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Abstract

In this article, we review our recently introduced methods for obtaining strictly positive
lower bounds on the top Lyapunov exponent of high-dimensional, stochastic differential
equations such as the weakly-damped Lorenz-96 (L96) model or Galerkin truncations of
the 2D Navier–Stokes equations. This hallmark of chaos has long been observed in these
models, however, no mathematical proof had been provided for either deterministic or
stochastic forcing.
The method we proposed combines (A) a new identity connecting the Lyapunov exponents
to a Fisher information of the stationary measure of the Markov process tracking tangent
directions (the so-called “projective process”); and (B) an L1-based hypoelliptic regularity
estimate to show that this (degenerate) Fisher information is an upper bound on some frac-
tional regularity. For L96 and GNSE, we then further reduce the lower bound of the top
Lyapunov exponent to proving that the projective process satisfies Hörmander’s condition.
We review the recent contributions of the first and third authors on the verification of this
condition for the 2D Galerkin–Navier–Stokes equations in a rectangular, periodic box of
any aspect ratio. Finally, we briefly contrast this work with our earlier work on Lagrangian
chaos in the stochastic Navier–Stokes equations. We end the review with a discussion of
some open problems.
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1. Lyapunov exponents for stochastic differential

equations

Understanding the “generic” long-term dynamics of high (or infinite-) dimensional
nonlinear systems far from equilibrium remains a daunting task. In physical applications of
interest, many such systems are both subject to unpredictable external forcing and observed to
be chaotic in the sense of being very sensitive to the initial condition and forcing. Hence, for
all practical purposes, the exact dynamics of any specific trajectory cannot be predicted far in
advance and any controlled experiments will not be exactly repeatable. Instead of reckoning
such systems one trajectory at a time, a common practice is to view initial conditions as
random, i.e., distributed according to some probabilistic law, and to attempt to understand
how this law evolves as it is transported by the dynamics. In this context, the relevant “time-
invariant” objects are equilibrium probabilistic laws on the phase space of the system, often
referred to as invariant measures or stationary measures.

There is a well-developed abstract theory (smooth ergodic theory) for understanding
the invariant measures of chaotic systems, their geometric properties, and how these relate
to the asymptotic regimes of trajectories initiated from “typical” initial conditions. On the
other hand, it is quite hard to verify mathematically that this abstract program applies to
systems of practical interest. There are already extremely challenging open problems for
vastly simplified 2D toy models of the kinds of chaotic behavior seen in fluid dynamics, e.g.,
the Chirikov standard map discussed below in Section 1.1.

It turns out that verifying and understanding chaotic properties is far more tractable
for systems subjected to random noise. The kinds of systems we have in mind are, for exam-
ple, hydrodynamical settings such as with wind over a sail, a weather or climate system, or
nonlinear wave systems. In these settings it has long been suggested to study the random
dynamical system generated by the PDE or ODE subjected to random external forcing, and
this is often done in applied mathematics (see, e.g., [26,69] and the references therein). Even
with the simplifications coming from the random forcing, and despite considerable efforts,
a thorough, mathematically rigorous understanding of these random systems is still in its
infancy, with many basic open questions remaining.

In this article we will review existing work and our recent contributions [17, 20] in
proving that a given system of interest modeled by a stochastic differential equation is chaotic,
i.e., it is highly sensitive to initial conditions for trajectories initiated at Lebesgue-typical
points in the phase space. The specific systems we apply our methods to are the Lorenz-96
system [67] and Galerkin truncations of the 2D Navier–Stokes equations in a rectangular,
periodic box (of any aspect ratio), provided they are subjected to sufficiently strong stochas-
tic forcing1 (equivalently, sufficiently weak damping) and are sufficiently high dimensional.
These are the first results of this type for such models, despite overwhelming numerical evi-
dence (see, e.g., [26, 53, 69, 74]). Specifically we prove for these models that if the damping
parameter is ", then the top Lyapunov exponent (see Sections 1.1 and 1.2 for definition)

1 The deterministic case remains very far out of reach.
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"
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as " ! 0, and in particular, 9"0 > 0 such that for all " 2 .0; "0/, �"
1 > 0.

Outline
In Section 1 we give a background on Lyapunov exponents for stochastic differential

equations (SDEs). Section 2 concerns formulae of Lyapunov exponents through the station-
ary statistics of tangent directions and contains both classical and our recent results from [17]

which connect Lyapunov exponents to a certain Fisher information-type quantity. We discuss
in Section 3 how to connect the Fisher information to regularity using ideas from hypoel-
lipticity theory (also original work from [17]), and in Section 4 we discuss applications to a
class of weakly-driven, weakly-dissipated SDE with bilinear nonlinear drift term (original
work in [17] for Lorenz-96 and for Galerkin Navier–Stokes in [20]). In Section 5 we briefly
discuss our earlier related work on Lagrangian chaos in the (infinite-dimensional) stochas-
tic Navier–Stokes equations [14]. Finally, in Section 6 we discuss some open problems and
potential directions for research.

1.1. Lyapunov exponents and their challenges
Let ˆt W Rn ! Rn, t 2 R�0 be a flow (autonomous or not) with differentiable

dependence on initial conditions. The Lyapunov exponent at x 2 Rn, when it exists, is the
limit

�.x/ D lim
t!1

1

t
log
ˇ̌
Dxˆt

ˇ̌
;

where Dxˆt is the Jacobian of ˆt at x, i.e., the derivative with respect to the initial condition.
Hence, �.x/ gives the asymptotic exponential growth rate of the Jacobian as t ! 1.

The exponent �.x/ contains information about the divergence of trajectories: heuris-
tically at least, if d.x; y/ is small then

d
�
ˆt .x/; ˆt .y/

�
� e�.x/t d.x; y/

and hence �.x/ > 0 implies exponential sensitivity with respect to initial conditions, com-
monly popularized as the “butterfly effect.” Morally, a positive Lyapunov exponent at a
“large” proportion of initial conditions x 2 Rn is a hallmark of chaos, the tendency of a
dynamical system to exhibit disordered, unpredictable behavior. In this note we refer to a
system such that �.x/ > 0 for Lebesgue a.e. x as chaotic.2

The existence of Lyapunov exponents is usually justified using tools from ergodic
theory, and forms a starting point for obtaining more refined dynamical features, such as
stable/unstable manifolds in the moving frame along “typical” trajectories. These ideas form

2 We caution the reader that there is no single mathematical definition of “chaos.” Some
definitions refer to the existence of a subset of the phase space exhibiting chaotic behavior,
e.g., Li–Yorke chaos or the presence of a hyperbolic horseshoe. The results discussed in this
note pertain to the long-time behavior of Lebesgue-typical initial conditions.
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the fundamentals of smooth ergodic theory, which aims to study statistical properties of
chaotic systems, such as decay of correlations, i.e., how ˆt .x/, t � 1 can “forget” the initial
x 2 Rn, and probabilistic laws such as a strong law of large numbers or central limit theorem
for g ı ˆt .x/, where g W Rn ! R is a suitable observable of the system; see, e.g., discussions
in [7,10,66,83,85].

A discrete-time example
Unfortunately, estimating �.x/ or proving �.x/ > 0 for specific systems turns out

to be extremely challenging. A simple, classical model which shows the challenges is the
Chirikov standard map family [29], written here as

FL W T 2 	; FL.x; y/ D
�
2x C L sin.2�x/ � y; x

�
;

where T 2 is parametrized as Œ0; 1/2 and both coordinates in F WD FL are taken modulo 1.
Here, L � 0 is a fixed parameter which for purposes of the discussion here will be taken
large. The diffeomorphism F is smooth and volume-preserving, and ergodic theory affirms
that the Lyapunov exponent �.x; y/ D limn

1
n

log jD.x;y/F j exists for Lebesgue a.e. x and
satisfies �.x; y/ � 0 where it exists. The Chirikov standard map itself is frequently used
as a toy model of more complicated chaotic systems, e.g., the Navier–Stokes equations in
transition from laminar flow to turbulence [68].

Observe that when L � 1 and away from an O.L�1/ neighborhood of ¹cos.2�x/ D

0º, the Jacobian D.x;y/F exhibits strong expansion along tangent directions roughly parallel
to the x-axis (matched by strong contraction roughly parallel to the y-axis). In view of this,
it is widely conjectured that ¹�.x/ > 0º has positive Lebesgue measure. Nevertheless, this
standard map conjecture remains wide open [32, 75]. A key obstruction is “cone twisting”:
on long timescales, vectors roughly parallel to the x-axis are strongly expanded until the first
visit to the “critical strip” near ¹cos.2�x/ D 0º, where DF is approximately a rotation by 90
degrees. At this point, vectors roughly parallel to the x axis are rotated to be roughly parallel
to the y axis, where strong contraction occurs and previously accumulated expansion can be
negated. Indeed, an estimate on a Lyapunov exponent requires understanding the asymptotic
cancelations in the Jacobian as t ! 1. One manifestation of the subtlety is the wildly tangled
coexistence of hyperbolic trajectories [45] and elliptic islands [35].

The problem of estimating Lyapunov exponents for the standard map is far more
tractable in the presence of noise/stochastic driving. Let us consider the standard map sub-
jected to small noise: let !1;!2; : : : be i.i.d. random variables uniformly distributed in Œ�";"�

for some " > 0, and consider the random compositions

F n
D F!n ı � � � ı F!1 ; F!i

.x; y/ D F.x C !i ; y/:

One can show show that 8" > 0, the corresponding Lyapunov exponent � D �.x; y/ is
deterministic (independent of the random samples almost surely) and constant (independent
of .x; y/) with probability 1. It is a folklore theorem that � > 0 8" > 0, while for L � 1

and " & e�L, one can show � �
1
2

log L, commensurate with exponential expansion in the
x-direction over the bulk of phase space [23]; in a related vein, see also [22,24,25,64,80].
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1.2. Lyapunov exponents for SDE
The topic of this note is to discuss developments in the context of the random dynam-

ical systems generated by stochastic differential equations (SDE), i.e., ODE subjected to
Brownian motion driving terms. In this continuous-time framework, numerous additional
tools not present in the discrete-time setting become available, e.g., infinitesimal generators,
which as we show below, connect the estimation of Lyapunov exponents to regularity esti-
mates (e.g., Sobolev regularity) of solutions to certain (degenerate) elliptic PDE. A highlight
of this approach is our application to the Lyapunov exponents of a class of weakly-driven,
weakly-forced SDEs, including famous models such as Lorenz 96 and Galerkin truncations
of the Navier–Stokes equations.

