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Abstract

This paper presents some second- and higher-order Gaussian anticoncentration inequalities
in high dimension and error bounds in Slepian’s comparison theorem for the distribution
functions of the maxima of two Gaussian vectors. The anticoncentration theorems are
presented as upper bounds for the sum of the absolute values of the partial derivatives of
a certain order for the joint distribution function of a Gaussian vector or weighted sums
of such absolute values. Compared with the existing results where the covariance matrix
of the entire Gaussian vector is required to be invertible, the bounds for the mth deriva-
tives developed in this paper require only the invertibility of the covariance matrices of all
subsets of m random variables. The second-order anticoncentration inequality is used to
develop comparison theorems for the joint distribution functions of Gaussian vectors or,
equivalently, the univariate distribution functions of their maxima via Slepian’s interpo-
lation. The third- and higher-order anticoncentration inequalities are motivated by recent
advances in the central limit theorem and consistency of bootstrap for the maximum com-
ponent of a sum of independent random vectors in high dimension and related applications
in statistical inference and machine learning.
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1. Introduction

LetX D .X1; : : : ;Xd /
> and Y D .Y1; : : : ; Yd /

> be two Gaussian vectors. Slepian’s
[31] inequality asserts that when Xi and Yi have the same mean and variance, and
Var.Xi � Xj / � Var.Yi � Yj / for all 1 � i < j � d , the maximum of Yi is stochasti-
cally larger than the maximum of Xi ,

P
°

max
1�i�d

Xi > t
±

� P
°

max
1�i�d

Yi > t
±
; 8t 2 R: (1.1)

Variations and extensions of Slepian’s inequality have been developed to relax the
conditions on the mean and variance of the individual components and pairwise contrasts,
and to compare more general functions of the Gaussian vectors. Among such results, the
Sudakov–Fernique inequality [15,32,33] asserts that

E
h
max
i�d

Xi

i
� E

h
max
i�d

Yi

i
(1.2)

when EŒX�D EŒY � and Var.Xi �Xj / � Var.Yi � Yj / for all 1 � i < j � d . Gordon’s [16]

inequalities extend (1.1) and (1.2) to the minimax function of Gaussian matrices. Chatterjee
[5] provided an error bound in the Sudakov–Fernique inequalityˇ̌̌

E
h
max
i�d

Yi

i
� E

h
max
i�d

Xi

iˇ̌̌
�
p
� log d (1.3)

under the condition EŒX�D EŒY �, where�D max1�i<j �d jVar.Yi � Yj /� Var.Xi �Xj /j.
Comparison theorems such as the above and related anticoncentration inequalities

are used in statistical inference, machine learning, reliability, signal processing, extreme
value theory, random matrix theory, empirical processes, and more. See, for example, [1,18,
21–23,27,29,30,34] and references therein. Anticoncentration inequalities in Slepian’s compar-
ison theorem provide upper bounds for the modulus of continuity of the distribution function
of the maximum or the corresponding density function. This paper is motivated by the recent
developments in the central limit theorem and bootstrap theory for the maximum component
of a sum of independent random vectors in high dimension, specifically a crucial role of the
Gaussian anticoncentration theory in these developments [6,8,10,12,13,19,25].

We present in this paper second- and higher-order anticoncentration inequalities for
the Gaussian maxima and some of their implications in the comparison of Gaussian distribu-
tion functions. These anticoncentration inequalities provide upper bounds for the sum of the
absolute values of the derivatives of a given order for the Gaussian joint distribution func-
tion and thus upper bounds for the derivatives of the distribution function of the Gaussian
maxima. While the second-order anticoncentration inequalities are used in the development
of our error bounds in Slepian’s comparison theorem, the third- and higher-order anticoncen-
tration inequalities can be used in studies of the central limit theorem and bootstrap in high
dimension depending on the order of expansion in the related Slepian’s [31] or Lindeberg’s
[24] interpolations in such applications.

We present below some error bounds in Slepian’s comparison theorem as conse-
quences of our results in Sections 2 and 3.
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Theorem 1. LetX D .X1; : : : ;Xd /
> and Y D .Y1; : : : ; Yd /

> be two Gaussian vectors with
EŒX� D EŒY � D �. Let �i D

p
Var.Xi / ^ Var.Yi /,�i;j D ¹Cov.Yi ; Yj /� Cov.Xi ;Xj /º=

.�i�j /, �cross
C D max1�i<j �d .�i;j /C, and �diag D max1�i�d j�i;i j. Then, for d � 2,

P
°

max
1�k�d

Yk � t
±

� P
°

max
1�k�d

Xk � t
±

�
p
��.4 log d/; (1.4)

where �� D .�cross
C C�diag/=2C max1�i�j �d j�i;j j=.2 log d/. Moreover, for d � 2,

P
°

max
1�k�d

Yk � t
±

� P
°

max
1�k�d

Xk � t
±

�

�
2
�cross

C _�diag

1 � ��
C
�diag

2

�
min

®
2 log d;

�
��.t/C 1

�2¯
; (1.5)

where �� D maxi<j �d jCorr.Xi ;Xj /j _ jCorr.Yi ;Yj /j and ��.t/D 1_ maxi�d jt ��i j=�i .

Theorem 1 is proved in Section 3. In Theorem 1, (1.4) is a sharper and more explicit
version of Corollary 5.1 of [9]. Under the conditions for (1.1), �cross

C .s/ D �diag.s/ D 0

in (1.5), so Theorem 1 contains Slepian’s inequality as a special case. Inequality (1.5)
improves upon (1.4) when

p
��=.1 � ��/ is small. Although quantities of different order

of smoothness are concerned, the error bounds in Theorem 1 are of a similar form to that
of (1.3).

The rest of the paper is organized as follows. We present second-order anticoncen-
tration inequalities in Section 2, comparison theorems for the Gaussian joint distribution
functions in Section 3, and higher-order anticoncentration inequalities in Section 4.

We use the following notation to shorten mathematical expressions in the rest of the
paper. For positive integers m < d , Œd � D ¹1; : : : ; dº, i1Wm D .i1; : : : ; im/, Œd �m D ¹i1Wm W

ij 2 Œd �8 j 2 Œm�º, Œd �m
¤

D ¹i1Wm 2 Œd �m W ij ¤ ik 8 j ¤ kº, Œd �m< D ¹i1Wm 2 Œd �m W i1 <

� � �< imº, Œd �i1Wm D ¹k 2 Œd � W k ¤ ij 8j 2 Œm�º, and Œd �2
i1Wm;¤

D ¹.j; k/ 2 Œd �2
¤

W j 2 Œd �i1Wm ;

k 2 Œd �i1Wmº. As usual, we denote by '.t/ andˆ.t/, respectively, theN.0; 1/ density and dis-
tribution functions, k � k2 the Euclidean norm, kf kL1

D supx2Rd jf .x/j, a^ bD min.a;b/,
a _ b D max.a; b/, and xC D max.x; 0/.

2. Anticoncentration inequalities for Gaussian maxima

Let X D .X1; : : : ; Xd /
> be a multivariate Gaussian vector with a joint distribution

function

G.x/ D G.x1; : : : ; xd / D P
®
Xi � xi 8i 2 Œd �

¯
: (2.1)

Let Xmax D maxi2Œd�Xi and denote the distribution function of the maximum by

Gmax.t/ D P¹Xmax � tº D G.t; : : : ; t /: (2.2)

While concentration inequalities provide upper bounds for the deviation of Xmax from its
center, e.g., the median, anticoncentration inequalities bound

P¹a < Xmax � aC "º D Gmax.aC "/ �Gmax.a/

or the density of Xmax from the above.
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Among existing results on the anticoncentration of Xmax, Nazarov’s [26] inequality,

Gmax.aC "/ �Gmax.a/ � "
2C

p
2 log d

mini2Œd�

p
Var.Xi /

; 8" > 0; (2.3)

has found important applications in statistics and machine learning, including bootstrap and
central limit theorem [6,8,12,13,19,35]. In terms of the joint distributionG, Nazarov’s inequal-
ity can be written as an `1-bound for the gradient of G,

d

dt
Gmax.t/ D

dX
iD1

@

@xi

G.x/jxi Dt;8i2Œd� �
2C

p
2 log d

mini2Œd�

p
Var.Xi /

: (2.4)

In our development of comparison theorems for Gaussian maxima, the second
derivative

@

@xi

@

@xj

P
°

max
k2Œd�

.Xk � xk/ � t
±

is involved in Slepian’s interpolation. As t can be absorbed into xk , what we need is a proper
upper bound for the second derivative of the distribution function G,

Gi;j .x/ D
@

@xi

@

@xj

P
®
Xi � xi 8i 2 Œd �

¯
:

In fact, a weighted `1-norm of Gi;j .x/ is used in our analysis. Such bounds for the Hessian
of G.x/ can be viewed as second-order anticoncentration inequalities.

