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Abstract

In 1912 George Birkhoff created a sensation with his proof of Poincaré’s so-called “last
geometric theorem.” He followed it with prize-winning papers on “The restricted problem
of three bodies” (1915) and “Dynamical systems with two degrees of freedom” (1917).
Many of the essential ideas from these papers can be found in his book Dynamical Systems
(1927). At the end of the 1920s, Birkhoff began to draw up a programme of research on
unsolved problems in dynamics, and in 1941 presented his ideas at the 50th anniversary
celebration of the University of Chicago. Soon afterwards a summary of his lecture was
published. At the time of his death in 1944, he left unfinished a manuscript of a revised
and extended version of his lecture. In this paper I describe Birkhoff’s work leading up to
this manuscript before describing the contents of the manuscript itself.
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1. Birkhoff’s work in dynamics

In 1924 the Russian mathematician Nikolai Krylov described George Birkhoff as
“the Poincaré of America.”1 It was an apt description. As a student in Chicago, Birkhoff had
been introduced to Poincaré’s work by the mathematical astronomer Forest Ray Moulton and
he had immersed himself in it, especially Poincaré’s great treatise on celestial mechanics—
the three volume Les Méthodes Nouvelles de la Mécanique Céleste—which had appeared in
the last decade of the 19th century. In fact, so closely did Birkhoff’s name become linked with
that of Poincaré that when Birkhoff died Poincaré’s name featured often in the obituaries, an
extreme example being the short notice written by Jacques Hadamard in which Poincaré’s
name appears more often than Birkhoff’s [28].2 Although Birkhoff made significant advances
in other fields of mathematics, such as the theory of difference equations and the four-color
problem, it is his work in dynamics, notably his proof of Poincaré’s “last geometric theorem”
and his individual ergodic theorem, on which his fame principally rests.

Indeed, Birkhoff maintained an interest in dynamics throughout his career. His Col-
lected Mathematical Papers list 32 papers under the heading, the first published in 1912,
when he was aged 28, and the last, posthumously, in 1945. The second was his proof of
Poincaré’s last geometric theorem which he presented to the American Mathematical Soci-
ety in October 1912 and which appeared in print in January 1913, with a French translation
the following year [8]. Poincaré had published the theorem in 1912 shortly before his death,
having been working on it for two years previously [39]. Despite (correctly) believing it to be
true, Poincaré had been unable to prove it except for a few special cases.3 Birkhoff was not the
only mathematician to rise to the challenge but no-one was better prepared—his proof came
only a few months after Poincaré’s death.4 Remarkably for an American mathematician at
the time, Birkhoff had never been to Europe—he had learnt all his mathematics in the United
States. As Norbert Wiener later wrote, “Before 1912 it had been considered indispensable
for any young American mathematician of promise to complete his training abroad. Birkhoff
marks the beginning of the autonomous maturity of American mathematics” [42, p. 177].

Birkhoff gave Poincaré’s theorem in the following form:

Let us suppose that a continuous one-to-one transformation T takes the ring
[annulus] R formed by concentric circles Ca and Cb of radii a and b, respec-

1 On 9 August 1924, Raymond Archibald, who had just met Krylov at the International
Congress of Mathematicians in Toronto, wrote to Birkhoff to tell him that Krylov (whom
he described as “a magnificent man”) wanted especially to meet him. HUG 4213.2, Birkhoff
Papers, Harvard University Archives.

2 Hadamard and Birkhoff were friends for over 30 years, and Hadamard translated some of
Birkhoff’s work into French. Birkhoff was a popular speaker at the famous Séminaire
Hadamard in Paris, and he was one of the mathematicians interviewed by Hadamard for
his famous Psychology of Invention in the Mathematical Field (1945).

3 In 1992 Golé and Hall would show that Poincaré had been closer to success than he had
realized [25].

4 Among those who made a determined but unsuccessful attempt was L. E. J. Brouwer [40,
pp. 147–148].
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tively (a > b > 0), into itself in such a way as to advance the points of Ca in a
positive sense, and the points of Cb in the negative sense, and at the same time to
preserve areas. Then there are at least two invariant points [8, p. 14].

Birkhoff’s proof of the theorem would soon come to be considered as “one of the most
exciting mathematical events of the era and widely acclaimed” [20, p. iv], although at the
time, as Oswald Veblen wrote to Birkhoff from Germany in December 1913, the reaction in
Göttingen was only that Birkhoff was someone who “probably [had] to be reckoned with”!
[7, p. 42].

There is a close connection between Poincaré’s theorem and what is known as “the
restricted three-body problem.” This is a particular case of the three-body problem in which
two large bodies, with masses � and 1 � �, respectively, rotate about their center of mass in
circular orbits under their mutual gravitational attraction, and a third body of neglible mass,
which is attracted by the other two bodies but does not influence their motion, moves in the
plane defined by the two revolving bodies. The problem is then to ascertain the motion of the
third body. The problem has one integral, which was first obtained by Carl Jacobi in 1836
and hence is known as the Jacobian integral or constant. Although the problem may appear
contrived, it turns out to be a reasonable approximation to the Sun–Earth–Moon system. It
was first explored by Leonhard Euler in connection with his lunar theory of 1772, but it was
Poincaré who brought the problem to prominence in his celebrated memoir of 1890 [37], and
who later gave it its name.5 Poincaré knew that if his theorem could be shown to be true, then
it would confirm the existence of an infinite number of periodic motions for the problem for
all values of the mass parameter �. Poincaré also believed that the theorem would eventually
be instrumental in establishing whether or not the periodic motions are densely distributed
amongst all possible motions. As Aurel Wintner later observed, much of the dynamical work
of Birkhoff was either directed towards or influenced by the restricted three-body problem
[44, p. 349].

In 1925 Birkhoff extended Poincaré’s theorem to a nonmetric form by removing
the condition that the outer boundaries of the ring and the transformed ring must coin-
cide, and replacing it instead with the alternative condition that the outer boundary and
the transformed outer boundary are met only once by a certain radial line [11]. He proved
that the revised form held for annular regions with arbitrary boundary curves, and, correct-
ing an earlier omission—he had not taken into account that the first invariant point might
have index zero which meant that the existence of a second invariant point does not follow
automatically—proved that there are always two distinct invariant points. Since the extension
does not involve an invariant area integral it is essentially a topological result. Its impor-
tance lies in the fact that it can be used to establish the existence of infinitely many periodic
motions near a stable periodic motion in a dynamical system with two degrees of freedom,
from which the existence of quasiperiodic motions—that is motions which are not periodic

5 Poincaré’s work on the three-body problem is discussed in detail in my book [4].
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themselves but which are limits of periodic motions—follows.6 Three years later Birkhoff
explored the relationship between the dynamical system and the area-preserving transfor-
mation used in the theorem [14]. Having shown that corresponding to such a dynamical
problem there exists an area-preserving transformation in which the important properties
of the system for motions near periodic motions correspond to properties of the transforma-
tion, he showed that a converse form of this correspondence also exists. In other words, given
a particular type of area preserving transformation there exists a corresponding dynamical
system. In 1931 he generalized the theorem to higher dimensions [22].

