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Abstract

Motivated by recent biological experiments, we emphasize the effects of small and random
populations in various biological/medical contexts related to evolution such as invasion
of mutant cells or emergence of antibiotic resistances. Our main mathematical challenge
is to quantify such effects on macroscopic approximations. The individual behaviors are
described by the mean of stochastic multiscale models. The latter, in the limit of large
population and according to the assumptions on mutation size and frequency, converge
to different macroscopic equations. Sufficiently rare mutations yield a timescale separation
between competition and mutation. In that case, the stochastic measure-valued process
at the mutation timescale converges to a jump process which describes the successive
invasions of successful mutants. The gene transfer can drastically affect the evolutionary
outcomes. For faster mutation timescales, numerical simulations indicate that these models
exhibit as cyclic behaviors. Mathematically, population sizes and times are considered on
a log-scale to keep track of small subpopulations that have negligible sizes compared with
the size of the resident population. Explicit criteria on the model parameters are given to
characterize the possible evolutionary outcomes. The impact of these time and size scales
on macroscopic approximations is also investigated, leading to a new class of Hamilton–
Jacobi equations with state constraint boundary conditions.
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1. Introduction and presentation of the individual-based

model

Since Darwin’s revolutionary work on evolution and natural selection [18], many
mathematicians have worked on modeling his theories. Different schools of thought have
developed, involving different classes of mathematical objects. Ecological models of struc-
tured population dynamics usually rely on deterministic models in large populations, such as
dynamical systems (as the famous Lotka–Volterra system) and partial differential equations.
Population genetics are more interested in random fluctuations of gene frequencies in small
populations (like in the Wright–Fisher model) and therefore make extensive use of prob-
abilistic tools. A few decades ago, eco-evolutionary models emerged, seeking to link these
two approaches. Our work is placed in this framework. Our point of view consists in focusing
on stochastic individual behaviors, taking into account demographic parameters (birth and
death rates), evolutionary parameters (mutations, gene transfer), and ecological parameters
(interactions between individuals), all these parameters depending on the genetic or pheno-
typic characteristics of the individual. This point of view is strongly reinforced by the ability
of biologists to obtain more and more individual data, for example, for bacteria, thanks to
single cell microscopes or microfluidic techniques. The notion of individual variability took
a long time to emerge, especially for the biology of microorganisms, and it was not until the
2000s that biologists began to take it into account [24,39].

There are three main sources of randomness in eco-evolutionary mechanisms which
happen at different time and size scales: at the molecular level (errors in DNA replication
or genetic information exchanges), at the individual level (division time, life span, contacts,
access to resources), and at a macroscopic level (environmental variations). Mathematically,
it is very exciting that all the parameters we have mentioned have their own scales, which can
be different according to the species considered and also can vary according to the environ-
ment. Depending on these scales, the mathematical models and the associated mathematical
questions can be of different nature and challenging, and open new fields of investigation.

We consider bacteria or cell populations. The ability of an individual to survive
or divide depends on phenotypic or genetic parameters whose quantitative expression (real
or vectorial) is called a trait. The evolution of the trait distribution results from different
main mechanisms. The heredity is the vertical transmission of the ancestral trait to offspring,
except when a mutation occurs. Mutations generate trait variability in the population. The
selection process takes place at two levels. The variability in traits allows an individual with
a higher probability of survival or a better ability to reproduce to create a subpopulation
of offspring that will invade the population (genetic selection). In addition, selection also
favors those individuals best able to survive in competition with others (ecological selec-
tion). Although their reproduction is asexual, bacteria or cells can also horizontally exchange
genetic information during their life. Horizontal gene transfer is obtained by direct contact
between cells, either by the transfer of small parts of chromosomal DNA or by the trans-
fer of plasmids, small circular double-stranded DNA structures which can be very costly
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for the cell in terms of energy used. Gene transfer plays an essential role in the evolution,
maintenance, transmission of virulence and antibiotic resistance.

Our goal in this paper is to show the richness of models, mathematical questions and
theorems that can emerge from these eco-evolutionary dynamics and from the understanding
of their long-term evolution. One is faced with the fundamental question: how to describe and
quantify the successive invasions of favorable mutants? All our constructions will be based
on the stochastic behavior of the individuals from which we will derive different macroscopic
approximations depending on the parameter assumptions.

The seminal papers concerning eco-evolutionary modeling are based on game
theory and dynamical systems, see Hofbauer–Sigmund [28], Marrow–Law–Cannings [33],
Metz et al. [35, 36]. Then more general models for structured populations have been intro-
duced based either on partial differential equations, see, for example, the founding papers
of Diekmann [21], Diekmann–Jabin–Mischler–Perthame [22], Barles–Mirrahimi–Perthame
[3], Desvillettes–Jabin–Mischler–Raoul [19], or on stochastic individual-based models as
in the theoretical biological papers by Dieckmann–Law [20], Bolker–Paccala [9], or in the
rigorous mathematical papers by Fournier–Méléard [25], Champagnat–Ferrière–Méléard
[13], Champagnat [11], Champagnat–Méléard [15]. Models including horizontal transfer have
been proposed in the literature based on the seminal contribution of Anderson and May on
host-pathogen deterministic population dynamics [1] (see also Levin et al. [30, 40]) or on a
population genetics framework without ecological concern (see [4,38,41]).

The basis of our approach is a stochastic individual-based model: it is a pure jump
point measure-valued process in continuous time, weighted by the carrying capacity K of
the system (order of magnitude of the population size), whose jump events are births with
or without mutation, transfers, and deaths. The jump rates depend on the trait value of each
individual, on the total population and for some of them on K. From this basic process,
one can derive different approximations following the main biological assumptions of the
adaptive biology. The population size is assumed to be large (K ! 1), but we will also need
to keep track of small populations. Mutations are rare (pK tends to 0), but not necessarily
from the population standpoint, depending on whether KpK tends to 0 or not. Mutation steps
in the trait space may be considered small or not. The population process will be considered
on different time scales: of order 1, of order 1

KpK
, or of order log K.

