v2
�

� ru� D �

Z
O

�kru�k
2v2 C

Z
O

ve��u�rh � ru� ;

so that by the Cauchy–Schwarz inequalityˇ̌̌̌Z
O

�
1

2
�u� C �kru�k

2

�
v2
ˇ̌̌̌

D

ˇ̌̌̌˝�
�u� C �kru�k

2
�
; v2

˛
L2

C
1

2

˝
ru� ;r

�
v2
�˛
L2

ˇ̌̌̌
D
ˇ̌˝
h�u� C rh � ru� ; he

�2�u�
˛
L2

ˇ̌
� �



r � .hru� /



L2

khkL2 (4.1)

for N� D exp.2�ku�k1/. We next lower bound the multipliers of v2 in the left-hand side
of (4.1). By (3.6), ˇ̌̌̌Z

O

�
1

2
�u� C �kru�k

2

�
v2
ˇ̌̌̌

� c0

Z
O

v2

and, combining this with (4.1), we deduce

r � .hru� /



L2

khkL2 � c0
kvk

2
L2.O/

& khk
2
L2
; h 2 H;

which is the desired estimate.

The last lemma also immediately implies Proposition 3. Let us write h D �1 � �2

which defines an element ofH . Then by (3.1) we have r � .hru�1/D r � .�2r.u�2 � u�1//

and hence kr � .hru�1/kL2 . ku�2 � u�1kH2 . By Lemma 1 the left-hand side is lower
bounded by a constant multiple of khkL2 D k�1 � �2kL2 , so that the result follows.

4.2. Proof of Theorem 2 for I�
�
I� compact

Let us assume NH D H without loss of generality, write I � I� , L2 D L2
�
.X/ in

this proof, and let ker.I �I /D ¹h 2 H W I �IhD 0º. If I �I is a compact operator on H then
by the spectral theorem for self-adjoint operators, there exists an orthonormal system of H
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of eigenvectors ¹ek W k 2 Nº spanning H 	 ker.I �I / corresponding to eigenvalues �k > 0
so that

I �Iek D �kek ; and I �Ih D

X
k

�khh; ekiHek ; h 2 H:

We can then define the usual square-root operator .I �I /1=2 by�
I �I

�1=2
h D

X
k

�
1=2

k
hh; ekiHek ; h 2 H: (4.2)

If we denote by P0 the H-projection onto ker.I �I /, then the range of .I �I /1=2 equals

R
��
I �I

�1=2�
D

²
g 2 H W P0.g/ D 0;

X
k

��1
k hek ; gi

2
H < 1

³
: (4.3)

Indeed, using standard Hilbert space arguments, (a) sinceP0.ek/D 0 for all k, for any h 2 H

the element g D .I �I /1=2h belongs to the right-hand side in the last display, and conversely
(b) if g satisfiesP0.g/D 0 and

P
k �

�1
k

hek ; gi2H <1 then hD
P
k �

�1=2

k
hek ; giek belongs

to H and .I �I /1=2h D g.
Next, Lemma A.3 in [30] implies that R.I �/ D R..I �I /1=2/. Now suppose  2 H

is such that  … R.I �/ and hence  … R..I �I /1=2/. Then from (4.3), either P0. / ¤ 0 orP
k �

�1
k

hek ;  i2H D 1 (or both). In the first case, let Nh D P0. /, so

kI NhkL2 D


I �P0. /�

L2 D

˝
I �I

�
P0. /

�
; P0. /

˛
H

D 0;

but h ; NhiH D kP0 k2H D ı for some ı > 0. Since H is dense in H, for any �; 0 < � <

min.ı=.2k kH/; ı
2=4/, we can find h 2 H such that kh � NhkH < � and by continuity also

kI.h � Nh/kL2 < �. Then p
i�;h; D

kIhkL2

jh ; hiHj
� 2

�

ı
�

p
�:

Using also (2.12), we conclude that i�;H; < � in (2.21), so that the result follows since �
was arbitrary. In the second case we have

P
k �

�1
k

hek ;  i2H D 1 and define

 N D

X
k�N

��1
k ekhek ;  iH; N 2 N;

which defines an element of H. By density we can choose hN 2H such that khN � N kH <

1=k kH, as well as kI.hN �  N /kL2 < 1, for every N fixed. Next observe that

h ; N iH D

X
k�N

��1
k hek ;  i

2
H � MN ;



I. N /

2L2 D
˝
I �I. N /;  N

˛
H

D

X
k�N

��1
k hek ;  i

2
H D MN ;

and thatMN ! 1 as N ! 1. Then by our choice of hN 2 H and ifMN � 2, we have by
the triangle inequality,ˇ̌

h ; hN iH

ˇ̌
�
ˇ̌
h ; N iH

ˇ̌
�
ˇ̌
h ; N � hN iH

ˇ̌
� MN � 1 � MN =2;

I.hN /

L2 �



I. N /

L2 C


I.hN �  N /




L2

�
p
MN C 1 � 2

p
MN :
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From this and (2.12) we conclude that the inverse of (2.21) satisfies

i�1�;H; �
h ; hN i2H

kIhN k2
L2

�
1

16

M 2
N

MN

� MN =16:

As N was arbitrary and MN !N!1 1, we must have i�;H; D 0, as desired.
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