Birkhoff published three papers on the restricted three-body problem itself. The first
[21], which appeared in 1915 and for which he won the Quirini Stampalia prize of the Royal
Venice Institute of Science, provided the first major qualitative attack on the problem since
Poincaré. Unlike Poincaré, Birkhoff, in his treatment of the problem, made little concession
to analysis, and his investigation was founded almost entirely on topological ideas. By con-
sidering the representation from a topological point of view, he was able to illustrate the
problem’s dependence on the value of the Jacobian constant. He established a transforma-
tion of the variables which enabled him to derive a new form of the equations in which the
equations are regular, providing the third body is not rejected to infinity. From this he cre-
ated a geometric representation in which the manifolds of states of motion are represented by
the stream-lines of a three-dimensional flow and are without singularity unless the Jacobian
constant takes one of five exceptional values. Having excluded these five values, the totality
of the states of motion could then be represented by the stream lines of a three-dimensional
flow occupying a nonsingular manifold in a four-dimensional space. But, as Poincaré had
shown, providing the mass of the one of the two main bodies is sufficiently small, the rep-
resentation of the problem as a three-dimensional flow can be reduced to a representation
which depends on the transformation of a two-dimensional ring into itself [38, pp. 372–381].
Birkhoff showed that Poincaré’s transformation could be considered as the product of two
involutory transformations, a result he subsequently used to prove the existence of an infi-
nite number of symmetric periodic motions, as well as results concerning their characteristic
properties and distribution.

Twenty years elapsed before Birkhoff next published on the problem. In the interim
he had worked extensively on general dynamical systems, the crowning result of which was
another prize memoir which appeared in 1935 [16], the prize having been awarded by the
Pontifical Academy of Sciences. In two later papers on the restricted problem which derived
from lectures given at the Scuola Normale Superiore di Pisa, he combined ideas from the
prize memoir of 1915 together with some general results from the one of 1935, notably his
development of Poincaré’s idea of a surface of section (now often called a Poincaré section).7

In the first of these two later papers [17], he focused on the analytic properties of the surface

6 A modern and slightly modified account of Birkhoff’s proof is given by Brown and
Neumann [23].

7 Given an n-dimensional phase space, a surface of section is an .n � 1/-dimensional space
embedded in the original space and transversal to the flow of the system.
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of section and the transformation he had used in 1935, while in the second [18] he used
qualitative methods to explore the results from the first in order to obtain further information
about the different types of motion and the relationships existing between them.

In 1923 Birkhoff was awarded the Bôcher Memorial Prize of the American Mathe-
matical Society for a paper in which he provided a general treatment of dynamical systems
with two degrees of freedom [9]. Such systems comprise the simplest type of nonintegrable
dynamical problems, and, as exemplified in the work of Poincaré, they form the natural
starting point for qualitative explorations into questions of dynamics. According to Marston
Morse, Birkhoff stated that he thought the Bôcher prize paper was as good a piece of research
as he would be likely to do [35, p. 380].

Birkhoff began with the equations of motion in standard Lagrangian form:
d

dt

�
@L

@x0
�

@L

@x

�
D 0;

d

dt

�
@L

@y0
�

@L

@y

�
D 0;

where the function L, which is quadratic in the velocities, involves six arbitrary functions
of x and y. By making an appropriate transformation of variables, he reduced the equations
to a normal form which involved only two arbitrary functions of x and y. In the reversible
case, that is, when the equations of motion remain unchanged when t is replaced by �t , the
transformation was already well known. In this case the equations of motion can be inter-
preted as those of a particle constrained to move on a smooth surface and the orbits of the
particle interpreted as geodesics on the surface. But in the irreversible case, as, for example,
in restricted three-body problem, Birkhoff’s transformation was new and he gave a dynami-
cal interpretation in which the motions can be regarded as the orbits of a particle constrained
to move on a smooth surface which rotates about a fixed axis with uniform angular velocity
and carries with it a conservative force field. The central part of the paper concerned various
methods by which the existence of periodic motions could be established. These include his
“minimum method,” and his “minimax method,” the latter later providing a starting point for
the work of Morse on calculus of variations in the large. Birkhoff also considered Poincaré’s
method of analytic continuation which is applicable to both reversible and irreversible peri-
odic motions. One of the problems with the method was that it was only valid for a small
variation in the value of the parameter. The restriction was due to the possibility that the
period of the motion under consideration might become infinite. Thus to increase the inter-
val of the variation it is necessary to show that this possibility cannot arise and Birkhoff did
precisely that for a wide range of periodic motions.

It was in the Bôcher prize paper that Birkhoff first began to generalize Poincaré’s
idea of a surface of section and formally develop a theory attached to it. Poincaré had used
the idea specifically to reduce the restricted three-body problem to the transformation of a
ring to itself, but if the method was to have a general validity it was important to establish
under what circumstances surfaces of section exist. Birkhoff was able to show that not only
do they exist in a wide variety of cases but also that they can be of varying genus and have
different numbers of boundaries.

In his “Surface transformations and their dynamical applications” of 1920 [10],
Birkhoff elaborated and extended some of the ideas he had broached at the end of the Bôcher
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prize paper. By reducing the dynamical problem to a transformation problem and studying
certain transformations and their fixed points, which he did at length, he was able to classify
certain different types of motion. For example, whether a periodic motion, which is repre-
sented by a fixed point, is stable or unstable can be determined by examining the behavior
of a point sufficiently close to the fixed point under repeated iterations of the transformation.
Later Birkhoff considered the question of stability in more detail [13].