After introducing in Section 2 the individual-based model scaled by the carrying
capacity K, we will study in Section 3 large population limits on finite time intervals when
K tends to infinity, using ideas developed in [25]. The stochastic process is shown to con-
verge to the unique solution of a nonlinear integro-differential equation (see also Billiard et
al. [5,6] for models with horizontal transfer). In the case where the trait support is composed
of two values, the equation reduces to a nonstandard two-dimensional dynamical system
whose long-time behavior is studied. In Section 4, we analyze the invasion probability and
time to fixation of an initially rare mutant population. In this case, the stochastic behavior
of the mutant population is fundamental and needs to be combined with the deterministic
approximation of the resident population size. In Section 5 we assume that mutations are
rare at the population scale to imply a separation between the competition and mutation time
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scales, following ideas of [11,13,15]. Under an “invasion implies fixation” assumption, a pure
jump (single support) measure-valued process is derived from the population process at the
mutation time scale. When the mutation steps tend to 0, a limiting differential equation for the
support dynamics is also derived in a longer time scale. These results are illustrated by simu-
lations of a simple model in Section 6. Depending on the transfer rate, we obtain dramatically
different behaviors, ranging from expected evolution toward the optimal trait, to extinction
(evolutionary suicide). When the individual mutation rate is small, but not from the popu-
lation standpoint, intermediary values of transfer rates lead to surprising cyclic behaviors
related to reemergence of traits. To capture these phenomena, we consider in Section 7 the
small populations of order KˇK for 0 < ˇK � 1 that can be observed in the long time scale
log K. We study the asymptotic dynamics of the exponents .ˇK.t/; t � 0/ and analyze the
first reemergence of the optimal trait. In Section 8, under the additional assumption that the
individual mutations are small, we establish in a simple framework that the stochastic dis-
crete exponent process converges to the viscosity solution of a Hamilton–Jacobi equation
with state constraint boundary conditions, allowing us to fill the gap between the stochastic
[11, 15] and deterministic [3, 22] approaches of Dirac concentration in adaptive dynamics. In
the coming years, we hope to generalize this result in a much more general framework.

Notation. The set E being a Polish space, the Skorohod space D.Œ0;T �;E/ is the functional
space of right-continuous and left-limited functions from Œ0; T � to E. It is endowed by the
Skorohod topology (cf. Billingsley [7]) which makes it a Polish space.

2. A general stochastic individual-based model for

vertical and horizontal trait transmission

2.1. The model
The population dynamics is described by a stochastic system of interacting individ-

uals (cf. [12, 13,25]). The individuals are characterized by a quantitative parameter x, called
trait, belonging to a compact subset X of Rd , which summarizes the phenotypic or genotypic
information of each individual. The trait determines the demographic rates. It is inherited
from parent to offspring, except when a mutation occurs, in which case the trait of the off-
spring takes a new value. It can also be transmitted by horizontal transfer from an individual
to another one. The demographic and ecological rates are scaled by the carrying capacity
K which is taken as a measure of the “system size” (resource limitation, living area, initial
number of individuals). We will derive macroscopic behaviors for the population by letting
K tend to infinity with the appropriate scaling 1

K
for individuals’ weight.

At each time t , the population state at time t is described by the point measure

�K
t .dx/ D

1

K

N K
tX

iD1

ıXi .t/.dx/; N K
t D K

Z
�K

t .dx/;

where Xi .t/ is the trait of the i th individual living at t , individuals being ranked according
to the lexicographic order of their trait values. Recall that notation ıx means the Dirac mea-
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sure at x. Later we will denote indifferently, for a measurable bounded function f on Rd ,
h�K

t ; f i D
R

Rd f .x/�K
t .dx/ D

PN K
t

iD1 f .Xi .t//=K.
The right-continuous and left-limited measure-valued process .�K

t ; t � 0/ is a
Markov process whose transitions are described as follows. An individual with trait x gives
birth to a new individual with rate b.x/. With probability 1 � pK , the new individual car-
ries the trait x and with probability pK , there is a mutation on the trait. The trait z of the
new individual is chosen according to the probability distribution m.x; dz/. An individual
with trait x dies with intrinsic death rate d.x/ and from the competition with any other
individual alive at the same time. If the competitor has the trait y, the competition death
rate is C.x;y/

K
, leading for a population � D

1
K

Pn
iD1 ıxi

to a total individual death rate
d.x/ C

1
K

Pn
iD1 C.x; xi / D d.x/ C C � �.x/. Horizontal transfers can occur from indi-

viduals x to y, or vice versa. In a population �, an individual with trait x chooses a partner
with trait y at rate 1

K
�.x;y/
h�;1i

. After transfer, .x; y/ becomes .x; x/.

2.2. Generator
We denote by MK the set of point measures on X weighted by 1=K and by MF the

set of finite measures on X. The generator of the process .�K
t /t�0 is given for measurable

bounded functions F on MK and � D
1
K

Pn
iD1 ıxi

by
nX

iD1

b.xi /

�
.1 � pK/

�
F

�
� C

1

K
ıxi

�
� F.�/

�
C pK

Z
X

�
F

�
� C

1

K
ız

�
� F.�/

�
m.xi ; dz/

�
C

nX
iD1

�
d.xi / C C � �.xi /

��
F

�
� �

1

K
ıxi

�
� F.�/

�
C

nX
i;j D1

�.xi ; xj /

Kh�; 1i

�
F

�
� C

1

K
ıxi

�
1

K
ıxj

�
� F.�/

�
:

It is standard to construct the measure-valued process �K as the solution of a
stochastic differential equation driven by Poisson point measures and to derive the following
moment and martingale properties (see, for example, [25] or Bansaye–Méléard [2]).

Theorem 2.1. Under the previous assumptions and assuming also that for some p � 2,
E.h�K

0 ; 1ip/ < 1, the following properties hold. For a bounded measurable function f

on X, Z
f .x/�K

t .dx/ D

Z
f .x/�K

0 .dx/ C M
K;f
t

C

Z t

0

Z
X

²�
.1 � pK/b.x/ � d.x/ � C � �K

s .x/
�
f .x/

C pKb.x/

Z
X

f .z/m.x; dz/

C

Z
X

�.x; y/

h�K
s ; 1i

�
f .x/ � f .y/

�
�K

s .dy/

³
�K

s .dx/ds;
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where M K;f is a right-continuous and left-limited square-integrable martingale starting
from 0 with quadratic variation˝

M K;f
˛
t

D
1

K

Z t

0

Z
X

²�
.1 � pK/b.x/ C d.x/ C C � �K

s .x/
�
f 2.x/

C pKb.x/

Z
X

f 2.z/m.x; dz/

C

Z
X

�.x; y/

h�K
s ; 1i

�
f .x/ � f .y/

�2
�K

s .dy/

³
�K

s .dx/ds:

3. Large population limit and rare mutation in the

ecological time-scale

3.1. A deterministic approximation
Assuming that pK converges to p when K tends to infinity, we derive a macroscopic

approximation of the population process on any finite time interval.

Assumptions .H/. (i) When K ! C1, the stochastic initial point measures �K
0

converge in probability (and for the weak topology) to the deterministic measure
u0 2 MF .X/ and supK E.h�K

0 ; 1i3/ < C1.

(ii) The functions b, d , C , and � are continuous. The intrinsic growth rate of the
subpopulation of trait x is denoted by r.x/ D b.x/ � d.x/. For any x; y 2 X,
we also assume r.x/ > 0, C.x;y/ > 0. It means that, in absence of competition,
the subpopulation with trait x has a tendency to grow and the regulation of the
population size comes from the competition pressure.