For simplicity, in this note we restrict our attention to SDE on Rn, however, our more
general results apply to SDEs posed on orientable, geodesically complete, smooth manifolds;
see [17]. Let X0; X1; : : : ; Xr W Rn ! Rn be smooth vector fields on Rn, and let W 1

t ; : : : ; W r
t

be a collection of independent, real-valued Brownian motions, with � denoting the corre-
sponding canonical space with probability P and .Ft /t�0 denoting the increasing filtration
generated by ¹W k

s ; s � tºr
kD1

. We consider continuous-time processes .xt / on Rn solving
the SDE

dxt D X0.xt / dt C

rX
kD1

Xk.xt / ı dW k
t ; (1.1)

for fixed initial data x0 2 Rn.
Under mild conditions on the vector fields X0; : : : ; Xr (for example, regularity and

the existence of a suitable Lyapunov function to rule out finite time blow-up), global-in-time
solutions .xt / to (1.1) exist, are unique, and have differentiable dependence of xt on x0; in
particular, for P-a.e. ! 2 � and all t � 0, there exists a stochastic flow of diffeomorphisms
ˆt

! such that 8x0 2 Rn, the law of the process .xt /t�0 solving (1.1) is the same as that of the
process .ˆt

!.x0//t�0; see, e.g., [60] for the details and general theory of SDEs and stochastic
flows.

This stochastic flow of diffeomorphisms ˆt
! is the analogue of the flow ˆt corre-

sponding to solutions of the initial value problem of an ODE. However, the external stochastic
forcing implies a time-inhomogeneity which must be accounted for. One can show that there
exists a P-measure preserving semiflow � t W � 	; t � 0 corresponding to time-shifts on the
Brownian paths, i.e., shifting the path .Ws/s�0 to .WtCs � Wt /s�0. Equipped with this time
shift, one has the following with probability 1 and for all s; t � 0:

ˆsCt
! D ˆt

�s! ı ˆs
! : (1.2)

We now set about summarizing the ergodic theory tools used to study such stochastic flows.
First, we note that the trajectories xt D ˆt

!.x0/ for fixed initial x0 2 Rn form a Markov
process adapted to the filtration .Ft /. Moreover, ˆt

! has independent increments: 8s; t � 0,
ˆs

! and ˆt
�s!

are independent.
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1.2.1. Stationary measures and long-term statistics
Markov semigroups. We write Pt .x; A/ D P.ˆt

!.x/ 2 A/ for the time-t transition kernel
of .xt /. Let Pt denote the Markov semigroup associated to .xt /, defined for bounded, mea-
surable observables h W Rn ! R by

Pt h.x/ D E
�
h.xt / j x0 D x

�
D

Z
Rn

h.y/Pt .x; dy/:

This semigroup gives the expected value of a given observable given a fixed initial condition.
Via the pairing of functions and measures, we derive the (formal) dual P �

t , which gives the
evolution of the law of the solution .xt / given a distribution for the initial condition: for a
probability measure �0 2 P .Rn/ and Borel set A � Rn,

P �
t �0.A/ D

Z
Rn

Pt .x; A/d�0.x/:

That is, P �
t �0 is the law of xt assuming �0 is the law of x0.

Taking a time derivative @t , we (formally) obtain the backward Kolmogorov equa-
tion

@t Pt h.x/ D LPt h.x/; where L D X0 C
1

2

rX
iD1

X2
i ; (1.3)

where, for a given vector field X and f 2 C 1, Xf denotes the derivative of f in the direc-
tion X . The differential operator L is called the (infinitesimal) generator. Assuming that
the law of xt has a density pt with respect to Lebesgue, the formal dual of (1.3) is the
Fokker–Plank equation (or Forward Kolmogorov equation) given by the following PDE

@t pt D L�pt ; (1.4)

where L� denotes the formal L2 adjoint of L. See, e.g., [60] for mathematical details.

Stationary measures. We say a measure � is stationary if P �
t � D �. That is, if x0 is

distributed with law �, then xt is distributed with law3 � for all t > 0. We say that a set
A � Rn is invariant if Pt .x; A/ D 1 for all x 2 A and t � 0, and we say that a stationary
measure � is ergodic if all invariant sets have �-measure 0 or 1. By the pointwise ergodic
theorem, ergodic stationary measures determine the long-term statistics of a.e. initial datum
in their support [33]: if � is an ergodic stationary measure, then for any bounded, measurable
' W Rn ! R and � � P-a.e. .x; !/ we have that

lim
T !1

1

T

Z T

0

'
�
ˆt

!.x/
�

dt D

Z
Rn

'.x/d�.x/:

Unlike for deterministic systems, stationary measures are usually much easier to characterize
for SDEs. In particular, it is often possible to show that there exists a unique stationary
measure and that it has a smooth density with respect to Lebesgue. In such a case, Lebesgue-
generic initial conditions all have the same long-term statistics, a property often observed in
nature and experiments for the physical systems we are interested in.

3 It is important to note that .xt / itself is not constant in t ; consider, e.g., water flowing past a
stone in a river.
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Existence of stationary measures. If the domain of the Markov process were compact
(e.g., T n instead of Rn) then the existence of stationary measures would follow from a stan-
dard Krylov–Bogoliubov argument: given an initial probability measure �0 2 P .Rn/, one
considers the time-averaged measures

N�t WD
1

t

Z t

0

P �
s �0 ds:

The weak-� compactness of probability measures on a compact space ensures that the
sequence ¹ N�t ºt�0 has a weak-� limit point � which by construction must be stationary
(assuming some mild well-posedness properties for the original SDE). On a noncompact
domain, one must show the tightness of the measures ¹ N�t ºt�0 (this is essentially saying
that solutions do not wander off to infinity too often) and use Prokorov’s theorem to pass
to the limit in the narrow topology. This is often achieved using the method of Lyapunov
functions4/drift conditions [71], or by using a special structure and the damping in the system
(such as the case for, e.g., the Navier–Stokes equations [59]).

Uniqueness of stationary measures. The Doob–Khasminskii theorem [33] implies that
uniqueness is connected to (A) irreducibility and (B) regularization of the Markov semi-
groups5 and, in particular, one can deduce that any stationary measure is unique if these
properties hold in a sufficiently strong sense.

Let us first discuss irreducibility. For a Markov process .xt / on Rn, we say that .xt /

is topologically irreducible if for all open U � Rn, 9t D t .U; x/ � 0 such that

Pt .x; U / > 0:

That is, every initial condition has a positive probability of being in U . This is stronger than
necessary to deduce uniqueness, but is sufficient for our discussions.

Regularity is a little more subtle. A sufficient condition is the requirement of being
strong Feller:

8' W Rn
! R bounded, measurable, Pt ' 2 C

�
Rn

I R
�
; t > 0:

For finite-dimensional SDEs, it is reasonably common and there exists a machinery to char-
acterize this.6 When Span¹Xi .x/; 1 � i � rº D Rn for all x 2 Rn, L is elliptic and hence
being strong Feller follows from classical parabolic regularity theory [65] applied to (1.3)
(assuming suitable regularity conditions on the ¹Xj º). When this direct spanning is absent
(e.g., when r < n), L is only degenerate elliptic. However, nearly sharp sufficient conditions
for the regularization of L were derived by Hörmander [50], who obtained a condition (now
called Hörmander’s condition), in terms of the Lie algebra generated by the vector fields
¹Xi ; 0 � i � rº. We will return to this important topic of hypoellipticity in Section 3.1.

4 These are the probabilistic analogues of Lyapunov’s “first method” for ODEs, used to ensure
convergence to compact attractors. This is not to be confused with Lyapunov exponents,
which refer to Lyapunov’s “second method.”

5 In essence, this is equivalent to how x 7! Pt .x; �/ behaves, i.e., whether trajectories with
nearby initial conditions have similar statistics.

6 In infinite dimensions it is much more rare; luckily, it is stronger than what is required just
to prove uniqueness (see, e.g., [47,58]).
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1.2.2. Lyapunov exponents
We saw that the long-term behavior of scalar observables is determined by station-

ary measures, which is due to the ergodic theorem. A more sophisticated ergodic theorem
connects stationary measures to Lyapunov exponents. Given x 2 Rn, v 2 Rn n ¹0º (with v

being considered a direction here) and a random sample ! 2 �, the Lyapunov exponent at
.!; x; v/ is defined as the limit (if it exists)

�.!; x; v/ D lim
t!1

1

t
log
ˇ̌
Dxˆt

!v
ˇ̌
:

The following (truncated) version of Oseledets’ Multiplicative Ergodic Theorem (MET)
addresses the existence of the limit [55,73,77].

Theorem 1.1 (Oseledets’ multiplicative ergodic theorem [73]). Let � be an ergodic sta-
tionary measure, and assume a mild integrability condition (see, e.g., [55, 73]) then, there
exist (deterministic) constants �1 > �2 > � � � > �` � �1 such that for P � �-almost all
.!; x/ 2 � � Rn and for all v 2 Rn n ¹0º, the limit defining �.!; x; v/ exists and takes one
of the values �i ; 1 � i � `.

Moreover, there exists a P � �-measurably-varying flag of strictly increasing sub-
spaces

; DW F`C1.!; x/ � F`.!; x/ � � � � � F1.!; x/ WD Rn

such that for P � �-a.e. .!; x/ and 8v 2 Fj n Fj C1,

�j D lim
t!1

1

t
log
ˇ̌
Dxˆt

!v
ˇ̌

D �.!; x; v/:

In particular, the top Lyapunov exponent �1 is realized at P � �-a.e. .!; x/ and all v 2 Rn

outside a positive-codimension subspace F2.!; x/ � Rn.

We note that under very mild conditions, if the stationary measure � is unique, it
is automatically ergodic; otherwise, each distinct ergodic stationary measure admits its own
set of Lyapunov exponents.

The sign of the largest Lyapunov exponent �1 is the most relevant to the stability
analysis of typical trajectories, in view of the fact that �.!; x; v/ D �1 for v in an open and
dense set. For this reason we frequently refer to �1 as “the” Lyapunov exponent. The sum
Lyapunov exponent also turns out to be crucial:

�† D

X̀
j D1

mj �j D lim
t!1

1

t
log
ˇ̌
det Dxˆt

!

ˇ̌
;

which gives the asymptotic exponential expansion/compression of Lebesgue volume under
the flow. Here, mj D dim Fj � dim Fj C1 is the multiplicity of the j th Lyapunov exponent.