Invited by Gösta Mittag-Leffler in 1926 to contribute to the 50th volume of Acta
Mathematica—the journal which Mittag-Leffler had edited since its inception in 1882—
Birkhoff chose to tackle Poincaré’s conjecture concerning the denseness of periodic motions.
It was a particularly fitting choice of subject, given Poincaré’s early and consistent support of
Acta.8 A feature of Birkhoff’s paper [12] is his introduction of the billiard ball problem—that
is, to determine the motion of a billiard ball on a convex table—which he used to show how
Poincaré’s last geometric theorem could be applied to dynamical systems with two degrees
of freedom.9 Having considered certain types of periodic motion, he was able to conclude
that if a dynamical system admits one stable periodic motion of nonexceptional type—the
exception being when the period of the perturbed motion is independent of the constants of
integration—then it admits an infinite number of stable periodic motions within its imme-
diate vicinity, and the totality of these stable periodic motions form a dense set. Although
this does not resolve Poincaré’s conjecture, it does show that it cannot be true uncondition-
ally. He was able to prove the conjecture in the case of a transitive system—that is a system
in which “motions can be found passing from nearly one assigned state to nearly any other
arbitrarily assigned state” [12, p. 379]—showing that the periodic motions together with those
asymptotic to them are densely distributed.

Birkhoff’s influential book, Dynamical Systems, which derived from the American
Mathematical Society Colloquium Lectures he delivered in Chicago in 1920, was published
in 1927, with a new edition appearing in 1966. A Russian translation, which also con-
tained translations of several of Birkhoff’s papers including [15], was published in 1941 and
reprinted in 1999. Although representing “essentially a continuation of Poincaré’s profound
and extensive work on Celestial Mechanics” [20, p. iii], Birkhoff’s book opened a new era in
the study of dynamics by detaching the subject from its origins in celestial mechanics and
making use of topology [3]. It provides a summary of Birkhoff’s research in dynamics during
the preceding 15 years, with the final three chapters—on the general theory of dynamical sys-
tems, the case of two degrees of freedom, and the three-body problem—bringing together the
main strands of his work. As Bernard Koopman, one of Birkhoff’s former students, remarked,
Dynamical Systems is better described as a theory than as a book [31, p. 165]. Birkhoff’s goal
was clear: “The final aim of the theory of the motions of a dynamical system must be directed

8 Poincaré’s contributions to Acta Mathematica are discussed in my article [5, pp. 148–150].
9 It is indicative of the paper’s status that it was selected by Robert MacKay and James Meiss

for reproduction in their book of the most significant writings on Hamiltonian dynamics
published since the First World War [33].
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toward the qualitative determination of all possible types of motions and of the interrelations
of these motions.” [20, p. 189].

He started with a general class of dynamical systems, that is systems defined by the
differential equations,

dxi

Xi

D dt : : : .i D 1; : : : ; n/;

where the Xi are n real analytic functions, and a state of motion can be represented by a point
in a closed n-dimensional manifold. A motion can then be represented by a trajectory in the
manifold, and its domain is its closed set of limit points. The trajectories composed entirely of
limit points are those Birkhoff called “recurrent motions.” More generally, recurrent motions
are those which trace out with uniform closeness, in any sufficiently large period of their
entire history, all their states. Since, by definition, every point on the trajectory of a recurrent
motion is a limit point, the motion must approach every point on the trajectory infinitely
often and arbitrarily closely. Thus the simplest types of recurrent motions are the stationary
motions and the periodic motions. As Birkhoff showed, the idea of recurrent motion is a
particularly useful one with regard to the general problem of determining all possible motions
in a particular dynamical system. For example, he proved that the set of limit motions of any
motion contains at least one recurrent motion; and that any point either generates a recurrent
motion or generates a motion which approaches with uniform frequency arbitrarily close to a
set of recurrent motions. Furthermore, the concept of recurrent motion can be used to derive
definite results about the motion in an arbitrary dynamical system; a significant feature of
the theory being that it is valid for systems with any degree of freedom. This is in contrast to
Poincaré’s theory of periodic motion which is known to be valid only for systems with two
degrees of freedom.

The theory developed in Birkhoff’s papers and further expounded in Dynamical
Systems formed the bedrock on which Birkhoff’s Chicago lecture and its related manuscript
were built, and it is to these we now turn.

2. Birkhoff’s forgotten manuscript

In September 1941 the University of Chicago celebrated its 50th anniversary. It was
a celebration that had been two years in the planning. Honorary degrees were awarded and a
symposium was held in conjunction with the American Association for the Advancement of
Science. According to an account in the university magazine, the celebration was sufficiently
“significant that, in a world at war, it attracted national and even world wide attention” [30,

p. 6].
As one of the leading figures in American mathematics and a former student of the

university, Birkhoff was a natural choice for an honorary degree and symposium speaker, the
citation describing him as the “leading contributor to the fundamentals of dynamics.” The
only other mathematician amongst the 34 others on the rostrum was Birkhoff’s close friend
and long-standing colleague Oswald Veblen, also a Chicago protégé.
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For the subject of his lecture, Birkhoff chose “Some unsolved problems of theo-
retical dynamics,” a topic well in keeping with the anniversary theme of “New Frontiers in
Education and Research.” The symposium was well advertised prior to the celebrations and
before Birkhoff delivered his lecture he was asked by Nature if he could provide the jour-
nal with a summary. However, the summary did not appear in Nature but in Science and
it appeared some three months after the lecture had been delivered [19]. In fact, the lecture
was ready only about a week before it was due to be delivered, as Birkhoff admitted to Eric
O’Connor, one of his former doctoral students:

During the last few weeks I have been extremely occupied with the address which
I have to give next week at Chicago. In it I take a look at Classical Dynamics from
the abstract point of view and suggest about a dozen problems, many of them
new, which seem to be most directly in the line of further advance. In one or two
instances I indicate a partial answer to these. It now looks as though the paper
will be in good shape for the 24th September, when I have to deliver it, but it has
been a very close squeak!10

The idea of presenting a programme for research in dynamics was not new for
Birkhoff. Some 13 years earlier, in 1928, he had given a series of lectures at the University of
Berlin on “Some Problems of Dynamics” and the lectures were published in German in a con-
densed form [15]. In these lectures, having emphasized the importance of qualitative dynam-
ical ideas for the exact sciences, he discussed various examples including the billiard ball
problem, the motion of a particle on a smooth convex surface and on a smooth closed surface
of negative curvature, and the three-body problem. On that occasion, he listed six problems:

I To construct a dynamical system on a three-dimensional closed phase space, in
which the ordinal r of central motion is > 3.

II To prove that in the case of the Hamiltonian problem with two degrees of free-
dom, with closed phase space and with at least one stable periodic motion, the
periodic motions are everywhere dense.

