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ABSTRACT

We describe basic ideas underlying research to build and understand artificially intelligent
systems: from symbolic approaches via statistical learning to interventional models relying
on concepts of causality. Some of the hard open problems of machine learning and Al are
intrinsically related to causality, and progress may require advances in our understanding
of how to model and infer causality from data.
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1. INTRODUCTION

In 1958, the New York Times reported on a new machine called the perceptron.
Frank Rosenblatt, its inventor, demonstrated that the perceptron was able to learn from expe-
rience. He predicted that later perceptrons would be able to recognize people, or instantly
translate spoken language. Now a reality, this must have sounded like distant science fiction
at the time. In hindsight, we may consider it the birth of machine learning, the field fueling
most of the current advances in artificial intelligence (Al).

Around the same time, another equally revolutionary development took place: scien-
tists understood that computers could do more than compute numbers: they can process sym-
bols. Although this insight was also motivated by artificial intelligence, in hindsight it was
the birth of the field of computer science. There was great optimism that the manipulation of
symbols, in programs written by humans, implementing rules designed by humans, should be
enough to generate intelligence. Below, we shall refer to this as the symbol—rule hypothesis."

There was initially encouraging progress on seemingly hard problems such as auto-
matic theorem proving and computer chess. One of the fathers of the field, Herb Simon,
predicted in 1956 that “machines will be capable, within twenty years, of doing any work a
man can do.” However, problems that appeared simple, such as most things animals could
do, turned out to be hard. This came to be known as Moravecs paradox. When IBM’s
Deep Blue chess computer beat Garry Kasparov in 1997, Kasparov was physically facing
a human during the match: while Deep Blue was capable of analyzing the game’s search tree
in unprecedented detail, it was unable to recognize and physically move chess pieces, so this
task had to be relegated to a human, in an inversion of the famous mechanical turk.2

In the years to follow, the field of Al entered what came to be known as the Al winter.
The community got disillusioned with the lack of progress and prospects, and interest greatly
declined. However, largely independently of the field of classic Al, machine learning even-
tually started to boom. Like Rosenblatt’s early work, it was built on the observation that all
existing examples of truly intelligent systems—i.e., animals, including humans—were not
built on the symbol-rule hypothesis: both the representations and the rules implemented by
natural intelligent systems are acquired from experience, through processes of evolution and
learning.

Rather than exploring the well-known dichotomy between rule- and learning-based
approaches, we will explore the less known questions of causality and interventions. While
the field of causality in computer science was initially strongly linked to classic Al, recent
years have witnessed great interest in connecting it to machine learning [111]. Below, we
explore some of these connections, drawing from [125,133]. We will argue that the causal
view is relevant when it comes to addressing crucial open problems of machine learning,
related to notions of robustness and generalization beyond the training distribution.

1 The term should be taken with a grain of salt, since it suggests a separation between repre-
sentations and computations which is hard to uphold in practice.
2 https://en.wikipedia.org/wiki/Mechanical_Turk.
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Overview. In statistical learning, our starting point is a joint distribution p(X) generating
the observable data. Here, X is arandom vector, and we are usually given a dataset Xy, . . ., Xz,
sampledi.i.d. from p. We are often interested in estimating properties of conditionals of some
components of X given others, e.g., a classifier (which may be obtained by thresholding a
conditional at 0.5). This is a nontrivial inverse problem, giving rise to statistical learning
theory (Section 2).

Causal learning is motivated by shortcomings of statistical learning (Section 3). Its
starting point is a structural causal model (SCM) [1e4] (Section 4). In an SCM, the compo-
nents X1,..., X, of X are identified with vertices of a directed graph whose arrows represent
direct causal influences, and there is a random variable U; for each vertex, along with a func-
tion f; which computes X; from its graph parents PA; and U;, i.e.,

X,’ = f,’(PA,‘,Ui). (1.1)

Given a distribution over the U;, which are assumed independent, this also gives rise to a
probabilistic model p(X). However, the model in (1.1) is more structured: the graph connec-
tivity and the functions f; create particular dependences between the observables. Moreover,
it describes how the system behaves under intervention: by replacing functions by constants,
we can compute the effect of setting some variables to specific values.

Causal learning builds on assumptions different from standard machine learn-
ing (Section 5), and addresses a different level in the modeling hierarchy (Section 6). It
also comes with new problems, such as causal discovery, where we seek to infer proper-
ties of graph and functions from data (Section 7). In some cases, conditional independences
among the X; contain information about the graph [144]; but novel assumptions let us handle
some cases that were previously unsolvable [68]. Those assumptions have nontrivial implica-
tions for machine learning tasks such as semisupervised learning, covariate shift adaptation
and transfer learning [128] (Section 8). Once provided with a causal model, causal reason-
ing (Section 9) allows us to identify and estimate certain causal queries of interest from
observational data. We conclude with a list of some current and open problems (Section 10),
with a particular emphasis on the topic of causal representation learning.

The presentation and notation will be somewhat informal in several respects. We
generally assume that all distributions possess densities (with respect to a suitable reference
measure). We sometimes write p(x) for the distribution (or density) of a random variable X .
Accordingly, the same p can denote another distribution p(y), distinguished by the argument
of p(:). We also sometimes use summation for marginalization which supposes discrete vari-
ables; the corresponding expressions for continuous quantities would use integrals.

2. STATISTICAL LEARNING THEORY

Suppose we have measured two statistically dependent observables and found the
points to lie approximately on a straight line. An empirical scientist might be willing to
hypothesize a corresponding law of nature (see Figure 1). However, already Leibniz pointed
out that if we scatter spots of ink randomly on a piece of paper by shaking a quill pen, we
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FIGURE 1
Given a small number of observations, how do we find a law underlying them? Leibniz argued that even if we
generate a random set of points, we can always find a mathematical equation satisfied by these points.

can also find a mathematical equation satisfied by these points [81]. He argued that we would
not call this a law of nature, because no matter how the points are distributed, there always
exists such an equation; we would only call it a law of nature only if the equation is simple.
This raises the question of what makes an equation simple. The physicist Rutherford took the
pragmatic view that if there is a law, it should be directly evident from the data: “if your exper-
iment needs statistics, you ought to have done a better experiment.” This view may have been
a healthy one when faced with low-dimensional inference problems where regularities are
immediately obvious; however, modern Al is facing inference problems that are harder: they
are often high-dimensional and nonlinear, yet we may have little prior knowledge about the
underlying regularity (e.g., for medical data, we usually do not have a mechanistic model).

Statistical learning theory studies the problem of how to still perform valid infer-
ence, provided that we have sufficiently large datasets and the computational means to pro-
cess them. Let us look at some theoretical results for the simplest learning scenario, drawing
from [13e]; for details, see [153]. Suppose we are given empirical observations,

(X1, 91+ s X, Yym) € X X Y, 2.1

where X is some nonempty set from which the inputs come, and ¥ = {31} is the output set,
in our case consisting of just two classes. This situation is called pattern recognition, and our
goal is to use the training data (2.1) to infer a function f : X — {£1} (from some function
class chosen a priori) which will produce the correct output for a new input x which we may
not have seen before. To formalize what we mean by “correct,” we make the assumption
that all observations (x;, y;) have been generated independently by performing a random
experiment described by an unknown probability distribution p(x, y)—a setting referred
to as i.i.d. (independent and identically distributed) data. Our goal will be to minimize the

3 Cited after http://www.warwick.ac.uk/statsdept/staff/JTEHS/data/jehsquot.pdf.

5543 FROM STATISTICAL TO CAUSAL LEARNING


http://www.warwick.ac.uk/statsdept/staff/JEHS/data/jehsquot.pdf

FIGURE 2

Using straight lines, we can separate three points in all possible ways; we cannot do this for four points, no matter
how they are placed. The class of linear separations is not “falsifiable” using three points, but it becomes
falsifiable once we have four or more points.

expected error (or risk)

RIf] = /x CO SN, ), 22)

where ¢ is a so-called loss function, e.g., the misclassification error c(y, f(x)) =
%| f(x) — y| taking the value 0 whenever f(x) = y and 1 otherwise.

The difficulty of the task stems from the fact that we are trying to minimize a quantity
that we cannot evaluate: since we do not know p, we cannot compute (2.2). We do know,
however, the training data (2.1) sampled from p. We can thus try to infer a function f from
the training sample whose risk is close to the minimum of (2.2). To this end, we need what
is called an induction principle.

One way to proceed is to use the training sample to approximate (2.2) by a finite
sum, referred to as the empirical risk

1 m
Rempl f] = p ;C(xhy:'a S(xi)). (2.3)
The empirical risk minimization (ERM) induction principle recommends that we choose (or
“learn”) an f that minimizes (2.3). We can then ask whether the ERM principle is statis-
tically consistent: in the limit of infinitely many data points, will ERM lead to a solution
which will do as well as possible on future data generated by p?
It turns out that if the function class over which we minimize (2.3) is too large, then
ERM is not consistent. Hence, we need to suitably restrict the class of possible functions. For
instance, ERM is consistent for all probability distributions, provided that the VC dimension
of the function class is finite. The VC dimension is an example of a capacity measure. It is
defined as the maximal number of points that can be separated (classified) in all possible
ways using functions from the class. For example, using linear classifiers (separating classes
by straight lines) on R?, we can realize all possible classifications for 3 suitably chosen
points, but we can no longer do this once we have 4 points, no matter how they are placed
(see Figure 2). This means that the VC dimension of this function class is 3. More generally,
for linear separations in R4 , the VC dimension is d + 1.
Whenever the VC dimension is finite, our class of functions (or explanations)
becomes falsifiable in the sense that starting from a certain number of observations, no
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longer all possible labelings of the points can be explained (cf. Figure 2). If we can never-
theless explain a sufficiently large set of observed data, we thus have reason to believe that
this is a meaningful finding.

Much of machine learning research is concerned with restrictions on classes of func-
tions to make inference possible, be it by imposing prior distributions on function classes,
through other constraints, or by designing self-regularizing learning procedures, e.g., gradi-
ent descent methods for neural networks [79]. While there is a solid theoretical understanding
of supervised machine learning as described above (i.e., function learning from input—output
examples), there are still details under investigation, such as the recently observed phe-
nomenon of “double descent” [7].

A popular constraint, implemented in the Support Vector Machine (SVM) [130,153],
is to consider linear separations with large margin: it turns out that for large margin separa-
tions in high-dimensional (or infinite-dimensional) spaces, the capacity can be much smaller
than the dimensionality, making learning possible in situations where it would otherwise fail.

For some learning algorithms, including SVMs and nearest neighbor classifiers,
there are strong universal consistency results, guaranteeing convergence of the algorithm to
the lowest achievable risk, for any problem to be learned [28,138,146,153]. Note, however, that
this convergence can be arbitrarily slow.

For a given sample size, it will depend on the problem being learned whether we
achieve low expected error. In addition to asymptotic consistency statements, learning theory
makes finite sample size statements: one can prove that with probability at least 1 — § (for
8 > 0), for all functions f in a class of functions with VC dimension #,

)

This is an example of a class of results that relate the training error Remp[ /] and the test error

R[f] < Remp[f] + \/% (h(log(Zm/h) +1) +log ‘_‘)_ (2.4)

R][ f] using a confidence interval (the square root term) depending on a capacity measure of
a function class (here, its VC dimension /). It says that with high probability, the expected
error R[ f] on future observations generated by the unknown probability distribution is small,
provided the two terms on the right-hand side are small: the training error Remp[ f] (i.e., the
error on the examples we have already seen), and the square root term, which will be small
whenever the capacity % is small compared to the number of training observations m. If, on
the other hand, we try to learn something that may not make sense, such as the mapping from
the name of people to their telephone number, we would find that to explain all the training
data (i.e., to obtain a small Reyp[f]), we need a model whose capacity # is large, and the
second term becomes large. In any case, it is crucial for both consistency results and finite
sample error bounds such as (2.4) that we have i.i.d. data.

Kernel methods. A symmetric function k : X? — R, where X is a nonempty set, is
called a positive definite (pd) kernel if for arbitrary points xp, ..., x, € X and coeffi-
cientsay,...,a, € R:

Zaiajk(x,-,xj) > 0.

i,
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The kernel is called strictly positive definite if for pairwise distinct points, the implication
Zi,j ajajk(x;,x;) = 0= Vi :aq; = 0 is valid. Any positive definite kernel induces a
mapping

d:x > k(x,) 2.5

into a reproducing kernel Hilbert space (RKHS) J satisfying
(k(x. ). k(x", ) = k(x.x)) (2.6)

for all x, x" € X. Although J may be infinite-dimensional, we can construct practical clas-
sification algorithms in J¢ provided that all computational steps are carried out in terms of
scalar products, since those can be reduced to kernel evaluations (2.6).