2. Formulae for the Lyapunov exponents

Throughout this section, we assume that ˆt
! is the stochastic flow of diffeomor-

phisms corresponding to the SDE (1.1) with associated Markov process xt D ˆt
!.x/, x 2 Rn.
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2.1. The projective process
As we have seen, Lyapunov exponents are naturally viewed as depending on the

tangent direction v 2 Rn at which the derivative Dxˆt
! is evaluated. For this reason, to esti-

mate Lyapunov exponents, it is natural to consider an auxiliary process on tangent directions
themselves. To this end, let SRn D Rn � Sn�1 denote the unit tangent bundle of Rn, where
Sn�1 is the unit sphere in Rn. Given a fixed initial .x; v/ 2 SRn, we define the process .vt /

on Sn�1 by

vt D
Dxˆt

!.v/

jDxˆt
!.v/j

:

The full process zt D .xt ; vt / on SRn is Markovian, and in fact solves an SDE

dzt D QX0.zt / dt C

rX
iD1

QXi .zt / ı dW
.i/
t ;

where the “lifted” fields QXi are defined as

QXi .x; v/ WD
�
Xi .x/; .I � …v/rXi .x/v

�
:

Here, we have written …v D v ˝ v for the orthogonal projection onto the span of v 2 Sn�1.
Below, we denote the corresponding generator by

QL WD QX0 C
1

2

rX
iD1

QX2
i :

Lyapunov exponents and stationary measures. Let .xt ; vt / be a trajectory of the projec-
tive process with fixed initial .x; v/ 2 SRn, and observe that at integer times t 2 Z>0, we
have by (1.2)

1

t
log
ˇ̌
Dxˆt

!.v/
ˇ̌

D
1

t

t�1X
iD0

log
ˇ̌
Dxi

ˆ1
� i !

vi

ˇ̌
:

Hence, log jDxˆt
! j is an additive observable of .xt ; vt /, i.e., a sum iterated over the tra-

jectory .xt ; vt /. Therefore, the strong law of large numbers for a Markov chain implies the
following formula for the Lyapunov exponent:

Proposition 2.1 (See, e.g., [55]). Let � be an ergodic stationary measure for .xt ; vt /. Assum-
ing the integral is finite, for �-a.e. initial .x; v/ 2 SRn�1 and t � 0, we have

t�.!; x; v/ D E
Z

log
ˇ̌
Dxˆt

!v
ˇ̌
d�.x; v/:

with probability 1 (E denotes integration with respect to dP.!/).
Moreover, if � is the unique stationary measure for the .xt ; vt / process, then for

�-a.e. x, and all v 2 Rn, we have �1 D �.!; x; v/ with probability 1 and

t�1 D E
Z

log
ˇ̌
Dxˆt

!v
ˇ̌
d�.x; v/: (2.1)

Remark 2.2. The latter statement can be interpreted as saying that the existence of a unique
stationary measure for the projective process gives a kind of nondegeneracy of the Oseledets’
subspace F2.!; x/ with respect to ! [55].
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A time-infinitesimal version: the Furstenberg–Khasminskii formula. One of the key
benefits of the SDE framework is the ability to take time derivatives, which turns dynami-
cal questions (e.g., estimates of Lyapunov exponents, identification of stationary densities)
into functional-analytic ones (e.g., solutions of degenerate elliptic or parabolic equations)
for which many tools are available. Taking the time derivative of (2.1) gives what is known
as the Furstenberg–Khasminskii formula (see, e.g., [7,54]):

Proposition 2.3. Assume .xt ; vt / admits a unique stationary measure � on SRn projecting
to a stationary measure � on Rn for .xt /. For .x; v/ 2 SRn, define

Q.x/ D div X0.x/ C
1

2

rX
iD1

Xi div Xi .x/;

QQ.x; v/ D div QX0.x; v/ C
1

2

rX
iD1

QXi div QXi .x; v/:

Then, provided Q 2 L1.d�/ and QQ 2 L1.d�/, one has

�† D

Z
Q d� and

n�1 � �† D

Z
Rn

Q d� �

Z
SRn

QQ d�:

The first formula expresses Q.x/ as the time-infinitesimal rate at which Dxˆt
!

compresses or expands Lebesgue measure, which in this formula is directly related to the
asymptotic exponential volume growth or contraction rate �†. Similarly, QQ.x; v/ is the
time-infinitesimal rate at which Dxˆt

! compresses or expands volume on the sphere bundle
SRn D Rn � Sn�1. Roughly speaking, contraction of volumes along the Sn�1 coordinate
is associated with expansion in the Jacobian, while expansion of Sn�1-volume is related to
contraction in the Jacobian; this reversal is the reason for the minus sign in front of QQ. For
some intuition, observe that .1; 0/ is a sink and .0; 1/ is a source for the discrete-time system
vn D Anv=jAnvj on S1, where A D

�
2 0
0 1=2

�
.

2.2. Sign-definite formulas for Lyapunov exponents
The Furstenberg–Khasminskii formula is highly remarkable in that it reduces the

problem of estimating Lyapunov exponents to computing the ensemble average of a single
deterministic observable, QQ, with respect to the stationary measure of .xt ; vt /. On the other
hand, the formula itself is sign-indefinite, as QQ.x; v/ takes on both positive and negative
values as .x;v/ is varied. This is reflective of the cancelation problem mentioned earlier in the
estimation of Lyapunov exponents: previously accumulated tangent growth can be “canceled
out” by rotation into contracting directions later on in the trajectory. Hence, without a very
precise characterization of �, it would be very challenging to obtain any useful quantitative
estimates on �1 from this formula.

Given the above, it makes sense to seek a sign-definite formula for the Lyapunov
exponent. Below, given measures �; �; � � � on a measurable space X , the relative entropy
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H.�j�/ of � given � is defined by

H.� j �/ D

Z
X

log
�

d�

d�

�
d�:

Observe that H.� j �/ � 0, while by strict convexity of log and Jensen’s inequality, we have
H.�j�/ D 0 iff � D �. We also write b̂t

! W SRd 	 for the stochastic flow associated to full
lifted process .xt ; vt / on SRn, that is, b̂t

!.x0; v0/ D .xt ; vt /. Lastly, given a diffeomorphism
ˆ of a Riemannian manifold M and a density g on M , we define ˆ�g to be the density

ˆ�g.x/ D g ı ˆ�1.x/
ˇ̌
det Dxˆ�1

ˇ̌
;

noting that if x is distributed like g dVolM , then ˆ.x/ is distributed like ˆ�g dVolM .
The following deep formula has its roots in Furstenberg’s seminal paper [40] and

ideas à la Furstenberg have been developed by a variety of authors (e.g., [12, 28, 63, 79, 82]),
and can be stated as follows: if � 2 P .SRn/ is a stationary probability measure for the
projective process .xt ; vt / and d�.x; v/ D d�x.v/d�.x/ is the disintegration of �, then for
all t > 0, the following identity (often an inequality in more general settings) holds.

Proposition 2.4 (See, e.g., [12]). Assume .xt ; vt / admits a unique stationary measure �

with density f D
d�
dq

, where dq D dVolSRn is the Riemannian volume measure on SRn D

Rn � Sn�1. Let � be the corresponding stationary measure for .xt / with density � D
d�
dx

.
Writing

ft WD
�b̂t

!

�
�
f; �t WD

�
ˆt

!

�
�
�;

we have (under the same integrability condition as Theorem 1.1)

EH.�t j�/ D �t�† and EH.ft jf / D t .n�1 � 2�†/:

At least in simple settings, such as for SDEs with a unique stationary measure for
the projective process, the formula follows from a slightly more subtle analysis of volume
compression/expansion on SRn suitably combined with ergodic theory. Furstenberg [40] was
the first to relate relative entropy to Lyapunov exponents; at the generality above, the proof
is due to Baxendale [12].

To explore the consequences of Proposition 2.4, let us rewrite it in a more suggestive
form. Let fx.v/ D f .x; v/=�.x/, ft;x.v/ D ft .x; v/=�t .x/ denote the conditional densities
of f and ft along the fiber SxRn ' Sn�1. One can then combine the above formulae into
the identity

EH.ft jf / � EH.�t j�/ D E
Z

Rn

H.ft;xjfx/d�.x/ D t .n�1 � �†/: (2.2)

The left-hand side of this identity is the expectation of a positive quantity, while the right-
hand side is nonnegative due to the general inequality n�1 � �†. By the strict convexity, we
have

n�1 D �† ” ft;x � fx with probability 1 for all t � 0 and � almost every x:

Unraveling the definitions, ft;x � fx means that�
Dxˆt

!

�
�
fx D fˆt

!.x/;
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i.e., the matrices Dxˆt
! , viewed as acting on Sn�1 embedded in Rn, transform the condi-

tional density fx into the density fˆt
!.x/ of tangent directions at ˆt

!.x/. This is a very rigid
condition in view of the fact that given any two (absolutely continuous) densities h; h0 on
Sn�1, ®

A 2 GLn.R/ W A�h D h0
¯

has empty interior in the space of n � n matrices. One can obtain the following beautiful
dichotomy by a more detailed analysis of the rigidity in a group of matrices in SLn that
preserve a given probability measure; see, e.g., [12,40,63].

Theorem 2.5 (Furstenberg criterion). Suppose the same setting as Proposition 2.4. If
n�1 D �†, then one of the following holds:

(a) There is a continuously-varying family of inner products x 7! h�; �ix with the
property that Dxˆt

! is an isometry from h�; �ix to h�; �iˆt
!.x/ with probability 1

for all t � 0.

(b) There is a (locally) continuously-varying family of proper subspaces x 7! Li
x �

Rd with the property that Dxˆt
!.
S

i Li
x/ D

S
i Li

ˆt
!.x/

with probability 1 for
all t � 0.

Remark 2.6. Note that in the above, the inner products and the Li are deterministic, which
is highly rigid for many random systems. Note that they are also continuously-varying.

However, if one is interested in deducing �1 > 0, this criterion is really only useful if
�† D 0, i.e., the system is volume preserving, otherwise one only obtains the nondegeneracy
n�1 > �†. Moreover, Theorem 2.5 lacks any quantitative information, and so it cannot be
used to obtain concrete estimates with respect to parameters. Hence, it generally cannot be
applied to dissipative systems, even weakly dissipative.

In the volume preserving case, however, criteria à la Furstenberg can be a very
powerful tool. In our previous work [14], we used a suitable (partially) infinite-dimensional
extension of Theorem 2.5 to show that the Lagrangian flow map (i.e., the trajectories of
particles in a fluid) is chaotic when the fluid evolves by the stochastically forced 2D Navier–
Stokes equations (called Lagrangian chaos in the fluid mechanics literature). See Section 5
for more information.

2.3. The best of both worlds: sign-definite and time-infinitesimal
Proposition 2.4 is, on its face, a quantitative and sign-definite formula for Lyapunov

exponents, and this leads to a strong and relatively easy-to-rule-out dichotomy for the degen-
erate scenario n�1 D �†. On the other hand, the formula itself is not straightforward to work
with, requiring both the stationary density f for .xt ; vt / as well as the time-t flow ˆt

! and
its derivative Dxˆt

! as ! varies. In particular, it is unclear how to glean quantitative infor-
mation beyond the “soft” inequality n�1 > �†, as would be relevant for a damped system
(i.e., �† < 0).
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In view of the sign-indefinite formula (2.1) and its time-infinitesimal version, the
Furstenberg–Khasminskii formula, it is reasonable to hope that a time-infinitesimal version
of Proposition 2.4 might exist. The authors establish such a formula in our recent work [17].

Proposition 2.7 (Theorem A in [17]). Assume .xt ; vt / has a unique stationary measure �

with density f D
d�
dq

on SRn. Let � denote the corresponding stationary measure for .xt /

on Rn with density � D
d�
dx

. Define the modified Fisher information

FI.f / D
1

2

rX
iD1

Z
SRn

j QX�
i f j2

f
dq; FI.�/ D

1

2

rX
iD1

Z
Rn

jX�
i �j2

�
dx:

Under a mild moment criterion (see [17]), we have

FI.�/ D ��† and FI.f / D n�1 � 2�†:

Recall that QX�
i denotes the adjoint of QXi viewed as an operator on L2.dq/.