III To prove that in the case of all Hamiltonian problems with closed phase space
the recurrent motions are everywhere dense.

IV To prove, for a given conservative transformation T , the existence of corre-
sponding Hamiltonian systems in particular of geodesic type.

V If T is any conservative transformation with a fixed point P of stable type, then
determine the necessary conditions so that there are infinitely many points Pn

existing in the neighborhood of P which are fixed points of T m.

VI To prove, in the case with two degrees of freedom, the existence of a dynamical
system that has a periodic motion of stable type, which is not truly stable.

10 Letter from Birkhoff to O’Connor, 18 September 1941. HUG 4213.2.2, Birkhoff Papers,
Harvard University Archives.
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Of these, only the first three relate to problems Birkhoff discussed in Chicago. The first was
solved in 1946 by A. G. Maier [34]. In 1941 the problems were republished in Russian to
accompany the Russian edition of Dynamical Systems, where they are described as “impor-
tant, unsolved problems.” Further work remains to be done to establish the extent of interest
generated by these problems subsequent to both the German and the Russian publications.

Nine years after his lectures in Berlin, Birkhoff returned to the same theme but this
time in Paris. In 1937 he gave a lecture at the Institut Henri Poincaré entitled “Quelques
problèmes de la Dynamique théorique.” Birkhoff referred to this lecture in a footnote of the
manuscript where he said that in Paris he had made reference to “one or two of the problems
listed in the present paper” but without identifying which ones, and no further information
on this lecture has so far come to light.

Birkhoff received the Chicago invitation in November 1940, and in April 1941 he
was invited by Otto Schmidt and Anisim Bermant to contribute to the celebratory 50th
volume of Matematicheskii Sbornik, the prestigious Russian mathematical journal founded
in 1866.11 For some time Russian mathematicians had been closely following Birkhoff’s
work, especially in dynamics, as is evident from Krylov’s remark of 1924 given above. Also
in the 1920s, a group in Pavel Aleksandrov’s topology seminar in Moscow had specialized in
studying Birkhoff’s publications;12 and in 1936 Birkhoff had been invited by A. A. Markov
to speak on the ergodic theorem and related topics at an international conference due to take
place in Leningrad in 1937, although in the event the conference was canceled.13 Birkhoff
cannot have taken long to decide that an article laying out his programme for dynamics would
make a fitting contribution to the journal, knowing that the Chicago meeting would provide
him with an excellent opportunity to test out his ideas before committing them to print.

In May 1943, Birkhoff wrote to his Russian colleagues to let them know that he had
“written out an extensive article not wholly completed as yet on ‘Some Unsolved Problems
of Theoretical Dynamics’,” mentioning that he had spoken on the subject “in a preliminary
way” in Chicago (Figure 1), but that he had decided to delay sending the article to Russia until
after the cessation of hostilities.14 But it was not to be. On 12 November 1944, Birkhoff, aged
only 60, died unexpectedly.15 Thus the manuscript, which runs to some 40 pages, was never
submitted. It remains as a hand-annotated typescript, with additional handwritten leaves,
among Birkhoff’s papers in the Harvard University Archives.16 In a footnote appended to

11 Letter from Schmidt and Bermant to Birkhoff, 2 April 1941. HUG 4213.2.2, Birkhoff
Papers, Harvard University Archives.

12 Letter from Aleksandrov to Birkhoff, 19 October 1926. HUG 4213.2, Birkhoff Papers, Har-
vard University Archives.

13 Letter from Birkhoff to Markov, 26 February 1936; letter from Markov to Birkhoff, 7 May
1936. HUG 4213.2, Birkhoff Papers, Harvard University Archives.

14 Letter from Birkhoff to Schmidt and Bermant, 18 May 1943. HUG 4213.2.2, Birkhoff
Papers, Harvard University Archives.

15 As described by his Harvard colleague, Edwin B. Wilson, Birkhoff had some time in hand
before a lunchtime visit to his son, Garrett, and had taken the occasion to rest but when his
wife went to find him he had passed away [43, p. 578].

16 HUG 4213.52, Birkhoff Papers, Harvard University Archives.
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Figure 1

Birkhoff delivering his symposium lecture [30, p. 6]. Courtesy of the University of Chicago Library.

the title page of the manuscript, Birkhoff stated that he had written the paper with the dual
purpose of reading it in Chicago and publishing it in the anniversary volume of the Russian
journal. Comparing the manuscript with the summary, and taking into account the delay of
the publication of the latter, it seems likely that Birkhoff, having lectured from the manuscript
then used it to prepare the summary and in the course of the latter’s preparation further
annotated the manuscript.

The manuscript opens as follows:

It scarcely seems too much to say that all the basic problems of point-set theory,
topology, and the theory of functions of real variables present themselves natu-
rally in purely dynamical contexts. Some of these dynamical problems are best
formulated and solved in terms of an underlying abstract space, as important
recent Russian and American work has shown. Others are inherently of more
special character.
In the present paper I venture to set forth certain unsolved problems of this type
which seem to me worthy of further study. The problems are arranged as much
as possible in order of decreasing abstractness. They are formulated in terms of
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positive conjectures in the belief that this procedure is most likely to stimulate
further research. In each case indications of the underlying reasons for these
conjectures are made. Some new definitions are given, as for instance that of
a “dynamical” flow in an abstract metric space; and some partial results are
deduced, as for instance the brief proof in the concluding section that the non-
existence of other periodic lunar orbits beside the fundamental variational orbit
and the allied retrograde orbit of G. W. Hill’s theory of the motion of the Moon
about the Earth would imply that all possible lunar orbits with the same constant
of Jacobi have the same mean angular advance of perigee per synodic revolution.

The summary opens rather differently. There Birkhoff gives a pathway for the devel-
opment of his ideas—he traces them from Poincaré, who first realized that the study of
dynamical systems led directly to problems in topology, on through the abstract ideas of E. H.
Moore—describing how these ideas fed into his own work.17 Although Moore deserved a
high billing, it was also a diplomatic move on Birkhoff’s part to be explicit about the con-
tribution of Moore, his former thesis advisor and first head of the University’s mathematics
department, who had died in 1932. In the manuscript, the reference to Moore, although
laudatory, is considerably abbreviated and consigned to a footnote.