For a standard Gaussian vector Z D .Z1; : : : ; Zd /
> with EŒZ� D 0 and

EŒZZ>� D Id , [3] proved the following anticoncentration inequality of general order:

sup
x

X
.i1;:::;im/2Œd�m

ˇ̌̌̌
@mP¹Zk � xk 8k 2 Œd �º

@xi1 � � � @xim

ˇ̌̌̌
� Cm.log d/m=2

for some constant Cm depending on m only. Further development of such results and their
applications can be found in [2,4,10,11,14,17,20,25,28,36,37] among others. In particular, for
applications to Gaussian and bootstrap approximation of the maxima of sums of indepen-
dent random vectors, the Gaussian vector X was assumed to have a nonsingular covariance
matrix † and the transformation Z D †�1=2X was taken to study the anticoncentration of
Xmax [2,10,14]. The resulting anticoncentration inequality can be written as

sup
x

X
.i1;:::;im/2Œd�m

ˇ̌̌̌
@mG.x/

@xi1 � � � @xim

ˇ̌̌̌
�
Cm.log d/m=2

�
m=2
min .†/

; (2.5)

where �min stands for the smallest eigenvalue. However, the dependence of (2.5) on the
smallest eigenvalue is restrictive. We provide below second-order and in Section 4 higher-
order anticoncentration inequalities which replace �min.†/ in (2.5) by the minimum of the
eigenvalues of diagonal blocks of dimensionm. Such results can be viewed as extensions of
Nazarov’s inequality (2.4) to higher order.

Before we present the second-order anticoncentration inequality, we give a variation
of Nazarov’s inequality to explain our approach and write a short proof of it as a road map
of the proof in higher order.
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Theorem 2. Let G.x/ be the joint distribution function (2.1) of a Gaussian vector
.X1; : : : ; Xd /

> with Xi � N.�i ; �
2
i /. Let Gi .x/ D .@=@xi /G.x/. Let h.t/ be a function

and t0 � 0 such that h.t/'.t/ � h.t0/'.t0/ for t � t0, h.t/ ^ h0.t/ � 0 for t � t0, and
th.t/� h0.t/ is nonnegative and increasing in Œt0;1/. Let a�

1 D t0 _ maxi2Œd�.xi ��i /=�i .
Then,

dX
iD1

�iGi .x/h
�
.xi � �i /=�i

�
� min

®
h
�
a�

1

��
a�

1 C 1 ^
�
1=a�

1

��
; h.t0 _

p
2 log d/

p
2 log d

¯
; d � 2: (2.6)

In particular, for ˇ � 0, (2.6) holds for h.t/ D jt jˇ with t0 D
p
ˇ.

For h.t/D 1 and d � 2, (2.6) slightly improves Nazarov’s inequality (2.4). Inequal-
ity (2.6) with h.t/ D jt jm�1 is useful in bounding the mth order derivative of G.x/. The
following corollary demonstrates another way of utilizing the choice h.�/ in Theorem 2.

Corollary 1. Let d � 2. If �i � � > 0, then

d

dt
P
°
max
i2Œd�

Xi � t
±

�

p
2 log d
�

:

If jt � �i j � a with a certain a > 0, then
d

dt
P
°
max
i2Œd�

Xi � t
±

� .2=a/ log d:

Compared with existing literature, Corollary 1 provides an alternative bound to deal
with high heteroskedasticity. The second bound in the corollary follows from (2.6) with
h.t/ D jt j=a as Gi .x/ � j.xi � �i /=�i j�iGi .x/=a. Typically, for EŒXi � D 0, the magni-
tude of EŒmaxi2Œd� Xi � is of the order �

p
log d for some � representing the average of

�i or larger and the probability outside a small neighborhood of EŒmaxi2Œd� Xi � is very
small due to Gaussian concentration, so that the most interesting application of (2.4) is for
t � a with a � �

p
log d . In such applications, Corollary 1 replaces mini2Œd� �i in (2.4)

with a quantity of the order � . This is related to a variation of (2.3) in [7] where the
p

log d
rate is replaced by O.EŒmaxk�d Xk=�k �C

p
1 _ log.mini �i="// for centered X . Another

variation of (2.4) can be found in [13] where the upper bound is

1=�.1/ C max
1�j �d

.1C
p
2 log j /=�.j /

where �.1/ � � � � � �.d/ are the ordered values of �1; : : : ; �d . This variation of Nazarov’s
inequality is extended to higher orders in Section 4.

Proof of Theorem 2. Let�i .t/D'..t ��i /=�i /=�i be the density ofXi ,X 0
i D .Xi � xi /=�i

and �i;j D Corr.Xi ; Xj /. Because Xi is independent of X 0
k

� �i;kX
0
i ,

Gi .x/ D P
®
Xk � xk ;8k 2 Œd �i jXi D xi

¯
�i .xi /

D P
®
X 0

k � �i;kX
0
i ;8k 2 Œd �i

¯
�i .xi /: (2.7)
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Let �i D P¹X 0
i > 0ºGi .x/=�i .xi /, �i .x/ D .xi � �i /=�i and Ri D

P
k2Œd� I ¹X 0

k
� X 0

i º

be the rank of X 0
i . Due to the independence of X 0

i and ¹X 0
k

� �i;kX
0
i ; k 2 Œd �i º and the fact

that ¹X 0
k

� �i;kX
0
i ; k 2 Œd �i ; X

0
i > 0º � ¹Ri D 1º,

�i D P
®
X 0

k � �i;kX
0
i ;8k 2 Œd �i

¯
ˆ
�
��i .x/

�
� P¹Ri D 1º; (2.8)

so that
P

i2Œd� �i � 1. Let  1.t/ D ˆ.�t /='.t/. We have h.�i .x//= 1.�i .x// � h.a�
1/=

 1.a
�
1/ because a�

1 � t0, h.t/= 1.t/ � h.t0/= 1.t0/ for t � t0 and h.t/= 1.t/ is nonde-
creasing for t � t0. Because �iGi .x/ D �i= 1.�i .x// by (2.7) and (2.8), the first upper
bound in (2.6) follows from 1= 1.t/ � t C  1.t/ and h.t/ ^ h0.t/ � 0 for t � t0. For the
second upper bound in (2.6), (2.7) and (2.8) yield

dX
iD1

�iGi .x/h
�
�i .x/

�
� max

�i ;�i ;i2Œd�

´X
�i �t0

h.t0/'.t0/�i

ˆ.��i /
C

X
�1>t0

h.�i /�i

 1.�i /
W

dX
iD1

�i � 1; 0 � �i � ˆ.��i /

µ
:

D max
�i �t0;�i ;i2Œd�

´
dX

iD1

h.�i /'.�i / W

dX
iD1

ˆ.��i / � 1

µ
(2.9)

due to h.t/'.t/ � h.t0/'.t0/ in .1; t0� and the monotonicity of ˆ.t/ in R and h.t/= 1.t/

in Œt0;1/. The global maximum on the right-hand side of (2.9) must be attained when
�ih.�i / � h0.�i / D � for all i with a Lagrange multiplier �. As th.t/ � h0.t/ D � has one
solution in Œt0;1/, the global maximum is attained at �i D t for all i 2 Œd � and some t � t0.
As .d=dt/¹h.t/'.t/º � 0 for t � t0, the maximum is attained at t D t0 _ t1 and given by
dh.t0 _ t1/'.t0 _ t1/, where t1 is the solution ofˆ.�t1/D 1=d . This gives the second upper
bound in (2.6) because t1 �

p
2 log d and d'.t1/ D 1= 1.t1/ �

p
2 log d for d � 2.