In the SVM algorithm, the capacity of the function class is restricted by enforcing a
large margin of class separation in J¢ via a suitable RKHS regularization term. The solution
can be shown to take the form

70 = sen( ik ) + 1) e

where the learned parameters «; and b are the solution of a convex quadratic optimization
problem. A similar expansion of the solution in terms of kernel functions evaluated at training
points holds true for a larger class of kernel algorithms beyond SVMs, regularized by an
RKHS norm [126].

In kernel methods, the kernel plays three roles which are crucial for machine learn-
ing: it acts as a similarity measure for data points, induces a representation in a linear space*
via (2.5), and parametrizes the function class within which the solution is sought, cf. (2.7).

Kernel mean embeddings. Consider two sets of points X := {x1,..., x»n} C X and
={y1,...,Yn} C X. We define the mean map u as [130]

1 m
wX) = — 3 k(xi). 238)
i=1
For polynomial kernels k(x, x') = ({x,x’) + 1)¢, we have (X) = w(Y) if all empirical
moments up to order d coincide. For strictly pd kernels, the means coincide only if X =Y,
rendering p injective [131]. The mean map has some other interesting properties [143], e.g.,
1 (X) represents the operation of taking a mean of a function on the sample X:

(u(X). f) = < Zk(x,,>f> — ) fx).

i=1 i=1

Moreover, we have

Z flx)— = Z fi)-

1—1

HM(X)—M(Y)”=”jS}ﬁPI|(M(X)—M(Y),f = Sup

4 Note that the data domain X need not have any structure other than being a nonempty set.
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IfEx xnplk(x,x")], Ex xi~qlk(x,x")] < oo, then the above statements, including
the injectivity of u, generalize to Borel measures p, ¢, if we define the mean map as

w:p e Exoplk(x,)],

and replace the notion of strictly pd kernels by that of characteristic kernels [33]. This means
that we do not lose information when representing a probability distribution in the RKHS.
This enables us to work with distributions using Hilbert space methods, and construct prac-
tical algorithms analyzing distributions using scalar product evaluations.

Note that the mean map p can be viewed as a generalization of the moment gener-
ating function M, of a random variable x with distribution p,

My () = Exmple™].

The map p has applications in a number of tasks, including computing functions of random
variables [129] and testing for homogeneity [41] or independence [43]. The latter will be of par-
ticular interest to causal inference: we can develop a kernel-based independence test by com-
puting the distance between sample-based embeddings of a joint distribution p(X, Y) and
the product of its marginals p(X) p(Y') [42-44,114,165], and generalize it to conditional inde-
pendence testing [33,10e], as required for certain causal discovery methods (see Section 7).

3. FROM STATISTICAL TO CAUSAL MODELS
Methods relying on i.i.d. data. In current successes of machine learning [79], we gener-
ally (i) have large amounts of data, often from simulations or large-scale human labeling,
(ii) use high capacity machine learning models (e.g., neural networks with many adjustable
parameters), and (iii) employ high performance computing. Statistical learning theory offers
a partial explanation for recent successes of learning: huge datasets enable training complex
models and thus solving increasingly difficult tasks.

However, a crucial aspect that is often ignored is that we (iv) assume that the data are
i.i.d. This assumption is crucial for good performance in practice, and it underlies theoretical
statements such as (2.4). When faced with problems that violate the i.i.d. assumption, all bets
are off. Vision systems can be grossly misled if an object that is normally recognized with
high accuracy is placed in a context that in the training set may be negatively correlated with
the presence of the object. For instance, such a system may fail to recognize a cow standing
on the beach. In order to successfully generalize in such settings, we would need to construct
systems which do not merely rely on statistical dependences, but instead model mechanisms
that are robust across certain violations of the i.i.d. assumption. As we will argue, causality
provides a natural framework for capturing such stable mechanisms and reasoning about
different types of distribution shifts.

Correlation vs. causation. It is a commonplace that correlation does not imply causation.
Two popular and illustrative examples are the positive correlation between chocolate con-
sumption and Nobel prizes per capita [91], and that between the number of stork breeding
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Measurements of two genes (x-axis), gene A (left) and gene B (right), show the same strong positive correlation
with a phenotype (y-axis). However, this statistical information alone is insufficient to predict the outcome of a
knock-out experiment where the activity of a gene is set to zero (vertical lines at x = 0). Answering such
interventional questions requires additional causal knowledge (inset causal graphs): knocking out gene A, which
is a direct cause, would lead to a reduction in phenotype, whereas knocking out gene B, which shares a common
cause, or confounder, with the phenotype but has no causal effect on it, would leave the phenotype unaffected.
This shows that correlation alone is not enough to predict the outcome of perturbations to a system (toy data,
figure from [111]).

pairs and human birth rates [89], neither of which admit a sensible interpretation in terms of
direct causation. These examples naturally lead to the following questions: What exactly do
we mean by “causation”? What is its relationship to correlation? And, if correlation alone is
not enough, what is needed to infer causation?

Here, we adopt a notion of causality based on manipulability [159] and interven-
tion [1e4] which has proven useful in fields such as agriculture [161], econometrics [46, 52],

and epidemiology [118].

Definition 3.1 (Causal effect). We say that a random variable X has a causal effect on a
random variable Y if there exist x # x’ such that the distribution of Y after intervening on
X and setting it to x differs from the distribution of Y after setting X to x'.

Inherent to the notion of causation, there is a directionality and asymmetry which
does not exist for correlation: if X is correlated with Y, then Y is equally correlated with X;
but, if X has a causal effect on Y, the converse (in the generic case) does not hold.

We illustrate the intervention-based notion of causation and its difference from cor-
relation (or, more generally, statistical dependence) in Figure 3. Here, knocking out two genes
X4 and Xp that are indistinguishable based on their correlation with a phenotype ¥ would
have very different effects. Only intervening on X4 would change the distribution of Y,
whereas Xp does not have a causal effect on Y —instead, their correlation arises from a
different (confounded) causal structure. Such causal relationships are most commonly rep-
resented in the form of causal graphs where directed arrows indicate a direct causal effect.
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Reichenbach’s common cause principle [116] postulates that statistical dependence between two random variables
X and Y has three elementary possible causal explanations shown as causal graphs in (a)—(c). It thus states that
association is always induced by an underlying causal process. In (a) the common cause Z coincides with X, and
in (b) it coincides with Y. Grey nodes indicate observed and white nodes unobserved variables.

The example in Figure 3 shows that the same correlation can be explained by mul-
tiple causal graphs which lead to different experimental outcomes, i.e., correlation does
not imply causation. However, there is a connection between correlation and causation,
expressed by Reichenbach [116] as the Common Cause Principle, see Figure 4.

Principle 3.2 (Common cause). If two random variables X and Y are statistically depen-
dent (X LY ), then there exists a random variable Z which causally influences both of them
and which explains all their dependence in the sense of rendering them conditionally inde-

pendent (X 1LY | Z). As a special case, Z may coincide with X or Y.

According to Principle 3.2, statistical dependence always results from underlying
causal relationships by which variables, including potentially unobserved ones, influence
each other. Correlation is thus an epiphenomenon, the byproduct of a causal process.

For the example of chocolate consumption (X) and Nobel laureates (¥'), common
sense suggests that neither of the two variables should have a causal effect on the other, i.e.,
neither chocolate consumption driving scientific success (X — Y'; Figure 4a) nor Nobel
laureates increasing chocolate consumption (¥ — X; Figure 4b) seem plausible. Princi-
ple 3.2 then tells us that the observed correlation must be explained by a common cause Z
as in Figure 4c. A plausible candidate for such a confounder could, for example, be economic
factors driving both consumer spending and investment in education and science.

Without such background knowledge or additional assumptions, however, we cannot
distinguish the three cases in Figure 4 through passive observation, i.e., in a purely data-
driven way: the class of observational distributions over X and Y that can be realized by
these models is the same in all three cases.

To be clear, this does not mean that correlation cannot be useful, or that causal
insight is always required. Both genes in Figure 3 remain useful features for making pre-
dictions in a passive, or observational, setting in which we measure the activities of certain
genes and are asked to predict the phenotype. Similarly, chocolate consumption remains
predictive of winning Nobel prizes. However, if we want to answer interventional questions,
such as the outcome of a gene-knockout experiment or the effect of a policy enforcing higher
chocolate consumption, we need more than correlation: a causal model.
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4. CAUSAL MODELING FRAMEWORKS

Causal inference has a long history in a variety of disciplines, including statistics,
econometrics, epidemiology, and Al. As a result, different frameworks for causal modeling
have emerged over the years and coexist today. The first framework described below (CGM)
starts from the distribution of the observables, combining it with a directed graph to endow
it with causal semantics. The second (SCM) starts from a graph and a set of functional
assignments, and generates the observed distribution as the push-forward of an unobserved
noise distribution. Finally, we cover a nongraphical approach (PO) popular in statistics.

Causal graphical models (CGMs). The graphical models framework [75, 78] provides a
compact way of representing joint probability distributions by encoding the dependence
structure between variables in graphical form. Directed graphical models are also known
as Bayesian networks [1e1]. While they do not offer a causal interpretation per se—indeed,
different graphical models can be compatible with the same distribution (cf. Principle 3.2)—
when edges are endowed with the notion of direct causal effect (Definition 3.1), we refer to
them as causal graphical models (CGM) [144].

Definition 4.1 (CGM). A CGM M = (G, p) over n random variables X1, ..., X, consists
of: (i) a directed acyclic graph (DAG) G in which directed edges (X; — X;) represent a direct
causal effect of X; on X;; and (ii) a joint distribution p(Xj, ..., X,) which is Markovian
with respect to G:
n
p(X1,.... Xn) = [ [ p(Xi | PA) .1
i=1

where PA; = {X; : (X; — X;) € G} denotes the set of parents, or direct causes, of X; in G.

We will refer to (4.1) as the causal (or disentangled) factorization. While many
other entangled factorizations are possible, e.g.,

n
p(Xi. . Xn) =[] P(Xi | Xiga. ... Xo), 4.2)
i=1
only (4.1) decomposes the joint distribution into causal conditionals, or causal mechanisms,
p(X; | PA;), which can have a meaningful physical interpretation, rather than being mere
mathematical objects such as the factors on the RHS of (4.2).
It turns out that (4.1) is equivalent to the following condition.

Definition 4.2 (Causal Markov condition). A distribution p satisfies the causal Markov
condition with respect to a DAG G if every variable is conditionally independent of its non-
descendants in G given its parents in G.

Definition 4.2 can equivalently be expressed in terms of d-separation, a graphical
criterion for directed graphs [1e4], by saying that d-separation in G implies (conditional)
independence in p. The causal Markov condition thus provides a link between properties of
pand G.

5550 B. SCHOLKOPF AND J. VON KUGELGEN



g% o® & o

(@) G (b) G’ (¢ G”

FIGURE 5

(a) A directed acyclic graph (DAG) G over three variables. A causal graphical model (G, p) with causal graph G
and observational distribution p can be used to answer interventional queries using the concept of graph surgery:
when a variable is intervened upon and set to a constant (white diamonds), this removes any influence from other
variables, captured graphically by removing all incoming edges. (b) and (c) show postintervention graphs G’

and G” for do(X3 := x2) and do(X3 := x3), respectively. (An intervention on X; would leave the graph
unaffected.)

What makes CGMs causal is the interpretation of edges as cause—effect relationships
which enables reasoning about the outcome of interventions using the do-operator [104] and
the concept of graph surgery [144]. The central idea is that intervening on a variable, say by
externally forcing it to take on a particular value, renders it independent of its causes and
breaks their causal influence on it, see Figure 5 for an illustration. For example, if a gene
is knocked out, it is no longer influenced by other genes that were previously regulating it;
instead, its activity is now solely determined by the intervention. This is fundamentally differ-
ent from conditioning since passively observing the activity of a gene provides information
about its driving factors (i.e., its direct causes).

To emphasize this difference between passive observation and active intervention,
Pearl [184] introduced the notation do(X := x) to denote an intervention by which variable
X is set to value x. The term graph surgery refers to the idea that the effect of such an
intervention can be captured in the form of a modification to the original graph by removing
all incoming edges to the intervened variable. Interventional queries can then be answered
by performing probabilistic inference in the modified postintervention graph which typically
implies additional (conditional) independences due to the removed edges.

Example 4.3. The interventional distribution p(X3|do(X> := x3)) for the CGM in Figure 5
is obtained via probabilistic inference with respect to the postintervention graph G’ where
X 1 1 X 2.

p(X3|do(Xz := x2)) = Y p(x1)p(Xalx1, x2) 43)
X1€X1

# Y prlx)p(Xalxi.x) = p(Xalxa).  (44)
X1€X1

It differs from the conditional p(X3|x,) for which inference in done over G where X; . X>.
Note the marginal p(x;) in (4.3), in contrast to the conditional p(xq|x;) in (4.4): this is
precisely the link which is broken by the intervention do(X» := x»), see Figure 5b. The right-
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hand side of (4.3) is an example of covariate adjustment: it controls for the confounder X; of
the causal effect of X, on X3, see Section 9 for more details on adjustment and computing
interventions.