Altogether there are 17 problems, the first ten are formulated in terms of abstract
spaces, the 11th is concerned with extensions of results of Karl Sundman on the three-body
problem to the motion of a gas. And the last six, which are concerned with n-dimensional
spaces, are of a topological nature. The paper is also divided up into sections which imposes
a useful classification on the problems. The manuscript also includes a “provocative form of
conclusion.” In the prelecture press release, Birkhoff referred to only ten problems without
listing them, so it is possible that he had originally intended to present only ten problems and
it was expanding the paper that led to the “close squeak” referred to in the letter to O’Connor
mentioned above.18 In what follows, the section headings and the problems themselves are
taken directly from the manuscript. Other material from the manuscript will be given in
quotation marks followed by a page number.

The first problem, a conjecture about the interrelationship between continuous and
discrete flows in an abstract space R, is precursored by three sections on continuous and
discrete flows, including an explanation of geodesic flow. As Birkhoff observed in a footnote,
the idea of using “this kind of abstract setting for a dynamical problem” did not originate with
him but in an article of 1933 by Hassler Whitney, one of Birkhoff’s research students [41].

17 Birkhoff felt especially grateful to Moore for impressing him “with the importance of the
abstract domain and for stimulating [him] on the abstract side.” Letter from Birkhoff to
Raymond Archibald, 5 April 1938. HUG 4213.4.5, Birkhoff Papers, Harvard University
Archives.

18 Another difference between the press release and the summary is that in the former Hassler
Whitney and Norbert Wiener are identified as American authors of recent work on abstract
dynamics while the latter refers simply to “American mathematicians.” University of
Chicago Development Campaigns and Anniversaries Records, Box 12, Folder 11.
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The idea is that in R, which is a compact metric space, a type of reduction of a continuous
flow to a discrete one may be effected by showing that there exists a surface of section in R

on which the flow can be studied. Each point in R represents a state of motion and as time
passes there is a steady flow of R into itself, with each point tracing out a “curve of motion,”
each curve representing a complete motion of the dynamical system [19, p. 598]. As Birkhoff
noted, he had already shown “in the n-dimensional case, and very recently Ambrose and
Kakutani had established in the abstract case, a kind of converse reduction of a continuous
flow to a discrete flow may be made, providing one is content to introduce discontinuous
flows” (p. 5). His hope was for a more complete result, and he felt certain that the conjecture
would be shown to hold. Since he did not give a citation for the Ambrose and Kakutani paper
which had been submitted for publication in 1941 and appeared in 1942 [2], it would appear
that he did not return to the manuscript in the years following the lecture apart from reporting
on its existence to Schmidt and Bermant.

Problem 1. Any (continuous) flow without equilibrium points in a compact metric space R

admits of a complete open surface of section † in R, on which the flow defines an extensibly-
discrete flow Q D �.P / obtained by following any point P of � to the first subsequent
point Q of † on the same stream line. Conversely, given any metric space † on which an
extensibly-discrete flow, Q D �.P /, is defined, then it is possible to imbed † in an isometric
compact metric space R and to define a continuous flow in R, so that † forms a complete
open surface of section for this flow, for which Q D �.P / in the related extensibly-discrete
flow.

Birkhoff next discussed recurrent motions and central motions, central motions
being those which recur infinitely often close to any particular state of the motion, or at
least have such motions in the infinitesimal vicinity of any state. Having observed that “all
the motions of a dynamical system will be central if and only if every molecule of the system
overlaps itself as time increases or decreases” (p. 9), he noted that in the classical case there
are many examples in which all the motions are central. And it was this that led him to ask
the analogous question of recurrent motions, i.e., “what are the circumstances such that all
the motions of a dynamical system will be recurrent?” (p. 10).

This last question provides the basis for Problems 2 and 3 in which Birkhoff conjec-
tured that all the motions of a continuous flow would be recurrent if and only if the flow may
be decomposed into a set of irreducible constituent flows which are “homogeneous,” i.e.,
such that the stream lines are topologically indistinguishable from one another. As an exam-
ple, he cited the two-body problem—two particles interacting gravitationally with no other
forces acting—as being of this type, providing the value of the energy constant is sufficiently
small, with the irreducible constituents being the individual periodic motions.

Problem 2. All the motions of a regionally transitive (discrete or continuous) flow in a
compact metric space R will be recurrent if and only if the flow is “homogeneous,” in the
sense that an automorphism of the flow exists (with possible modification of the definition
of the “time”) which takes an arbitrary point P into a second arbitrary point Q.
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Problem 3. All the motions of regionally transitive flows in a compact metric space R will
be recurrent if and only if the closest set of motions formed by any motion M and its limit
motions is homogeneous in the subspace RM of these motions [and] every minimal closed
component of the flow is homogeneous.

As contrasting illustrations, Birkhoff gave as examples the two-body problem in
which all the motions are periodic and the billiard ball problem which, “although ‘integrable’,
has a family of non-recurrent motions, namely those which pass infinitely often through the
two foci and are doubly asymptotic (homoclinic in the sense of Poincaré) to the major axis”
(p. 13).

Conservative flows. In ordinary dynamical systems, conservative flows are those with an
invariant volume integral, e.g., the flow of an incompressible liquid. Here Birkhoff con-
sidered the extension of conservative flows to the abstract case. By 1941 this had become
an active area of research and in the summary he named several Russian mathematicians
(Beboutov, Bogolyubov, Krylov, Stepanov) and American mathematicians (Halmos, Oxtoby,
Ulam, von Neumann, Wiener, Wintner) who had made important studies of such flows [19,

p. 599], although rather curiously he did not mention them in the manuscript.
In the fourth problem, which was preceded by a four-page introduction, Birkhoff

conjectured that if the abstract flow is so regular as to be “geodesic” then it will be con-
servative if all the motions are central, while in the fifth he conjectured that the recurrent
motions are necessarily everywhere densely distributed in the abstract space of a geodesic
conservative flow. As he pointed out, Poincaré’s recurrence theorem makes the latter con-
jecture a very natural one.19 However, he did not “expect the periodic motions to be always
everywhere dense in the conservative case or even in the case of a dynamical flow.” (p. 17).

Problem 4. A geodesic flow all of whose motions are central always admits an invariant
positive volume integral.

Problem 5. The recurrent motions are everywhere dense in any conservative flow, at least
if it be geodesic.

Ergodic theory and conservative flow. Birkhoff opened this section with a short discussion
relating to his own “individual ergodic theorem,” observing that the theorem implies “that for
conservative systems almost all motions have definite habits of recurrence with regard to any
measurable type of behaviour.” (p. 18). He also noted the priority of von Neumann’s “mean
ergodic theorem.”20 In the summary, he avoided any mention of ergodic theory but instead
used features of the billiard ball problem, such as the fact that in the long run the ball will be

19 Roughly speaking, Poincaré’s recurrence theorem says that if the flow is volume-preserving
then, at some point in the future, the system will return arbitrarily close to its initial state.
For a discussion of the theorem, see [4, pp. 86–87].