To extend Theorem 2 to the second order, we need to define certain quantities ˛i;j

as an extension of the weights �i . Let †i;j and �i;j .�/ be respectively the covariance matrix
and joint density of .Xi ; Xj /

>. As 1=�i D maxt

p
2��i .t/, ˛i;j is expected to involve

j det.†i;j /j1=2 as the Jacobian in the denominator of �i;j .�/. However, ˛i;j also involves a
certain threshold level ti for a two-dimensional extension of (2.8). Let �i;j D Corr.Xi ; Xj /.
The threshold level ti is defined as

ti D min
®q
.1 � �i;j /=.1C �i;j / W j 2 Œd �i

¯
; (2.10)

which can be viewed as the tangent of the minimum half-angle between standardizedXi and
Xj inL2.P /. Let Yi D .Xi ��i /=�i be the standardizedXi , �i;j D arccos.�i;j / 2 Œ0;�� be
the L2.P / angle between Yi and Yj , and �i;min D min¹�i;j W j 2 Œd �i º be the angle between
Yi and its nearest neighbor. The threshold level in (2.10) can be written as

ti D tan.�i;min=2/:
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The quantity ˛i;j is then defined as

˛i;j D 2 tan.�i;min=4/
ˇ̌
det
�
†i;j

�ˇ̌1=2

D 2 tan
�
arctan.ti /=2

�
�i�j

�
1 � �2

i;j

�1=2 (2.11)

with tan.�i;min=4/ 2 Œ0; 1� and ti as in (2.10). We note that 2 tan.�i;min=4/ � ti when ti is
small. We also consider quantities

Q�i;j D Q�i;j .x/ D
�
�2

i C �2
j ji

�1=2
^
�
�i C ti .�j ji /C

�
C

(2.12)

as signed versions of

�i;j D �i;j .x/ D
�
�2

i C �2
j ji

�1=2
; (2.13)

where �i D �i .x/D .xi ��i /=�i and �j ji D �j ji .x/D .�j � �i;j �i /=.1� �2
i;j /

1=2. We are
now ready to state a second order Gaussian anticoncentration theorem.

Theorem 3. Let d � 2 and X D .X1; : : : ; Xd /
> be a Gaussian vector with a joint

distribution function G.x/. Let Gi;j .x/ D .@=@xi /.@=@xj /G.x/, ˛i;j as in (2.11),
�i;j D Corr.Xi ; Xj /, and a�

2 D a�
2.x/ D

p
2 _ maxi;j Q�i;j .x/ with Q�i;j .x/ as in (2.12).

Then, X
.i;j /2Œd�2

¤

˛i;jGi;j .x/ � min
®
.1=�/ _

�
2 log

�
d.d � 1/=2

��
;
�
a�

2 C
p
2
�2¯
: (2.14)

Moreover, with a�
1 D 1 _ maxi2Œd�.xi � �i /=�i ,

dX
iD1

ˇ̌̌̌
�2

i Gi;i .x/C

X
j 2Œd�i

�i;j�i�jGi;j .x/

ˇ̌̌̌
� min

®
2 log d;

�
a�

1

�2
C 1

¯
: (2.15)

Before we move ahead to proving Theorem 3, we state in the following corollary
a scaled `1-bound for the Hessian of the joint distribution function G.x/ as a direct conse-
quence of the theorem using tan.�i;min=4/ �

p
.1 � maxk¤i �i;k/=8 in (2.11).

Corollary 2. With �i D Var1=2.Xi / and �i;j D Corr.Xi ; Xj /,
dX

iD1

dX
j D1

�i�j

ˇ̌
Gi;j .x/

ˇ̌
� max

.i;j;k/2Œd�3
¤

8 log dp
.1 � j�i;j j/.1 � �j;k/

C 2 log d; d � 2:

Proof of Theorem 3. To prove (2.14), we define

X 0
i D

Xi � xi

�i

; X 0
j ji D

X 0
j � �i;jX

0
i

.1 � �2
i;j /

1=2
; �.j;k/ji D Corr

�
X 0

j ; X
0
kjX 0

i

�
: (2.16)

Let �i;j .�/ be the joint density of .Xi ; Xj /
>. As in (2.7), it holds for all .i; j / 2 Œd �2

¤
that

Gi;j .x/ D P
®
X 0

k < 0; 8k 2 Œd �i;j jX 0
i D X 0

j D 0
¯
�i;j .xi ; xj /

D P
®
X 0

kji � �.j;k/jiX
0
j ji < 0; 8k 2 Œd �i;j

¯
�i;j .xi ; xj /: (2.17)
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For the second step above, we note that X 0
kji

� �.j;k/jiX
0
j ji

is independent of .X 0
i ; X

0
j /

>.
Similar to the proof leading to (2.9), we set Ci;j D ¹0 < X 0

j ji
< tiX

0
i º with the threshold

level ti in (2.10), and define

�i;j D P¹Ci;j ºGi;j .x/=�i;j .xi ; xj /: (2.18)

LetRi D
Pd

j D1 I ¹X 0
j �X 0

i º andRj ji D
P

k2Œd�i
I ¹X 0

kji
�X 0

j ji
º be respectively the marginal

and conditional ranks of X 0
i and X 0

j ji
in (2.16). By the definition of ti ,

ti �
p
.1 � �i;k/=.1C �i;k/, so that �i;k C .1 � �2

i;k
/1=2ti � 1 for all k 2 Œd �i . It follows

that
�i;j D P

®
X 0

kji � �.j;k/jiX
0
j ji < 0 8k 2 Œd �i;j

¯
P¹Ci;j º

D P
®
X 0

kji < �.j;k/jiX
0
j ji ;8k 2 Œd �i;j ; 0 � X 0

j ji < tiX
0
i ; X

0
i > 0

¯
� P

®
Rj ji D 1; X 0

kji < tiX
0
i ; 8k 2 Œd �i ; X

0
i > 0

¯
D P

®
Rj ji D 1; X 0

k <
�
�i;k C

�
1 � �2

i;k

�1=2
ti
�
X 0

i � X 0
i ; 8k 2 Œd �i

¯
� P¹Rj ji D 1;Ri D 1º:

Consequently, X
.i;j /2Œd�2

¤

�i;j � 1: (2.19)

We still need a lower bound for P¹Ci;j º to use (2.19). To this end, we prove

P¹Ci;j º D �i;j�i;j .xi ; xj /=Gi;j .x/

� 2 tan.�i;min=4/'.�i;j /'.0/ 2. Q�i;j /

D ˛i;j�i;j .xi ; xj / 2. Q�i;j /; (2.20)

where �i;j D �i;j .x/ are as in (2.13), Q�i;j D Q�i;j .x/ D min¹�i;j ; .�i C ti .�j ji /C/Cº are as
in (2.12), ˛i;j and �i;min are as in (2.11), and

 2.t/ D

Z 1

0

Z y1

0

e�y2
2 =2�ty1�y2

1 =2dy2dy1: (2.21)

Moreover, with  1.t/ D ˆ.�t /='.t/ as in (2.9), we prove that for all t � 0,

1= 2.t/ � 1= 2
1 .t/C 1C 2=

�
1C  2

1 .t/
�
: (2.22)