CGMs have been widely used in constraint- and score-based approaches to causal
discovery [47,144] which we will discuss in Section 7. Due to their conceptual simplicity, they
are a useful and intuitive model for reasoning about interventions. However, their capacity
as a causal model is limited in that they do not support counterfactual reasoning, which is
better addressed by the two causal modeling frameworks which we will discuss next.

Structural causal models (SCMs). Structural causal models, also referred to as func-
tional causal models or nonparametric structural equation models, have ties to the graphical
approach presented above, but rely on using directed functional parent—child relationships
rather than causal conditionals. While conceptually simple in hindsight, this constituted a
major step in the understanding of causality, as later expressed by [104, PAGE 104]:

“We played around with the possibility of replacing the parents—child relation-
ship p(X;|PA;) with its functional counterpart X; = f; (PA;, U;) and, suddenly,
everything began to fall into place: We finally had a mathematical object to which
we could attribute familiar properties of physical mechanisms instead of those
slippery epistemic probabilities p(X;|PA;) with which we had been working so
long in the study of Bayesian networks.”

Definition 4.4 (SCM). An SCM M = (F, py) over a set X of n random variables X1,.. ., X,
consists of (i) a set F of n assignments (the structural equations),

F={X;:= fi(PA;.U)}]_, (4.5)

where f; are deterministic functions computing each variable X; from its causal par-
ents PA; € X \ {X;} and an exogenous noise variable U;; and (ii) a joint distribution
pu(Uy, ..., Uy,) over the exogenous noise variables.

The paradigm of SCMs views the processes f; by which each observable X; is
generated from others as a physical mechanism. All randomness comes from the unobserved
(also referred to as unexplained) noise terms U; which capture both possible stochasticity of
the process, as well as uncertainty due to unmeasured parts of the system.

Note also the assignment symbol “:=" which is used instead of an equality sign
to indicate the asymmetry of the causal relationship: the left-hand side quantity is defined
to take on the right-hand side value. For example, we cannot simply rewrite a structural
equation X, := f>(X;1, U,) as X; = g(X,, U,) for some g, as would be the case for a
standard (invertible) equation.

In parametric, linear form (i.e., with linear f;), SCMs are also known as structural
equation models and have a long history in path analysis [161] and economics [46,52].
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Each SCM induces a corresponding causal graph via the input variables to the struc-
tural equations which is useful as a representation and provides a link to CGMs.

Definition 4.5 (Induced causal graph). The causal graph G induced by an SCM M is the
directed graph with vertex set X and a directed edge from each vertex in PA; to X; for all i.

Example 4.6. Consider an SCM over X = {X1, X5, X3} with some py(Uy, U,, U3) and
X1 := fi(lh), Xz:= fr(X1,Uz), X;:= f3(X1, X3, Us).

Following Definition 4.5, the induced graph then corresponds to G in Figure 5.

Definition 4.4 allows for a rich class of causal models, including those with cyclic
causal relations and ones which do not obey the causal Markov condition (Definition 4.2)
due to complex covariance structures between the noise terms. While work exists on such
cyclic or confounded SCMs [13], it is common to make the following two assumptions.

Assumption 4.7 (Acyclicity). The induced graph G is a DAG: it does not contain cycles.

Assumption 4.8 (Causal sufficiency/no hidden confounders). The U; are jointly indepen-
dent, i.e., their distribution factorizes, py(Uy, ..., Us) = py,(U1r) x -+ x py, (Uy).

Assumption 4.7 implies’ the existence of a well-defined, unique (observational) dis-
tribution over X from which we can draw via ancestral sampling:® first, we draw the noise
variables from py, and then we iteratively compute the corresponding X;’s in topological
order of the induced DAG (i.e., starting at the root node of the graph), substituting previously
computed X; into the structural equations where necessary. Formally, the (observational)
distribution p(Xjy, ..., X) induced by an SCM under Assumption 4.7 is defined as the
push-forward of the noise distribution py through the structural equations F. Under Assump-
tion 4.8, the causal conditionals are thus given by

p(Xi[PA; = pa;) := pu, (fpa, (Xi)) fori =1,....n, (4.6)
where fp;l_l (X;) denotes the preimage of X; under f; for fixed PA; = pa;.

Assumption 4.8 rules out the existence of hidden confounders because any unmea-
sured variables affecting more than one of the X; simultaneously would constitute a depen-
dence between some of the noise terms (which account for any external, or exogenous,
influences not explained by the observed X;). In combination with Assumption 4.7, Assump-
tion 4.8 (also known as causal sufficiency) thus ensures that the distribution induced by an
SCM factorizes according to its induced causal graph as in (4.1). In other words, it guarantees
that the causal Markov condition is satisfied with respect to the induced causal graph [1e4].
Below, unless explicitly stated otherwise, we will assume causal sufficiency.

Due to the conceptual similarity between interventions and the assignment charac-
ter of structural equations, the computation of interventional distributions fits in naturally

5 Acyclicity is a sufficient, but not a necessary condition.
6 Since neither F nor p are known a priori, ancestral sampling should be seen as a hypothet-
ical sampling procedure; inference and learning are still necessary in general.
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into the SCM framework. To model an intervention, we simply replace the corresponding
structural equation and consider the resulting entailed distribution.

Definition 4.9 (Interventions in SCMs). An intervention do(X; := x;) in an SCM
M = (F, py) is modeled by replacing the ith structural equation in F by X; := x;,
yielding the intervened SCM M%©Xii=X) — (F’| py). The interventional distribution
p(X_;|do(X; := x;)), where X_; = X\ {X;}, and intervention graph G’ are those induced
by Mdo(Xi:=x,~).

This way of handling interventions coincides with that for CGMs, e.g., after per-
forming do(X; := x,) in Example 4.6, X; no longer appears in the structural equation
for X,, and the edge X; — X> hence disappears in the intervened graph, as is the case
for G’ in Figure 5.

In contrast to CGMs, SCMs also provide a framework for counterfactual reasoning.
While (i) observations describe what is passively seen or measured and (ii) interventions
describe active external manipulation or experimentation, (iii) counterfactuals are statements
about what would or could have been, given that something else was in fact observed. These
three modes of reasoning are sometimes referred to as the three rungs of the “ladder of
causation” [107]. As an example, consider the following counterfactual query:

Given that patient X received treatment A and his/her health got worse, what
would have happened if he/she had been given treatment B instead, all else being
equal?

The “all else being equal” part highlights the difference between interventions and counter-
factuals: observing the factual outcome (i.e., what actually happened) provides information
about the background state of the system (as captured by the noise terms in SCMs) which
can be used to reason about alternative, counterfactual, outcomes. This differs from an inter-
vention where such background information is not available. For example, observing that
treatment A did not work may tell us that the patient has a rare condition and that treat-
ment B would have therefore worked. However, given that treatment A has been prescribed,
the patient’s condition may have changed, and B may no longer work in a future intervention.

Note that counterfactuals cannot be observed empirically by their very definition
and are therefore unfalsifiable. Some therefore consider them unscientific [115] or at least
problematic [26]. On the other hand, humans seem to perform counterfactual reasoning in
practice, developing this ability in early childhood [14].

Counterfactuals are computed in SCMs through the following three-step procedure:

1. Update the noise distribution to its posterior given the observed evidence
(“abduction”).

2. Manipulate the structural equations to capture the hypothetical intervention
(“action”).

3. Use the modified SCM to infer the quantity of interest (“prediction”).
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Definition 4.10 (Counterfactuals in SCMs). Given evidence X = x observed from an SCM
M = (F, py), the counterfactual SCM MX=* is obtained by updating py with its posterior:
MX=X = (F, pyjx=x)- Counterfactuals are then computed by performing interventions in the
counterfactual SCM MX=¥*, see Definition 4.9.

Note that while computing interventions only involved manipulating the structural
equations, counterfactuals also involve updating the noise distribution, highlighting the con-
ceptual difference between the two. Updating py requires knowledge of the interaction
between noise and observed variables, i.e., of the structural equations, which explains why
additional assumptions are necessary. Note that the updated noise variables no longer need
to be independent, even if the original system was causally sufficient (Assumption 4.8).

Example 4.11 (Computing counterfactuals with SCMs). Consider an SCM M defined by
X:=Ux, Y:=3X+Uy, Ux,Uy~N(01). 4.7

Suppose we observe X =2 and Y = 6.5 and want to answer the counterfactual “what would
Y have been, had X = 1?,”i.e., we are interested in p(Yxy=1|X = 2,Y = 6.5). Updating the
noise using the observed evidence via (4.7), we obtain the counterfactual SCM MEX=2.Y=65

X:=Uy, Y:=3X+Uy, Ux~382)., Uy~ 80.5), (4.8)

where §(-) denotes the Dirac delta measure. Performing the intervention do(X := 1) in (4.8)
then gives the result p(Yxy=1|X =2,Y = 6.5) = §(3.5),i.e., “Y would have been 3.5.” This
differs from the interventional distribution p(Y|do(X = 1)) = N (3, 1), since the factual
observation helped determine the background state (Ux = 2, Uy = 0.5).

The SCM viewpoint is intuitive and lends itself well to studying restrictions on
function classes to enable induction (Section 2). For this reason, we will mostly focus on
SCMs in the subsequent sections.

Potential outcomes (PO). The potential outcomes framework was initially proposed by
Neyman [98] for randomized studies [31], and later popularized and extended to observa-
tional settings by Rubin [124] and others. It is popular within statistics and epidemiology and
perhaps best understood in the context of the latter. This is also reflected in its terminol-
ogy: in the most common setting, we consider a binary treatment variable 7', with T =1
and T = 0 corresponding to treatment and control, respectively, whose causal effect on an
outcome variable Y (often a measure of health) is of interest.

One interpretation of the PO framework consistent with its roots in statistics is to
view causal inference as a missing data problem. In the PO framework, for each individual
(or unit) i and treatment value ¢ there is a PO, or potential response, denoted Y; (¢) capturing
what would happen if individual i received treatment . The POs are considered determin-
istic quantities in the sense that for a given individual i, Y;(1) and Y;(0) are fixed and all
randomness in the realized outcome Y; stems from randomness in the treatment assignment,

Y, =TYi(1) + (1 -T)Y;(0). 4.9)
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TABLE 1

Causal inference as a missing data problem: for each individual i (rows), only the PO Y; (T;) corresponding to the
assigned treatment 7; is observed; the other PO is a counterfactual. Hence, the unit-level causal effect

7; = Y;(1) — Y;(0) is unidentifiable.

i T; Yi(1) Yi(0) T
1 1 7 ? ?
2 0 ? 8 ?
3 1 3 ? ?
4 1 6 ? ?
5 0 ? 4 ?
6 0 ? 1 ?

To decide whether patient i should receive treatment, we need to reason about the individu-
alized treatment effect (ITE) 1; as captured by the difference of the two POs.

Definition 4.12 (ITE). The ITE for individual i under a binary treatment is defined as
5 = Yi(1) — Yi(0). (4.10)

The “fundamental problem of causal inference” [51] is that only one of the POs is
ever observed for each i. The other, unobserved PO becomes a counterfactual,

Y = (1-T)Y;(1) + TY;(0). .11

Consequently, 7; can never be measured or computed from data, i.e., it is not identifiable
(without further assumptions), as illustrated in Table 1.
Implicit in the form of (4.9) and (4.11) are the following two assumptions.

Assumption 4.13 (Stable unit treatment value; SUTVA). The observation on one unit
should be unaffected by the particular assignment of treatments to the other units [23].

Assumption 4.14 (Consistency). If individual i receives treatment ¢, then the observed out-
come is Y; = Y;(¢), i.e., the potential outcome for .

Assumption 4.13 is usually understood as (i) units do not interfere, and (ii) there is
only one treatment level per group (treated or control) leading to well-defined POs [61]. It
can be violated, e.g., through (i) population dynamics such as herd immunity from vaccina-
tion or (ii) technical errors or varying within-group dosage, respectively. However, for many
situations such as controlled studies it can be a reasonable assumption, and we can then view
different units as independent samples from a population.