Proposition 3.1. Assume .H/ and that pK ! p when K tends to infinity. Then, for T > 0

and when K ! 1, the sequence .�K/K�1 converges in probability in D.Œ0; T �; MF .X//

to the deterministic function u 2 C.Œ0; T �; MF .X//, the unique weak measure-solution of

@t u.t; x/ D
�
r.x/ � C � u.t; x/

�
u.t; x/ C p

Z
X

b.y/m.y; x/u.t; y/dy

C
u.t; x/

ku.t; �/k1

Z
X

˛.x; y/u.t; y/dy; (3.1)

with C � u.t; x/ D
R

C.x; y/u.t; y/dy and ˛.x; y/ D �.x; y/ � �.y; x/.

The proof is standard and consists of a tightness and uniqueness argument, see [2,25]

or [6] for details. Let us note that the horizontal transfer acts on the dynamics (3.1) through the
“horizontal flux” rate ˛ which quantifies the asymmetry between transfers and can be positive
as well as negative (or zero in the case of perfectly symmetrical transfer). Nevertheless, the
fully stochastic population process depends not only on ˛ but also on � itself. Let us mention
that, to the best of our knowledge, the long-time behavior of a solution of (3.1) is unknown,
except in the case without transfer studied by Desvillettes et al. [19]. The existence of steady-
states for some similar equations has been studied in Hinow et al. [27] and Magal–Raoul [32].
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3.2. Particular cases when p D 0

Standard biological observations lead us to assume small individual mutation rate,

lim
K!1

pK D 0: (3.2)

Under this assumption, the mutational term in (3.1) disappears, meaning that mutation events
are too rare to be observed at the demographic/ecological timescale (of births, deaths, and
interaction). In the particular case when the support of the initial measure u0 is a single
point x, i.e., u0 D nx.0/ıx , nx.0/ 2 RC, the support of the measure ut is ¹xº for all t > 0

and ut D nx.t/ıx . From (3.1), we deduce that nx.t/ is the solution of the logistic equation

n0
x.t/ D nx.t/

�
r.x/ � C.x; x/nx.t/

�
:

This equation has a unique stable equilibrium

Nnx D
r.x/

C.x; x/
: (3.3)

Similarly, in the case when the support of u0 is composed of two points x and y, i.e., u0 D

nx.0/ıx C ny.0/ıy , nx.0/; ny.0/ 2 RC, the support of the measure ut is ¹x; yº for all t > 0

and ut D nx.t/ıx C ny.t/ıy , and .nx.t/; ny.t// is the solution of the dynamical system
dnx

dt
D

�
r.x/ � C.x; x/nx � C.x; y/ny C

˛.x; y/

.nx C ny/
ny

�
nx ;

dny

dt
D

�
r.y/ � C.y; x/nx � C.y; y/ny �

˛.x; y/

.nx C ny/
nx

�
ny :

(3.4)

This system can be seen as a perturbation of a competitive Lotka–Volterra system, but
presents more possible limit behaviors (but no cycles, see [5] for a detailed study). It is easy
to see that trait y will invade a resident population of trait x and get fixed if and only if

r.y/ � r.x/ C ˛.y; x/ > 0: (3.5)

In particular, the horizontal transfer can revert the outcome of the dynamical system without
transfer, provided that j˛.y; x/j > jr.y/ � r.x/j and sign.˛.y; x// D �sign.r.y/ � r.x//,
where sign.x/ D 1 if x > 0; 0 if x D 0; �1 if x < 0.

The situation is even simpler if the function C is constant. The system becomes
dn

dt
D n

�
qr.x/ C .1 � q/r.y/ � C n

�
;

dq

dt
D q.1 � q/

�
r.y/ � r.x/ C ˛.y; x/

�
;

where n D nx C ny and q D nx=.nx C ny/. There are only two equilibria for the second
equation, q D 0 and q D 1; corresponding to the equilibria . r.x/

C
; 1/ and . r.y/

C
; 0/, respec-

tively. This illustrates an important assumption, called the ‘invasion implies fixation” prin-
ciple (IIF).

Assumption (IIF). Given any x 2 X and Lebesgue almost any y 2 X, either . Nnx ; 0/ is a
stable steady state of (3.4), or . Nnx ; 0/ and .0; Nny/ are respectively unstable and stable steady
states, and any solution of (3.4) with an initial state in .R�

C/2 converges to .0; Nny/ when
t ! 1.
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Biologically speaking, this means that the ecological coefficients impede the coex-
istence of two traits (which is biologically accepted when there is only one type of resource,
see [14]).

4. Rare mutations – fixation probability

For this section, we refer to [11,13,15] for rigorous proofs.
Let us now assume (3.2) and that the resident population is uniquely composed of

individuals with trait x and near its size equilibrium, i.e., when K is large, the population
size N x;K is then close to the equilibrium K Nnx . Let us now investigate the fate of a newly
mutated individual with trait y in this resident population, as observed in Figure 1. When
the mutant appears, it begins to develop (by heredity) a small population with trait y whose
size is initially negligible. During this first phase, the number N y;K of individuals with trait
y is very small with respect to N x;K . Its dynamics can be approximated by a linear birth and
death stochastic process, at least until it reaches the threshold �K, for a given small � > 0.
The transfer x ! y acts as a birth term and the transfer y ! x as a death term. Therefore,
the growth rate of an individual with trait y for this first phase is approximately given by

S.yI x/ D r.y/ � C.y; x/ Nnx C ˛.y; x/ D r.y/ � C.y; x/
r.x/

C.x; x/
C ˛.y; x/: (4.1)

The quantity S.yI x/ is called invasion fitness of trait y in the resident population of trait x.
Note that S is not symmetric and null on the diagonal; for C constant, it is given by (3.5).
When K tends to infinity, the probability for the process N y;K to reach �K (for some � > 0)
is approximately the survival probability of the underlying linear birth and death process,
i.e., the positive part of the growth rate S.yI x/ divided by the birth rate b.y/ C �.y; x/,

Figure 1

Invasion and fixation or polymorphic persistence of a deleterious mutation for unilateral transfer rate: (left) C � 1,
b.y/ D 0:5, b.x/ D 1, d.x/ D d.y/ D 0, K D 5 000, ˛.y; x/ D �.y; x/ D 0:7; (right) C.y; x/ D C.x; x/ D 2,
C.y; y/ D 4, C.x; y/ D 1, b.y/ D 0:8, b.x/ D 1, d.x/ D d.y/ D 0, K D 1 000, ˛.y; x/ D �.y; x/ D 0:5.
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namely
P.yI x/ D

Œr.y/ � C.y; x/ Nnx C ˛.y; x/�C

b.y/ C �.y; x/
: (4.2)