The first equality in (2.20) is from the definition of �i;j in (2.18), and the last follows from
'.�i /'.�j ji / D j det.†i;j /j1=2�i;j .xi ; xj / and the definition of ˛i;j in (2.11). We note that
�i;j D .�2

i C �2
j ji
/1=2 and the variables X 0

i � N.��i ; 1/ and X 0
j ji

� N.��j ji ; 1/ are inde-
pendent by (2.16). It follows that

P¹Ci;j º D

Z 1

0

Z ti y1

0

'.y1 C �i /'.y2 C �j ji /dy2dy1 (2.23)

with ti D tan.�i;min=2/. Given �i;j D .�2
i C �2

j ji
/1=2, the above integral is minimized when

�i ^ �j ji � 0 and �j ji=�i D tan.�i;min=4/. Thus, after proper rotation

P¹Ci;j º �

Z 1

0

Z
jy2j�tan.�i;min=4/y1

'.y1 � �i;j /'.y2/dy2dy1;
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which implies the inequality in (2.20) for �i;j D Q�i;j . For �i;j > Q�i;j and 0 < y2 � tiy1,
�iy1 C �j jiy2 � �iy1 C ti .�j ji /Cy1 � Q�i;jy1, so that by (2.23)

P¹Ci;j º �
'.�i;j /
p
2�

Z 1

0

Z ti y1

0

e�y2
1 =2�y2

2 =2�Q�i;j y1dy2dy1;

which again implies the inequality in (2.20). For (2.22), we note that by (2.21)

 2.t/ D

Z 1

0

®
 1

�
.t C y1/=

p
2
�
=
p
2
¯
e�ty1�y2

1 =2dy1:

As in Lemma 9 of [13], 1=.t C  1.t// <  1.t/ < 1=t , so thatZ 1

0

y1e
�ty1�y2

1 =2dy1 D 1 � t 1.t/ �  2
1 .t/:

As  1.�/ is convex and decreasing in Œ0;1/, an application of Jensen’s inequality yields
 2.t/ � ¹ 1.t/=

p
2º 1..t C  1.t//=

p
2/. Thus, as .1=t/=.1C 1=t2/ <  1.t/ < 1=t ,

 2.t/ �
 1.t/
p
2
 1

�
1C  2

1 .t/
p
2 1.t/

�
�

 2
1 .t/=.1C  2

1 .t//

1C 2 2
1 .t/=.1C  2

1 .t//
2
;

which gives (2.22).
Let � 0

i;j D ˛i;jGi;j .x/ 2. Q�i;j /. It follows from (2.20) that � 0
i;j � �i;j . By (2.11)

and (2.17),

� 0
i;j � 2

ˇ̌
det
�
†i;j

�ˇ̌1=2
�i;j .xi ; xj / 2. Q�i;j / D

p
2=�'.�i;j / 2. Q�i;j /: (2.24)

This gives (2.14) for d D 2 as ˛1;2G1;2.x/ � 1=� . By (2.19) and (2.22),X
.i;j /2Œd�2

¤

˛i;jGi;j .x/ D

X
.i;j /2Œd�2

¤

� 0
i;j

 2. Q�i;j /
�
�
a�

2 C
p
2
�2

due to a�
2 D

p
2 _ max.i;j /2Œd�2

¤
Q�i;j and 1= 1.t/ � t C 1=t . In general, (2.19) and (2.24)

yieldX
.i;j /2Œd�2

¤

˛i;jGi;j .x/

� max
�i;j �0;� 0

i;j

² X
.i;j /2Œd�2

¤

� 0
i;j

 2.�i;j /
W

X
.i;j /2Œd�2

¤

� 0
i;j � 1; � 0

i;j �
p
2=�'.�i;j / 2.�i;j /

³
D max

�i;j �0

² X
.i;j /2Œd�2

¤

p
2=�'.�i;j / W

X
.i;j /2Œd�2

¤

p
2=�'.�i;j / 2.�i;j / � 1

³
(2.25)

because  2.t/ and '.t/ are both decreasing in Œ0;1/. Let d2 D d.d � 1/=2. By (2.21),
 2.t/ �  0

2.t/=t is decreasing in t in Œ0;1/, so that the optimization problem is solved
by �i;j D t2 with a Lagrange multiplier, where t2 is the solution of

p
2=�'.t2/ 2.t2/ D

1=.2d2/. For d � 3 and t D
p
.2 log.2d2=.2� log d2///C, we have 1= 2.t/ � 2 log d2

via (2.22). Thus, the right-hand side of (2.25) is no greater than 2 log d2.
Finally, it follows from (2.16) and (2.7) that

Gi;i .x/ D �Gi .x/�i .x/=�i �

X
j 2Œd�i

Gi;j .x/�i;j�j =�i (2.26)

with �i .x/ D .xi � �i /=�i , so that (2.15) follows from Theorem 2 with h.t/ D jt j.
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3. Comparison of Gaussian distribution functions

The Gaussian anticoncentration theorem in Section 2 yields the following error
bounds in the comparison of Gaussian joint distribution functions.

Let X D .X1; : : : ; Xd /
> and Y D .Y1; : : : ; Yd /

> be two Gaussian vectors with
common mean� and respective covariance matrices†X and†Y and joint distribution func-
tions

GX .x/ D P
®
Xk � xk8k 2 Œd �

¯
; GY .y/ D P

®
Yk � yk8k 2 Œd �

¯
: (3.1)

For 0 � s � 1, let †i;j .s/ be the elements of †.s/ D .1 � s/†X C s†Y ,

�i .xI s/ D .xi � �i /=
p
†i;i .s/; (3.2)

�i;j .s/ D
†Y

i;j �†X
i;jp

†i;i .s/†j;j .s/
; �i;j .s/ D

†i;j .s/p
†i;i .s/†j;j .s/

; (3.3)

and

�i;j;˙.s/ D max
k¤i;`¤j

.2�i;j .s//˙ _ j�i;i .s/C�j;j .s/jp
.1 � j�i;j .s/j/.

p
1 � �i;k.s/C

p
1 � �j;`.s//

: (3.4)

Theorem 4. Let GX .x/ and GY .y/ be as in (3.1), ��.xI s/ D 1 _ maxi�2Œd� j�i .xI s/j,
��

C.s/D max.i;j /2Œd�2
¤
�i;j;C.s/ and�diag.s/D maxi2Œd� j�i;i .s/j, where �i .xI s/,�i;i .s/,

and �i;j;˙.s/ are as in (3.2). (3.3), and (3.4), respectively. Then, for d � 2,

GY .x/ �GX .x/ �

Z 1

0

�
2��

C.s/C�diag.s/=2
�

min
®
2 log d;

�
��.x; s/C 1

�2¯
ds: (3.5)

Because GX
max.t/ D GX .t; : : : ; t / and GY

max.t/ D GY .t; : : : ; t /, Theorem 1 is an
immediate consequence of Theorem 4. Conversely, as t can be absorbed into the mean, The-
orem 1 is a simplified version of Theorem 4.

Assume, without loss of generality, that X and Y are independent as the
theorem does not involve the joint distribution of X and Y . With � D EŒX�, write
X.s/ D

p
1 � s.X � �/C

p
s.Y � �/C �, s 2 Œ0; 1�, as Slepian’s interpolation and

�.xI s/ D .2�/�d

Z
Rd

exp
�p

�1.� � x/>u � u>
�
.1 � s/†X

C s†Y
�
u=2

�
du

as the joint density ofX.s/. Slepian’s inequality was proved by passing the differentiation of
EŒf .X.s//� to twice differentiation of f through the above formula,

d

ds
E
�
f
�
X.s/

��
D
1

2

dX
iD1

dX
j D1

�
†Y

i;j �†X
i;j

� Z �@2f .x/

@xi@xj

�
�.xI s/dx; (3.6)

provided the twice differentiability of f .x/. However, for comparison of distribution func-
tions, this is not feasible as f is an indicator function. Instead, with y D .y1; : : : ; yd /

>, we
may exchange the differentiation and integration in (3.6) and write

d

ds
E
�
f
�
X.s/

��
D
1

2

dX
iD1

dX
j D1

�
†Y

i;j �†X
i;j

�@2F.yI s/

@yi@yj

ˇ̌̌̌
yD0

(3.7)
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with F.yI s/ D
R
f .x/�.x C yI s/dx D EŒf .X.s/ � y/�. In the proof of Theorem 4, we

directly apply the weighted anticoncentration inequality in Theorem 3 to (3.7).