So far, we have considered POs for a given unit as deterministic quantities. How-
ever, most times it is impossible to fully characterize a unit, e.g., when dealing with complex
subjects such as humans. Such lack of complete information introduces uncertainty, so that
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POs are often instead treated as random variables. This parallels the combination of deter-
ministic structural equations with exogenous noise variables in SCMs.” Indeed, there is a
equivalence between POs and SCMs [104]:

Yi(t) =Y | do(T :=1t) inan SCM with U = u;,

An individual in the PO framework thus corresponds to a particular instantiation of the U; in
an SCM: the outcome is deterministic given U, but since we do not observe u; (nor can we
characterize a given individual based on observed covariates), the counterfactual outcome is
treated as a random variable. In practice, all we observe is a featurized description x; of an
individual i and have to reason about expected POs, E[Y (1), Y(0)|x;].

Another common assumption is that of no hidden confounders which we have
already encountered in form of the causal Markov condition (Definition 4.2) for CGMs and
causal sufficiency (Assumption 4.8) for SCMs. In the PO framework this becomes no hidden
confounding between treatment and outcome and is referred to as (conditional) ignorability.

Assumption 4.15 (Conditional ignorability). Given a treatment 7' € {0, 1}, potential out-
comes Y (0), Y (1), and observed covariates X, we have

YO)LT|X and Y(1) LT |X (4.12)

The PO framework is tailored toward studying the (confounded) effect of a typi-
cally binary treatment variable on an outcome and is mostly used for causal reasoning, i.e.,
estimating individual and population level causal effects (Section 9). In this context, it is
sometimes seen as an advantage that an explicit graphical representation is not needed. At
the same time, the lack of a causal graph and the need for special treatment and outcome
variables make POs rather unsuitable for causal discovery where other frameworks prevail.

5. INDEPENDENT CAUSAL MECHANISMS

We now return to the disentangled factorization (4.1) of the joint distribution
p(X1,...,Xy). This factorization according to the causal graph is always possible when the
U; are independent, but we will now consider an additional notion of independence relating
the factors in (4.1) to one another.

Consider a dataset that consists of altitude A and average annual temperature 7" of
weather stations [111]. Variables A and T are correlated, which we believe is due to the fact
that the altitude has a causal effect on the temperature. Suppose we had two such datasets, one
for Austria and one for Switzerland. The two joint distributions may be rather different, since
the marginal distributions p(A) over altitudes will differ. The conditionals p (7| A), however,
may be rather similar, since they follow from physical mechanisms generating temperature
from altitude. The causal factorization p(A4)p(T|A) thus contains a component p(7| A) that

7 When all noise variables in an SCM are fixed, the other variables are uniquely determined;
without complete background knowledge, on the other hand, they are random.
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generalizes across countries, while the entangled factorization p(7T') p(A|T') does not. Cum
grano salis, the same applies when we consider interventions in a system. For a model to
correctly predict the effect of interventions, it needs to be robust with respect to generalizing
from an observational distribution to certain interventional distributions.

One can express the above insights as follows [111,128]:

Principle 5.1 (Independent causal mechanisms (ICM)). The causal generative process of
system’s variables is composed of autonomous modules that do not inform or influence each
other. In the probabilistic case, this means that the conditional distribution of each variable
given its causes (i.e., its mechanism) does not inform or influence the other mechanisms.

This principle subsumes several notions important to causality, including separate
intervenability of causal variables, modularity and autonomy of subsystems, and invari-
ance [104,111]. If we have only two variables, it reduces to an independence between the cause
distribution and the mechanism producing the effect distribution from the cause distribution.

Applied to the causal factorization (4.1), the principle tells us that the factors should
be independent in two senses:

(influence) changing (or intervening upon) one mechanism p(X;|PA;) does not
change the other mechanisms p(X;|PA;) (i # j), and

(information) knowing some mechanisms p(X;|PA;) (i # j) does not give us
information about a mechanism p(X;|PA;).

We view any real-world distribution as a product of causal mechanisms. A change in such
a distribution (e.g., when moving from one setting/domain to a related one) will always
be due to changes in at least one of those mechanisms. Consistent with Principle 5.1, we
hypothesize [133]:

Principle 5.2 (Sparse mechanism shift (SMS)). Small distribution changes tend to manifest
themselves in a sparse or local way in the causal/disentangled factorization (4.1), i.e., they
should usually not affect all factors simultaneously.

In contrast, if we consider a noncausal factorization, e.g., (4.2), then many terms
will be affected simultaneously as we change one of the physical mechanisms responsible
for a system’s statistical dependences. Such a factorization may thus be called entangled.
The notion of disentanglement has recently gained popularity in machine learning [9, 56,
83,1471, sometimes loosely identified with statistical independence. The notion of invariant,
autonomous, and independent mechanisms has appeared in various guises throughout the
history of causality research, see [1,104,111,133].

Measures of dependence of mechanisms. Note that the dependence of two mechanisms
p(X;|PA;) and p(X;|PA}) does not coincide with the statistical dependence of the random
variables X; and X;. Indeed, in a causal graph, many of the random variables will be depen-
dent even if all the mechanisms are independent.
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If p(x) and f are chosen independently, then peaks of p(y) tend to occur in regions where f has small slope.
Hence p(y) contains information about f~1 (figure from [111]).

Consider two variables and structural assignments X := U and Y := f(X), i.e., the
cause X is a noise variable (with density p(x)), and the effect Y is a deterministic function
of the cause. Let us, moreover, assume that the ranges of X and Y are both [0, 1], and f
is strictly monotonically increasing. The ICM principle then reduces to an independence of
p(x)and 1. Letus consider p(x) and the derivative f’ as random variables on the probabil-
ity space [0, 1] with Lebesgue measure, and use their correlation as a measure of dependence
of mechanisms. It can be shown that for f # id, independence of p(x) and f’ implies
dependence between p(y) and (f ')’ (see Figure 6). Other measures are possible and
admit information-geometric interpretations. Intuitively, under the ICM assumption (Princi-
ple 5.1), the “irregularity” of the effect distribution becomes a sum of (i) irregularity already
present in the input distribution and (ii) irregularity introduced by the mechanism f, i.e., the
irregularities of the two mechanisms add up rather than (partly) compensating each other.
This would not be the case in the opposite (“‘anticausal”) direction (for details, see [68]).
Other dependence measures have been proposed for high-dimensional linear settings and
time series [12,63,67,136].

Algorithmic independence. So far, we have discussed links between causal and statistical
structures. The fundamental of the two is the causal structure, since it captures the physical
mechanisms that generate statistical dependences in the first place. The statistical structure is
an epiphenomenon that follows if we make the unexplained variables random. It is awkward
to talk about the (statistical) information contained in a mechanism, since deterministic func-
tions in the generic case neither generate nor destroy information. This motivated us to devise
an algorithmic model of causal structures in terms of Kolmogorov complexity [65]. The Kol-
mogorov complexity (or algorithmic information) of a bit string is essentially the length of
its shortest compression on a Turing machine, and thus a measure of its information content.
Independence of mechanisms can be defined as vanishing mutual algorithmic information:
two conditionals are considered independent if knowing (the shortest compression of) one
does not help achieve a shorter compression of the other one.
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Algorithmic information theory provides a natural framework for nonstatistical
graphical models. Just like statistical CGMs are obtained from SCMs by making the unex-
plained variables U; random, we obtain algorithmic CGMs by making the U; bit strings
(jointly independent across nodes) and viewing the node X; as the output of a fixed Turing
machine running program U; with input PA;. Similar to the statistical case, one can define a
local causal Markov condition, a global one in terms of d-separation, and a decomposition of
the joint Kolmogorov complexity in analogy to (4.1), and prove that they are implied by the
SCM [65]. This approach shows that causality is not intrinsically bound to statistics: causality
is about mechanisms governing flow of information which may or may not be statistical.

The assumption of algorithmically independent mechanisms has interesting impli-
cations for physics: it implies the second law of thermodynamics (i.e., the arrow of time).
Consider a process where an incoming ordered beam of photons (the cause) is scattered by an
object (the mechanism). Then the outgoing beam (the effect) contains information about the
object. Microscopically, the time evolution is reversible; however, the photons contain infor-
mation about the object only after the scattering. What underlies Loschmidt’s paradox [86]?

The asymmetry can be explained by applying the ICM Principle 5.1 to initial state
and system dynamics, postulating that the two be algorithmically independent, i.e., knowing
one does not allow a shorter description of the other. The Kolmogorov complexity of the
system’s state can then be shown to be nondecreasing under time evolution [62]. If we view
Kolmogorov complexity as a measure of entropy, this means that the entropy of the state can
only stay constant or increase, amounting to the second law of thermodynamics.

Note that the resulting state after time evolution is clearly not independent of the
system dynamic: it is precisely the state that, when fed to the inverse dynamics, would return
us to the original (ordered) state.

6. LEVELS OF CAUSAL MODELING

Coupled differential equations are the canonical way of modeling physical phenom-
ena. They allow us to predict the future behavior of a system, to reason about the effect
of interventions, and—by suitable averaging procedures—to predict statistical dependences
that are generated by a coupled time evolution. They also allow us to gain insight into a
system, explain its functioning, and, in particular, read off its causal structure.

Consider a coupled set of ordinary differential equations

dx

— = f(x), xe€ R? , 6.1

= (6.1)
with initial value x(79) = x(. We assume that they correctly describe the physical mechanisms
of a system.® The Picard—Lindel6f theorem states that, at least locally, if f is Lipschitz, there

8 In other words, they do not merely phenomenologically describe its time evolution without
capturing the underlying mechanisms (e.g., due to unobserved confounding, or a form of
coarse-graining that does not preserve the causal structure [123,133]).
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TABLE 2

A simple taxonomy of models. The most detailed model (top) is a mechanistic or physical one,

usually in terms of differential equations. At the other end of the spectrum (bottom), we have a purely statistical
model; this can be learned from data and is useful for predictions but often provides little insight beyond modeling
associations between epiphenomena. Causal models can be seen as descriptions that lie in between, abstracting
away from physical realism while retaining the power to answer certain interventional or counterfactual questions.

Model Predict  Predict under Answer Obtain Learn
iniid. distribution counterfactual  physical from
setting  shift/intervention  questions insight data

Mechanistic/physical  yes yes yes yes ?

Structural causal yes yes yes ? ?

Causal graphical yes yes no ? ?

Statistical yes no no no yes

exists a unique solution x(¢). This implies, in particular, that the immediate future of x is
implied by its past values.
In terms of infinitesimal differentials d¢ and dx = x(¢t + dt) — x(t), (6.1) reads

x(t +dr) =x(t) +dt - f(x(2)). (6.2)

From this, we can ascertain which entries of the vector x(¢) cause the future of others
x(t + dt), i.e., the causal structure.

Compared to a differential equation, a statistical model derived from the joint distri-
bution of a set of (time-independent) random variables is a rather superficial description of
a system. It exploits that some of the variables allow the prediction of others as long as the
experimental conditions do not change. If we drive a differential equation system with cer-
tain types of noise, or if we average over time, statistical dependences between components
of x may emerge, which can be exploited by machine learning. In contrast to the differen-
tial equation model, such a model does not allow us to predict the effect of interventions;
however, its strength is that it can often be learned from data.

Causal modeling lies in between these two extremes. It aims to provide understand-
ing and predict the effect of interventions. Causal discovery and learning tries to arrive at
such models in a data-driven way, using only weak assumptions (see Table 2, from [111,133]).

While we may naively think that causality is always about time, most existing causal
models do not (and need not) consider time. For instance, returning to our example of altitude
and temperature, there is an underlying dynamical physical process that results in higher
places tending to be colder. On the level of microscopic equations of motion for the involved
particles, there is a temporal causal structure. However, when we talk about dependence
or causality between altitude and temperature, we need not worry about the details of this
temporal structure; we are given a dataset where time does not appear, and we can reason
about how that dataset would look if we were to intervene on temperature or altitude.
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Some work exists trying to build bridges between these different levels of descrip-
tion. One can derive SCMs that describe the interventional behavior of a coupled system
that is in an equilibrium state and perturbed in an adiabatic way [96], with generalizations to
oscillatory systems [122]. In this work, an SCM arises as a high-level abstraction of an under-
lying system of differential equations. It can only be derived if suitable high-level variables
can be defined [123], which in practice may well be the exception rather than the rule.

7. CAUSAL DISCOVERY

Sometimes, domain knowledge or the temporal ordering of events can help constrain
the causal relationships between variables, e.g., we may know that certain attributes like age
or sex are not caused by others; treatments influence health outcomes; and events do not
causally influence their past. When such domain knowledge is unavailable or incomplete,
we need to perform causal discovery: infer which variables causally influence which others,
i.e., learn the causal structure (e.g., a DAG) from data. Since experiments are often difficult
and expensive to perform while observational (i.e., passively collected) data is abundant,
causal discovery from observational data is of particular interest.

As discussed in Section 3 in the context of the Common Cause Principle 3.2, the
case where we have two variables is already difficult since the same dependence can be
explained by multiple different causal structures. One might thus wonder if the case of more
observables is completely hopeless. Surprisingly, this is not the case: the problem becomes
easier (in a certain sense) because there are nontrivial conditional independence properties
[25, 35,145] implied by a causal structure. We first review two classical approaches to the
multivariate setting before returning to the two-variable case.