20 An account of the relationship between Birkhoff’s individual ergodic theorem and
von Neumann’s mean ergodic theorem, which also explains the confusing chronology of
publication, is given by J. D. Zund [45].
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on any designated part of the table a definite proportion of the time, in order to demonstrate
the significance of conservative flow. Problem 6 proposes a topological characterization of
conservative flows based on this fact of recurrence.

Problem 6. If a continuous flow in a compact metric space has the property that for any
open region of R, the exceptional sets for which a positive mean sojourn time � (the same in
both senses of the time) fails to exist are always of measure 0 with respect to some measureR

dP , then there exists necessarily at least one invariant integral
R

�dP .

Birkhoff also noted that “an important paper” by Oxtoby and Ulam containing ques-
tions “closely related” to Problem 6 was in the pipeline [36]. This paper, which Koopman
summarised as a “thorough and detailed study of the group of measure-preserving and mea-
surability preserving automorphisms (homeomorphisms into itself) in polyhedra, their met-
rical transitivity, equivalence, and the whole bearing of such questions on ergodic theory,”21

appeared in 1941, the absence of its publication details providing a further indication that
Birkhoff did not edit the manuscript in the years after it was written.

Discontinuous conservative flows. This section and its accompanying problem are on two
handwritten pages. These pages open with the words “Very recently” (p. 190) and a footnote
gives a full citation for a paper published by Ambrose in July 1941 [1], showing that these
pages were written either shortly before, or possibly soon after, the lecture was given. The
flows now considered are “measure-preserving flows which are 1–1 except over sets of mea-
sure 0 and carry measurable sets into measurable sets (in particular, sets of measure 0 into
sets of measure 0) and conserve a positive volume integral” (p. 190), and such flows are, as
Birkhoff noted, of particular interest from the point of view of probability, and in this context
he mentioned that they had recently been studied by von Neumann, Kakutani, Ambrose, and
Halmos. In the summary Wiener and Wintner are exchanged for Ambrose and Kakutani, and
there is no mention of probability.

Having established that the underlying space can be taken as a line segment of unit
length, and relaxed the condition of continuity on a conservative flow, Birkhoff proposed a
characterization of the invariants of the flow based on what he termed “packing coefficients.”
He explained the latter as follows: “Make the total �-measure 1 by choosing the total measure
as a unit. Select any n � 1 and consider all ways of decomposing a minimal metrically
transitive constituent into a measurable set † and its first n � 1 images under [a discrete flow]
T , say S1; : : : ; S .n�1/ in such a way that these sets are disjoint. To each such decomposition
there will be a measure of the complementary point set. We will call the lower bound of
these quantities the ‘nth packing fraction’ and denoted it by �n, and it is easy to prove that
the inequality �n � 1=n always holds.” (p. 1900).

Problem 7. Any such discontinuous conservative transformation T is completely character-
ized by its “spectrum,” determining the nature of the metrically transitive constituents, and
by the packing coefficients �1; �2; : : :, for every such constituent. These packing coefficients
may be taken arbitrarily except for the fact that n�n forms a decreasing sequence.

21 Mathematical Reviews M0005803.
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Dynamical flows. The next three problems, Problems 8–10, derive from Birkhoff’s attempt
to define abstractly a “dynamical flow” where he takes as his model Pfaffian systems,22 rather
than Hamiltonian systems of classical dynamics. However, this part of the manuscript is a
little tricky to follow as there are six handwritten pages inserted between two typescript pages
(pp. 21–22/23). Unlike the other handwritten pages, there is nothing to show exactly where
the text from these pages should be inserted. It is evident that wherever they are inserted
the typed text would need to be adjusted for the narrative to flow. The first five of these
pages provide the justification for a result he had deduced from the properties of his abstract
definition of a line integral, a result he needed for his definition of a continuous dynamical
flow which involves the existence of a line integral (in an abstract sense which he made
precise). The final handwritten page contains only Problem 8 (after which all subsequent
problems in the typescript were renumbered). It is notable that in the summary he remarked,
that “the crucial part of the characterization of a dynamical flow lay in the suitable definition
of a line integral in any abstract ‘geodesic space’ R”, and a few lines later observed that “the
question of an adequate characterization of a dynamical flow beyond the obvious properties
of conservativeness and continuity has been especially baffling” [19, p. 599], which suggests
that he returned to this part of the manuscript after he gave the lecture.

Problem 8. Any dynamical flow is necessarily conservative with reference to a completely
additive measure with positive measure on any open set.

In Problems 9 and 10, Birkhoff returned to the question of the denseness of periodic
motions, the question he had addressed in his Acta Mathematica paper of 1925. Now he
reformulated the question in an abstract setting with the added condition of stability. He
defined a periodic motion to be stable (topologically) “if there are other complete motions
in its "-neighborhood”, adding that a similar definition can be made for ‘stable’ recurrent
motions’, providing neighboring recurrent motions of the same minimal set are excluded
from consideration (p. 25). He defined a completely unstable flow as one in which there
are no stable periodic or recurrent motions, for example, geodesics on a closed surface of
negative curvature, and here he cited the well-known work of Hadamard (1898) and Morse
(1921, 1924).

Problem 9. In any regionally-transitive nonhomogeneous flow of dynamical type the peri-
odic motions are everywhere dense.

Problem 10.

(a) In a regionally transitive dynamical flow not of completely unstable type, the
stable periodic motions are everywhere dense, and the set of such motions is
dense on itself (i.e., in the infinitesimal neighborhood of any stable periodic
motion there exist infinitely many other stable periodic motions). Furthermore,

22 Birkhoff had first defined Pfaffian systems in his Colloquium Lectures of 1920, and later
considered them in [13] and in Dynamical Systems. They were brought to further promi-
nence by Lucien Feraud in an explanatory paper of 1930 [24].
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in the neighborhood of any stable recurrent motion there are similarly infinitely
many other stable periodic motions.

(b) In any regionally transitive dynamical flow of completely unstable type, which
is furthermore not homogeneous, the unstable periodic motions are everywhere
dense.