Proof of Theorem 4. Let �i .s/ D †
1=2
i;i .s/ and

G.xI s/ D P
®
Xk.s/ � xk ; k 2 Œd �

¯
;

so that (3.7) becomes

.@=@s/G.xI s/ D
1

2

dX
iD1

dX
j D1

�
†Y

i;j �†X
i;j

�
Gi;j .xI s/; (3.8)

where Gi;j .xI s/ D .@=@xi /.@=@xj /G.xI s/. As in (2.11), let

˛i;j .s/ D 2�i .s/�j .s/
�
1 � �2

i;j .s/
�1=2 tan

�
�i;min.s/=4

�
;

with �i;min.s/ D min¹arccos.�i;k/.s/; k 2 Œd �i º 2 Œ0; ��. We have

�i .s/�j .s/.1C j�i;j .s/j/

˛i;j .s/C j̨;i .s/
� max

k¤i;`¤j

p
2.1C j�i;j .s/j/p

1 � j�i;j .s/j.
p
.1 � �i;k/C

p
.1 � �j;`//

due to tan.�i;min=4/�
p
.1 � maxk¤i �i;k/=8. Let �i .xI s/D .xi ��i /=�i .s/. We use �i .s/

to scale (3.8) and apply (2.26) and Theorem 3 as follows:

.@=@s/G.xI s/

D
1

2

X
.i;j /2Œd�2

¤

�i;j .s/�i .s/�j .s/Gi;j .xI s/ �
1

2

dX
iD1

�i;i .s/�i .s/Gi .xI s/�i .xI s/

�
1

4

X
.i;j /2Œd�2

¤

�
�i;i .s/C�j;j .s/

�
�i;j .s/�i .s/�j .s/Gi;j .xI s/

�

X
.i;j /2Œd�2

¤

�i;j;C.s/

�
˛i;j .s/C j̨;i .s/

2

�
Gi;j .xI s/

C
1

2

dX
iD1

ˇ̌
�i;i .s/�i .xI s/

ˇ̌
�i .s/Gi .xI s/

� max
.i;j /2Œd�2

¤

�i;j;C.s/¹.
p
2�� C

p
2/2 ^ .4 log d/º

C max
i2Œd�

ˇ̌
�i;i .s/=2

ˇ̌
¹.�� C 1/2 ^ .2 log d/º:

This gives (3.5) by integrating over s 2 Œ0; 1�.

In the rest of this section we prove Theorem 1.

Proof of Theorem 1. Let Errt D P¹max1�i�d Yi � tº � P¹max1�i�d Xi � tº and write

Errt D P
°

max
1�i�d

Y 0
i � 0

±
� P

°
max

1�i�d
X 0

i � 0
±
;

with X 0
i D .Xi � t /=�i and Y 0

i D .Yi � t /=�i . Let " � "0 > 0, ˇ D .log d/=.2"0/,
g.x/D ˇ�1 log.

Pd
iD1 e

ˇxi / for x D .x1; : : : ; xd /
>, and f".t/ be the nonincreasing function
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with f"."/D 0 and derivative f 0
" .t/D �"�1.1� jt j="/C. Let xmax D max1�i�d xi . Similar

to [5], we approximate I ¹xmax � 0º by f".g.x/ � "0/. Because xmax � g.x/ � xmax C 2"0,

I ¹ymax � 0º � I ¹xmax � 0º � f"

�
g.y/ � "0

�
C f"

�
g.x/ � "0

�
� I ¹ymax � 0º

®
1 � f"

�
ymax C "0

�¯
C I ¹xmax > 0ºf"

�
xmax � "0

�
;

for any x and y D .y1; : : : ; yd /
>, where ymax D max1�i�d yi . Set "0=" D 3=10. As

Var.X 0
i / ^ Var.Y 0

i / � 1 and f .t/C f .�t / D 1, Corollary 1 provides

Errt � E
�
f
�
g.Y /

��
C E

�
f
�
g.X/

��
�
p
2 log d

 Z 0

�"�"0

�
1 � f"

�
t C "0

��
dt C

Z "C"0

0

f"

�
t � "0

�
dt

!
D
p
2 log d

®
2"0

C "
�
1 � "0="

�3
=3
¯

� .3"=4/
p
2 log d: (3.9)

The approximation allows us to apply (3.6) toX 0 andY 0. Letpi Dpi .x/D eˇxi =
Pd

j D1 e
ˇxj .

We have @g.x/=@xi D pi and @pi=@xj D ˇI¹iDj ºpi � ˇpipi . It follows that

jErrt j � .3"=4/
p
2 log d C

1

2

Z
Rd

f̌ 0
"

�
g.x/

� dX
iD1

pi�i;i�.xI s/dx

C
1

2

Z
Rd

®
f 00

"

�
g.x/

�
� f̌ 0

"

�
g.x/

�¯ dX
iD1

dX
j D1

pipj�i;j�.xI s/dx

� .3"=4/
p
2 log d C

�

2

Z
Rd

ˇ̌
f 00

"

�
g.x/

�ˇ̌
�.xI s/dx

C
.�diag C�cross

C / log d
4"0

Z
Rd

ˇ̌
f 0

"

�
g.x/

�ˇ̌
�.xI s/dx; (3.10)

due to f 0
" .t/ � 0, where � D max1�i�j �d j�i;j j. Similar to (3.9), we have

1

4"0
p
2 log d

Z
Rd

ˇ̌
f 0

"

�
g.x/

�ˇ̌
�.xI s/dx �

1C 2"0="

4"0
D

4

3"

and
R

Rd jf 00
" .g.x//j�.xI s/dx=.2

p
2 log d/ � ."0="C 1/=" � 4=.3"/. Inserting the above

bounds for the integrals into (3.10), we find that
jErrt jp
2 log d

�
3"

4
C
4

3"

®�
�diag

C�cross
C

�
log d C�

¯
:

This gives (1.4) with " minimizing the right-hand side. Theorem 4 implies (1.5) due to
j�i;j .s/j � ��¹.1 � s/

p
�i .0/�j .0/C s

p
�i .1/�j .1/º=¹�i .s/�j .s/º � �� in (3.4).

4. Higher-order anticoncentration

In this section we extend Theorem 3 to higher order by developing upper bounds for
weighted sums of the absolute values of the derivatives

Gi1;:::;im.x/ D
@mP¹Xk � xk 8k 2 Œd �º

@xi1 � � � @xim

(4.1)
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for Gaussian vectors X D .X1; : : : ; Xd /
>, where x D .x1; : : : ; xd /

>. We shall defer proofs
to the end of the section after the statement and discussion of these extensions.

We first present anmth-order anticoncentration inequality in terms of partial corre-
lations between the components of the Gaussian vector X . For i1Wm D .i1; : : : ; im/ 2 Œd �m

¤

and .j; k/ 2 Œd �2
i1Wm;¤

, the partial correlation of Xj and Xk given Xi1Wm D .Xi1 ; : : : ; Xim/
>

is

�j;kji1Wm
D Corr.Xj ; XkjXi1Wm/ (4.2)

with the convention �.j;k/ji1W0
D �j;k D Corr.Xj ; Xk/. Define threshold levels

ti1Wj
D 1 ^ min

²p
1 � �ij ;kji1W.j �1/p
1C �ij ;kji1W.j �1/

; k 2 Œd �i1Wj

³
; i1Wj 2 Œd �

j

¤
; (4.3)

and an extension of a simplification of (2.11) as

˛0
i1Wm

D
ˇ̌
det
�
†i1Wm

�ˇ̌1=2
m�1Y
j D1

ti1Wj
; i1Wm 2 Œd �m

¤
; (4.4)

with ˛0
i D �i D †

1=2
i;i , where †i1Wm is the m � m covariance matrix of Xi1Wm . Compared

with (2.11) where cos.�i;min/ D �i;max D max¹�i;k W k 2 Œd �i º, ti D 1 ^ tan.�i;min=2/ for
i1 D i in (4.3), so that ˛0

i;j in (4.4) and ˛i;j in (2.11) are within a factor of 2 of each other.