Constraint-based methods. Constraint-based approaches to causal discovery test which
(conditional) independences can be inferred from the data and then try to find a graph which
implies them. They are therefore also known as independence-based methods. Such a pro-
cedure requires a way of linking properties of the data distribution p to properties of the
underlying causal graph G. This link is known as the faithfulness assumption.

Assumption 7.1 (Faithfulness). The only (conditional) independences satisfied by p are
those implied by the causal Markov condition (Definition 4.2).

Faithfulness can be seen as the converse of the causal Markov condition. Together,
they constitute a one-to-one correspondence between graphical separation in G and condi-
tional independence in p. While the causal Markov condition is satisfied by construction,
faithfulness is an assumption which may be violated. A classical example for a violation of
faithfulness is when causal effects along different paths cancel.

Example 7.2 (Violation of faithfulness). Consider the SCM from Example 4.6 and let

X1:=U1, Xo=aXi1+U, X3:=BX1+yX2+Us
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Illustration of Markov equivalence using common graph motifs. The chains in (a) and the fork in (b) all imply the
relation X UL Z | Y (and no others). They thus form a Markov equivalence class, meaning they cannot be
distinguished using conditional independence testing alone. The collider, or v-structure, in (c) implies X 1 Z
(but X L Z | Y) and forms its own Markov equivalence class, so it can be uniquely identified from observational
data. For this reason, v-structures are helpful for causal discovery. It can be shown that two graphs are Markov
equivalent if and only if they share the same skeleton and v-structures.

with Uy, U,, Us iid. N (0, 1). By substitution, we obtain X3 = (8 + ay)X; + yU, + Us.

Hence X5 L X; whenever 8 + ay = 0, even though this independence is not implied by the
causal Markov condition over the induced causal graph G, see Figure 5. Here, faithfulness
is violated if the direct effect of X; on X3 (f) and the indirect effect via X, (@y) cancel.

Apart from relying on faithfulness, a fundamental limitation to constraint-based
methods is the fact that many different DAGs may encode the same d-separation/indepen-
dence relations. This is referred to as Markov equivalence and illustrated in Figure 7.

Definition 7.3 (Markov equivalence). Two DAGs are said to be Markov equivalent if they
encode the same d-separation statements. The set of all DAGs encoding the same d-separa-
tions is called a Markov equivalence class.

Constraint-based algorithms typically first construct an undirected graph, or skele-
ton, which captures the (conditional) independences found by testing, and then direct as
many edges as possible using Meek’s orientation rules [9e]. The first step carries most of the
computational weight and various algorithms have been devised to solve it efficiently.

The simplest procedure is implemented in the IC [169] and SGS [144] algorithms. For
each pair of variables (X, Y), these search through all subsets W of the remaining variables
to check whether X 1L Y | W. If no such set W is found, then X and Y are connected
with an edge. Since this can be slow due to the large number of subsets, the PC algorithm
[144] uses a much more efficient search procedure. It starts from a complete graph and then
sequentially test only subsets of the neighbors of X or Y of increasing size, removing an
edge when a separating subset is found. This neighbor search is no longer guaranteed to give
the right result for causally insufficient systems, i.e., in the presence of hidden confounders.
The FCI (short for fast causal inference) algorithm [144] addresses this setting, and produces
a partially directed causal graph as output.

Apart from being limited to recovering a Markov equivalence class, constraint-based
methods can suffer from statistical issues. In practice, datasets are finite, and conditional
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independence testing is a notoriously difficult problem, especially if conditioning sets are
continuous and multidimensional. So while, in principle, the conditional independences
implied by the causal Markov condition hold true irrespective of the complexity of the
functions appearing in an SCM, for finite datasets conditional independence testing is hard
without additional assumptions [135]. Recent progress in (conditional) independence testing
heavily relies on kernel function classes to represent probability distributions in reproducing
kernel Hilbert spaces, see Section 2.

Score-based methods. Score-based approaches to causal discovery assign a score to each
graph G from a set of candidate graphs (usually the set of all DAGs). The score S is supposed
to reflect how well G explains the observed data D = {xy, ..., X;,}, and we choose the graph
G maximizing this score,

N

G = argmax S(G|D).
G

Various score functions have been proposed, but most methods assume a parametric model
which factorizes according to G, parametrized by 6 € ®. Two common choices are multino-
mial models for discrete data [22] and linear Gaussian models for continuous data [34]. For
example, a penalized maximum likelihood approach using the BIC [134] as a score yields

A k
Ssc(G|D) = log p(D|G, OMF) — 5 logm, (7.1)

where k is the number of parameters and 6™ is the maximum likelihood estimate for 6 to
D in G. Note that k generally increases with the number of edges in G so that the second
term in (7.1) penalizes complex graphs which do not lead to substantial improvements.

Another choice of score function is the marginal likelihood, or evidence, in a
Bayesian approach to causal discovery, which requires specifying prior distributions over
graphs and parameters, p(G, 0) = p(G)p(6|G). The score for G is then given by

Syans(GID) = p(DIG) = /@ p(DIG. 6) p(6]G)de. (72)

This integral is intractable in general, but can be computed exactly for some models such as
a Dirichlet-multinomial under some mild additional assumptions [47, 48].

A major drawback of score-based approaches is the combinatorial size of the search
space. The number of DAGs over n random variables grows superexponentially and can be
computed recursively (to account for acyclicity constraints) [119]. For example, the number
of DAGs for n = 5 and n = 10 nodes is 29281 and 4175098976430598143, respectively.
Finding the best scoring DAG is NP-hard [2e]. To overcome this problem, greedy search
techniques can be applied, e.g., greedy equivalence search (GES) [21] which optimizes for
the BIC.

In recent years, another class of methods has emerged that is based on assuming
particular functional forms for the SCM assignments. Those arose from studying the cause-
effect inference problem, as discussed below.
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Cause—effect inference. In the case of only two variables, the ternary concept of condi-
tional independences collapses and the causal Markov condition (Definition 4.2) thus has no
nontrivial implications. However, we have seen in Section 5 that assuming an independence
of mechanisms (Principle 5.1) lets us find asymmetries between cause and effect, and thus
address the cause—effect inference problem previously considered unsolvable [68]. It turns
out that this problem can be also addressed by making additional assumptions on function
classes, as not only the graph topology leaves a footprint in the observational distribution,
but so do the functions f; in an SCM. Such assumptions are typical for machine learning,
where it is well known that finite-sample generalization without assumptions on function
classes is impossible, and where much attention is devoted to properties of function classes
(e.g., priors or capacity measures), as discussed in Section 2.

Let us provide an intuition as to why assumptions on the functions in an SCM should
help learn about them from data. Consider a toy SCM with only two observables X — Y.
In this case, the structural equations (4.5) turn into

X:=U Y:=f(XV) (7.3)

with noises U L V. Now think of V' acting as a random selector variable choosing from
among a set of functions ¥ = { f,(x) = f(x,v) | v € supp(V)}. If f(x,v) depends on v in
anonsmooth way, it should be hard to glean information about the SCM from a finite dataset,
given that V is not observed and it randomly switches between arbitrarily different f,.° This
motivates restricting the complexity with which f depends on V. A natural restriction is to
assume an additive noise model

X:=U Y:=fX)+V. (7.4)

If f in (7.3) depends smoothly on V, and if V is relatively well concentrated, this can be
motivated by a local Taylor expansion argument. Such assumptions drastically reduce the
effective size of the function class—without them, the latter could depend exponentially on
the cardinality of the support of V.

Restrictions of function classes can break the symmetry between cause and effect
in the two-variable case: one can show that given a distribution over X, Y generated by an
additive noise model, one cannot fit an additive noise model in the opposite direction (i.e.,
with the roles of X and Y interchanged) [6,53,76,95,113]. This is subject to certain genericity
assumptions, and notable exceptions include the case where U, V' are Gaussian and f is
linear. It generalizes results of [139] for linear functions, and it can be generalized to include
nonlinear rescaling [164], cycles [94], confounders [64], and multivariable causal discovery
[112]. There is now a range of methods that can detect causal direction better than chance [97].

9 Suppose X and Y are binary, and U, V are uniform Bernoulli variables, the latter selecting
from & = {id, not} (i.e., identity and negation). In this case, the entailed distribution for Y
is uniform, independent of X, even though we have X — Y. We would be unable to discern
X — Y from data. (This would also constitute a violation of faithfulness (Assumption 7.1).)
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We have thus gathered some evidence that ideas from machine learning can help
tackle causality problems that were previously considered hard. Equally intriguing, however,
is the opposite direction: can causality help us improve machine learning?

Nonstationarity-based methods. The last family of causal discovery approaches we men-
tion is based on ideas of nonstationarity and invariance [128]. These approaches do not apply
to purely observational data collected in an i.i.d. setting. In contrast, they aim to leverage
heterogeneity of data collected from different environments. The main idea is the follow-
ing: since causal systems are modular in the sense of the ICM Principle 5.1, changing one
of the independent mechanisms should leave the other components, or causal conditionals,
unaffected (SMS Principle 5.2). A correct factorization of the joint distribution according
to the underlying causal structure should thus be able to explain heterogeneity by localized
changes in one (or few) of the mechanisms while the others remain invariant.

One of the first works to use this idea [150] analyzed which causal structures can be
distinguished given data resulting from a set of mechanism changes. Recent work [55] addi-
tionally aims to learn a low-dimensional representation of the mechanism changes. Other
works [110,126] have proposed methods for finding the direct causes of a given target variable.
Using a recent result on identifiability of nonlinear ICA [59] which also relies on nonstation-
arity, a method for learning general nonlinear SCMs was proposed [93]. Here the idea is
to train a classifier to discriminate between the true value of some nonstationarity variable
(such as a time-stamp or environment indicator) and a shuffled version thereof.

8. IMPLICATIONS FOR MACHINE LEARNING
Semisupervised learning. Suppose our underlying causal graph is X — Y, and we are
trying to learn a mapping X — Y. The causal factorization (4.1) for this case is

(X, Y) = p(X)p(Y|X). 8.1

The ICM Principle 5.1 posits that the modules in a joint distribution’s causal factorization
do not inform or influence each other. This means that, in particular, p(X') should contain no
information about p(Y |X), which implies that semisupervised learning [17] should be futile,
as it is trying to use additional information about p(X) (from unlabeled data) to improve
our estimate of p(Y|X = x). What about the opposite direction, is there hope that semi-
supervised learning should be possible in that case? It turns out the answer is yes, due to the
work on cause—effect inference using the ICM Principle 5.1 [24]. It introduced a measure of
dependence between the input and the conditional of output given input, and showed that
if this dependence is zero in the causal direction, then it is strictly positive in the opposite
direction. Independence of cause and mechanism in the causal direction thus implies that in
the backward direction (i.e., for anticausal learning), the distribution of the input variable
should contain information about the conditional of output given input, i.e., the quantity
that machine learning is usually concerned with. This is exactly the kind of information that
semisupervised learning requires when trying to improve the estimate of output given input
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by using unlabeled inputs. This suggests that semisupervised learning should be impossi-
ble for causal learning problems, but feasible otherwise, in particular for anticausal ones.
A metaanalysis of published semisupervised learning benchmark studies corroborated this
prediction [128], and similar results apply for natural language processing [69]. These findings
are intriguing since they provide insight into physical properties of learning problems, thus
going beyond the methods and applications that machine learning studies usually provide.

Subsequent developments include further theoretical analyses [66,111] and a form of
conditional semisupervised learning [156]. The view of semisupervised learning as exploiting
dependences between a marginal p(x) and a noncausal conditional p(y|x) is consistent with
the common assumptions employed to justify semisupervised learning [17,125].

Invariance and robustness. We have discussed the shortcomings of the i.i.d. assumption,
which rarely holds true exactly in practice, and the fact that real-world intelligent agents need
to be able to generalize not just within a single i.i.d. setting, but across related problems.
This notion has been termed out-of-distribution (0.0.d.) generalization, attracting significant
attention in recent years [133]. While most work so far has been empirical, statistical bounds
would be desirable that generalize (2.4), including additional quantities measuring the dis-
tance between training and test distribution, incorporating meaningful assumptions [137].
Such assumptions are necessary [8], and could be causal, or related to invariance properties.

The recent phenomenon of “adversarial vulnerability” [148] shows that minuscule
targeted violations of the i.i.d. assumption, generated by adding suitably chosen noise to
images (imperceptible to humans), can lead to dangerous errors such as confusion of traffic
signs. These examples are compelling as they showcase nonrobustnesses of artificial systems
which are not shared by human perception. Our own perception thus exhibits invariance or
robustness properties that are not easily learned from a single training set.

