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Abstract

Weaving through the emergence and convergence of various mathematical ideas that
led towards the discovery of calculus in India provides an enthralling experience for afi-
cionados of mathematics and its diverse history. This article attempts to briefly capture
some of the milestones in the journey made by Indian mathematicians through two eras
that paved the way for the discovery of infinite series for � and some of the trigonometric
functions in India around the middle of the 14th century. In the first part we shall discuss
the developments during what may be called the classical period, starting with the work of
Āryabhaṭa (c. 499 CE) and extending up to the work Nārāyaṇa Paṇḍita (c. 1350). The work
of the Kerala School starting with Mādhava of Saṅgamagrāma (c. 1340), which has a more
direct bearing on calculus, will be dealt with in the second part. The third part recounts
the story of the 19th century European discovery of infinite series in India which seems to
have struck a wrong note among the targeted audience in Europe with a serious cascading
effect.
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1. Introduction

Couched in sublime poetry in a variety of rhythmic meters and codified in the
classical Sanskrit language, a journey through the history of mathematics in India could
be extremely fascinating and at the same time quite challenging too. The journey would
indeed be highly enriching to those who have mastered the language and understood the
subtlety of expressions and figures of speech employed in it. However, for those untrained
in the nuances of such a knowledge system, it would be difficult to appreciate the beauti-
ful blend of mathematics and poetry—usually characterized with brevity without sacrificing
the perspicuity—that we find in most of the texts composed over the last two millennia.
The distinct style adopted by the Indian mathematicians for practising (thinking, codifying,
transmitting, etc.) mathematics, by directly plunging into results without much mathemati-
cal elaborations, has been succinctly and beautifully brought out by A. A. K. Ayyangar in his
article [17, p. 4.101]:1

The Hindu mind has always shown peculiar aptitude for fundamental thinking,
digging down into the depths of thought with the minimum of external equipment,
while other minds are after heavy superstructures with complicated scaffolding,
tools and machinery. One extra-ordinary illustration of this trait of the Hindu
mind we have in Ramanujan.

Perhaps being fascinated by this peculiar way of doing mathematics by Hindus, using poetic
verses, and aphoristic expressions, some of the of European scholars who were serving
the British establishment in various capacities—starting from the final decades of the 18th
century—embarked on their journey to study the civilizational basis of India, and the route
adopted by Indians to excel in mathematics and astronomy, besides arts, architecture, aes-
thetics, philosophy and other disciplines.2

One such European scholar who got deeply attracted towards the mathematics and
astronomy of the Kerala School was the then civil servant of the East India Company, Charles
M. Whish (1792–1833). Having been posted at the Malabar region of Kerala for more than
a decade, Whish started interacting with the local pundits and gained proficiency in both the
local language Malayalam and Sanskrit. He also began to communicate some of his fasci-
nating findings concerning the breakthroughs made by the native astronomers of Kerala, by
way of both authoring papers and sharing them with the Madras Literary Society. A remark-
able paper of his carrying the details of signal contributions made by the Kerala School
of mathematicians, which flourished during the medieval period (14–16 centuries CE), got
published in the Transactions of Royal Asiatic Society of Great Britain and Ireland in 1834—
unfortunately, only posthumously—due to his premature death in 1833.

1 Ayyangar, who came out in flying colors, with his Master’s degree at the age of 18 years,
has done remarkable research particularly with respect to second-order indeterminate equa-
tions.

2 See, for instance, [12].
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It is this paper, which for the first time brings to the notice of European scholars the
discovery of the infinite series for � , and some of the trigonometric functions by the Kerala
mathematicians, almost three centuries before their advent in Europe. Strangely, this paper
of Whish, instead of generating curiosity, discussion, and excitement among the European
scholars, remained largely disregarded for almost a century. This deafening silence—along
with the discount of its contents, among the historians of mathematics in the West—got
broken only in the decades to follow from the 1940s, when some of the Indian mathemati-
cians such as C. T. Rajagopal, Mukunda Marar, and others brought to fore the sophisticated
mathematics produced by this school in the form of a series of articles [22, 23, 25, 26]. Dur-
ing the same period, Ramavarma Thampuran and Akhileswara Ayyar also brought out an
edition of the first part (dealing with mathematics) of seminal text of Kerala astronomy and
mathematics, Yuktibhāṣā (c. 1530), along with detailed explanations in Malayalam [28].