Theorem 5. For any positive integer m < d , there exists a finite numerical constant Cm

depending on m only such that for any set of positive constants ¹bi1Wm W i1Wm 2 Œd �m<º with
ordered values b.1/ � b.2/ � � � � , the mth-order derivatives in (4.1) are bounded by

sup
x

X
i1Wm2Œd�m<

˛0
i1Wm

bi1Wm

ˇ̌
Gi1Wm.x/

ˇ̌
� Cm max

1�k�d

.1C
p
2 log k/m

b.k/

; (4.5)

where ˛0
i1Wm

are as in (4.4) for i1Wm 2 Œd �m< .

As mentioned in the discussion of (2.5), the upper bound in our anticoncentration
inequality can be expressed in terms of the minimum eigenvalue of the correlation matrix of
no more than m components of X . For i1Wm D .i1; : : : ; im/ 2 Œd �m

¤
, let �i1Wm be the m �m

correlation matrix ofXi1Wm D .Xi1 ; : : : ;Xim/
> and define the corresponding minimum eigen-

value as

�
i1Wm
min D min

®
u>�i1Wm u W u 2 Rm; kuk2 D 1

¯
: (4.6)

The following theorem asserts that the quantity ˛0
i1Wm

in Theorem 5 can be replaced by

˛00
i1Wm

D .�i1 � � � �im/

 
�

i1Wm
min

m�1Y
j D1

min
®
�

i1;:::;ij ;k

min W k 2 Œd �i1;:::;ij

¯!1=2

: (4.7)

For m D 2, min¹�
i;k
min W k 2 Œd �i º D 1 � max¹j�i;kj W k 2 Œd �i º in (4.7) while the sharper

one-sided ti D 1^ tan.�i;min=2/ and 2 tan.�i;min=4/ are respectively used in (4.4) and (2.11),
where cos.�i;min/ D max¹�i;k W k 2 Œd �i º.
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Theorem 6. For any positive integer m < d , there exists a finite numerical constant Cm

depending on m only such that (4.5) holds with the quantity ˛0
i1Wm

replaced by the quantity
˛00

i1Wm
in (4.7). In particular,

sup
x

X
i1Wm2Œd�m<

ˇ̌
Gi1Wm.x/

ˇ̌
�

Cm.1C
p
2 log d/m

min¹˛00
i1Wm

W i1Wm 2 Œd �m<º
; (4.8)

and in terms of the sparse eigenvalue �min;j D min¹�
i1Wj

min W i1Wj 2 Œd �
j

¤
º with the �i1Wj

min in (4.6)

sup
x

X
i1Wm2Œd�m<

 
mY

j D1

�ij

!ˇ̌
Gi1Wm.x/

ˇ̌
�

Cm.1C
p
2 log d/m

�min;m

p
�min;m�1 � � ��min;2

: (4.9)

While the quantity ˛00
i1Wm

in (4.7) is expressed in terms of the more familiar minimum
eigenvalues, it is bounded from the above by the quantity ˛0

i1Wm
in (4.4) up to a constant factor.

Moreover, compared with ˛00
i1Wm

, the quantity ˛0
i1Wm

is potentially of larger order as it involves
one-sided threshold levels ti1Wj

in (4.3). Thus, Theorem 5 is slightly sharper than Theorem 6.
We present next an upper bound of the ratio ˛00

i1Wm
=˛0

i1Wm
through a Cholesky decomposition

of correlation matrices, and thus the validity of Theorem 6 as a corollary of Theorem 5.
Because the quantity ˛0

i1Wm
involves partial correlations in (4.3), we construct the

Cholesky decomposition through a Gram–Schmidt orthogonalization process. Let
Yi D .Xi � �i /=�i . In the Gram–Schmidt orthogonalization process, we write

Ykji1Wj
D
Ykji1W.j �1/

� �ij ;kji1W.j �1/
Yij ji1W.j �1/

.1 � �2
ij ;kji1W.j �1/

/1=2
; k 2 Œd �i1Wj

; j D 0; : : : ; m � 1; (4.10)

with the convention Ykji1W0
D Yk . Let Ai1Wm be the matrix satisfying0BBBB@

Yi1

Yi2ji1

:::

Yimji1W.m�1/

1CCCCA D Ai1Wm

0BBBB@
Yi1

Yi2

:::

Yim

1CCCCA : (4.11)

Because ¹Ykji1Wj
; k 2 Œd �i1Wj

º and Yi1Wj
are independent, Yi1 ; Yi2ji1 ; : : : ; Yimji1W.m�1/

are iid
N.0; 1/ variables, so that Ai1Wm gives a Cholesky decomposition of �i1Wm in the sense of

Im�m D Ai1Wm�i1Wm
�
Ai1Wm

�>
: (4.12)

As the spectrum norm of Ai1Wm is bounded by .�i1Wm
min /

�1=2 and the elements of Ai1Wm are
expressed in terms of partial correlations, (4.10), (4.11), and (4.12) lead to the following
lemma.

Lemma 1. For i1Wm 2 Œd �m
¤

, let �i1Wm be them�m correlation matrix of the Gaussian vector
Xi1Wm D .Xi1 ; : : : ; Xim/

>. For j 2 Œd �i1Wm , let �.im;j /ji1W.m�1/
be the partial correlation as

defined in (4.2). Then, the determinant of �i1Wm is given by

det
�
�i1Wm

�
D

mY
kD2

k�1Y
j D1

�
1 � �2

ij ;ik ji1W.j �1/

�
(4.13)
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with �ik ;i1ji1W0
D �ik ;i1 . Consequently, with �i1Wm

min being the smallest eigenvalue of �i1Wm ,

det
�
�i1Wm

�m�1Y
kD1

min
�
1;
1 � �`kC1;ik ji1W.k�1/

1C �`kC1;ik ji1W.k�1/

�
� �

i1Wm
min

m�1Y
kD1

�
�

i1Wk ;`kC1

min =5
�

(4.14)

for all `kC1 2 Œd �i1Wk
, k D 1; : : : ; m � 1.

It follows from Lemma 1 that ˛00
i1Wm

� 5.m�1/=2˛0
i1Wm

for the quantities in (4.7)
and (4.4), respectively, so that Theorem 6 is a consequence of Theorem 5.

We still need to consider the case where the differentiation is taken multiple times
in some of the directions. As a general study of such results is beyond the scope of this paper,
we present here an upper bound for the third derivative and discuss the main difficulties in
the higher-order cases.

Theorem 7. Let Gi;j;k.x/ be as in (4.1) for a Gaussian vector X1Wd with marginal distri-
butions Xi � N.�i ; �

2
i /. Let �min;j be the lower sparse eigenvalue as in Theorem 6 for the

correlation matrices of j -components of X1Wd . Then, for some numeric constant C3,

sup
x

dX
iD1

dX
j D1

dX
kD1

�i�j�k

ˇ̌
Gi;j;k.x/

ˇ̌
�
C3.1C

p
2 log d/3

�min;3

p
�min;2

: (4.15)

In our approach, the proof of Theorem 7 and the analysis in higher-order cases
involve factors which can be expressed as regression coefficients. Let Yi D .Xi � �i /=�i

as in (4.10). Given i1Wm 2 Œd �m
¤

and k 2 Œd �i1Wm , the linear regression of Yk against Yi1Wm is
given by

EŒYkjYi1Wm � D

mX
j D1

ˇ
kji1Wm

ij
Yij : (4.16)

These regression coefficients ˇkji1Wm

ij
appear in the derivatives (4.1) as follows. Let

Pi1Wm.x/ D P
®
Xk � xk 8 k 2 Œd �i1Wm jXi1Wm D xi1Wm

¯
(4.17)

and �i1Wm.x/ be the joint density of Xi1Wm . As in (2.7), we have

Gi1Wm.x/ D Pi1Wm.x/�i1Wm.x/: (4.18)

As Yk � EŒYkjYi1Wm � is independent of Yi1Wm and Yi1Wm is linear inXi1Wm , the conditional prob-
ability in (4.17) can be written as