On a possible extension of some work of Sundman. Next Birkhoff asked for the general-
ization to a gas of certain remarkable results on the three-body problem produced in the early
years of the 20th century by the Finnish mathematical astronomer Karl Sundman. Birkhoff
was a strong advocate for Sundman’s theoretical “solution” to the three-body problem which,
due to its practical limitations, had met with a mixed reception.23 He had even gone as far
as to say that “the recent work of Sundman is one of the most remarkable contributions to
the problem of three bodies which has ever been made” [13, p. 260]. Of particular relevance
here are Sundman’s results concerning triple and binary collisions, namely that a triple colli-
sion can occur only if all three integrals of angular momentum are simultaneously zero, and
that the singularity at binary collision is of removable type. Birkhoff had already shown in
Dynamical Systems how the essence of Sundman’s argument can be used under other laws
of force and for a system of more than three bodies to establish that, with similar initial con-
ditions, a simultaneous near approach of the bodies cannot occur, hence the generalization
to a gas was a natural next step. The problem was formulated rather vaguely—indeed, in the
summary he admitted it was incomplete [19, p. 599]—but he chose to include it because it
provided “an interesting illustration of a dynamical flow in a kind of Euclidean space R of
infinitely many dimensions, intermediate in type between the flows in abstract metric space
and in n-dimensional Euclidean space” (p. 27).

Problem 11. To determine equations of state and initial conditions of a free bounded gas
such that the diameter of the gas can never be less than a specifiable d > 0 despite the fact
that such configurations are compatible with the known integrals.

Following on, Birkhoff now turned to problems relating to motions in n-dimensional
space.

A problem concerning central motions in n-dimensional space. Problem 12 is essen-
tially the first problem he presented in Berlin, and which was solved by Maier in 1946, now
extended to the n-dimensional case. On this occasion, Birkhoff used the notion of “wander-
ing motions” W0 of a space R, a notion he had introduced in Dynamical Systems, and which
here he described (none too clearly) as “those which can be embedded in a molecule which
never overlaps itself as time increases or decreases” (p. 27). When the wandering motions
are removed from R, there remains a closed subspace, M1 D R � W0, of lower dimension,
which can then be considered from the same point of view. Using this idea, Birkhoff formed
“a well-ordered set M D M0;M1; : : : , which is enumerable and terminates in the set of cen-

23 A detailed discussion of Sundman’s work on the three-body problem and its reception is
given in my article [6].
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tral motions Mc .” Emphasizing the fact that in the known cases the series contain at most n

terms, he proposed the following form of the problem:

Problem 12. To construct a continuous flow in a closed manifold of n > 2 dimensions for
which the well-ordered series M D M0; M1; M2; : : : leading to the central motions Mc

contains more than n and if possible an infinite number of terms.

A problem in the 3-dimensional case. Problem 13 was suggested by recent work of the
Hungarian mathematician Béla Kerékjártó on “regular” or nearly regular transformations
of 2-dimensional closed surfaces of arbitrary genus.24 Here Birkhoff conjectured that 3-
dimensional flows that are “regular” have one of only three different forms.

Problem 13. For an ordinary 3-dimensional manifold R3, to show that the only regular
discrete flows are topologically equivalent to one of the following:

(1) R3, a 3-dimensional torus with a transformation

�1 D �1 C ˛1; �2 D �2 C ˛2; �3 D �3 C ˛3;

with �1; �2; �3 being angular coordinates for the torus.

(2) R3, the product of a surface of sphere and circle, and the transformation of each
of these a pure rotation.

(3) R3, a 3-dimensional hypersphere and the transformation of a rigid rotation of
this sphere.

A problem in the 2-dimensional case. Birkhoff now moved to problems connected with
analytic transformations, the ideas emerging from the first of his papers on the restricted
three-body problem [21]. In the first of these problems, he conjectured that a particular trans-
formation of the surface of a sphere into itself with two fixed points, which is such that
all iterations of the transformation produce no other fixed points, is a pure rotation when
considered topologically.

Problem 14. A 1–1 direct analytic, conservative transformation T of the surface of a sphere
into itself with two and only two fixpoints P , Q for T and all its iterations is topologically
equivalent to a pure rotation of the sphere about an axis through an angle incommensurable
with 2� .

From this he was led to propose the following analogous problem for a plane circular
ring:

Problem 15. A 1–1 direct analytic conservative transformation of a circular ring into itself,
in which two boundaries are invariant and which possess no periodic points is topologically
equivalent to a rotation of the ring through an angle ˛ incommensurable with 2� .

24 Birkhoff was well acquainted with Kerékjártó. In 1925 he had supported his promotion in
Szeged, and in 1928 he had visited Szeged to lecture on Poincaré’s last geometric theorem.
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A conjectural supplement to Poincaré’s last geometric theorem. In the final two prob-
lems Birkhoff returned again to Poincaré’s last geometric theorem. Unsurprisingly, he
thought these two problems, since they express conjectures which in a sense represent a
complement to the theorem, were the ones likely to generate the most interest.

In Problem 16, Birkhoff conjectured that the theorem would hold in the case when
the points on the two concentric circles Ca and Cb , are advanced by the same angular distance
(in contrast to the original theorem where the points are advanced by distinct distances), that
is, their rotation numbers ˛ are equal, provided that some nearby points of the ring become
separated widely in an angular sense when the transformation T is repeated sufficiently often,
as happens when the rotation numbers are unequal.

Problem 16. Let T be a 1–1 continuous discrete conservative transformation T of a circular
ring into itself which leaves the two circular boundaries individually invariant, with equal
rotation numbers ˛ along these boundaries. Then if nearby pairs of points exist which sep-
arate indefinitely in an angular sense under indefinite iteration of T , there will necessarily
exist periodic points.

This was followed by a conjecture on the partial converse, the case when the
common rotation number ˛ is not a rational multiple of 2� .

Problem 17. Under the same hypotheses concerning T as in the first part of Problem 16, let
us further require only that for no preliminary deformation of the ring in itself can the angular
deviation of all pairs of points less than 2� apart in angular sense be made to remain less
than 2� C " under all iterations of T (" arbitrary). There will then exist periodic points on
the ring. Furthermore, if ˛ and ˛ denote the lower and upper bounds of the rates of angular
advance for such periodic point groups then we have ˛ < ˛ and ˛ � ˛ � ˛ and, for any
relatively prime integers m and n > 0 such that

˛ < 2
m

n
� < ˛;

there exist at least two periodic point groups of n points whose angular coordinates increase
by 2m� under the nth power of T .

Birkhoff then considered the particular case when the given transformation can be
expressed as the product of two involutory transformations, showing that in this case the first
part of the conjecture is true.