The Kerala School that we refer to in this article commences with Mādhava of
Saṅgamagrāma (c. 1340–1420), the originator of this guru-paraṃparā or “lineage of teach-
ers.” His followers include Dāmodara, Parameśvara, Nīlakanṭḥa Somayājī, Jyesṭḥadeva,
Śaṅkara Vāriyar, and others. Though Mādhava’s works containing the infinite series are
not available to us, the later mathematicians in this tradition unanimously ascribe the series
to Mādhava. In some of the recent studies, it has been convincingly argued by modern schol-
ars that these series expansions for � and other trigonometric functions, and the evaluation
of derivatives of various functions (while computing instantaneous velocities) rely indis-
pensably on the central ideas of infinitesimal calculus, which include local approximation
by linear function (see Section 3.4 of the present article).3

It is, however, important to understand that these breakthroughs achieved in the
Kerala School of Mathematics cannot be narrowed to only the scope of work made in a
span of two centuries. It is the continuum of mathematical ideas evolved by various Indian
mathematicians spanning over nine centuries before—starting at least from the time of Ārya-
bhaṭa (5th century)—till the dawn of the Kerala School that has led to the convergence point
which has led Mādhava (14th century) to invent infinitesimal methods, thereby marking the
advent of the discipline of calculus, though largely restricted to the consideration of the
circular functions.4

This paper attempts to string the pearl of ideas and breakthroughs through the his-
tory of mathematics in India that led to this advent. The evolution of poignant ideas is traced
in two parts. The first part, covered in Section 2, deals with precalculus breakthroughs and
the germinating ideas for calculus that were intuitively apprehended in India well before
Mādhava came on the scene. The second part, dealt with in Section 3, captures the discov-
ery of calculus in the Kerala School. Section 4 of this paper recounts the story of how the
revelations of the work of the Kerala School brought out by Whish seems to have struck a
wrong note and alarmed some of the leading figures in the British academic establishment
which led to the denigration and suppression of this work for almost a century.

3 The reader is also referred to the articles [13,14,24].
4 For a detailed discussion on this evolution readers may refer to [15,27].
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2. Developments in the Classical Era of Indian

mathematics

In this section, we shall consider some of the ideas and methods developed in Indian
mathematics, during the period 450–1350 CE, which have a bearing on the later work of the
Kerala School. In particular, we shall focus on the following topics: the notion and mathe-
matics of zero and infinity; iterative approximations for irrational numbers; summation of
powers of natural numbers; the discrete form of the harmonic equation for the sine function
given by Āryabhaṭa; and the emergence of the notion of instantaneous velocity of a planet
in astronomy.

2.1. Notion of zero and infinity
2.1.1. Philosophical and cultural context of zero and infinity
Select passages in Upaniṣads, as well as contemporary Buddhist and Jaina philoso-

phy, point to the philosophical and cultural context that has possibly led to the development
of the fundamental and intriguing concepts such as void and the infinite which later got incor-
porated in mathematics as zero and infinity. In this section, we present quotes from different
ancient literature in this regard.

The śānti-mantra of the Īśāvāsyopaniṣad refers to the ultimate absolute reality, the
Brahman, as pūrṇa, the perfect, complete or full. Talking of how the universe emanates from
the Brahman, it states:

पूणर्मदः पूणर्ࣻमदं पूणЄمणूर्मुदՊते।
पूणर्ࡺ पूणर्मादाय पूणर्मेवावऀशࡈते॥
pūrṇamadaḥ pūrṇamidaṃ pūrṇātpūrṇamudacyate।
pūrṇasya pūrṇamādāya pūrṇamevāvaśiṣyate॥
That (Brahman) is pūrṇa; this (the universe) is pūrṇa; [this] pūrṇa emanates from
[that] pūrṇa; even when pūrṇa is drawn out of pūrṇa, what remains is also pūrṇa.