Pi1Wm.x/ D P

´
Yk � EŒYkjYi1Wm � �

xk � �k

�k

�

mX
j D1

ˇ
kji1Wm

ij

xij � �ij

�ij

; 8k 2 Œd �i1Wm

µ
:

Thus, for a 2 Œm�,

.@=@xia/Gi1Wm.x/ D Pi1Wm.x/.@=@xia/�i1Wm.x/C �i1Wm.x/.@=@xia/Pi1Wm.x/

D Gi1Wm.x/.@=@xia/ log�i1Wm.x/

�

X
imC12Œd�i1Wm

Gi1WmC1ˇ
imC1ji1Wm

ia
�imC1=�ia : (4.19)
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In general, the scaled mth partial derivative .�i1@=@xi1/
j1 � � � .�ik@=@xik /

jkG.x/ with
j1 C � � � C jk D m would involve a term of the form

.�1/m�k�i1 � � � �imGi1;:::;imˇ
ikC1ji1Wk

`kC1
� � �ˇ

imji1W.m�1/

`m

such that ia appears ja � 1 times in `kC1; : : : ; `m, optionally in the order of a D 1; : : : ; k.
While ˇikC1ji1Wk

`kC1
. 1=�

i1Wk
min , a difficulty is to find sharper bounds for

�i1 � � � �imˇ
ikC1ji1Wk

`kC1
� � �ˇ

imji1W.m�1/

`m
=˛0

i1Wm

to extend Theorem 7 to higher order in the same form as that of (4.15) and (4.9).

Proof of Theorem 5. Consider a fixed sequence of integers i1Wm 2 Œd �m
¤

. Define

X 0
j ji1Wm

D

X 0
j ji1W.m�1/

� �.im;j /ji1W.m�1/
X 0

imji1W.m�1/

.1 � �2
.im;j /ji1W.m�1/

/1=2
(4.20)

as in (2.16) with the partial correlation �.im;j /ji1W.m�1/
in (4.2) and initializationX 0

j ji1W0
DX 0

j D

.Xj � xj /=�j . This is the same Gram–Schmidt orthogonalization process as in (4.10) but
the X 0

j are not centered to have mean zero at the initialization. Still the covariance structure
ofX 0

j ji1Wm
is the same as that of Yj ji1Wm

. BecauseX 0
kji1Wm

; k 2 Œd �i1Wm are independent ofXi1Wm ,

Gi1Wm.x/ D

Z
yk�xk ;8k2Œd�i1Wm

�Œd�.y/
Y

k2Œd�i1Wm

dykjyi1Wm
Dxi1Wm

D P
®
X 0

k < 0 8k 2 Œd �i1Wm jX 0
i1

D � � � D X 0
im

D 0
¯
�i1Wm.xi1Wm/

D P
®
X 0

kji1Wm
< 0 8k 2 Œd �i1Wm

¯
�i1Wm.xi1Wm/ (4.21)

as in (2.17) and (4.18). To bound the probability P¹X 0
kji1Wm

< 0 8k 2 Œd �i1Wmº, we define

�i1Wm D P¹Ci1WmºGi1Wm.x/=�i1Wm.xi1Wm/; (4.22)

where Ci1Wm is defined with the threshold levels ti1Wj
in (4.3) as

Ci1Wm D
®
0 < X 0

ij C1ji1Wj
� ti1Wj

X 0
ij ji1W.j �1/

; 1 � j < m;Xi1 > 0
¯
:

Given integers j � 0 and i1Wj , define the rank of X 0
kji1Wj

as

Rkji1Wj
D

X
`2Œd�i1Wj

I
®
X 0

`ji1Wj
� X 0

kji1Wj

¯
; k 2 Œd �i1Wj

:

Here Rkji1W0
D
P

`2Œd� I ¹X 0
`

� X 0
k
º is the marginal rank of X 0

k
as X 0

`ji1W0
D X 0

`
in (4.20). In

the event ¹X 0
kji1Wm

< 0 8k 2 Œd �i1Wmº \ Ci1Wm , we have Rimji1;:::;im�1
D 1 due to

X 0
kji1W.m�1/

� �im;kji1W.m�1/
X 0

imji1W.m�1/
� X 0

imji1W.m�1/
;

and by induction Rij ji1W.j �1/
D 1 given Rij C1ji1Wj

D 1 for j D m � 1; : : : ; 1 due to

X 0
kji1W.j �1/

D �ij ;kji1W.j �1/
X 0

ij ji1W.j �1/
C
®
1 � �2

ij ;kji1W.j �1/

¯1=2
X 0

kji1Wj

� �ij ;kji1W.j �1/
X 0

ij ji1W.j �1/
C
®
1 � �2

ij ;kji1W.j �1/

¯1=2
X 0

ij C1ji1Wj

�
®
�ij ;kji1W.j �1/

C
�
1 � �2

ij ;kji1W.j �1/

�1=2
ti1Wj

¯
X 0

ij ji1W.j �1/

� X 0
ij ji1W.j �1/

;
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by the choice of ti1Wj
in (4.3). Thus, due to the independence between the event Ci1Wm and the

set of random variables ¹X 0
kji1Wm

; k 2 Œd �i1Wmº,

�i1Wm D P
®
X 0

kji1Wm
< 0 8k 2 Œd �i1Wm ;Ci1Wm

¯
� P¹Rij ji1W.j �1/

; 1 � j � mº:

Consequently, X
i1Wm2Œd�m

¤

�i1Wm � 1: (4.23)

We still need to find a suitable lower bound for P¹Ci1Wmº to use (4.23). Let
�i D EŒX 0

i �,

�i1Wm D
®
.�i1 ; : : : ; �im/

�
†i1Wm

��1
.�i1 ; : : : ; �im/

>
¯1=2

; �ij ji1W.j �1/
D E

�
X 0

ij ji1W.j �1/

�
;

and 'ij ji1W.j �1/
be the N.�ij ji1W.j �1/

; 1/ density. We shall prove that

P¹Ci1Wmº � ˛0
i1Wm
�i1Wm.x/C

0
mJm.�i1Wm/=�

m
i1Wm
; (4.24)

with Jm.t/ D
R1

0
ym�1e�y�y2=.2t2/dy and C 0

m D 2�m=2=¹2m�.m=2/mŠº, and thatˇ̌
det
�
†i1Wm

�ˇ̌1=2
�i1Wm.x/ D .2�/�m=2 exp

�
��2

i1Wm
=2
�
: (4.25)

Because X 0
ij ji1W.j �1/

are defined by the Gram–Schmidt process, they are independent
N.�ij ji1W.j �1/

; 1/ variables. Thus, as the Jacobian of a linear transformation ofX 0
i1
; : : : ;X 0

im
is

a constant, j det.†i1Wm/j1=2�i1Wm.x/ D
Qm

j D1 'ij ji1W.j �1/
.0/ and

Pm
j D1 �

2
ij ji1W.j �1/

D �2
i1Wm

. This
gives (4.25). Because ti1Wj

� 1 for all j , it follows that

P¹Ci1Wmº D P
®
0 < X 0

ij C1ji1Wj
� ti1Wj

X 0
ij ji1W.j �1/

; 1 � j < m;Xi1 > 0
¯

D

Z 1

0

Z ti1 x1

0

� � �

Z ti1W.m�1/
xm�1

0

mY
j D1

'.xj � �ij ji1;:::;ij �1
/dxj

�

Z 1

0

Z ti1 x1

0

� � �

Z ti1W.m�1/
xm�1

0

exp.��2
i1Wm
=2 � �i1Wmkxk2 � kxk2

2=2/

.2�/m=2
dx

�

 
m�1Y
j D1

ti1Wj

!Z 1

0

Z x1

0

� � �

Z xm�1

0

exp.��2
i1Wm
=2 � �i1Wmkxk2 � kxk2

2=2/

.2�/m=2
dx

D

 
m�1Y
j D1

ti1Wj

!
2

mŠ2m�.m=2/2m=2

Z 1

0

ym�1e
��2

ii Wm
=2��ii Wm

y�y2=2
dy

D

 
m�1Y
j D1

ti1Wj

!
2�m=2j det.†i1Wm/j1=2�i1Wm.x/

2m�.m=2/mŠ

Jm.�i1Wm/

�m
i1Wm

D ˛0
i1Wm
�i1Wm.x/C

0
mJm.�i1Wm/=�

m
i1Wm
:
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Putting together (4.4), (4.21), (4.22), (4.23), (4.24), and (4.25), we find thatX
i1Wm2Œd�m<