Remark 2.8. One can show that FI.f / � FI.�/ corresponds to an analogous Fisher infor-
mation on the conditional densities Ofx.v/, providing the exact time-infinitesimal analogue
of (2.2) (see [17]).

These Fisher-information-type formulas for Lyapunov exponents enjoy many of the
best qualities of the previous formulas: (A) they are sign-definite, like those in Proposi-
tion 2.4, and (B) are also time-infinitesimal like those in Proposition 2.3, and so are inherently
simpler, requiring only the stationary density f for .xt ; vt / and how it is acted on by the first-
order differential operators QX�

i .
A key feature of Proposition 2.7 is that a lower bound on FI.f / implies a lower

bound on n�1 � 2�†. The FI.f / itself has the connotation of a partial regularity of f

along the forcing directions QXi . This is reminiscent of techniques in Hörmander’s theory of
hypoelliptic operators, where partial regularity along forcing directions implies regularity
in all directions under an appropriate Lie algebra spanning condition involving the drift X0.
This connection is explored in the next section.

3. Quantitative lower bounds by the Fisher information

Let us now set about obtaining quantitative estimates on Lyapunov exponents using
the Fisher information as in Proposition 2.7. For this, it will be most useful to consider the
weakly-forced system

dxt D X"
0.xt / dt C

p
"

rX
kD1

X"
k.xt / ı dW k

t ; (3.1)

where we have also allowed " dependence in the vector fields X"
j . In this case, Proposition 2.7

gives the following Fisher information formula on the stationary density f " of the projective
process associated to (3.1)

"

2

rX
j D1

Z
j QX�

j f "j2

f "
dq D n�1 � 2�†:
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If QXj has a bounded divergence,7 by Cauchy–Schwarz inequality, 9C > 0 such that
rX

j D1



 QXj f "


2

L1 � C C FI
�
f "
�

D

�
C C

n�1 � 2�†

"

�
:

Hence, we have related L1-type directional regularity in the forcing directions to the Lya-
punov exponents. If the lifted forcing directions ¹ QXj ºr

j D1 spanned the entire tangent space
TwSRn everywhere, then we would obtain a lower bound of the Lyapunov exponents of the
type 

f "



2
PW 1;1 .

�
1 C

n�1 � 2�†

"

�
; (3.2)

and so we would find a straightforward lower bound on n�1 � 2�† in terms of the regularity
of f ". This kind of lower bound is clearly most useful if �† is small, especially O."/, but
crucially, it does not have to be exactly zero. In this manner, we can treat systems which are
close to being volume preserving, but not necessarily exactly volume preserving. This is at
the crux of why we can treat systems like Lorenz-96 and Galerkin–Navier–Stokes whereas
traditional à la Furstenberg methods based on, e.g., Theorem 2.5 cannot.

3.1. Hypoellipticity
It is not usually the case that ¹ QXj ºr

j D1 spans TwSRn and so the lower bound (3.2) is
generally false. For example, for additive noise, the lifts satisfy QXj D .Xj ; 0/ and so clearly
this fails to span TwSRn, regardless of whether or not ¹Xj ºr

j D1 spans TxRn. Hence, in
general, the Fisher information connects regularity in the lifted forcing directions to the Lya-
punov exponents, but a priori, not any other directions in TwSRn. For this, we need a concept
known as hypoellipticity, by which solutions to Kolmogorov equations such as (1.3) or (1.4)
can be smooth even when L is degenerate, i.e., even when the forcing directions do not span
the tangent space. This effect was studied first by Kolmogorov [57] in 1934, however, clarity
on the effect was not fully obtained until Hörmander’s 1967 work [50].

Let us discuss Hörmander’s main insights from [50]. It will make sense to quantify
fractional regularity along a vector field X using the group etX and the Lp Hölder-type
seminorm (brushing aside minor technical details)

jhjX;s WD sup
t2.�1;1/

jt j�s


etX h � h




Lp :

Hörmander’s original work was based in L2; our work will be based in L1. For now, we set
p D 2.

There are two key ideas in [50]. The first, and simpler idea, comes from the Campbell–
Baker–Hausdorff formula, which implies for any two vector fields X; Y that (essentially, the
Zassenhaus formula):

e�tX e�tY etX etY
D et2ŒX;Y �CO.t3/;

7 This is not the case for our examples, but this will not be important as we will eventually
work only locally.
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where here ŒX; Y � is the Lie bracket, i.e., the commutator (see [49] and [50]). In particular,
marching forward and then backward by two vector fields X; Y does not quite get us back to
where we started (unless X;Y commute). Therefore we have (using that the etX are bounded
on Lp), 

et2ŒX;Y �CO.t3/

� I




Lp .


etX

� I




Lp C


etY

� I




Lp

C


e�tX

� I




Lp C


e�tY

� I




Lp ;

which suggests the remarkable property that any fractional regularity of a function h in direc-
tions X;Y , i.e., jhjX;s C jhjY;s < 1, implies that h also has (a little less) fractional regularity
in the commutator direction ŒX; Y �. Another version of Campbell–Baker-0Hausdorff (see
[50]) gives

et.XCY /
D etX etY et2ŒX;Y �

� � � ;

where the “� � � ” corresponds to a formal product expansion of higher commutators of tX

and tY (and thus higher powers in t ). Combined with the previous formal discussion, this
suggests that regularity in directions X;Y should also supply regularity in the direction X C

Y (and indeed, any linear combination). By iterating these heuristics, we get the suggestion
that a priori regularity along any set of vector fields ¹Z0; : : : ; Zrº should imply that there
should also be some regularity in any direction Z 2 Lie.Z0; : : : ; Zr /, where the Lie algebra
is given by the span of all possible combinations of commutators

Lie.Z0; : : : ; Zr / WD span
®
ad.Ym/ : : : ad.Y1/Y0 W Yj 2 ¹Z0; Z1; : : : ; Zrºm � 0

¯
;

and where ad.X/Y WD ŒX; Y �. In [50], these heuristics are made rigorous with the fol-
lowing functional inequality: Suppose that 8z 2 Rn, Liez.Z0; : : : ; Zr / D ¹Z.z/ W Z 2

Lie.Z0; : : : ; Zr /º D TzRn. Then 8sj 2 .0; 1/, 9s? such that for all 0 < s < s?, 8R > 0,
and 8h 2 C 1

c .B.0; R//, one has

khkH s .R khkL2 C

rX
j D0

jhjZj ;sj
: (3.3)

In particular, this inequality holds a priori for any h 2 C 1
c .BR.0// and it has nothing to do

directly with solutions to any PDE. Making this rigorous requires dealing with the errors in
the CBH formulas used above. At any step of the argument, these errors are of lower regular-
ity but in new directions, and so dealing with them requires a little finesse and interpolations
to close the argument.

Inequality (3.3) is already an interesting observation that can expand the directions
of regularity. In particular, one can use an L1-analogue of (3.3) to provide a lower bound
on the Fisher information based on regularity in any direction contained in the Lie algebra
of the forcing directions ¹ QX1; : : : ; QXrº. However, Hörmander was far from done. Indeed,
this is clearly unsatisfying to some degree as this will not even depend on the underlying
deterministic dynamical system under consideration, encoded in the drift vector field QX0.
Moreover, for additive forcing, (3.3) fails to add anything at all. For Hörmander’s second
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main insight, consider the backward Kolmogorov equation

Lg D Z0g C
1

2

rX
j D1

Z2
j g D F: (3.4)

Assuming ¹Zj ºr
j D0 have bounded divergence,8 one obtains the standard L2-“energy” esti-

mate:
rX

j D1

kZj gk
2
L2 . kgk

2
L2 C kF k

2
L2 :

After applying a smooth cutoff �R.x/ D �.x=R/ where � 2 C 1
c .B2.0//, 0 � � � 1, and

�.x/ D 1 for jxj � 1, and dealing with the commutators as in a Caccioppoli estimate, the
functional inequality (3.3) combined with this estimate implies that if Liez.Z1; : : : ; Zr / D

TzRn at all z, then we would obtain an estimate like

k�RgkH s .R kgkL2.B2R.0// C kF kL2.B2R.0//:

However, as discussed above, this condition on the vector fields is often too strong to be
useful for us here.

However, another natural a priori estimate on g is available from (3.4). Indeed, pair-
ing (3.4) with a test function ', we obtainˇ̌̌̌Z

'Z0f dq

ˇ̌̌̌
�

1

2

rX
j D1



Z�
j '




L2kZj gkL2 .
1

2

rX
j D1

�
k'kL2 C kZj 'kL2

��
kgkL2 C kF kL2

�
:

This simple observation shows that for solutions of Lg D F , H 1-type regularity in the
forcing directions automatically provides a corresponding dual H �1-type regularity on Z0g.
The cornerstone of [50] is the following functional inequality (i.e., again, not directly related
to solutions of any PDEs): if one has Liez.Z0; Z1; : : : ; Zr / D Rn everywhere, then 9s 2

.0; 1/ such that if R > 0 and h 2 C 1
c .BR.0//, then

khkH s . khkL2 C sup
'Wk'kL2 C

Pr
j D1 kZj 'kL2 �1

ˇ̌̌̌Z
'Z0h dq

ˇ̌̌̌
C

rX
j D1

kZj hkL2 DW khkH 1
hyp

:

(3.5)

The key heuristic behind this functional inequality is the following observation:
1

2

d

dt



etZ0h � h


2

L2 D
˝
etZ0h � h; Z0etZ0h

˛
�

 
khkL2 C

rX
j D1



Zj etZ�
0
�
etZ0h � h

�


L2

!
kgkH 1

hyp
:

Therefore, if we had something like
rX

j D1



Zj etZ�
0
�
etZ0h � h

�


L2 .

rX
j D1

kZj hkL2 ; (3.6)

8 Alternatively, one can consider the estimates suitably localized.
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then we could combine the L2-estimate on ¹Zj ºr
j D1 with the corresponding dual negative

regularity in the Z0 direction to obtain some positive fractional regularity in the Z0 direction,
specifically we would have 1=2 regularity from

etZ0h � h



2

L2 . tkhk
2
H 1

hyp
:

Unfortunately (3.6) does not generally hold,9 and Hörmander uses a rather ingenious reg-
ularization argument to turn this heuristic into reality. We shall henceforth call functional
inequalities of the type (3.5) Hörmander inequalities.

The gain in regularity from (3.5) combines with the Kolmogorov equation to get the
estimate

kg�RkH s . kgkL2.B2R.0// C kF kL2.B2R.0//;

and so provides an analogue of the gain of regularity when studying elliptic equations
(though only fractional regularity). As in that theory, this regularity gain can be iterated
to imply that any L2-solution of Lg D F is C 1 if F 2 C 1 [50].

3.2. Uniform hypoellipticity
Next, we want to make the arguments which are quantitative with respect to param-

eters, and hence we will introduce the notion of uniform hypoellipticity. Let us formalize the
definition of Hörmander’s condition for elliptic- and parabolic-type equations. For a mani-
fold M , we denote by X.M/ the set of smooth vector fields on M .