In the Kṛṣṇa-Yajurveda Taittirīya-Brāhmaṇa (Kāṭhaka 3.49), we have the word
śūnya (generally employed to mean zero in mathematics) appearing in the form of a com-
pound word with a negative particle (nañ) tagged to it. This is in the context of describing
the glory of the sun:

वेदरैशू۠ःࣾࢇभरेࣻत सूयर्ः।
vedairaśūnyastribhireti sūryaḥ।

Pāṇini’s Aṣṭādhyāyī (c. 500 BCE) has the notion of lopa which functions as a null-
morpheme. Lopa appears in several sūtras, starting with

अदशर्नं लोपः। (1.1.60).
adarśanaṃ lopaḥ।
That which gets voided is [termed] lopaḥ.
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The word śūnya also appears twice as a symbol in Piṅgala’s Chandaḥ-śūtra (c. 300
BCE). In Chapter VIII, while enunciating an algorithm for evaluating any positive integral
power of 2 in terms of an optional number of squaring and multiplication (duplication) oper-
ations, śūnya is used as a marker:

रूपे शू۠म्। ःڙࣾ शू۠।े (8.29-30).
rūpe śūnyam। dviḥ śūnye।
If you get one (rūpe) [as the remainder after doing modulo 2 arithmetic] place
zero [as the marker]. If you get zero [as the remainder] place two.

Different schools of Indian philosophy have related notions such as the notion of
absence (abhāva) in Nyāya School, and the śūnyavāda among the Bauddhas.

2.1.2. The mathematics of zero
The Brāhmasphuṭa-siddhānta (c. 628 CE) of Brahmagupta seems to be the first

available text that thoroughly discusses the mathematics of zero. While describing arith-
metic, the six operations with zero (śūnya-parikarma) are also discussed in Chapter XVIII
on algebra (kuṭṭakādhyāya). While zero divided by zero is stated to be zero, any other quan-
tity divided by zero is said to be taccheda (that with zero denominator). Of the six verses,
two are presented below and the rest are paraphrased here [5, pp. 309–310]:

धनयोधर्नमृणमृणयोः धनणर्योरۖरं समैѺं खम्।
ऋणमैѺं च धनमृणधनशू۠योः शू۠म्॥ ...
खोڔतृमृणं धनं वा तՃेदं खमृणधनࣺवभѱं वा।
ऋणधनयोवर्गर्ः ंࡼ खं खࡺ पदं कृࣻतयर्त् तत्॥
dhanayordhanamṛṇamṛṇayoḥ dhanarṇayorantaraṃ samaikyaṃ kham।
ṛṇamaikyaṃ ca dhanamṛṇadhanaśūnyayoḥ śūnyam॥ ...
khoddhṛtamṛṇaṃ dhanaṃ vā tacchedaṃ khamṛṇadhanavibhaktaṃ vā।
ṛṇadhanayorvargaḥ svaṃ khaṃ khasya padaṃ kṛtiryat tat॥
… [The sum of] positive (dhana) and negative (ṛṇa), if they are equal, is zero
(kham). The sum of a negative and zero is negative, of a positive and zero is pos-
itive and of two zeros, zero (śūnya). … Negative subtracted from zero is positive,
and positive from zero is negative. Zero subtracted from negative is negative,
from positive is positive, and from zero is zero (ākāśa).

… The product of zero and a negative, of zero and a positive, or of two zeroes is
zero. A zero divided by zero is zero. … A positive or a negative divided by zero is
that with zero denominator (taccheda). The square (kṛti) of a positive or negative
number is positive; the square and square-root (padam) of zero is zero.
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Bhāskarācārya (c. 1150), while discussing the mathematics of zero in his work Bīja-
gaṇita, explains that infinity (ananta-rāśi) which results when some number is divided by
zero is called khahara. He also graphically describes [4, p. 6] the characteristic property of
infinity that it is unaltered even if a huge quantity (bahu) is added to or taken away from it
with a beautiful simile:5