In particular, invasion is impossible if S.yI x/ � 0.
Let us assume that S.yI x/ > 0. Then, the duration of the first phase (growth of

the y-population from 1 to �K individuals) is of order log K=S.yI x/. It can be proved
rigorously but, to be convinced of this, it is enough to notice that if t is the time elapsed
from the appearance of the single mutant individual with trait y to threshold �K, then
E.N

y;K
t / � eS.yIx/t D �K, and t D logK=S.yIx/. Then the second phase begins, where the

processes .N x;K ; N y;K/ stay close to the dynamical system (3.4) with nonnegligible initial
data �. Under Assumption (IIF), the trait y invades the population and the x-population
size decreases to N

x;K
t < �K in a duration of order of magnitude 1. Should the latter

happen, the third phase begins and N x;K can be approximated by a subcritical linear birth
and death process, until y is fixed and x is lost. In this case, the transfer y ! x acts as a
birth term and the transfer x ! y as a death term. The duration of this third phase behaves as
log K=.d � b/ when K ! 1 (see [34, Section 5.5.3, p. 190] for precise computation) where
b D b.x/ C �.x; y/, d D d.x/ C

C.x;y/r.y/
C.y;y/

C �.y; x/. Summing up, the fixation time of
an initially rare trait y going to fixation is of order

Tfix D log K

�
1

S.yI x/
C

1

jS.xI y/j

�
C o.log K/: (4.3)

5. Very rare mutations in an evolutionary time scale

We wish to rigorously define and quantify the evolutionary process describing the
successive invasions of successful mutants under hypothesis (3.2). In Section 3, mutations
are not seen in the limit. To observe the dynamical impact of mutations, we have to wait for a
longer time than O.1/. Depending on the rate of convergence of pK to 0, different timescales
will be considered in the next sections.

We assume here that not only pK ! 0 but also K pK ! 0, meaning that both
individual and population mutation rates are small. We will consider the behavior of the
population process at the very long time scale 1

K pK
. Moreover, we will assume that

8 V > 0; log K �
1

K pK

� eVK : (5.1)

This assumption leads to a separation of time scales between competition phases and muta-
tion arrivals. Indeed, by (4.3), mutations are rare enough so that the selection has time to
eliminate deleterious traits or to fix advantageous traits before the arrival of a new mutant.

5.1. Trait substitution sequence
Let us study the convergence of the process .�K

:=.KpK /
/K�1 when K tends to infin-

ity, under the assumption (5.1). By simplicity we assume the invasion implies fixation (IIF)
principle. This implies that, for a monomorphic ancestral population, the dynamics at the
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time scale t=.KpK/ can be approximated by a jump process over singleton measures on X

whose mass at any time is at equilibrium. More precisely, we have

Theorem 5.1. Assume .H/, (5.1), and (IIF). Suppose the initial conditions are �K
0 .dx/ D

N K
0 ıx0.dx/ with x02X, limK!1N K

0 D Nnx0 in probability, and supK2N�E..N K
0 /3/ < C1.

Then, the sequence of processes .�K
�=.KpK /

/K�1 converges in law (for finite-dimen-
sional distributions) to the MF .X/-valued process .Vt .dx/ D NnYt ıYt .dx/; t � 0/ where
.Yt /t�0 is a pure jump process on X, started at x0, with the jump measure from x to y being

b.x/ NnxP.yI x/m.x; dy/ (5.2)

and P.yI x/ being defined in (4.2).

The jump process .Yt ; t � 0/ (with Y0 D x0) describes the support of .Vt ; t �

0/. It has been heuristically introduced in [35] and rigorously studied in [11], in the case
without transfer. It is often called the trait substitution sequence (TSS). Theorem 5.1 can be
generalized when the assumption (IIF) is not satisfied, see [15].

Main ideas for the proof of Theorem 5.1. The proof is a direct adaptation of [11]. The birth
and death rates of the resident x and mutant y are

b.x/ C
�.x; y/N y;K

N K
; d.x/ C C.x; x/N x;K

C C.x; y/N y;K
C

�.y; x/N y;K

N K
;

b.y/ C
�.y; x/N x;K

N K
; d.y/ C C.y; x/N x;K

C C.y; y/N y;K
C

�.x; y/N x;K

N K
:

The proof consists in combining (5.1), the results in Section 4, and the Markov property.
Let us fix � > 0. At t D 0, the population is monomorphic with trait x0 and satisfies the
assumptions of Theorem 5.1. As long as no mutation occurs, the population stays monomor-
phic with trait x0 and, for t and K large enough, the density process h�K

t ; 1x0i belongs to the
�-neighborhood of Nnx0 with large probability (cf. Proposition 3.1). From the large deviations
principle (see Freidlin–Wentzell [26]), one deduces that the time taken by the density process
in absence of mutations to leave the �-neighborhood of Nnx0 is larger than exp.VK/, for some
V > 0, with high probability. Hence assumption (5.1) ensures that the approximation of the
population process by Nnx0ıx0 stays valid until the first mutation occurrence.

The invasion dynamics of a mutant with trait y in the resident population has been
studied in Section 4. If S.yI x0/ > 0, the process N y;K is supercritical, and therefore, for
large K, the probability for the mutant population’s density to attain � is close to the prob-
ability P.yI x0/. After this threshold and thanks to Assumption (IIF), the density process
.h�K

t
KpK

; 1x0i; h�K
t

KpK

; 1yi/ will attain, when K tends to infinity, an �-neighborhood of the
unique stable equilibrium .0; Nny/ of (3.4) and will stabilize around this equilibrium. We have
shown in Section 4 that the time elapsed between the occurrence of the mutant and the final
stabilization is given by (4.3). Hence, if log K �

1
KpK

, with a large probability this phase of
competition–stabilization will be complete before the occurrence of the next mutation. Using
Markovian arguments, we reiterate the reasoning after each mutation event. Therefore, the
population process on the time-scale t=KpK only keeps in the limit the successive stationary

5665 Multiscale eco-evolutionary models



states corresponding to successive advantageous mutations. If the process belongs to an �-
neighborhood of Nnx , the mutation rate from an individual with trait x is close to KpKb.x/ Nnx .
At the time scale t

KpK
, it becomes b.x/ Nnx . The limiting process is a pure jump process

.Vt ; t � 0/ whose jump measure from a state Nnxıx is b.x/ NnxP.yI x/m.x; dy/.

Example 5.2. Let us consider a simple model with trait x 2 Œ0; 4�, C being constant, and
b.x/ D 4 � x, d � 1, �.x; y/ D �ex�y . Then S.x C hI x/ D �h C �.eh � e�h/ and, for
� > 1=2, it is positive if and only if h > 0. Thus the evolution with transfer is directed
towards larger and larger traits, decreasing the growth rate until possible extinction. For �

small enough, S.x C hI x/ < 0 for h > 0 so that a mutant of trait x C h with h > 0 would
disappear at the TSS scale. In this case, evolution drives the population to smaller and smaller
traits until trait 0. The evolution for intermediary � ’s is an open challenging question.