Definition 3.1 (Hörmander’s condition). Given a manifold M and a collection of vector
fields

¹Z0; Z1; : : : ; Zrº � X.M/;

we define collections of vector fields X0 � X1 � � � � recursively by

X0 D ¹Zj W j � 1º;

XkC1 D Xk [
®
ŒZj ; Z� W Z 2 Xk ; j � 0

¯
:

We say that ¹Zi º
r
iD0 satisfies the parabolic Hörmander condition if there exists k such that

for all w 2 M,

span
®
Z.w/ W Z 2 Xk

¯
D TwM:

We say that ¹Zi º
r
iD0 satisfies the (elliptic) Hörmander condition if this holds with X0 D

¹Zj W j � 0º.

Note that the parabolic Hörmander condition is slightly stronger than the elliptic
Hörmander condition.

9 As in the easier inequalities above, the heuristic (3.6) neglects the creation of higher-order
commutators; in fact, one requires regularity in many other directions in Lie.Z0; : : : ; Zr / as
a result.
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Definition 3.2 (Uniform Hörmander’s condition). Let M be a manifold, and let ¹Z"
0;Z"

1; : : : ;

Z"
r º � X.M/ be a set of vector fields parameterized by " 2 .0; 1�. With Xk defined as in

Definition 3.1 in the parabolic case (resp. elliptic), we say ¹Z"
0; Z"

1; : : : ; Z"
r º satisfies the

uniform parabolic (resp. elliptic) Hörmander condition on M if 9k 2 N such that for any
open, bounded set U � M there exist constants ¹Knº1

nD0 such that for all " 2 .0; 1� and all
x 2 U , there is a finite subset V.x/ � Xk such that 8� 2 TxM,

j�j � K0

X
Z2V.x/

ˇ̌
Z.x/ � �

ˇ̌
;

X
Z2V.x/

kZkC n � Kn:

This definition stipulates that any " dependence is locally (on the manifold) uniform
in terms of both regularity and spanning. Now we are ready to state the uniform L1-type
Hörmander inequality suitable for use with the Fisher information, proved in [17]. There are
many works extending Hörmander’s theory in various ways see, e.g., [1,4,19,44,56,62,72] and
the references therein. However, as far as the authors are aware, there are no works in the
L1–L1 framework. We also need to consider the forward Kolmogorov equation QL�f D 0,
as opposed to the case of the backward Kolmogorov equation considered by Hörmander [50];
this changes some details but little of significant consequence is different.

Theorem 3.3 (L1-type uniform Hörmander inequality, [17, Theorem 4.2]). Let ¹X"
0 ; X"

1 ;

: : : ; X"
r º be a collection of vector fields on SRn satisfying the uniform elliptic Hörman-

der condition as in Definition 3.2. Then, 9s? 2 .0; 1/ such that if BR.x0/ � Rn is an open
ball and h 2 C 1

c .BR.x0/ � Sn�1/, then for all 0 < s < s?, 9C D C.R; x0; s/ such that
8" 2 .0; 1/ the following fractional regularity10 estimate holds uniformly in ":

khkW s;1 � C

 
khkL1 C sup

'Wk'kL1 C
Pr

j D1 kX"
j 'kL1 �1

ˇ̌̌̌Z
'
�
X"

0

��
h dq

ˇ̌̌̌
C

rX
j D1



�X"
j

��
h




L1

!
:

In particular, applying a smooth cutoff �R WD �.x=R/ for some � 2 C 1
c .B2.0// with

0 � � � 1 and � � 1 if jxj � 1 to the Kolmogorov equation QL�f " D 0 (assuming also
kf "kL1 D 1) and suitably estimating the commutators, we obtain

�Rf "



2

W s;1 .R 1 C FI.f "/: (3.7)

Remark 3.4. Hypoellipticity plays a classical role in the theory of SDEs. In particular, the
parabolic Hörmander condition of Definition 3.1 is exactly the condition most often used to
deduce that the Markov semigroup Pt is strong Feller (the exposition of [46] is especially
intuitive). The parabolic Hörmander condition also often plays a role in proving irreducibility
via geometric control theory (see discussions in [42,48,52] and specifically in [17] in regards

10 For s 2 .0; 1/, we may define W s;1 on a geodesically complete, n-dimensional Riemannian
manifold with bounded geometry M as

kwkW s;1 D kwkL1 C

�Z
M

Z
h2TxMWjhj<ı0

jw.expxh/ � w.x/j

jhjsCn
dhdq.x/

�
;

where expx W TxM ! M is the exponential map on M and dq is the Riemannian volume
measure. See, e.g., [81] for more details.
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to the projective process). For many applications, it is likely that the parabolic Hörmander’s
condition will be used to prove that there exists a unique stationary measure � for the projec-
tive process (via Doob–Khasminskii [33]), as required to apply Proposition 2.7. Hence the
condition of uniformity-in-" in Definition 3.2 will usually be the only additional information
required to apply Theorem 3.3.

Remark 3.5. Quantitative arguments based on L2 Hörmander inequalities can be found in
[2, 19] (completed concurrently with or after [17]). Thinking about hypoellipticity in terms
of functional inequalities, rather than qualitative statements about regularity of solutions to
PDEs, has other important advantages as well, for example, it is easier to adapt classical
elliptic and parabolic PDE methods, such as De Giorgi or Moser iterations, into hypoelliptic
equations [19,44,72].

Obtaining the above Theorem 3.3 follows an argument generally based on Hörman-
der’s original paper [50], however, the L1–L1 framework, as opposed to the self-dual L2

framework in [50], necessitates a more complicated regularization argument than that used
[50] (which was already quite delicate!). Moreover, as we are always interested in sphere
bundles here, one cannot avoid working on smooth manifolds, which at least under the
assumption of geodesic completeness, only adds some technical complexity rather than fun-
damental difficulties.

Let us briefly see, heuristically, how one would approach the proof of Theorem 3.3.
Motivated by the above discussion regarding [50], the main challenge is to obtain 1=2 of a
derivative of L1 Hölder-type regularity in the QX�

0 “direction.” By a bootstrap-type argument,
we may assume that we have corresponding regularity along all of the other vector fields in
Liez. QX0; QX1; : : : ; QXr / (see [17] for details). Let St be a (carefully designed) regularization
operator St W Lp ! Lp . We obtain for any w 2 C 1

c .BR.0/ � Sn�1/,

et QX�
0 w � w




L1 �



et QX�
0
�
S�

� w � w
�



L1 C


S�

� w � w




L1 C


et QX�

0 S�
� w � S�

� w




L1 :

We eventually set � �
p

t and the regularization operator will be designed so that the first
two terms are O.�/, thus we need mainly to work on the latter term, which by duality is
estimated by

et QX�

0 S�
� w � S�

� w




L1 � sup
kvkL1 �1

ˇ̌̌̌
ˇZ t

0

Z
SRn

.es QX0v/X�
0 S�

� w dqds

ˇ̌̌̌
ˇ;

and, for any fixed v 2 L1, we haveˇ̌̌̌Z
SRn

.es QX0v/X�
0 S�

� w dq

ˇ̌̌̌
�

ˇ̌̌̌Z
SRn

.es QX0v/Œ QX0; S� ��w dq

ˇ̌̌̌
C

ˇ̌̌̌Z
SRn

.S� es QX0v/ QX�
0 w dq

ˇ̌̌̌
�


esX0v




L1



Œ QX0; S� ��w




L1

C

 

S� es QX0v




1
C

rX
j D1



Xj S� es QX0v




L1

!
D.w/;

where

D.h/ WD sup
'Wk'kL1 C

Pr
j D1 kX"

j 'kL1 �1

ˇ̌̌̌Z
SRn

'
�

QX"
0

��
h dq

ˇ̌̌̌
:
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Hence, the challenge is designing a regularizer such that the commutator Œ QX0;S� �� loses only
O.��1/ using no a priori regularity in the QX0 direction, and similarly that S� regularizes the
forcing fields QXj like O.��1/. To do this, we let S� be a modified version of Hörmander’s
regularizer, which averages the function along directions in Liez. QX0; : : : ; QXr / a correspond-
ing amount (higher commutators corresponding to less regularization) in a carefully ordered
way. Specifically, because these “directional mollifiers” do not commute, the order in which
they are applied is very important. Hörmander regularized with S� , whereas we are funda-
mentally regularizing with its adjoint S�

� , which reverses the delicate ordering. Despite the
added difficulty, this turns out to be an important choice for our framework.

4. Chaos for 2D Galerkin–Navier–Stokes and related

models

In this section, we outline how to apply the above ideas to prove a positive Lyapunov
exponent for Galerkin truncations of the stochastic 2D Navier–Stokes. A general class of
models with similar bilinear drift term, which we call Euler-like systems, are given by the
following SDE:

dx"
t D

�
B
�
x"

t ; x"
t

�
� "Ax"

t

�
dt C

rX
kD1

XkdW k
t : (4.1)

Here, ¹Xkºr
kD1

is a collection of constant (x-independent) forcing vector fields (i.e., additive
forcing) while B W Rn � Rn ! Rn is a nontrivial (not identically zero) bilinear drift that
satisfies

div B D 0; x � B.x; x/ D 0;

so in particular the unforced " D 0 dynamics preserve the norm,11 given by 1
2
kxk2, and

volume in Rn (i.e., the Liouville property). The term �"A provides weak linear damping,
where A is assumed to be a symmetric, positive-definite n � n matrix. Stochastically forced
versions of the Lorenz 96 model (L96) [67], Galerkin truncations of 2D and 3D Navier–
Stokes on a torus (of arbitrary aspect ratio) [20, 36, 78] and truncations of commonly used
shell models for turbulence [34,43,61,84] can be cast in this form. The 2D stochastic Galerkin–
Navier–Stokes equations will be described in more detail in Section 4.3 below.

The bilinearity of B implies that solutions can be naturally rescaled into a weakly-
damped, weakly-driven system, and the two scalings are equivalent as far as Lyapunov expo-
nents are concerned. Indeed, while the scaling (4.1) is common among models of complex
real-world systems, the stationary measure � has characteristic energy

R
jxj2d�.x/ � "�1.

Since we are concerned with the regime " � 1, it is natural to rescale and consider a weakly-
damped, weakly-driven system. Hence, it is more natural to rescale so that the long-time
behavior remains bounded and nonvanishing as " ! 0. By rescaling x"

t 7!
p

"x"p
"t

, replac-
ing " 7! "3=2, and using the self-similarity of Brownian motion, we get an equivalent in law,

11 In the case of the vorticity form of the 2D Navier–Stokes equations that we will be studying
below, this quantity is the enstrophy.
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weakly-driven, weakly damped form

dx"
t D

�
B
�
x"

t ; x"
t

�
� "Ax"

t

�
dt C

p
"

rX
kD1

XkdW k
t : (4.2)

Most importantly, this rescaling does not affect our results on Lyapunov exponents, since
upon setting O" D "3=2, the Lyapunov exponent O�O"

1 of (4.2) with parameter O" is related to the
Lyapunov exponent �"

1 of (4.1) by the identity
O�O"

1

O"
D

�"
1

"
. This kind of scaling is sometimes

called fluctuation–dissipation due to the balance between the forcing and the dissipation.
For this class of systems (4.1), our result below gives a sufficient condition for a

positive Lyapunov exponent in terms of projective hypoellipticity, i.e., if the lifted vector
fields ¹ QX"

0 ; QX1; : : : ; QXrº corresponding to the projective process .x"
t ; v"

t / (denoting X"
0.x/ D

B.x; x/ � "Ax) satisfy Hörmander’s condition on SRn.