Early causal work related to domain shift [128] looked at the problem of learning
from multiple cause—effect datasets that share a functional mechanism but differ in noise
distributions. More generally, given (data from) multiple distributions, one can try to identify
components which are robust, and find means to transfer them across problems [4, 36, 54,
163,166]. According to the ICM Principle 5.1, invariance of conditionals or functions (also
referred to as covariate shift in simple settings) should only hold in the causal direction, a
reversal of the impossibility described for SSL.

Building on the work of [11e,128], the idea of invariance for prediction has also been
used for supervised learning [3,87,12e]. In particular, “invariant risk minimization” (IRM)
was proposed as an alternative to ERM, cf. (2.3).

9. CAUSAL REASONING

In contrast to causal discovery (Section 7), which aims to uncover the causal struc-
ture underlying a set of variables, causal reasoning starts from a known (or postulated) causal
graph and answers causal queries of interest. While causal discovery often looks for qualita-
tive relationships, causal reasoning usually aims to quantify them. This requires two steps:
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(i) identifying the query, i.e., deriving an estimand for it that only involves observed quanti-
ties; and (ii) estimating this using data. Often, the quantities of interest can be described as
treatment effects, i.e., contrasts between two interventions.

Definition 9.1 (Treatment effects). The conditional average treatment effect (CATE), con-
ditioned on (a subset of) features x, is defined as

t(x) ;= E[Y|x,do(T = 1)] —E[Y|x,do(T = 0)] = E[Y(1) — Y(0)|x]. 9.1
The average treatment effect (ATE) is defined as the population average of the CATE,
7= E[‘L’(X)] = IE[Y| do(T = 1)] — IE[Y| do(T = O)] = IE[Y(]) — Y(O)]. 9.2)

While ITE (Definition 4.12) and CATE (9.1) are sometimes used interchangeably,
there is a conceptual difference: ITE refers to the difference of two POs and is thus bound
to an individual, while CATE applies to subpopulations, e.g., the CATE for females in their
40s. Since the ITE is fundamentally impossible to observe, it is often estimated by the CATE
conditional on an individual’s features x; using suitable additional assumptions.

As is clear from Definition 9.1, the treatment effects we want to estimate involve
interventional expressions. However, we usually only have access to observational data.
Causal reasoning can thus be cast as answering interventional queries using observational
data and a causal model. This involves dealing with confounders, both observed and unob-
served.

Before discussing how to identify and estimate causal effects, we illustrate why
causal assumptions are necessary using a well-known statistical phenomenon.

Simpson’s paradox and Covid-19. Simpson’s paradox refers to the observation that aggre-
gating data across subpopulations may yield opposite trends (and thus lead to reversed con-
clusions) from considering subpopulations separately [142]. We observed a textbook example
of this during the Covid-19 pandemic by comparing case fatality rates (CFRs), i.e., the pro-
portion of confirmed Covid-19 cases which end in fatality, across different countries and age
groups as illustrated in Figure 8 [154]: for all age groups, CFRs in Italy are lower than in
China, but the fotal CFR in Italy is higher.

How can such a pattern be explained? The case demographic (see Figure 8, right) is
rather different across the two countries, i.e., there is a statistical association between country
and age. In particular, Italy recorded a much larger proportion of cases in older patients who
are generally at higher risk of dying from Covid-19 (see Figure 8, left). While this provides
a consistent explanation in a statistical sense, the phenomenon may still seem puzzling as it
defies our causal intuition. Humans appear to naturally extrapolate conditional probabilities
to read them as causal effects, which can lead to inconsistent conclusions and may leave one
wondering: how can the disease in Italy be less fatal for the young, less fatal for the old,
but more fatal for the people overall? 1t is for this reason that the reversal of (conditional)
probabilities in Figure 8 is perceived as and referred to as a “paradox” [49, 185].

If we consider the country as treatment whose causal effect on fatality is of interest,
then causal assumptions (e.g., in the form of a causal graph) are needed to decide how to
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Age Age

FIGURE 8

(Left) Covid-19 case fatality rates (CFRs) in Italy and China by age and in aggregate (“Total”), including all
confirmed cases and fatalities up to the time of reporting in early 2020 (see legend): for all age groups, CFRs in
Italy are lower than in China, but the total CFR in Italy is higher, an example of Simpson’s paradox. (Right) The
case demographic differs between countries: in Italy, most cases occurred in the older population (figure

from [154]).

handle covariates such as age that are statistically associated with the treatment, e.g., whether
to stratify by (i.e., adjust for) age or not. This also explains why randomized controlled trials
(RCTs) [31] are the gold standard for causal reasoning: randomizing the assignment breaks
any potential links between the treatment variable and other covariates, thus eliminating
potential problems of bias. However, RCTs are costly and sometimes unethical to perform,
so that causal reasoning often relies on observational data only.'”

We first consider the simplest setting without hidden confounders and with overlap.
We start with identification of treatment effects on the population level, and then discuss
different techniques for estimating these from data.

Identification. In absence of unmeasured variables (i.e., without hidden confounding), and
provided we know the causal graph, it is straight-forward to compute causal effects by adjust-
ing for covariates. A principled approach to do so for any given graph was proposed by
Robins [117] and is known as the g-computation formula (where the g stands for general).
It is also known as truncated factorisation [1e4] or manipulation theorem [144]. It relies on
the independence of causal mechanisms (Principle 5.1), i.e., the fact that intervening on a
variable leaves the other causal conditionals in (4.1) unaffected:

p(X1.... Xuldo(X; = x;)) = 8(X; = x;) [ [ p(X;[PA;). 9.3)
J#i
From (9.3) the interventional distribution of interest can then be obtained by marginalization.
This is related to the idea of graph surgery (see Figure 5), and leads to a set of three inference
rules for manipulating interventional distributions known as do-calculus [1e4] that have been
shown to be complete for identifying causal effects [56,148].

10 For a treatment of more general types of data fusion and transportability of experimental
findings across different populations, we refer to [5,106].
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FIGURE 9

Treatment effect estimation with three observed covariates X1, X2, X3: here, the valid adjustment sets for 7 — Y
(see Proposition 9.3) are {X }, {X2}, and {X1, X»}. Including X3 opens the nondirected path

T — X3 <= X2 — Y and lies on the directed path T — X3 — Y, both of which can introduce bias.

Note that covariate adjustment may still be needed, even if there are no clear
confounders directly influencing both treatment and outcome, as shown by the example
in Figure 9.

Example 9.2. Applying the g-computation formula (9.3) to the setting of Figure 9, we obtain

p(y1do(®)) = > p(x1) > p(xalx1) Y p(xslt. x2) p(ylt. x2. x3) 9.4)
=Y px) Y plalx)p(ylt.x2) =D plx2)p(ylt.xa) (9.5
= > pxrx2) p(ylt x1.x2) e > PG pOyle.x). 9.6)

where the last line follows by using the following conditional independences implied by the
graph: () Y L X; | {T, X5},and (b) X, 1L T | X;.

Note that both the right-hand side in (9.5) and both sides in (9.6) take the form

p(yIdo(®)) = > p@p(ylt.2). ©.7)

In this case we call Z a valid adjustment set for the effect of T on Y. Here, {X1}, {X2},
and {X;, X,} are all valid adjustment sets, but it can be shown that, e.g., {X1, X3} is
not (see Figure 9). As computing the g-formula with many covariates can be cumbersome,
graphical criteria for which subsets constitute valid adjustment sets are useful in practice,
even in the absence of unobserved confounders.

Proposition 9.3 ([141]). Under causal sufficiency, a set Z is a valid adjustment set for the
causal effect of a singleton treatment T on an outcome Y (in the sense of (9.7)) if and only
if the following two conditions hold: (i) Z contains no descendant of any node on a directed
path from T to Y (except for descendants of T which are not on a directed path from T
to Y'); and (ii) Z blocks all non-directed paths from T to Y .

Here, a path is called directed if all directed edges on it point in the same direction,
and nondirected otherwise. A path is blocked (by a set of vertices Z) if it contains a triple of
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consecutive nodes connected in one of the following three ways: 4 — B — C with B € Z,
A<« B — Cwith B e€Z,or A— B < C, where neither B nor any descendant of B is in Z.
Two well-known types of adjustment set implied by Proposition 9.3 are parent
adjustment, where Z. = Par; and the backdoor criterion, where Z is constrained to con-
tain no descendants of 7" and to block all “back-door paths” from T to Y (T < ...Y).

Note that Proposition 9.3 only holds singleton treatments (i.e., interventions on a
single variable). For treatments T involving multiple variables, a slightly more complicated
version of Proposition 9.3 can be given in terms of proper causal paths, and we refer to
[182,108] for details.

Let us briefly return to our earlier example of Simpson’s paradox and Covid-19.
Considering a plausible causal graph for this setting [154], we find that age A acts as a medi-
ator C - A — F of the causal effect of country C on fatality F (there is likely also a
direct effect C — F, potentially mediated by other, unobserved variables). If we are inter-
ested in the (total) causal effect of C on F (i.e., the overall influence of country on fatality),
A should not be included for adjustment according to Proposition 9.3, and, subject to causal
sufficiency, the total CFRs can be interpreted causally.!! For another classic example of
Simpson’s paradox in the context of kidney stone treatment [18], on the other hand, the size
of the stone acts as a confounder and thus needs to be adjusted for to obtain sound causal
conclusions.

Valid covariate adjustment and the g-formula tell us how to compute interventions
from the observational distribution when there are no hidden confounders. To actually iden-
tify causal effects from data, however, we need to also be able to estimate the involved
quantities in (9.7). This is a problem if a subgroup of the population never (or always)
receives a certain treatment. We thus need the additional assumption of a nonzero proba-
bility of receiving each possible treatment, referred to as overlap, or common support.

Assumption 9.4 (Overlap/common treatment support). For any treatment ¢ and any config-
uration of features x, it holds that 0 < p(T =¢|X =x) < 1.

The combination of overlap and ignorability (that is, no hidden confounders—
see Assumption 4.15) is also referred to as strong ignorability and is a sufficient condition
for identifying ATE and CATE: the absence of hidden confounders guarantees the existence
of a valid adjustment set Z C X for which p(Y |do(T =1t),Z) = p(Y|T =t,Z), and over-
lap guarantees that we can actually estimate the latter term for any z occurring with nonzero
probability.'?

Regression adjustment. Having identified a valid adjustment set (using Proposition 9.3),
regression adjustment works by fitting a regression function f to E[Y|Z =2z, T =1t] =
f(z, 1) using an observational sample {(y;. #;,z;)}/,. We can then use f to impute coun-

A

terfactual outcomes as y;* = f(z;, 1 —t;) in order to estimate the CATE. The ATE is then

11 Mediation analysis [183] provides tools to tease apart and quantify the direct and indirect
effects; the age-specific CFRs in Figure 8 then correspond to controlled direct effects [154].
12 The overlap assumption can thus be relaxed to hold for at least one valid adjustment set.
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given by the population average and can be estimated as

~ 1 ~
Tregression-adj. — —— Z (zts 0)) + — Z (f(ziv 1) - )Ji), (98)
iiti=1 Mo i:t;i=0
where m; and mg are the number of observations from the treatment and control groups,
respectively. Note the difference to the RCT estimator where no adjustment is necessary,

Trer = — Z - — Z Vi- 9.9)

iiti=1 iiti=
Matching and weighting approaches. While regression adjustment indirectly estimates
ATE via CATE, matching and weighting approaches aim to estimate ATE directly. The gen-
eral is idea to emulate the conditions of an RCT as well as possible.

Matching approaches work by splitting the population into subgroups based on fea-
ture similarity. This can be done on an individual level (so-called one-to-one or nearest
neighbor matching) by matching each individual i with the most similar one, j(i), from
the opposite treatment group (i.e., ; # ¢(;)). The difference of their outcomes, y; — yj), is
then considered as a sample of the ATE, and their average taken as an estimate thereof,

N 1 1
INN-matching = > i —via) + P > Biw — ). (9.10)
1 iiti=1 i:t;=0
Alternatively, the population can be split into larger subgroups with similar features (so-
called strata). Each stratum is then treated as an independent RCT. If there are K strata

containing my, ..., mg observations each, the stratified ATE estimator is
S miil?
A =1 RCT
Fraifiea = K=K RCT, 9.11)
D k=1 Mk

where rlgC)T is the estimator from (9.9) applied to observation in the kth stratum.

Weighting approaches, on the other hand, aim to counteract the confounding bias
by reweighting each observation to make the population more representative of an RCT.
This means that underrepresented treatment groups are upweighted and overrepresented ones
downweighted. An example is the inverse probability weighting (IPW) estimator,

. 1 Vi 1 Vi
= — -— . 9.12
fPw m ig:jl p(T=1Z=12z) mg i:;:jo p(T =0|Z = z;) ©-12)

The treatment probability p(T = 1|Z) is also known as propensity score. While from a

theoretical point of view Z should be a valid adjustment set, practitioners sometimes use all
covariates to construct a propensity score.