खहरो भवेत् खेन भѱࠥ राऀशः॥ …
अऌࡹअۢकारः खहरे न राशावࣺप प्रࣺवࣺࡋे࠿प ࣺनःसृतेषु।
बहुࣺࡋप कालेऽनۖऽेՊुते࠿ा߲यसृࣼࡺ भूतगणेषु यڙत्॥
khaharo bhavet khena bhaktaśca rāśiḥ॥…
asminvikāraḥ khahare na rāśāvapi praviṣṭeṣvapi niḥsṛteṣu।
bahuṣvapi syāllayasṛṣṭikāle’nante’cyute bhūtagaṇeṣu yadvat॥
A quantity divided by zero will be (called) khahara (an entity with zero as divisor).
… In this quantity, khahara, there is no alteration even if many are added or
taken out, just as there is no alteration in the Infinite (ananta), Infallible (acyuta)
[Brahman] even though many groups of beings enter in or emanate from [It] at
times of dissolution and creation.

From the above illustrations it is discernible that Indian mathematicians began dab-
bling with the notions of zero and infinity in varied mathematical contexts.

2.2. Irrationals and iterative approximations
2.2.1. Approximation for surds in Śulbasūtras
Śulbasūtras (c. 800 BCE) that form a part of Kalpasūtras (one of the six Vedāṅ-

gas) are essentially manuals that contain systematic procedures (algorithms) for the exact
construction of altars that were laid out on leveled ground by manipulating cords of various
lengths tied to a gnomon. The manuals also contain certain other mathematical details that
are relevant to the construction, and are composed in the form of short, cryptic phrases—
usually prose, although sometimes including verses—called sūtras (literally “string” or
“rule, instruction”). The term for the measuring-cords called śulba got associated with the
name to this set of texts as the Śulbasūtras or “Rules of the cord.” Starting with simple shapes
involving symmetrical figures such as squares and rectangles, triangles, trapezia, rhomboids,
and circles, the texts move on to discuss the construction of complex shaped figures such
that of falcon. Frequently, one also finds problems pertaining to transformation of one shape
into another. Hence, the Śulbasūtra rules often involve what we would call area-preserving
transformations of plane figures, and thus include the earliest known Indian versions of cer-
tain geometric formulas and constants. More interestingly, Baudhāyana-śulvasūtra gives the
following approximation for

p
2 [33, (1.61-2), p. 19]:

5 This simile can be better appreciated by those who are reasonably familiar with the funda-
mental tenets of Hinduism and its philosophy.
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प्रमाणं तृतीयेन वधर्येـՂ चतुथϺनाىचतुःࢇशंोनेन। सࣺवशेषः।
pramāṇaṃ tṛtīyena vardhayettacca caturthenātmacatustriṃśonena। saviśeṣaḥ।
The measure [of the side] is to be increased by its third and this [third] again by
its own fourth less the thirty-fourth part [of the fourth]. That is the approximate
diagonal (saviśeṣa).

p
2 � 1 C

1

3
C

1

3 � 4
�

1

3 � 4 � 34

D
577

408

� 1:4142156: (1)

The above approximation is accurate to 5 decimal places. From certain other pre-
scriptions [33, (1.58), p. 19] given in this text, one could discern the approximation for � to be
given as � � 3:0883.

2.2.2. Approximation for � by Āryabhaṭa
Āryabhaṭa (c. 499) gives the following approximate value for � : 6

चतुरࣾधकं शतम࠿गुणं थाࡰ࠿ाषࣼڙ सहस्राणाम्।
अयुतڙयࣺवࡺޱ࠻ासۚो वृـपिरणाहः॥
caturadhikaṃ śatamaṣṭaguṇaṃ dvāṣaṣṭistathā sahasrāṇām।
ayutadvayaviṣkambhasyāsanno vṛttapariṇāhaḥ॥
One hundred plus four multiplied by eight and added to sixty-two thousand: This
is the approximate measure of the circumference of a circle whose diameter is
twenty-thousand.

Thus as per the above verse, � �
62832
20000

D 3:1416.
It appears that Indian mathematicians (at least in the Āryabhaṭan tradition) employed

the method of successive doubling of the sides of a circumscribing polygon—starting from
the circumscribing square leading to an octagon, etc.—to find successive approximations to
the circumference of a circle. This method has been described in the later Kerala texts Yukti-
bhāṣā (c. 1530) of Jyeṣṭhadeva and the Kriyākramakarī commentary (c. 1535) of Śaṅkara
Vāriyar on the Līlāvatī, of Bhāskarācārya.