5.2. Canonical equation of the adaptive dynamics
Let us now assume that the mutation effects are very small: the mutation distribution

m� depends on a parameter � > 0 as follows:Z
g.z/m� .x; dz/ D

Z
g.x C �h/m1.x; dh/;

where m1 is a reference symmetric measure with finite variance. Then the generator of the
TSS Y � (which now depends on the parameter � ) is given by

L� g.x/ D

Z �
g.x C �h/ � g.x/

�
b.x/ Nnx

ŒS.x C �hI x/�C

b.x C �h/ C �.x C �h; x/ Nnx

m1.x; dh/:

For smooth S and since S.xI x/ D 0, we have when � tends to 0,

L� g.x/ � �2 1

2
g0.x/ Nnx@1S.xI x/

Z
h2m1.x; dh/:

Let us observe that � ! 0 makes the dynamics stop at this time scale. To observe a nontrivial
behavior, we have to wait a longer time of order of magnitude 1=�2.

Standard tightness and identification arguments allow showing the convergence in
probability in D.Œ0; T �; X/ of the process .Y �

t=�2 ; t 2 Œ0; T �/ to the deterministic function
.x.t/; t 2 Œ0; T �/, solving the equation

x0.t/ D
1

2
Nnx.t/@1S

�
x.t/I x.t/

� Z
h2m1

�
x.t/; dh

�
; (5.3)

the so-called canonical equation of adaptive dynamics introduced in [20] (cf. [15] for a rig-
orous proof). Note also that there is another candidate for the canonical equation obtained
from partial differential equation arguments related to Hamilton–Jacobi equations [22,31,37].

Let us come back to Example 5.2 introduced previously. We assume that m1.x; dh/

is a symmetric measure keeping the trait in Œ0; 4�, i.e., with support in Œ�x; 4 � x�. In this
case, Nnx D

3�x
C

and the canonical equation is given by

x0.t/ D
3 � x.t/

C
.2� � 1/

Z
h2m1

�
x.t/; dh

�
;

since r 0.x/ D �1 and @1�.x; x/ D �@2�.x; x/ D � . Then for � > 1=2, the trait support is
an increasing function, the population size Nnx.t/ is decreasing to 0, and therefore evolution
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drives the population to an evolutionary suicide. Conversely, for � < 1=2, evolution leads to
the optimal null trait (which maximizes the growth rate).

6. Simulations – case of frequency-dependence

(Simulations due to the Master students Lucie Desfontaines and Stéphane Krystal)
We focus on the special case of unilateral transfer, that is, �.x; y/ D �1x>y , which

is relevant for plasmids transfer. The next simulations are concerned with Example 5.2, with
C � 0:5, p D 0:03, and m� .x;h/dh D N .0;�2/, conditioned on x C h 2 Œ0;4�, with � D 0:1.
The initial state is composed of K D 1 000 individuals with trait 1. Thus the corresponding
population size at equilibrium is 1 000 �

b.1/�d.1/
C

D 4 000 individuals.
The constant � will be the varying parameter. Figure 2(a) shows the evolution

dynamics when � D 0. The evolution drives the population to its optimal trait 0 corre-
sponding to a size at equilibrium equal to 1 000 �

b.0/�d.0/
C

D 6 000 individuals. The case
� D 0:2 in Figure 2(b) shows a scenario similar to the case � D 0, although the evolution to
optimal trait 0 takes a longer time. Conversely, when � D 1 (Figure 2(c)), the transfer drives
the traits to larger and larger values, corresponding to lower and lower population sizes until
extinction (evolutionary suicide). These simulations correspond to the theoretical study of
the previous section. Let us now consider the intermediary value � D 0:7 (Figure 3). The
evolution exhibits different patterns. In the first picture, high transfer converts at first indi-
viduals to larger traits and at the same time the population decreases. At some point, the
population size is so small that the transfer does not play a role anymore leading to the brutal
resurgence of a quasiinvisible strain, issued from a few individuals with small traits (and
then with larger growth rate). We observe cyclic resurgences driving the mean trait towards

Figure 2

(a) � D 0; (b) � D 0:2 – almost no modification; (c) � D 1 – evolutionary suicide. Time in abscissa. First line, trait
evolution; second line, size evolution.
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Figure 3

� D 0:7 – stepwise evolution with the trait evolution (left), and population size (center). Another pattern with
extinction (right).

the optimal trait 0. In the last picture, we observe extinction of the population: the remaining
individuals with smaller traits allow for a single resurgence of a new strain, but the traits of
the individuals alive are too large to allow for survival.

7. Stochastic analysis of emergence of evolutionary

cyclic behavior – a simple model

From now on, we are interested in the mathematical understanding of the previous
simulations. In the latter, the chosen mutation probability p was small, but not the population
mutation rate Kp, so (5.1) was not satisfied. We have to consider different time and size
scales than the previous ones to capture the surprising resurgence behaviors. This part is
largely inspired from Champagnat–Méléard–Tran [17].

7.1. A trait-discretized model
From now on, we consider a model inspired by Example 5.2 with a discrete trait

space of mesh ı > 0: X D Œ0; 4� \ ıN D ¹0; ı; : : : ; Lıº where L D b4=ıc. We choose
b.x/ D 4 � x, �.x; y/ D �1x>y , d.�/ � 1 and C.�; �/ � C . Therefore, Nnx D

3�x
C

and the
invasion fitness of a mutant individual of trait y in the population of resident trait x and size
K Nnx is

S.yI x/ D x � y C �1x<y � �1x>y D x � y C � sign.y � x/: (7.1)

We also define the fitness of an individual of trait y in a negligible population (of size o.K/)
with dominant trait x to be

OS.yI x/ D 3 � y C � sign.y � x/: (7.2)

Indeed, the competition part is negligible in that case and vanishes at the limit when K ! 1.
We assume that

pK D K�˛ with ˛ 2 .0; 1/; (7.3)

and when a mutation occurs from an individual with trait `ı, the new offspring carries the
mutant trait .` C 1/ı (the mutations are directed to the right). The total mutation rate in a
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population with size of order K is thus equal to K1�˛ and then goes to infinity with K. We
are very far from the situation described in [6, 11, 15] where (5.1) was satisfied. Here, small
populations of size order Kˇ ; ˇ < 1 can have a nonnegligible contribution to evolution by
mutational events, and we need to take into account all subpopulations with size of order Kˇ .