Propensity score methods. To overcome the curse of dimensionality and gain statistical
efficiency in high-dimensional, low-data regimes, propensity scores can be a useful tool,
because covariates and treatment are rendered conditionally independent, T Il Z | s(z), by
the propensity score s(z) := p(T = 1|Z = z) [121]. Instead of adjusting for large feature sets
or performing matching in high-dimensional spaces, the scalar propensity score can be used
instead. Applying this idea to the above methods gives rise to propensity score adjustment
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FIGURE 10

Overview of special settings which allow estimating causal effects of treatment 7" on outcome ¥ when the strong
ignorability assumption (no hidden confounding or overlap) does not hold. In (a) the hidden confounder H is dealt
with by means of an observed mediator M, while (b) relies on an instrumental variable (IV) which is independent
of H. (c) In a regression discontinuity design (RDD), treatment assignment is a threshold function of some
observed decision score S so that there is no overlap between treatment groups.

and propensity score matching. For the latter, the difference in propensity scores is used as
similarity between instances to find nearest neighbors or to define strata.

While simplifying in one respect, the propensity score needs to be estimated from
data which is an additional source of error. The standard approach for this is to estimate s(z)
by logistic regression, but more sophisticated methods are also possible. However, propensity
score methods still rely on having identified a valid adjustment set Z to give unbiased results.
Using all covariates to estimate s, without checking for validity as an adjustment set, can thus
lead to wrong results.

Next, we consider the case of causal reasoning with unobserved confounders. While
it is not possible to identify causal effects in the general case, we will discuss two particular
situations in which ATE can still be estimated. These are shown in Figures 10a and 10b.

Front-door adjustment. The first situation in which identification is possible even though
a hidden variable H confounds the effect between treatment and outcome is known as
front-door adjustment. The corresponding causal graph is shown in Figure 10a. Front-door
adjustment relies on the existence of an observed variable M which blocks all directed paths
from T to Y, so that T only causally influences Y through M. For this reason M is also
called a mediator. The other important assumption is that the hidden confounder does not
influence the mediator other than through the treatment T, i.e., M 1. H | T. In this case,
and provided p(¢,m) > 0 for all ¢ and m, the causal effect of 7 on Y is identifiable and is
given by the following.

Proposition 9.5 (Front-door adjustment). For the causal graph in Figure 10a it holds that
p(yIdo®) =D p(ml) }_ p(t")p(yim.1). (9.13)
m t’

We give a sketch of the derivation, and refer to [1e4] for a proof using the rules of
do-calculus. Since M mediates the causal effect of 7 on Y, we have that

p(y1do(®)) = > p(m|do(1)) p(y] do(m)). (9.14)

Since there are no back-door paths from 7' to M, we have p(m|do(t)) = p(m|t).
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Moreover, {7} is a valid adjustment set for the effect of M on Y by Proposition 9.3,
o)

p(yldo(m)) =" p(t")p(ylm.1"). (9.15)

Substituting into (9.14) then yields expression (9.13).

We point out that the setting presented here is only the simplest form of front-door
adjustment which is sufficient to convey the main idea. It can be amended to include observed
covariates X as well, as long as the conditions on the mediator remain satisfied.

Instrumental variables (IVs). The second setting for causal reasoning with hidden con-
founders is based on the idea of instrumental variables [2,29,16e], see Figure 10b. The IV
approach relies on the existence of a special observed variable 7, called instrument.

Definition 9.6 (IV). A variable [ is a valid instrument for estimating the effect of treat-
ment 7" on outcome Y confounded by a hidden variable H if all of the following three
conditions hold: (i) I AL H; (i) I L T;and (Gii) I 1L Y | T.

Condition (i) states that the instrument is independent of any hidden confounders H .
Since this assumption cannot be tested, background knowledge is necessary to justify the use
of a variable as IV in practice. Conditions (ii) and (iii) state that the instrument is correlated
with treatment, and only affects the outcome through T, and are referred to as relevance and
exclusion restriction, respectively.

Given a valid IV, we apply a two-stage procedure: first obtain an estimate T of the
treatment variable 7' that is independent of H by predicting T from /. Having thus created
an unconfounded version of the treatment, a regression of ¥ on T then reveals the correct
causal effect. We demonstrate this idea for a simple linear model with continuous treatment
variable where the causal effect can be obtained by two-stage least squares (2SLS).

Example 9.7 (Linear IV with 2SLS). Consider the linear SCM defined by
T:=al +bH +Ur, Y :=cH+dT + Uy,

with Ur, Uy independent noise terms. Then, since / 1L H, linear regression of T on [
recovers the coefficienta via T = al . Substituting for 7" in the structural equation for Y gives

Y :=dal + (c +bd)H + Uy +dUr.

A second linear regression of Y on T = al recovers the causal effect d because
(I LA = (f" AL H), whereas a naive regression of ¥ on 7 would give a differ-
ent result, as T L H.

Instrumental variables have been studied extensively and more sophisticated ver-
sions than the simple example above exist, allowing for nonlinear interactions and observed
covariates.

Having discussed some special settings to deal with hidden confounding, we briefly
present a technique to deal with violations of the overlap assumption.
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Regression discontinuity design. In aregression discontinuity design (RDD), the treatment
assignment mechanism behaves like a threshold function, i.e., the propensity score is discon-
tinuous [6e]. In the simplest setting, the assignment of treatment or control is determined by
whether an observed score S is above a threshold sg, T := I{S > s¢}. This score in turn
depends on other covariates which may or may not be observed. For example, patients may be
assigned a risk score, and treatment is only prescribed if this score surpasses a given thresh-
old. Since the score may be assigned by another institution, not all relevant covariates H
are usually observed. However, it is assumed that the treatment decision only depends on
the score, e.g., because doctors comply with the official rules. The causal graph for such a
simple RDD setting is shown in Figure 10c. While the score S constitutes a valid adjustment
set in principle, the problem with RDDs is the lack of overlap: patients with low scores are
always assigned T = 0 and patients with high scores are always assigned 7" = 1. Because
of this, covariate adjustment, matching, or weighting approaches do not apply. The general
idea of an RDD is to overcome this challenge by comparing observations with score in a
small neighborhood of the decision cut-off value sy, motivated by the consideration that
patients with close scores but on opposite sides of s¢ differ only in whether they received the
treatment or not. For example, if the treatment cut-off value is 0.5 for a score in [0,1], then
patients with scores of 0.49 and 0.51 are comparable and can be treated as samples from an
RCT. An RDD (in its simplest form) thus focuses on differences in the regression function
E[Y|S =5, T =t(s)] = f(s) fors € [so — &, 50 + €], where & > 0 is small.

Half-sibling regression and exoplanet detection. We conclude this section with a real-
world application performing causal reasoning in a confounded additive noise model.
Launched in 2009, NASA’s Kepler space telescope initially observed 150000 stars over
four years, in search of exoplanet transits. These are events where a planet partially occludes
its host star, causing a slight decrease in brightness, often orders of magnitude smaller than
the influence of telescope errors. When looking at stellar light curves, we noticed that the
noise structure was often shared across stars that were light years apart. Since that made
direct interaction of the stars impossible, it was clear that the shared information was due to
the telescope acting as a confounder. We thus devised a method that (a) regresses a given
star of interest on a large set of other stars chosen such that their measurements contain no
information about the star’s astrophysical signal, and (b) removes that regression in order
to cancel the telescope’s influence.'®> The method is called “half-sibling” regression since
target and predictors share a parent, namely the telescope. The method recovers the random
variable representing the astrophysical signal almost surely (up to a constant offset), for an
additive noise model (specifically, the observed light curve is a sum of the unknown astro-
physical signal and an unknown function of the telescope noise), subject to the assumption
that the telescope’s effect on the star is in principle predictable from the other stars [132].

13 For events that are localized in time (such as exoplanet transits), we further argued that the
same applies for suitably chosen past and future values of the star itself, which can thus also
be used as predictors.
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In 2013, the Kepler spacecraft suffered a technical failure, which left it with only
two functioning reaction wheels, insufficient for the precise spatial orientation required by
the original Kepler mission. NASA decided to use the remaining fuel to make further obser-
vations, however, the systematic error was significantly larger than before—a godsend for
our method designed to remove exactly these errors. We augmented it with models of exo-
planet transits and an efficient way to search light curves, leading to the discovery of 36
planet candidates [32], of which 21 were subsequently validated as bona fide exoplanets [92].
Four years later, astronomers found traces of water in the atmosphere of the exoplanet K2-
18b—the first such discovery for an exoplanet in the habitable zone, i.e., allowing for liquid
water [10,151]. The planet turned out to be one that had been first detected in our work [32]
(exoplanet candidate EPIC 201912552).

10. CURRENT RESEARCH AND OPEN PROBLEMS
Conservation of information. We have previously argued that the mechanization of infor-
mation processing currently plays a similar role to the mechanization of energy processing
in earlier industrial revolutions [125]. Our present understanding of information is rather
incomplete, as was the understanding of energy during the course of the first two indus-
trial revolutions. The profound modern understanding of energy came with Emmy Noether
and the insight that energy conservation is due to a symmetry (or covariance) of the funda-
mental laws of physics: they look the same no matter how we shift time. One might argue
that information, suitably conceptualized, should also be a conserved quantity, and that this
might also be a consequence of symmetries. The notions of invariance/independence dis-
cussed above may be able to play a role in this respect.

Mass seemingly played two fundamentally different roles (inertia and gravitation)
until Einstein furnished a deeper connection in general relativity. It is noteworthy that causal-
ity introduces a layer of complexity underlying the symmetric notion of statistical mutual
information. Discussing source coding and channel coding, Shannon [138] remarked: This
duality can be pursued further and is related to a duality between past and future and the
notions of control and knowledge. Thus we may have knowledge of the past but cannot control
it; we may control the future but have no knowledge of it.

What is an object? Following the i.i.d. pattern recognition paradigm, machine learning
learns objects by extracting patterns from many observations. A complementary view may
consider objects as modules that can be separately manipulated or intervened upon [149].
The idea that objects are defined by their behavior under transformation has been influential
in fields ranging from psychology to mathematics [74,88].

Causal representation learning. In hindsight, it appears somewhat naive that first attempts
to build Al tried to realize intelligence by programs written by humans, since existing exam-
ples of intelligent systems appear much too complex for that. However, there is a second
problem, which is just as significant: classic Al assumed that the symbols which were the
basis of algorithms were provided a priori by humans. When building a chess program, it is
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Classic AIL Machine learning:
symbols provided a priori; representations (symbols) learned from data;
rules provided a priori. only include statistical information.
\ \ 7
s r "
Causal modeling: Causal representation learning:
structural causal models assume the capture interventions, reasoning, planning — “Think-
causal variables (symbols) are given. ing is acting in an imagined space” (Konrad Lorenz)
. . 7
FIGURE 11

Causal representation learning aims to automatically learn representations that contain not just statistical
information, but support interventions, reasoning, and planning. The long-term goal of this field is to learn causal
world models supporting Al, or causal digital twins of complex systems.

clear that the algorithms operate on chess board positions and chess pieces; however, if we
want to solve a real-world problem in an unstructured environment (e.g., recognize spoken
language), it is not clear what constitutes the basic symbols to be processed.

Traditional causal discovery and reasoning assumed that the elementary units are
random variables connected by a causal graph. Real-world observations, however, are usu-
ally not structured into such units to begin with. For instance, objects in images that permit
causal reasoning first need to be discovered [84, 85, 149,157]. The emerging field of causal
representation learning strives to learn these variables from data, much like machine learn-
ing went beyond symbolic Al in not requiring that the symbols that algorithms manipulate
be given a priori (see Figure 11).

Defining objects or variables, and structural models connecting them, can some-
times be achieved by coarse-graining of microscopic models, including microscopic SCMs
[123], ordinary differential equations [122], and temporally aggregated time series [37]. While
most causal models in economics, medicine, or psychology use variables that are abstrac-
tions of more elementary concepts, it is challenging to state general conditions under which
coarse-grained variables admit causal models with well-defined interventions [15, 16, 123].
The task of identifying suitable units that admit causal models aligns with the general goal
of modern machine learning to learn meaningful representations for data, where meaningful
can mean robust, transferable, interpretable, explainable, or fair [76-72,77,155,162]. To com-
bine structural causal modeling (Definition 4.4) and representation learning, we may try to
devise machine learning models whose inputs may be high-dimensional and unstructured,
but whose inner workings are (partly) governed by an SCM.