Application to the restricted problem of three bodies. In the final part of the paper
Birkhoff applied the above result to the planar restricted three-body problem, the version of
the problem treated in the 1870s by the American mathematical astronomer George William
Hill in his work on the lunar theory—work which had famously inspired Poincaré—giving
the differential equations as Hill had done (p. 33):
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together with the equation for the Jacobian constant C ,�
dx

dt

�2

C

�
dy

dt

�2

D 2� � C:

He described the “actual case” of the Sun–Earth–Moon problem in which the Earth is con-
sidered to lie at the origin in the x; y plane, the Sun is at infinity in the direction of the
positive x-axis and the “infinitesimal” Moon is rotating in the x; y plane at unit angular
velocity with the Earth and the Sun, where the positive constant C0 is such that the Moon
can never escape from the closed region 2� D C about the Earth, symmetric in x D 0 and
y D 0. By considering values of C greater than or equal to C0, and applying the result from
the previous section, Birkhoff was led to the result he mentioned in the introduction to the
manuscript and here described as a “provocative form of conclusion” (p. 35):

Assuming that a surface of section of the type stated exists for C D C0, the non-
existence for C D C0 of doubly symmetric periodic orbits other than the funda-
mental variational periodic orbit of Hill and the corresponding retrograde orbit
would imply that all possible lunar orbits whatsoever with C D C0 have exactly
the same mean rate of angular advance of perigee per synodic revolution.

He further remarked in a footnote that, although the figures of the computed orbits show the
initial assumption is valid, “a rigorous and mathematical proof might be a complicated and
tedious matter!” In the summary he mentioned that he had “pointed out how the absence
of infinitely many periodic orbits would indicate that a new qualitative integral exists, in
addition to the usual analytic integral of Jacobi” [19, p. 600], but this remark was omitted
from the manuscript.

Epilogue. The manuscript ended with a very short epilogue in which Birkhoff expressed
the hope that his problems would “accelerate further advances,” but admitted that he thought
most of them were likely to “present difficulties which may be difficult to surmount” (p. 35).

3. Conclusion

So far little evidence has come to light of mathematicians responding directly to
the summary of Birkhoff’s lecture. Stanislaw Ulam, the Polish mathematician and emigré
to the United States,25 wrote to Birkhoff in November of 1941 to say that he had heard
various reports of Birkhoff’s “extremely interesting talk” and asked him for a copy of the
summary.26 And in the following January, Shizo Kakutani thanked Birkhoff for a reprint of

25 On Birkhoff’s suggestion, Ulam had spent time at Harvard during 1936–1939. Later in 1939
Ulam left Poland for good in advance of the German invasion, and in 1940 was appointed
to one of Birkhoff’s former institutions, the University of Wisconsin-Madison, with the
support of Birkhoff.

26 Letter from Ulam to Birkhoff, 25 November 1941. HUG 4213.2.2, Birkhoff Papers, Harvard
University Archives.
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the summary and said that he was “hoping to solve one of the problems.”27 But Kakutani did
not say which one and he does not appear to have published on any of them. Had Birkhoff’s
manuscript been published, the situation might have been rather different. For it is only in
the manuscript that the problems are set out in full and put formally into their mathematical
context. The summary, being meant for a general audience, focusses on the historical rather
than the mathematical detail. Indeed, the editor of Science, the psychologist James McKeen
Cattell, told Birkhoff that he was “anxious to obtain papers on mathematical subjects” but
that there were difficulties due to “the fact that the English used by mathematicians is not
always understood by other scientific men,” and so “complicated mathematical equations
that only mathematicians can understand” must be avoided.28 Furthermore, the fact that the
summary was published in Science and not in a mathematical journal, and that it appeared
during the War, meant it was unlikely to have had high visibility amongst mathematicians,
particularly in Europe.

The manuscript is not an easy read and although Birkhoff makes several references
to material in Dynamical Systems for purposes of clarification not everyone found the latter
easy reading either. Walter Gottschalk, who became one of the leading exponents of topo-
logical dynamics, had this to say:

Somewhere I read that G. D. Birkhoff once said that if he thought mathematics
exposition to be important, he would be the world’s best expositor. Birkhoff was
certainly not the world’s best expositor and indeed he came close to the extremum
in the other direction. I think this attitude had an important delaying effect on
the initial development of topological dynamics. In his American Mathematical
Society Colloquium volume [20], Birkhoff included a discussion of the topological
properties of continuous flows determined by a system of first order ordinary dif-
ferential equations. … The style of writing he adopted was so inadequate in clarity
and precision that almost any beginning reader had to be discouraged from con-
tinuing. It was not at all clear what the theorems were and the offered proofs were
largely suggestive intuitive discussions [26].

It must also be said that Gottschalk himself was not always an easy read either.29 Never-
theless, Gottschalk’s criticisms did chime with the Russian view. In 2002 George Lorentz

27 Letter from Kakutani to Birkhoff, 26 January 1942. HUG 4213.2.2, Birkhoff Papers, Har-
vard University Archives.

28 Letters from McKeen Cattell to Birkhoff, 5 September 1941 and 8 October 1941. HUG
4213.2, Birkhoff Papers, Harvard University Archives.

29 Paul Halmos, when reviewing Topological Dynamics [27], the book Gottschalk wrote
together with his thesis supervisor Gustav Hedlund, remarked: “The chief fault of the book
is its style. The presentation is in the brutal Landau manner, definition, theorem, proof, and
remark following each other in relentless succession. The omission of unnecessary verbiage
is carried to the extent that no motivation is given for the concepts and the theorems, and
there is a paucity of illuminating examples.” And he ended his review: “Conclusion: the
book is a mine of information, but you sure have to dig for it.” [29].
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recalled that Andrey Markov Jr., one of the editors of the original Russian edition of Dynam-
ical Systems, “made sarcastic corrections of some of its errors” [32, p. 196].30 Although in their
preface the Russian editors urge a critical reading of the proofs—they don’t think they have
found all the mistakes—they do acknowledge the correctness of the theorems. Even Jürgen
Moser in the introduction to the 1966 English edition conceded that “to the modern reader
the style of [the] book may appear less formal and rigorous than it is now customary” while
fully acknowledging its inspirational role [20, p. iii]. Thus had Birkhoff’s manuscript been
published when he had hoped, it still may have taken some time before mathematicians were
able to rise to the challenges laid down by his problems. Whether Birkhoff was right in his
assessment of the direction of travel has yet to be ascertained and further research remains
to be done in order to see the extent to which his problems have been tackled, if indeed they
have, and to what effect.
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