Theorem 4.1 ([17, Theorem C]). Assume that

(i) ¹ QX"
0 ; QX1; : : : ; QXrº satisfy the elliptic Hörmander’s condition uniformly in " 2

.0; 1/ as in Definition 3.2;

(ii) the bilinear term B is nontrivial, i.e., B.x; x/ ¤ 0 for some x 2 Rn; and

(iii) the process .x"
t ; v"

t / admits a unique stationary density f ".

Then, the limit defining the Lyapunov exponent �"
1 of (4.1) exists, and satisfies

lim
"!0

�"
1

"
D 1:

In particular, 9"0 > 0 such that for all " 2 .0; "0/, one has �"
1 > 0.

A sketch of the proof of Theorem 4.1 is given in Section 4.1 below. The most difficult
part of applying this result to a concrete system, e.g., Galerkin–Navier–Stokes, is to prove the
parabolic Hörmander condition for the projective process: general comments on this problem
are given in Section 4.2, while the issue of affirming this for Galerkin–Navier–Stokes is taken
up in Section 4.3.

Given parabolic Hörmander’s condition, unique existence of f " follows, via the
Doob–Khasminskii theorem, from topological irreducibility of .x"

t ; v"
t /, i.e., the ability to

approximately control random trajectories by controlling noise paths. For Euler-like models
such as (4.1), this follows from geometric control theory arguments and the following well-
known cancelation condition on B.x; x/ (known to hold for many models such as Galerkin–
Navier–Stokes, cf. [42,48]): there exists a collection of vectors ¹e1; : : : ; esº � Rn with

span¹e1; : : : ; esº D span¹X1; : : : ; Xrº

such that for each 1 � k � s, B.ek ; ek/ D 0. For more details, see Section 5.3 of [17].

Remark 4.2. The inverse Lyapunov exponent .�"
1/�1 is sometimes called the Lyapunov

time, and is the “typical” length of time one must wait for tangent vectors to grow by a factor
of e. Thus, the estimate �"

1 � " implies that the Lyapunov time is � "�1. On the other hand,
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"�1 is the typical amount of time it takes for the Brownian motion
p

"Wt to reach an O.1/

magnitude; for this reason, it is reasonable to refer to "�1 as a kind of “diffusion timescale.”
So, stated differently, our results indicate that as " ! 0, arbitrarily many Lyapunov times
elapse before a single “diffusion time” has elapsed, indicating a remarkable sensitivity of
the Lyapunov exponent to the presence of noise.

Based on these ideas, one would like to assert that the scaling �"
1 � " implies that

the deterministic dynamics are “close” to positive Lyapunov exponent dynamics, agnostic as
to whether the zero-noise system has a positive exponent on a positive area set. However, this
assertion does not follow from the scaling �"

1 � " alone: even if the Brownian motion itself
is small, there could already be a substantial difference between random and corresponding
deterministic (zero-noise) trajectories well before time "�1, e.g., if there is already strong
vector growth in the deterministic dynamics. For more on this, see the open problems in
Section 6.

4.1. Zero-noise limit and rigidity: proof sketch of Theorem 4.1
Applying the Fisher information identity (Proposition 2.7) to the Euler-like sys-

tem (4.2) and using that �"
† D �" tr A, we obtain

FI.f "/ D
n�"

1

"
C 2 tr A:

By the regularity lower bound (3.7), this implies that, for each open ball BR.0/, we have the
lower bound 

�Rf "



2

W s;1 .R 1 C
�"

1

"
;

where the regularity s 2 .0; 1/ and the implicit constant C D CR are independent of ".
From this, we see that if lim inf" "�1�"

1 were to remain bounded, then f " would
be bounded in W

s;1
loc uniformly in ". As W s;1 is locally compactly embedded in L1 and f "

naturally satisfies certain uniform-in-" moment bounds, one can deduce, by sending " ! 0,
that at least one of the following must hold true (see Proposition 6.1, [17] for details):

(a) either lim"!0
�"

1

"
D 1; or

(b) the zero-noise flow .x0
t ; v0

t / admits a stationary density f 0 2 L1.SRn/.

Let us consider alternative (b). While it is natural and common for the projective
processes of SDE to admit stationary densities, the existence of an absolutely continuous
invariant measure f 0dq for the projective process of the " D 0 problem

Pxt D B.xt ; xt /; (4.3)

is quite rigid. Indeed, in view of the fact that vector growth implies concentration of Lebesgue
measure in projective space (cf. the discussion in Section 2.1 after Proposition 2.3), the
existence of an invariant density essentially rules out any vector growth for the " D 0 projec-
tive process .x0

t ; v0
t /. Precisely, a generalization of Theorem 2.32 in [8] (see [17] for details)
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implies that there is a measurably varying Riemannian metric x 7! gx such that ˆt is an
isometry with respect to gx , namely

gx

�
Dxˆt v; Dxˆt w

�
D gˆt .x/.v; w/; v; w 2 TxRn;

where ˆt W Rn ! Rn is the flow associate to the " D 0 dynamics (4.3). So, we see that if
lim inf"!0 "�1�1 < 1, then the deterministic, measure-preserving " D 0 dynamics must be
in a situation analogous to possibility (a) in Theorem 2.5.

In our setting, we show that there is necessarily some norm growth as t ! 1 for
the " D 0 dynamics due to shearing between conserved energy shells ¹x 2 Rn W jxj2 D Eº.
This is straightforward to check: due to the scaling symmetry ˆt .˛x/ D ˛ˆ˛t .x/, ˛ > 0,
we have the following orthogonal decomposition of the linearization Dxˆt in the direction
x 2 Rn:

Dxˆt x D ˆt .x/ C tB
�
ˆt .x/; ˆt .x/

�
;

noting that y � B.y; y/ � 0 for all y 2 Rn. Hence, one obtains the lower boundˇ̌
Dxˆt

ˇ̌
� t

jB.ˆt .x/; ˆt .x//j

jxj

for each x 2 Rn n ¹0º and each t > 0. This contradicts the existence of the Riemannian
metric gx via a Poincaré recurrence argument and the fact that the set of stationary points
¹x 2 Rn W B.x; x/ D 0; jxj2 � Rº is a zero volume set. This is summarized in the following
proposition (a proof of which is given in [17]).

Proposition 4.3 ([17, Proposition 6.2]). Assume that the bilinear mapping B is not iden-
tically 0. Let � be any invariant probability measure for b̂t (the flow corresponding to the
(deterministic) " D 0 projective process) with the property that �.A � Sn�1/ D �.A/, where
� � LebRn . Then, � is singular with respect to volume measure dq on SRn.

4.2. Verifying projective hypoellipticity: a sufficient condition
We address here the challenge of verifying the parabolic Hörmander condition on

the sphere bundle SRn. Recall that given a smooth vector field X on Rn we define its lift QX

to the sphere bundle SRn by

QX.x; v/ D
�
X.x/; rX.x/v � v

˝
v; rX.x/v

˛�
;

where rX.x/ denotes the (covariant) derivative of X at x and is viewed as a linear endo-
morphism on TxRn. Many of the following general observations about the lifted fields were
made in [12]; see also [17] for detailed discussions.

An important property is that the lifting operation can be seen to be a Lie algebra
isomorphism onto its range with respect to the Lie bracket, i.e., Œ QX; QY � D ŒX;Y �Q . Using this
observation, the parabolic Hörmander condition (see Definition 3.1) on SRn for the lifts of
a collection of vector fields

¹X0; X1; : : : ; Xrº � X.Rn/
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can be related to nondegeneracy properties of the Lie subalgebra mx.X0I X1; : : : ; Xr / of
sl.TxRn/ defined by

mx.X0I X1; : : : ; Xr / WD

²
rX.x/ �

1

n
div X.x/ Id W X 2 Lie.X0I X1; : : : ; Xr /; X.x/ D 0

³
;

where
Lie.X0I X1; : : : ; Xr / WD Lie

�
X1; : : : ; Xr ; ŒX0; X1�; : : : ; ŒX0; Xr �

�
;

is the zero-time ideal generated by ¹X0; X1; : : : ; Xrº, with X0 a distinguished “drift” vector
field (recall that sln.TxRn/ is the Lie algebra of traceless linear endomorphisms of TxRn).

Particularly, if for each x 2 Rn, mx.X0I X1; : : : ; Xr / acts transitively on Sn�1 in
the sense that, for each .x; v/ 2 SRn, one has®

Av � vhv; Avi W A 2 mx.X0I X1; : : : ; Xr /
¯

D TvSn�1; (4.4)

then the parabolic Hörmander condition for ¹X0; X1; : : : ; Xrº on Rn is equivalent to the
parabolic Hörmander condition for the lifts ¹ QX0; QX1; : : : ; QXrº on SRn. Moreover, the uniform
parabolic Hörmander condition is satisfied on SRn if and only if it is satisfied on Rn and (4.4)
holds uniformly in the same sense as in Definition 3.2. Since sl.Rn/ acts transitively on
Rn n ¹0º (see, for instance, [27]), a sufficient condition for transitivity on Sn�1 is

mx.X0I X1; : : : ; Xr / D sl
�
TxRn

�
:

In the specific case of Euler-like models (4.2) with X"
0.x/ D B.x; x/ � "A and

¹Xkºr
kD1

as in (4.2), the situation can be simplified if Lie.X0I X1; : : : ; Xr / contains the con-
stant vector fields ¹@xk

ºn
kD1

. In this case, the family of x and "-independent endomorphisms

Hk WD r
�
@xk

; X"
0

�
D rŒ@xk

; B�; k D 1; : : : ; n;

generate the Lie algebra mx.X"
0 I X1; : : : ; Xr / at all x 2 Rn. This argument implies the

following sufficient condition for projective spanning.

Corollary 4.4 (See [17]). Consider the bilinear Euler-like models (4.2). If Lie.X0I X1;

: : : ;Xr / contains ¹@xk
ºn

kD1
, then ¹ QX"

0 ; QX1; : : : ; QXrº satisfy the uniform parabolic Hörmander
condition (in the sense of Definition 3.2) on SRn if

Lie.H 1; : : : ; H n/ D sl.Rn/:

This criterion is highly useful, having reduced projective spanning to a question
about a single Lie algebra of trace-free matrices.

In [17], we verified this condition directly for the Lorenz 96 system [67], which is
defined for n unknowns in a periodic array by the nonlinearity B given by

B`.x; x/ D x`C1x`�1 � x`�2x`�1: (4.5)

The traditional case is n D 40, but it can be considered in any finite dimension. In particular,
we proved the following.
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Corollary 4.5 ([17, Corollary D]). Consider the L96 system given by (4.2) with the nonlin-
earity (4.5) and Xk D qkek for k 2 ¹1; : : : ; rº, qk 2 R, and ek the canonical unit vectors. If
q1; q2 ¤ 0 and n � 7, then

lim
"!0

�"
1

"
D 1:

In particular 9"0 > 0 such that �"
1 > 0 if " 2 .0; "0/.