The population is described by the vector .N K
0 .t/; : : : ; N K

`
.t/; : : : ; N K

L .t//, where
N K

`
.t/ is the number of individuals of trait x D `ı at time t . The total population size N K

t is
now N K

t D
PL

`D0 N K
`

.t/. Our study of the (evolutionary) long-time dynamics of the process
is based on a fine analysis of the size order, as power of K, of each subpopulation. These
powers of K evolve on the timescale log K, as can be easily seen in the case of branching
processes (see Lemma 7.1). We thus define ˇK

`
.t/ for 0 � ` � L such that

N K
` .t log K/ D KˇK

`
.t/

� 1; i.e., ˇK
` .t/ D

log.1 C N K
`

.t log K//

log K
: (7.4)

We assume that N K.0/ D .b 3K
C

c; bK1�˛c; : : : ; bK1�`˛c; : : : ; bK1�b1=˛c˛c;

0; : : : ; 0/. Then trait x D 0 is initially resident, with density 3=C . With this initial con-
dition, we have

ˇK
` .0/ �����!

K!C1
.1 � `˛/10�`< 1

˛
: (7.5)

The main result of this section will give the asymptotic dynamics of ˇK.t/ D

.ˇK
0 .t/; : : : ; ˇK

L .t// for t � 0 when K ! C1. We show that the limit is a piecewise
affine continuous function, which can be described along successive phases determined by
their resident or dominant traits. When the latter trait changes, the fitnesses governing the
slopes are modified. Moreover, inside each phase, other changes of slopes are possible due
to a delicate balance between mutations, transfer, and growth of subpopulations. We will
deduce from the asymptotic dynamics of ˇK.t/ explicit criteria for some of the evolutionary
outcomes observed in Section 6 (Theorem 7.5).

Such an approach based on the behavior of the exponents ˇK at the time scale logK

has also been used in Durrett–Mayberry [23] for constant population size or pure birth pro-
cess, with directional mutations and increasing fitness parameter, in Bovier et al. [10] for a
density-dependent model where the evolution crosses the fitness valley constituted of unfit
traits, in Blath et al. [8] for models with dormancy. In a deterministic setting with similar
scales, we also refer to Kraut–Bovier [29]. In our case, the dynamics is far more complex
due to the trade-off between larger birth rates for small trait values and transfer to higher
traits, leading to diverse evolutionary outcomes. As a consequence, we need to consider cases
where the dynamics of a given trait is completely driven by immigrations (see Lemma 7.2).
This complexifies a lot the analysis.

7.2. Some enlightening lemmas
Before stating the main result (Theorem 7.3) which can be difficult to read and

understand, we state two lemmas whose proof can be found in the Appendix of [17]. These
lemmas are interesting by themselves.

(i) Assume first that a mutant with trait y appears in a resident population with trait
x such that y < x. Then the dynamics of the initial (small) y-subpopulation size behaves
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as a linear birth and death process with birth rate approximated by 4 � y and death rate by
1 C

CN x;K .t/
K

C � . We are thus led to study the following process.

Lemma 7.1. Let us consider a linear birth and death process .ZK
t ; t � 0/, i.e., a binary

branching process, with individual birth rate b � 0, individual death rate d � 0, and initial
value ZK

0 D Kˇ with ˇ > 0.

The process .
log.1CZK

s log K /

log K
; s 2 Œ0; T �/ converges in probability in L1.Œ0; T �/ for

all T > 0 to ..ˇ C rs/ _ 0; s 2 Œ0; T �/ when K tends to infinity, with r D b � d .
In addition, if b < d , for all s > ˇ=r , then limK!C1 P .ZK

s log K D 0/ D 1.

The limit can be understood from E.ZK.t// D Kˇ ert . The proof of Lemma 7.1 uses
the martingale property of .e�rt ZK

t /t�0. The proof is easy for r � 0 and more technical in
the case r < 0, necessitating to control the extinction events after a certain time.

(ii) Assume now that a mutant with trait y D x C ı appears in a resident population
with trait x. Then the dynamics of the initial (small) y-subpopulation size behaves as a
linear birth and death process with birth rate approximated by 4 � y C � and death rate
by 1 C

CN x;K .t/
K

. But in addition, trait y may receive a contribution from x at time t due to
mutations at total rate N x;K.t/K�˛ . By Lemma 7.1, we know that N x;K.s logK/ � KcCas

for constant a; c 2 R. This justifies the following lemma.

Lemma 7.2. Let us consider a linear birth and death process with immigration .ZK
t ; t � 0/,

with individual birth rate b � 0, individual death rate d � 0, initial value ZK
0 D Kˇ with

ˇ > 0, and immigration rate at time t given by Kceat , with a; c 2 R.
The process .

log.1CZK
s log K /

log K
; s 2 Œ0; T �/ converges when K tends to infinity in prob-

ability in L1.Œ0; T �/ for all T > 0 to a continuous deterministic function Ň.s/.
For c � ˇ and ˇ > 0, Ň.s/ D .ˇ C rs/ _ .c C as/ _ 0. For ˇ D 0, c < 0 and a > 0,

Ň.s/ D ..r _ a/.s � jcj=a// _ 0. For ˇ D 0, c < 0, and a � 0, Ň.s/ D 0. The other cases
are immediate (see [17]).

This convergence is illustrated in Figure 4.
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(a) c < ˇ D 0, 0 < a < r (b) 0 < c < ˇ, r < a < 0 (c) c < 0 < ˇ, r < 0 < a

Figure 4

(a) Initially, Ň D 0, but thanks to immigration, the population is revived. Once this happens, the growth rate r

being larger than a, immigration has a negligible effect after time jcj=a. (b) After time .ˇ � c/=.a � r/, the
dynamics is driven by mutation before getting extinct. (c) We observe a local extinction before the population is
revived thanks to incoming mutations.

5670 N. Champagnat, S. Méléard, and V.C. Tran



7.3. Dynamics of the exponents
Let us come back to the asymptotic dynamics of ˇK.t/ D .ˇK

0 .t/; : : : ; ˇK
L .t// for

t � 0 when K ! C1, which are characterized in the next result by a succession of deter-
ministic time intervals Œsk�1; sk �; k � 1, called phases and delimited by changes of resident
or dominant traits. The latter are unique except at times sk and are denoted by `�

k
ı; k � 1.

This asymptotic result holds until a time T0, which guarantees that there is ambiguity neither
on these traits nor on the extinct subpopulations at the phase transitions. We will not give
the exact (and technical) definition of T0 and refer to [17].

Theorem 7.3. Assume (7.3) with ˛ 2 .0; 1/, ı 2 .0; 4/, and (7.5).