Suppose that our high-dimensional, low-level observations X = (X1, ..., Xg) are
explained by a small number of unobserved, or latent, variables S = (S1, ..., S,) where
n < d,inthat X is generated by applying an injective map g : R” — R to S (see Figure 12c¢),

X = g(S). (10.1)
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FIGURE 12
Overview of different causal learning tasks: (a) causal discovery (Section 7) aims to learn the causal graph (or

E[X3]do(x2)]?

S
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SCM) connecting a set of observed variables; (b) causal reasoning (Section 9) aims to answer interventional or
counterfactual queries based on a (partial) causal model over observed variables X;; (c) causal representation
learning (Section 10) aims to infer a causal model consisting of a small number of high-level, abstract causal
variables S; and their relations from potentially high-dimensional, low-level observations X = g(S).

A common assumption regarding (10.1) is that the latent S; are jointly independent, e.g., for

independent component analysis (ICA) [57] (where g is referred to as a mixing) or disentan-

gled representation learning [9] (where g is called a decoder). Presently, however, we instead

want think of the latent S; as causal variables that support interventions and reasoning.
The S; may thus well be dependent, and possess a causal factorization (4.1),

n
P(S1-. Sn) =[] p(Si[PAy), (10.2)
i=1
induced by an underlying (acyclic) SCM M = (F, py) with jointly independent U; and

n
i=1"

F={S = fi(PA;,U;)) (10.3)

Our goal is to learn a latent causal model consisting of (i) the causal representation
S = g7 1(X), along with (ii) the corresponding causal graph and (iii) the mechanisms
p(S;|PA;) or f;. This is a challenging task, since none of them are directly observed or
known a priori; instead we typically only have access to observations of X. In fact, there is
no hope in an i.i.d. setting since already the simpler case with independent S; (and n = d) is
not identifiable in general (i.e., for arbitrary nonlinear g in (10.1)): even independence does
not sufficiently constrain the problem to uniquely recover, or identify, the true S;’s up to any
simple class of ambiguities such as permutations and elementwise invertible transformations
of the S; [58].

To link causal representation learning to the well-studied ICA setting with indepen-
dent latents in (10.1), we can consider the so-called reduced form of an (acyclic) SCM: by
recursive substitution of the structural assignments (10.3) in topological order of the causal
graph, we can write the latent causal variables S as function of the noise variables only

S = fu(U). (10.4)

Due to acyclicity, this mapping f : R" — R” has a lower triangular Jacobian (possibly after
reordering the S; without loss of generality). However, (10.4) is strictly less informative
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than (10.3): while they entail the same distribution (10.2), the former no longer naturally
supports interventions on the S; but only changes to the noise distribution py (an example
of a so-called soft intervention [3e]). At the same time, the reduced form (10.4) allows us to
rewrite (10.1) as

X =go fue(U). (10.5)

Through this lens, the task of learning the reduced form (10.4) could be seen as structured
form of nonlinear ICA (i.e., (10.1) with independent latents) where we additionally want
to learn an intermediate representation through f... However, as discussed, we cannot even
solve the problem with independent latents (i.e., identify g o fi in (10.5)) [58], let alone
separate the SCM and mixing functions to recover the intermediate causal representation.
It is not surprising that is is not possible to solve the strictly harder causal repre-
sentation learning problem in an i.i.d. setting and that additional causal learning signals are
needed. This gives rise to the following questions: How can we devise causal training algo-
rithms to learn the S;? And, what types of additional data, assumptions, and constraints do
they require beyond the i.i.d. setting? Two general ideas are to (i) build on the ICM Prin-
ciple 5.1 and enforce some form of (algorithmic) independence between the learned causal
mechanisms p(S;|PA;) or f;, and (ii) use heterogeneous (non-i.i.d.) data, e.g., from mul-
tiple views or different environments, arising from interventions in the underlying latent
SCM (10.3). We briefly discuss some more concrete ideas based on recent work.
Generative approach: Causal autoencoders. One approach is to try to learn the gen-
erative causal model (10.1) and (10.3), or its reduced form (10.4), using an autoencoder
approach [73]. An autoencoder consists of an encoder function ¢ : R4 — R” which maps X
to a latent “bottleneck” representation (e.g., comprising the unexplained noise variables U),
and a decoder function g : R” — R mapping back to the observations. For example, the
decoder may directly implement the composition § = g o fi. from (10.4). Alternatively, it
could consist of multiple modules, implementing (10.1) and (10.3) separately. A standard
procedure to train such an autoencoder architecture is to minimize the reconstruction error,
i.e., to satisfy g o ¢ ~ id on a training set of observations of X. As discussed, this alone
is insufficient, so to make it causal we can impose additional constraints on the structure
of the decoder [8e] and try to make the causal mechanisms independent by ensuring that
they are invariant across problems and can be independently intervened upon. For exam-
ple, if we intervene on the causal variables S; or noise distribution py in our model of (10.3)
or (10.4), respectively, this should still produce “valid” observations, as assessed, e.g., by the
discriminator of a generative adversarial network [38]. While we ideally want to manipulate
the causal variables, another way to intervene is to replace noise variables with the corre-
sponding values computed from other input images, a procedure that has been referred to
as hybridization [11]. Alternatively, if we have access to multiple environments, i.e., datasets
collected under different conditions, we could rely on the Sparse Mechanism Shift Princi-
ple 5.2 by requiring that changes can be explained by shifts in only a few of the p(S;|PA;).
Discriminative approach: Self-supervised causal representation learning. A differ-
ent machine learning approach for unsupervised representation learning, that is not based on

5579 FROM STATISTICAL TO CAUSAL LEARNING



generative modeling but is discriminative in nature, is self-supervised learning with data
augmentation. Here, the main idea is to apply some hand-crafted transformations to the
observation to generate augmented views that are thought to share the main semantic char-
acteristics with the original observation (e.g., random crops or blurs for images). One then
directly learns a representation by maximizing the similarity across encodings of views
related to each other by augmentations, while enforcing diversity across those of unrelated
views. In a recent work [158], we set out to better understand this approach theoretically, as
well as to investigate its potential for learning causal representations. Starting from (10.1), we
postulate a latent causal model of the form S, — S;, where S, is a (potentially multivariate)
content variable, defined as the high-level semantic part of the representation S = (S, Sy)
that is assumed invariant across views; and S; is a (potentially multivariate) style variable,
defined as the remaining part of the representation that may change. Within this setting, data
augmentations have a natural interpretation as counterfactuals under a hypothetical inter-
vention on the style variables, given the original view. It can be shown that in this case,
subject to some technical assumptions, common contrastive self-supervised learning algo-
rithms [19,45,152] as well as appropriately constrained generative models isolate, or recover,
the true content variables S, up to an invertible transformation. By extending this approach
to use multiple augmented views of the same observation, and linking these to different coun-
terfactuals in the underlying latent SCM, it may be possible to recover a more-fine-grained
causal representation.

Independent mechanism analysis. We also explored [4e] to what extent the ICM Prin-
ciple 5.1 may be useful for unsupervised representation learning tasks such as (10.1),
particularly for imposing additional constraints on the mixing function g. It turns out that
independence between p(S) and the mixing g—measured, e.g., as discussed in Section 5
in the context of Figure 6 and [68]—does not impose nontrivial constraints when S is not
observed, even when the S; are assumed independent as in ICA. However, by thinking of
each §; as independently influencing the observed distribution, we postulate another type
of independence between the partial derivatives g—i of the mixing g which has a geomet-
ric interpretation as an orthogonality condition on the columns of the Jacobian of g. The
resulting independent mechanism analysis (IMA) approach rules out some of the common
examples of nonidentifiability of nonlinear ICA [58,83] mentioned above. Since IMA does
not require independent sources, it may also be a useful constraint for causal representation
learning algorithms.

Learning transferable mechanisms and multitask learning. Machine learning excels in
i.i.d. settings, and through the use of high capacity learning algorithms we can achieve out-
standing performance on many problems, provided we have i.i.d. data for each individual
problem (Section 2). However, natural intelligence excels at generalizing across tasks and
settings. Suppose we want to build a system that can solve multiple tasks in multiple envi-
ronments. If we view learning as data compression, it would make sense for that system to
utilize components that apply across tasks and environments, and thus need to be stored only
once [125].
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Indeed, an artificial or natural agent in a complex world is faced with limited
resources. This concerns training data, i.e., we only have limited data for each individual
task/domain, and thus need to find ways of pooling/reusing data, in stark contrast to the
current industry practice of large-scale labeling work done by humans. It also concerns
computational resources: animals have constraints on the resources (e.g., space, energy)
used by their brains, and evolutionary neuroscience knows examples where brain regions
get repurposed. Similar constraints apply as machine learning systems get embedded in
physical devices that may be small and battery-powered. Versatile Al models that robustly
solve a range of problems in the real world will thus likely need to reuse components, which
requires that the components are robust across tasks and environments [127,133]. This calls
for a structure whose modules are maximally reusable. An elegant way to do this would be to
employ a modular structure that mirrors modularity that exists in the world. In other words,
if the are mechanisms at play in the world play similar roles across a range of environments,
tasks, and settings, then it would be prudent for a model to employ corresponding compu-
tational modules [39]. For instance, if variations of natural lighting (the position of the sun,
clouds, etc.) imply that the visual environment can appear in brightness conditions span-
ning several orders of magnitude, then visual processing algorithms in our nervous system
should employ methods that can factor out these variations, rather than building separate sets
of object recognizers for every lighting condition. If our brain were to model the lighting
changes by a gain control mechanism, say, then this mechanism in itself need not have any-
thing to do with the physical mechanisms bringing about brightness differences. It would,
however, play a role in a modular structure that corresponds to the role the physical mecha-
nisms play in the world’s modular structure—in other words, it would represent the physical
mechanism. Searching for the most versatile, yet compact, models would then automatically
produce a bias towards models that exhibit certain forms of structural isomorphy to a world
that we cannot directly recognize.

A sensible inductive bias to learn such models is to look for independent causal
mechanisms [82], and competitive training can play a role in this: for a pattern recognition
task, learning causal models that contain independent mechanisms helps in transferring mod-
ules across substantially different domains [99].

Interventional world models, surrogate models, digital twins, and reasoning. Modern
representation learning excels at learning representations of data that preserve relevant sta-
tistical properties [9,79]. It does so, however, without taking into account causal properties
of the variables, i.e., it does not care about the interventional properties of the variables it
analyzes or reconstructs. Going forward, causality will play a major role in taking represen-
tation learning to the next level, moving beyond the representation of statistical dependence
structures towards models that support intervention, planning, and reasoning. This would
realize Konrad Lorenz’ notion of thinking as acting in an imagined space. It would also pro-
vide a means to learn causal digital twins that go beyond reproducing statistical dependences
captured by surrogate models trained using machine learning.
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The idea of surrogate modeling is that we may have a complex phenomenon for
which we have access to computationally expensive simulation data. If the mappings involved
(e.g., from parameter settings to target quantities) can be fitted from data, we can employ
machine learning, which will often speed them up by orders of magnitude. Such a speed-
up can qualitatively change the usability of a model: for instance, we have recently built
a system to map gravitational wave measurements to a probability distribution of physi-
cal parameters of a black hole merger event, including sky position [27]. The fact that this
model only requires seconds to evaluate makes it possible to immediately start electromag-
netic follow-up observations using telescopes as soon as a gravitational wave event has been
detected, enabling analysis of transient events.

Going forward, we anticipate that surrogate modeling will benefit from respecting
the causal factorization (4.1) decomposing the overall dependence structure into mechanisms
(i.e., causal conditionals). We can then build an overall model of a system by modeling the
mechanisms independently, each of them using the optimal method. Some of the conditionals
we may know analytically, some we may be able to transfer from related problems, if they
are invariant. For some, we may have access to real data to estimate them, and for others, we
may need to resort to simulations, possibly fitted using surrogate models.

If the model is required to fully capture the effects of all possible interventions,
then all components should be fitted as described in the causal directions (i.e., we fit the
causal mechanisms). Such a model then allows employing all the causal reasoning machinery
described in Sections 4 and 9 (e.g., computing interventional and, in the case of SCMs,
counterfactual distributions). If, on the other hand, a model only needs to capture some of
the possible interventions, and is used in a purely predictive/observational mode for other
variables, then we can get away with also using and fitting some noncausal modules, i.e.,
using a decomposition which lies in-between (4.1) and (4.2).

We believe that this overall framework will be a principled and powerful approach to
build such (causal) digital twins or causal surrogate models by combining a range of methods
and bringing them to bear according to their strengths.

Concluding remarks. Most of the discussed fields are still in their infancy, and the above
account is biased by personal taste and knowledge. With the current hype around machine
learning, there is much to say in favor of some humility towards what machine learning can
do, and thus towards the current state of Al—the hard problems have not been solved yet,
making basic research in this field all the more exciting.
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