4.3. Projective hypoellipticity for 2D Galerkin–Navier–Stokes
Let us now see how we can go about verifying the projective hypoellipticity con-

dition for a high-dimensional model of physical importance, namely Galerkin truncations
of the 2D stochastic Navier–Stokes equations on the torus of arbitrary side-length ratio
T 2

r D Œ0; 2�/ � Œ0; 2�
r

/ (periodized) for r > 0. Recall that the Navier–Stokes equations on
T 2

r in vorticity form are given by

@t w C u � rw � "�w D
p

" PWt ;

where w is the vorticity and u is the divergence-free velocity field coming from the Biot–
Savart law u D r?.��/�1w and PWt is a white-in time, colored-in-space Gaussian forcing
which we will take to be diagonalizable with respect to the Fourier basis with Fourier trans-
form supported on a small number of modes.

In the work [20] by the first and last authors of this note, we consider a Galerkin
truncation of the 2D stochastic Navier–Stokes equations at an arbitrary frequency N � 1 in
Fourier space by projecting onto the Fourier modes in the truncated lattice

Z2
0;N WD

®
.k1; k2/ 2 Z2

n ¹0º W max
®
jk1j; jk2j

¯
� N

¯
� Z2;

giving rise to an n D jZ2
0;N j D .2N C 1/2 � 1 dimensional stochastic differential equation

with the reality constraint w�k D wk for w D .wk/ 2 CZ2
0;N (that is, the vector is indexed

over Z2
0;N ) governed by

dwk D
�
Bk.w; w/ � "jkj

2
r wk

�
dt C

p
"dW k ; (4.6)

where jkj2r WD k2
1 C r2k2

2 , and W k
t D ˛kW

a;k
t C iˇkW

b;k
t are independent complex Wiener

processes satisfying W k
t D W

�k

t (W a;k
t ;W

b;k
t are standard i.i.d. Wiener processes) with ˛k ,

ˇk arbitrary such that ˛k D 0 , ˇk D 0. The symmetrized nonlinearity Bk.w; w/ is given
by

Bk.w; w/ WD
1

2

X
j C`Dk

cj;`wj w`; cj;` WD
˝
j ?; `

˛
r

�
1

j`j2r

�
1

jj j2r

�
where the sum runs over all j; ` 2 Z2

0;N such that j C ` D k and we are using the notation
hj ?; `ir WD r.j2`1 � j1`2/. In what follows, the coefficient cj;` always depends on r , but
we suppress the dependence for notational simplicity.

We will regard the configuration space CZ2
0;N as a complex manifold with com-

plexified tangent space spanned by the complex basis vectors ¹@wk
W k 2 Z2

0;N º (Wirtinger
derivatives) satisfying @w�k

D N@wk
. See [51] for the notion of complexified tangent space
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and [20] for discussion on how to use this complex framework for checking Hörmander’s
condition. In this basis, we can formulate the SDE (4.6) in the canonical form

dwt D X"
0.wt / C

X
k2Z0

p
"@wk

dW k
t ;

where the drift vector field X"
0 is given by X"

0.w/ WD
P

k2Z2
0;N

.Bk.w; w/ � "jkj2r wk/@wk

and the set of driving modes Z0 is given by Z0 WD ¹k 2 Z2
0;N W ˛k ; ˇk ¤ 0º.

As in the setting of [36, 47], we consider very degenerate forcing and study how it
spreads throughout the system via the nonlinearity B`.w; w/. Specifically, define the sets

Zn
D
®
` 2 Z2

0;N W ` D j C k; j 2 Z0; k 2 Zn�1; cj;k ¤ 0
¯
; n � 0

and assume that the driving modes Z0 satisfy
S

n�0 Zn D Z2
0;N . Under this assumption

on Z0, it can be shown (see [17] Proposition 3.6 or [36,47]) that the complexified Lie algebra
Lie.X"

0 I ¹@wk
W k 2 Z0º/ contains the constant vector fields ¹@wk

W k 2 Z2
0;N º and therefore

satisfies the uniform parabolic Hörmander condition on CZ2
0;N .

4.3.1. A distinctness condition on a diagonal subalgebra
As discussed in Section 4.2, in order to verify projective hypoellipticity for the

vector fields X"
0 I ¹@wk

W k 2 Z0º, it suffices to study the generating properties of a suit-
able matrix Lie algebra. In [20], we show this can be reformulated to a condition on the
constant, real valued matrices H k D rŒ@wk

; B�, k 2 Z2
0;N , represented in ¹@wk

º coordi-
nates by .H k/`;j D @wj

@wk
B`.w; w/ D cj;kı`Dj Ck . After obtaining this reformulation, the

main result of [20] is the following nondegeneracy property of the matrices ¹H kº.

Theorem 4.6 ([20, Theorem 2.13], see also Proposition 3.11). Consider the 2D stochastic
Galerkin–Navier–Stokes equations with frequency truncation N on T 2

r and suppose that
N � 392. Then, the following holds:

Lie
�®

H k
W k 2 Z2

0;N

¯�
D slZ2

0;N
.R/; (4.7)

where slZ2
0;N

.R/ denotes the Lie algebra of real-valued traceless matrices indexed by the
truncated lattice Z2

0;N . Therefore projective hypoellipticity holds for (4.2) and, by Theo-
rem 4.1, the top Lyapunov exponent satisfies lim"!0 "�1�"

1 D 1.

Remark 4.7. Verifying the Lie algebra generating condition (4.7) is quite challenging due
to the fact that there there are n D jZ2

0;N j matrices and n2 � 1 degrees of freedom to span.
The matrices are also banded in the sense that for each k, .H k/`;j couples most of the
lattice values `; j along the band k D ` � j and therefore it is a major challenge to isolate
elementary matrices (matrices with only one nonzero entry) as one can do rather easily in
“local in frequency” models like L96 (4.5) (see [17]). Moreover, brute force computational
approaches that successively generate Lie bracket generations and count the rank by Gaussian
elimination (such as the Lie tree algorithm in [37]) are only available for fixed r 2 RC and
N 2 ZC, and can be subject to numerical error (for instance, if r is chosen irrational) which
destroy the validity of the proof.
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In order to show that (4.7) holds, in [20] we take an approach inspired by the root-
space decomposition of semisimple Lie algebras and study genericity properties of the fol-
lowing diagonal subalgebra of Lie.¹H kº/

h WD span
®
Dk

W k 2 Z2
0;N

¯
;

where Dk D ŒH k ; H �k � are a family of diagonal matrices with diagonal elements Dk
i D

.Dk/i i given by

Dk
i D ci;kciCk;k1Z2

0;N
.i C k/ � ci;kci�k;k1Z2

0;N
.i � k/:

Using that, for a given diagonal matrix D 2 slZ2
0;N

.R/, the adjoint action ad.D/ W

slZ2
0;N

.R/ ! slZ2
0;N

.R/, where ad.D/H D ŒD; H �, has eigenvectors given by the elemen-
tary matrices Ei;j (i.e., a matrix with 1 in the i th row and j th column and 0 elsewhere),
ad.D/Ei;j D .Di � Dj /Ei;j means that ad.D/ has a simple spectrum if the diagonal entries
of D have distinct differences, Di � Dj ¤ Di 0 � Dj 0 , .i; j / ¤ .i 0; j 0/. This implies that if
H is a matrix with nonzero nondiagonal entries and D has distinct differences, then for
M D n2 � n, the Krylov subspace

span
®
H; ad.D/H; ad.D/2H; : : : ; ad.D/M �1H

¯
contains the set ¹Ei;j W i; j 2 Z2

0;N ; i ¤ j º, which is easily seen to generate slZ2
0;N

.R/.
However, in our setting the diagonal matrices Dk have an inversion symmetry

Dk
�i D �Dk

i and therefore there cannot be a matrix in h with all differences distinct. More-
over, we do not have a matrix with all off diagonal entries nonzero due to the degeneracies
present in cj;k and the presence of the Galerkin cut-off. Nevertheless, in [20] we are able to
deduce the following sufficient condition on the family ¹Dkº, ensuring that (4.7) holds:

Proposition 4.8 ([20, Corollary 4.9 and Lemma 5.2]). Let N � 8. If for each .i; j; `; m/ 2

.Z2
0;N /4 satisfying i C j C ` C m D 0 and .i C j; ` C m/ ¤ 0, .i C `; j C m/ ¤ 0, .i C

m; j C `/ ¤ 0, there exists a k 2 Z2
0;N such that

Dk
i C Dk

j C Dk
` C Dk

m ¤ 0; (4.8)

then (4.7) holds.

The proof of Proposition 4.8 is not straightforward. However, its proof uses some
similar ideas as the proof of (4.8) but is otherwise significantly easier, so we only discuss the
latter.

4.3.2. Verifying the distinctness condition using computational algebraic
geometry
The distinctness condition (4.8) is not a simple one to verify. Indeed, ignoring the

Galerkin cut-off N for now, Dk
i are rational algebraic expressions in the variables .i;k; r/ (by

comprising products and sums of the coefficients cj;k), and therefore proving (4.8) amounts
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to showing that the family of Diophantine equations12

Dk
i C Dk

j C Dk
` C Dk

m D 0; for each k 2 Z2
0;N (4.9)

have no solutions .i; j; `; m; r/ satisfying the constraints of Proposition 4.8. Due to the com-
plexity of the expression for Dk

i , there is little hope to verify such a result by hand (the
resulting polynomials are of degree 16 in 9 variables). But, if one extends each of the 9 vari-
ables .i; j; `; m; r/ D .i1; i2; j1; j2; `1; `2; m1; m2; r/ to the algebraically closed field C,
then (4.9) along with i C j C ` C m D 0 defines a polynomial ideal I with an associated
algebraic variety V .I / in C9. Such a high dimensional variety is rather complicated due to
the inherent symmetries of the rational equation in (4.9); however, its analysis is nonetheless
amenable to techniques from algebraic geometry, particularly the strong Nullstellensatz and
computer algorithms for computing Gröbner bases (see [30] for a review of the algebraic
geometry concepts). Indeed, without the Galerkin cut-off (the formal infinite-dimensional
limit), in [20] we proved, by computing Gröbner bases in rational arithmetic using the F4
algorithm [38] implemented in the computer algebra system Maple [70], that the identity
V .I / D V .g/ holds, where g is the following “saturating” polynomial

g.i; j; `; m; r/ D r2
ji j2r jj j

2
r j`j

2
r jmj

2
r

�
ji C j j

2
r C j` C mj

2
r

��
ji C `j

2
r C jj C mj

2
r

�
�
�
ji C mj

2
r C jj C `j

2
r

�
whose nonvanishing encodes the constraints in Proposition 4.8, thereby showing that (4.8)
holds.