(i) For 0 < T � T0, the sequence .ˇK.t/; t 2 Œ0; T �/ converges in probability
in D.Œ0; T �; Œ0; 1�LC1/ to a deterministic piecewise affine continuous function
.ˇ.t/ D .ˇ0.t/; : : : ; ˇL.t//, t 2 Œ0; T �/, such that ˇ`.0/ D .1 � `˛/10�`< 1

˛
.

The functions ˇ are parameterized by ˛, ı, and � defined as follows.

(ii) There exist an increasing nonnegative sequence .sk/k�0 and a sequence
.`�

k
/k�1 in ¹0; : : : ; Lº defined inductively: s0 D 0, `�

1 D 0, and, for all k � 1,
assuming that `�

k
have been constructed, we can construct sk > sk�1 as follows:

sk D inf
®
t > sk�1 W 9` ¤ `�

k ; ˇ`.t/ D ˇ`�
k
.t/

¯
: (7.6)

If ˇ`�
k
.sk/ > 0, we set

`�
kC1 D arg max

`¤`�
k

ˇ`.sk/; (7.7)

if the argmax is unique. In the other cases, we stop the induction.

(iii) The functions ˇ` are defined, for all t 2 Œsk�1; sk � and ` 2 ¹0; : : : ; Lº, by

ˇ`.t/ D

8̂̂<̂
:̂

Œ1ˇ0.sk�1/>0.ˇ0.sk�1/ C
R t

sk�1

QS s;k.0I `�
k
ı/ ds/� _ 0; if ` D 0;

.ˇ`.sk�1/ C
R t

t`�1;k^t
QSs;k.`ıI `�

k
ı/ ds/

_.ˇ`�1.t/ � ˛/ _ 0; otherwise,
(7.8)

where, for all traits x; y, QSt;k.yI x/ D 1ˇ`�
k

.t/D1S.yI x/ C 1ˇ`�
k

.t/<1
OS.yI x/

and where

t`�1;k D

8<: inf¹t � sk�1; ˇ`�1.t/ D ˛º; if ˇ`.sk�1/ D 0;

sk�1; otherwise.
(7.9)

In addition, for all ` and all a < b such that the time interval Œa; b� is included in the interior
of the zero-set of ˇ`, the event ¹N K

`
.t log K/ D 0; 8t 2 Œa; b�º has a probability converging

to 1 as K tends to infinity.

Simulations are shown in Figure 5 for various parameter values.
Roughly speaking, slope changes of the exponents ..ˇ0.t/; : : : ; ˇL.t//; t 2 Œ0; T �/

can take place at the times when a new exponent reaches 1 and there is a change of the resident
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Figure 5

Exponents ˇ`.t/ as functions of time: (left) ı D 1:4, ˛ D 0:6, � D 2. We see a periodic behavior showing
reemergence of the fittest traits; (center) ı D 0:3, ˛ D 1=� , � D 1. A cyclic but aperiodic behavior is observed;
(right) ı D 0:41, ˛ D 1=� , � D 2:8. The population is directly driven to evolutionary suicide.

trait, when a new exponent reaches 0 and there is extinction of the trait, and when the slope
of an exponent formerly directed by its fitness becomes directed by incoming mutations.

Remark 7.4. (i) By the definition of sk and `�
kC1

, max` ˇ`.t/ D ˇ`�
k
.t/ for t 2

Œsk�1; sk/.

(ii) The previous result keeps track of populations of size Kˇ for 0 < ˇ � 1, but
not of populations of smaller order, which go fast to extinction on the time scale
log K.

Main ideas of the proof. We need to consider in the sequel two different situations: either
there is a single trait x with population size of order K, called resident trait, or the total
population size is o.K/. We explain the proof for simplicity assuming that there is always
a resident trait. Theorem 7.3 is obtained by a fine comparison of the size of each sub-
population defined by a given trait value with carefully chosen branching processes with
immigration. The stochastic dynamics consists in a succession of steps, composed of long
phases Œ�K

k
log K; �K

k
log K� for k � 1 (with �K

1 D 0) followed by short intermediate phases
Œ�K

k
log K; �K

kC1
log K�, where the stopping time �K

k
is defined as the first time when the

resident population size exits a neighborhood of its equilibrium density, or when the other
subpopulations stop to be negligible with respect to the resident population. In each long
phase, there is a single resident trait. Short intermediate phases correspond to the replace-
ment of the resident trait, where two subpopulations are of maximal order. We prove that �K

k

converges in probability to sk , k � 1. In the limit, intermediate steps vanish on the time scale
logK. The proof proceeds by induction on k until some step k0 where one of the three follow-
ing events occurs: the exponents of three traits become maximal simultaneously, extinction,
or the exponent of some trait vanishes at the same time as a change of resident population.
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We then stop the induction and set T0 D sk0
in the first and third cases, or T0 D C1 in the

second case.
To control the exponents ˇK

`
.t/, we proceed by a double induction, first on the steps,

and second, inside each step, on the traits `ı, for ` D 0 to ` D L. The exponents are approx-
imately piecewise affine. Changes of slopes may happen when a new trait emerges, when
a trait dies or when the dynamics of a trait becomes driven by incoming mutations. We
use Lemma 7.2. During intermediate phases, we use comparisons with dynamical systems,
described in Section 3.

7.4. Reemergence of trait 0
Recall that we work with birth, death and transfer rates presented in Section 7.1. In

Figure 5, we have exhibited different evolutionary dynamics (reemergence of a trait, cyclic
behavior, local extinction, evolutionary suicide). By reemergence of a trait `ı, we mean that
ˇ`.s/ D 1 on some nonempty time interval Œt1; t2�, then ˇ`.s/ < 1 on some nonempty interval
.t2; t3/, and then ˇ`.s/ D 1 again on some nonempty interval Œt3; t4�. We would like to predict
the evolutionary outcome as a function of parameters ˛; ı; � . There are so many situations
that we are not able to fully characterize the outcomes (see [17] for a detailed study in the
case of three traits). Therefore, we focus on the beginning of the dynamics until either global
extinction or reemergence of one trait occurs.

The resurgence of trait 0 is a prerequisite for a cyclic dynamics as those observed
in Figure 5. We assume here that ı < 4=3 (so that the cardinal of X is L C 1 � 4) and
only consider the case ı < � < 3. Computing the fitness functions, one can observe that for
the first phases, sk D

k˛
��ı

, and the trait kı is resident on Œsk ; skC1/ (ˇk.s/ D 1) and for all
s 2 Œsk ; skC1/,

ˇ0.s/ D 1 �
˛.k � 1/

� � ı

�
� �

k

2
ı

�
� .� � kı/.s � sk/:

This formula stays valid until either ˇ0.s/ D 0 (loss of 0), or ˇ0.s/ D 1 for some s > s1

(reemergence of 0), or when the population size becomes o.K/. The slope of the function
ˇ0.s/ becomes positive at time s Qk

, where Qk WD d
�
ı
e. Hence its minimal value is equal to

m0 D ˇ0.s Qk
/ D 1 �

˛. Qk � 1/

� � ı

�
� �

Qk

2
ı

�
: (7.10)

If the latter is positive, ˇ0 reaches 1 again in phase Œs Nk ; s NkC1/, where Nk D b2 �
ı
c, at time

Ns WD s Nk C
˛. Nk � 1/

� � ı

� �
Nk
2
ı

Nkı � �
D sb2 �

ı
c C

˛.b2 �
ı
c � 1/

� � ı

� �
b2 �

ı
c

2
ı

b2 �
ı
cı � �

: (7.11)

The previous calculations give the intuition for the following theorem (see the proof in [17]).