˛0
i1Wm

bi1Wm

Gi1Wm.x/ D

X
i1Wm2Œd�m<

min
²

e
��2

i1Wm
=2

.2�/m=2bi1Wm

;
˛0

i1Wm

bi1Wm

�i1Wm�i1Wm.xi1Wm/

P¹Ci1Wmº

³

�

X
i1Wm2Œd�m<

min
²

e
��2

i1Wm
=2

.2�/m=2bi1Wm

;
�i1Wm�

m
i1Wm

bi1WmC
0
mJm.�i1Wm/

³
�

X
k 62K

e�L2
k

=2

.2�/m=2b.1/

C max
k2K

mŠLm
k

b.k/C 0
mJm.Lk/

� Cm max
k2Œd�

.1C
p
2 log k/m

b.k/

; (4.26)

with Lk D 1C
p
2 log k and K D ¹k W �.k/ � Lkº due to the monotonicity Jm.t/=t

m " in
.0;1/ and Jm.Lk/ � Jm.L1/ D Jm.1/. This completes the proof of Theorem 5.

Proof of Theorem 6. In view of the definitions of ˛0
i1Wm

and ˛00
i1Wm

in (4.4) and (4.7), respec-
tively, Theorem 6 follows directly from Theorem 5 and Lemma 1.

Proof of Lemma 1. Let i1Wm D 1 W m, as a permutation of labels does not change the conclu-
sions. It follows from (4.12) that

det
�
�1Wm

��
det
�
A1Wm

��2
D 1:

Because A1Wm is a lower-triangular matrix with diagonal elements A1Wm
1;1 D 1 and

A1Wm
k;k

D
Qk�1

j D1.1 � �2
k;j j1W.j �1/

/�1=2 for 2 � k � m,

det
�
�1Wm

�
D

1

det2.A1Wm/
D

mY
kD2

1

.A1Wm
k;k
/2

D

mY
kD2

k�1Y
j D1

�
1 � �2

k;j j1W.j �1/

�
:

This gives (4.13). Now we write for k < `kC1 � d

det
�
�1Wm

�m�1Y
kD1

min
�
1;
1 � �`kC1;kj1W.k�1/

1C �`kC1;kj1W.k�1/

�
D

 
m�1Y
j D1

�
1 � �2

m;j j1W.j �1/

�!m�1Y
kD1

´
min

�
1;
1 � �`kC1;kj1W.k�1/

1C �`kC1;kj1W.k�1/

� k�1Y
j D1

�
1 � �2

k;j j1W.j �1/

�µ
;

(4.27)

with the convention
Qk�1

j D1.1 � �2
k;j j1W.j �1/

/ D 1 for k D 1. By (4.12), 
m�1Y
j D1

�
1 � �2

m;j j1W.j �1/

�!�1

D
�
A1Wm

m;m

�2
�

1

�min.�1Wm/
;
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as the spectral norm of A1Wm is no greater than 1=�1=2
min .�

1Wm/. For 1 � k � m � 1,

max
�
1;

p
1C �kC1;kj1W.k�1/p
1 � �kC1;kj1W.k�1/

� k�1Y
j D1

�
1 � �2

k;j j1W.j �1/

��1=2

�

�
1C 2

j�kC1;kj1W.k�1/jq
1 � �2

kC1;kj1W.k�1/

� k�1Y
j D1

�
1 � �2

k;j j1W.j �1/

��1=2

D A
1W.kC1/

k:k
C 2

ˇ̌
A

1W.kC1/

kC1;k

ˇ̌
�

q
5=�min

�
�1W.kC1/

�
;

due to
p
.1C t /=.1 � t / � 1C 2jt j=

p
1 � t2 or, equivalently, 1C t �

p
1 � t2 C 2jt j for

jt j < 1. This and (4.27) give (4.14) because labels do not matter.

Proof of Theorem 7. Let �i;j .x/ be the joint density of .Xi ; Xj /
>, �i .x/ D .xi � �i /=�i ,

and �i;j .x/ be given by ��2
i;j .x/=2D log.2� det1=2.†i;j /�i;j .x// as in (4.25). As in (4.19)

and similar to (2.26), for i ¤ j ,

Gi;j;j .x/ D Gi;j .x/.@=@xj / log�i;j .x/ �

X
k2Œd�i;j

Gi;j;k.x/ˇ
kji;j
j �k=�j ;

with j.@=@xj / log�i;j .x/j D je>
j .�

i;j /�1.�i .x/; �j .x//
>j=�j � .�

i;j
min/

�1=2�i;j .x/=�j and

ˇ
kji;j
j D

.1 � �2
k;j ji

/�1=2�k;j ji .1 � �2
j;i /

�1=2

.1 � �2
k;j ji

/�1=2.1 � �2
k;i
/�1=2

D
�k;j ji .1 � �2

k;i
/1=2

.1 � �2
i;j /

1=2
:

The formula for the regression coefficient is obtained by noticing thatˇkji;j
j D �A

i;j;k

k;j
=A

i;j;k

k;k

in the Cholesky decomposition (4.11) with the matrix elementsAi;j;k

k;j
andAi;j;k

k;k
determined

by the Gram–Schmidt formula (4.10). By (4.13),

det
�
�i;j;k

�
D
�
1 � �2

k;j ji

��
1 � �2

k;i

��
1 � �2

i;j

�
:

As in the proof of Lemma 1, we have, by (4.4) and (4.3),�
�i�j�kˇ

kji;j
j

˛0
i;j;k

�2

D
�2

k;j ji
.1 � �2

k;i
/.1 � �2

i;j /
�1

t2i;j t
2
i .1 � �2

k;j ji
/.1 � �2

k;i
/.1 � �2

i;j /

�
1

t2i
�

1

t2i;j .1 � �2
i;j /

�
1

.1 � �2
j;kji

/.1 � �2
i;j /

�
5

�
i; j̀

min

�
5

�
i;j;`k
min

�
1

�
i;j;k
min

;

for some j̀ 2 Œd �i and `k 2 Œd �i;j . It follows thatX
.i;j /2Œd�2

¤

�i�
2
j

ˇ̌
Gi;j;j .x/

ˇ̌
�

X
.i;j /2Œd�2

¤

�i�jGi;j .x/
�
�

i;j
min
��1=2

�i;j .x/

C

X
.i;j;k/22Œd�3

¤

5˛0
i;k;j

jGi;k;j .x/j

�min;3

p
�min;2

: (4.28)
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Similar to (4.26) in the proof of Theorem 5, the first term on the right-hand side above is
bounded by X

.i;j /2Œd�2
¤

�i�jGi;j .x/�i;j .x/p
�min;2

�
C 0

3.1C
p
2 log d/3

�min;2

:

By Theorem 5,
P

.i;j;k/22Œd�3
¤
˛0

i;j;k
jGi;j;k.x/j � 6C3.1C

p
2 log d/3. Thus, the right-hand

side of (4.28) is bounded by C 00
3 .1C

p
2 log d/3=.�min;3

p
�min;2/. Similarly,

2X
iD1

�3
i

ˇ̌
Gi;i;i .x/

ˇ̌
�
C 00

3 .1C
p
2 log d/3

�min;3

p
�min;2

by differentiating the identity

Gi;i .x/ D Gi .x/�i .x/=�i �

X
j Wi¤j 2Œd�

Gi;j .x/�i;j�j =�i

in (2.26). The conclusion follows as the sum over Œd �3
¤

is bounded in Theorem 6.
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