Dealing with the Galerkin truncation adds significant difficulties to the proof as
the associated rational system (4.9) is instead piecewise defined (depending on k and N )
and therefore does not easily reduce to a problem about polynomial inconsistency. Nonethe-
less, by considering 34 different polynomial ideals associated to different possible algebraic
forms, in [20] we were able to show that if N is taken large enough (bigger than 392 to be
precise) then (4.8) still holds with the Galerkin truncation present and therefore Theorem 4.6
holds.

Finally, it is worth remarking that even without the Galerkin cut-off, the system of
rational equations (4.9) is complex enough to become computationally intractable (even for
modern computer algebra algorithms) without some carefully chosen simplifications, vari-
able orderings, choice of saturating polynomial g, and sheer luck; see [20] for more details.

5. Lagrangian chaos in stochastic Navier–Stokes

At present, the results above based on Proposition 2.7 are restricted to finite-
dimensional problems. Indeed, even while the Fisher information can potentially be extended
to infinite dimensions under certain conditions,13 for any parabolic SPDE problem, we will

12 At least considering r D 1 or another fixed, rational number.
13 If X�� � � and we define ˇ�

X� WD
d QX��

d� , then FI.f / D
1
2

P
k kˇ�

QX�
k2

L2.�/
, and there is

no explicit dependence on any reference measure or Riemannian metric; see [17] for more
details.
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always have �† D �1. The existence of positive Lyapunov exponents for the infinite-
dimensional, stochastic Navier–Stokes equations remains open as of the writing of this note.

However, there is another important problem in fluid mechanics where we have been
able to make progress. Consider the (infinite-dimensional) 2D Navier–Stokes equations14

in T 2,
@t ut C .ut � rut C rp � ��ut / D

X
k

qkek
PW k

t ; div ut D 0; (5.1)

where the qk 2 R and ek are eigenfunctions of the Stokes operator. The Lagrangian flow
map 't

!;u W T 2 7! T 2 is defined by the trajectories of particles moving with the fluid

d
dt

't
!;u.x/ D ut

�
't

!;u.x/
�
; '0

!;u.x/ D x;

where note that the diffeomorphism 't
!;u depends on the initial velocity u and the noise

path ! and is therefore a cocycle over the skew product ‚t W � � H s 	, where ‚t .!; u/ D

.�t !; ‰t
!.u// and ‰t

! W H s 	 is the 2D Navier–Stokes flow on H s associated with (5.1).
One can naturally ask whether or not .ut / is chaotic, as we have done in previous sections, or
if the motion of particles immersed in the fluid is chaotic, e.g., if the Lagrangian Lyapunov
exponent is strictly positive. The latter is known as Lagrangian chaos [3,5,9,26,31,41,86] (to
distinguish it from chaos of .ut / itself, which is sometimes called Eulerian chaos). While
both are expected to be observed in turbulent flows, Lagrangian chaos is not incompatible
with Eulerian “order,” i.e., a negative exponent for the .ut / process.

In [14] we proved, under the condition that jqkj � jkj�˛ for some ˛ > 10, that 9�1 >

0 deterministic and independent of initial x and initial velocity u such that the following limit
holds almost surely:

lim
t!1

1

t
log
ˇ̌
Dx't

!;u

ˇ̌
D �1 > 0: (5.2)

This Lagrangian chaos was later upgraded in [15,18] to the much stronger property of uniform-
in-diffusivity, almost sure exponential mixing. To formulate this notion, we consider .gt / a
passive scalar solving the (random) advection–diffusion equation

@t gt C ut � rgt D ��gt ; g0 D g;

for � 2 Œ0; 1� and a fixed, mean-zero scalar g 2 L2.T 2/. In [15,18], we proved that there exists
a (deterministic) constant � > 0 such that for all � 2 Œ0; 1� and initial divergence free u 2 H s

(for some sufficiently large s), there exists a random constant D D D.!; �; u/ such that for
all g 2 H 1 (mean-zero)

kgt kH �1 � De��t
kgkH 1

where D is almost surely finite and satisfies the uniform-in-� moment bound (for some fixed
constant q and for any � > 0),

ED2 .�

�
1 C kukH s

�q
e

�kuk2

H1 :

14 The 3D Navier–Stokes equations can be treated provided the ���ut is replaced with the
hyperviscous damping ��2ut .
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One can show that this result is essentially optimal up to getting sharper quantitative esti-
mates on � and D, at least if � D 0 [15,18]. This uniform, exponential mixing plays the key
role in obtaining a proof of Batchelor’s power spectrum [11] of passive scalar turbulence in
some regimes [16].

Let us simply comment on the Lagrangian chaos statement (5.2), as it is most closely
related to the rest of this note. The main step is to deduce an analogue of Theorem 2.5
for the Lagrangian flow map, using that while the Lagrangian flow map depends on an
infinite-dimensional Markov process, the Jacobian Dx't

!;u itself is finite dimensional. This
is done in our work [14] by extending Furstenberg’s criterion to handle general linear cocy-
cles over infinite-dimensional processes in the same way that Dx't

!;u depends on the sample
paths .ut /.

The Lagrangian flow is divergence-free, and thus the Lagrangian Lyapunov expo-
nents satisfy �† D 0 and �1 � 0, so ruling out the degenerate situations in Theorem 2.5
would immediately imply �1 > 0. A key difficulty in this infinite-dimensional context is to
ensure that the rigid invariant structures (now functions of the fluid velocity field u and the
Lagrangian tracer position x) in our analogue of Theorem 2.5 vary continuously as functions
of u and x. It is at this step that we require the nondegeneracy type condition on the noise
jqkj & jkj�˛ , which is used to ensure that the Markov process .ut ; 't .x// is strong Feller.

At the time of writing, it remains an interesting open problem to extend our works
[14, 15, 18] to degenerate noise such as that used in [47] or [58]. It bears remarking that the
methods of [47] apply to the one-point process .ut ; 't .x// (this is used in our work [15]),
however, it is nevertheless unclear how to prove Lagrangian chaos without a sufficiently
strong analogue of Theorem 2.5, and it is unclear how to obtain such a theorem without the
use of the strong Feller property.

6. Looking forward

The work we reviewed here raises a number of potential research directions.

Tighter hypoelliptic regularity estimates. The scaling �"
1 � " that naturally follows from

our above analysis is surely suboptimal – even if the deterministic problem were to be com-
pletely integrable, the scaling would likely be O."
 / for some 
 < 1 depending on dimension
(see, e.g., [13,76]). To begin with, one may attempt to strengthen the hypoelliptic regularity
estimate by refining the " scaling to something like

f "



2

W s;1 . 1 C
n�"

1 � 2�"
†

"

;

for some constant 0 < 
 < 1. If such an estimate were true, the same compactness-rigidity
argument of Theorem 4.1 would imply a scaling like �"

1 & "
 . An improvement of this type
seems plausible given the proof of Theorem 3.3. It might be necessary, in general, to use a
more specialized norm on the left-hand side, but local weak L1 compactness, i.e., equiinte-
grability, is all that is really required for the compactness-rigidity argument to apply.

5647 Lower bounds on the Lyapunov exponents of stochastic differential equations



Beyond compactness-rigidity. Compactness-rigidity arguments may remain limited in
their ability to yield optimal or nearly optimal scalings for �1, regardless of the ways one can
improve Theorem 3.3. Another approach is to find some way to work more directly on " > 0.
This was essentially the approach of works [13,76], however, the method of these papers only
applies if one has a nearly-complete understanding of the pathwise random dynamics. We
are unlikely to ever obtain such a complete understanding of the dynamics of models such
as L96 or Galerkin–Navier–Stokes, but there may be hope that partial information, such as
the isolation of robust, finite-time exponential growth mechanisms, could be used to obtain
better lower bounds on kf "kW s�;1 . An approach with a vaguely related flavor for random
perturbations of discrete-time systems, including the Chirikov standard map, was carried
out in the previous work [23].

Finer dynamical information: moment Lyapunov exponents. Lyapunov exponents pro-
vide asymptotic exponential growth rates of the Jacobian, but they provide no quantitative
information on how long it takes for this growth to be realized with high probability. One
tool to analyze this is the study of large deviations of the convergence of the sequences
1
t

log jDxˆt
!vj. The associated rate function is the Legendre transform of the moment Lya-

punov exponent function p 7! ƒ.p/ WD limt!1
1
t

log EjDxˆt
!vjp (the limit defining ƒ.p/

exists and is independent of .x; v; !/ under fairly general conditions [6]). It would be highly
interesting to see if the quantitative estimates obtained by, e.g., Theorem 4.1 extend also
to quantitative estimates on the moment Lyapunov exponents. We remark that the moment
Lagrangian Lyapunov exponents play a key role in our works [15,18].

Lyapunov times of small-noise perturbations of completely integrable systems. The
phase space of a completely integrable Hamiltonian flow is foliated by invariant torii along
which the dynamics is a translation flow—such systems are highly ordered and nonchaotic.
On the other hand, small perturbations of the Hamiltonian are known to break the most
“resonant” of these torii, while torii with sufficiently “nonresonant” frequencies persist due
to KAM theory. It is an interesting and highly challenging open problem to prove that this
“breakage” results in the formation of a positive-volume set admitting a positive Lyapunov
exponent. For the most part such problems are wide open, and related to the standard map
conjecture discussed in Section 1.1. The recent work of Berger and Turaev [21] established
a renormalization technique for proving the existence of smooth perturbations resulting in a
positive Lyapunov exponent, but it remains open to affirm how “generic” such perturbations
actually are.

The following is a closely related stochastic dynamics problem: starting from a com-
pletely integrable system and adding a small amount of noise, how many Lyapunov times
elapse for the random dynamics before the “stochastic divergence” timescale when the deter-
ministic flow and the stochastic flow differ by O.1/? Estimating the stochastic divergence
timescale is essentially a large deviations problem, and has already been carried out for
small random perturbations of completely integrable systems; see, e.g., [39]. On the other
hand, estimating Lyapunov times beyond the crude .�"

1/�1 estimate is a large deviations
estimate for the convergence of finite-time Lyapunov exponents to their asymptotic value
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�"
1. The associated rate function in this case is the Legendre transform of the moment Lya-

punov exponent ƒ.p/ mentioned earlier; a positive result for the program described above
would require quantitative-in-" estimates on ƒ.p/.

More general noise models. One simple potential extension is Theorem 4.1 to different
types of multiplicative noise. Another important extension would be to noise models which
are not white-in-time, for example, noise of the type used in [58], which is challenging
because our work is deeply tied to the elliptic nature of the generator QL�. A simpler exam-
ple of nonwhite forcing can be constructed from “towers” of coupled Ornstein–Uhlenbeck
processes, which can be built to be C k in time for any k � 0 (see, e.g., [14,15] for details).

Lagrangian chaos. There are several directions of research to extend our results in [14,

15, 18], such as studying degenerate noise as in [47, 58], extending to more realistic physical
settings such as bounded domains with stochastic boundary driving, and extending Propo-
sition 2.7 to the Lagrangian flow map in a variety of settings, which would help to facilitate
quantitative estimates (note one will have to use the conditional density version so that one
does not see the effect of the �† associated to the Navier–Stokes equations themselves).
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