Theorem 7.5. Assuming ı < � < 3, ı < 4=3 and, under the assumptions of Theorem 7.3,

(a) If m0 > 0 and Nkı < 3, then the first reemerging trait is 0 and the maximal
exponent is always 1 until this reemergence time;
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(b) If m0 < 0, the trait 0 gets lost before its reemergence and there is global extinc-
tion of the population before the reemergence of any trait;

(c) If m0 > 0 and Nkı > 3, there is reemergence of some trait `ı < 3 and, for some
time t before the time of first reemergence, max1�`�L ˇ`.t/ < 1.

Biologically, case (b) corresponds to evolutionary suicide. In cases (a) and (c), very
few individuals with small traits remain, which are able to reinitiate a population of size of
order K (reemergence) after the resident trait becomes too large. In these cases, one can
expect successive reemergences. However, we do not know if there exists a limit cycle for
the dynamics. Case (c) means that the total population is o.K/ on some time interval, before
reemergence occurs after populations with too large traits become small enough.

It seems very difficult to go further with probabilistic tools. Another approach could
consist in obtaining a macroscopic approximation of the exponents ˇK in a trait continuum
in terms of Hamilton–Jacobi equations and then using the tools of analysis.

8. Macroscopic Hamilton–Jacobi approximation of the

exponents

This part is a collaboration in progress with S. Mirrahimi [16]. We will give the ideas
of our ongoing results, in particular a partial result concerning the simple case of stochastic
supercritical birth–death–mutation process without transfer and competition. We assume that
trait x belongs to the continuum Œ0;1�. Starting from a finite population, our goal is to recover,
by a direct scaling, the Hamilton–Jacobi equation that has been introduced in [3,22]. For this,
we consider a discretization of the trait space Œ0; 1� with step ıK ! 0, scale the mutation
steps by a factor 1= log K (small mutation steps), and assume that the initial population sizes
are of the order of Kˇ0 for an exponent ˇ0 that can depend on the trait. More precisely, the
population is composed of individuals with traits belonging to the discrete space XK WD

¹iıK W i 2 ¹0; 1; : : : ; Œ 1
ıK

�ºº. The number of individuals with trait iıK is described by the
stochastic process .N K

i .t/; t � 0/. As in the previous sections, an individual with trait x 2

XK gives birth to a new individual with same trait x at rate b.x/, dies at rate d.x/, but we
assume that, for all y 2 XK , it gives birth to a mutant individual with trait y at rate

p.x/ıK log Km
�
log K.x � y/

�
:

Assumption 8.1. (i) The functions b, d , and p are nonnegative C 1-functions
defined on Œ0; 1� such that, for all x 2 Œ0; 1�, b.x/ > d.x/.

(ii) The function m is nonnegative, continuous, defined on R, satisfiesR
R m.y/ dy D 1. It has exponential moments of any order and behaves as

the Gaussian kernel m.h/ D
1p
2��

e�h2=2�2 at infinity.

(iii) There exists a > 0 such that, for all K 2 N and all i 2 ¹0; 1; : : : ; Œ 1
ıK

�º,
N K

i .0/ � Ka.
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(iv) There exists a2 < a such that K�a2=4 << ıK << 1= log.K/. Then, for hK WD

ıK log K, we have limK!C1 hK D 0.

Note that points 1 and 3 of Assumption 8.1 impede the subpopulations to be extinct.
Note also that, for all x 2 .0; 1/, the total mutation rate from an individual with trait xK D

iKıK with iK D Œx=ıK �, converges as K ! C1 to

lim
K!C1

p.xK/

Œ 1
ıK

�X
j D0

hKm
�
hK.ik � j /

�
D p.x/

Z
R

m.y/ dy D p.x/:

Defining the exponents ˇK
i .t/ as in (7.4), we introduce their interpolations: for all x 2 Œ0; 1�

and K � 1, let i be such that x 2 ŒiıK ; .i C 1/ıK/ and define

Q̌K.t; x/ D ˇK
i .t/

�
1 �

x

ıK

C i

�
C ˇK

iC1.t/

�
x

ıK

� i

�
:

The sequence of processes . Q̌K/K�1 belongs to D.Œ0; T �; C.Œ0; 1�; R//, where C.Œ0; 1�; R/

is endowed with the topology of uniform convergence.

Theorem 8.2. We assume that Assumptions 8.1 hold, and that the sequence . Q̌K.0; �// con-
verges in probability on C.Œ0; 1�; R/ to a deterministic function ˇ0.�/ and that there exists a
constant A such that

lim
K!C1

P
�
LK

0 > A
�

D 0; where LK
0 WD sup

i¤j

jˇK
i .0/ � ˇK

j .0/j

ıK ji � j j
:

Then Q̌K converges in probability in D.Œ0; T �; C.Œ0; 1�; R// to the unique viscosity solution
ˇ of the Hamilton–Jacobi equation with state constraint boundary conditions8̂<̂

:
@

@t
ˇ.t; x/ D b.x/ � d.x/ C p.x/

Z
R

m.h/eh@xˇ.t;x/dh; .t; x/ 2 RC � .0; 1/;

ˇ.0; x/ D ˇ0.x/; x 2 Œ0; 1�:

(8.1)

More precisely, ˇ is a viscosity supersolution of (8.1) in .0; C1/ � .0; 1/ and a viscosity
subsolution in .0; C1/ � Œ0; 1�.

Usually, the analytical proof of such concentration results is based on the maximum
principle (see [3]) which does not hold in this stochastic framework. To prove the tightness
of the sequence Q̌K , a technical and delicate point consists in showing that the increments
.ˇK

iC1.t/ � ˇK
i .t//=ıK are bounded uniformly in time for K large enough. These increments

are semimartingales, and we easily obtain their Doob–Meyer decomposition. The martingale
part is proved to be small for large K. The maximum principle is used to control the finite
variation part, with an !-by-! argument. Once the tightness is obtained, we have to identify
the limiting values of Q̌K , which only charge deterministic and continuous trajectories. We
identify the limiting paths as viscosity solutions of the Hamilton–Jacobi equation (8.1).
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