2.3. Summation of geometric series
The result obtained by summing the geometric series 1 C 2 C 22 C � � � C 2n is stated

in Chapter VIII of Piṅgala’s Chandaḥ-sūtra (c. 300 BCE). It is quite remarkable that Piṅgala
also gives a systematic algorithm for evaluating any positive integral power of a number (2 in
this context) in terms of an optimal number of squaring and multiplication operations.

6 [2, p. 45], Gaṇitapāda, verse 10.
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Mahāvīrācārya (c. 850), in his Gaṇita-sāra-saṅgraha gives the sum of a geometric
series and also explains Piṅgala’s algorithm for finding the required power of the common
ratio between the terms of the series [16, pp. 28–29]:

पदࣻमतगुणहࣻतगुऀणतप्रभवः णुधनंڎाࡺ तदाښनूम्।
एकोनगुणࣺवभѱं गुणसӴࣽलतं ࣺवजानीयात्॥
padamitaguṇahatiguṇitaprabhavaḥ syādguṇadhanaṃ tadādyūnam।
ekonaguṇavibhaktaṃ guṇasaṅkalitaṃ vijānīyāt॥
The first term when multiplied by the product of the common ratio (guṇa) taken
as many times as the number of terms (pada) [in the series], gives rise to the
guṇadhana. This guṇadhana,7 when diminished by the first term and divided
by the common ratio less one, is to be understood as the sum of the geometrical
series (guṇa-saṅkalita).

If a is the first term and r the common ratio, then what is stated in the verse above may be
expressed as

a C ar C ar2
C � � � C arn�1

D
a.rn � 1/

.r � 1/
: (2)

Vīrasena (c. 816), in his commentary Dhavalā on the Ṣaṭkhaṇḍāgama, has made use of the
sum of the following infinite geometric series in his evaluation of the volume of the frustum
of a right circular cone:8

1 C
1

4
C

�
1

4

�2

C � � � C

�
1

4

�n

C � � � D
4

3
: (3)

The proof of the above result is outlined by Nīlakaṇṭha Somayājī in his Āryabhaṭīya-bhāṣya.
Nīlakaṇṭha presents this discussion in the context of deriving an approximation for a small
arc in terms of the corresponding chord in a circle. More details are presented in Section 3.1
of the article.

2.4. Āryabhaṭa’s computation of Rsine-differences
In the mathematical section of Āryabhaṭīya (c. 499), Āryabhaṭa presents two dif-

ferent methods for the computation of tabular Rsine values. While the first is the usual
geometric method, the second is an ingenious method which is based on computing the
Rsine-differences employing the important property that the second-order differences of
Rsines are proportional to the Rsines themselves:9

प्रथमाՂापիाधЄښरैूनं खइؓतं तीयाधर्म्।ڙࣾ
त٧थमիाधЅशैैࡰࡰरैूनाࣺन शेषाऀण॥

7 This is a technical term employed to refer to arn in (2).
8 See, for instance, [29, pp. 203–205].
9 [2, p. 51], Gaṇitapāda, verse 12.
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prathamāccāpajyārdhādyairūnaṃ khaṇḍitaṃ dvitīyārdham।
tatprathamajyārdhāṃśaistaistairūnāni śeṣāṇi॥
The first Rsine divided by itself and then diminished by the quotient will give
the second Rsine-difference. The same first Rsine, diminished by the quotients
obtained by dividing each of the preceding Rsines by the first Rsine, gives the
remaining Rsine-differences.

Let the quadrant be divided into 24 equal parts, and let Ji denote R sin.i˛/ where
˛ D 2250 for i D 1; 2; : : : ; 24. Now J1 D R sin.2250/, J2 D R sin.4500/, : : : , J24 D

R sin.90ı/, are the 24 Rsines. Let �1 D J1, �2 D J2 � J1, : : : , �k D Jk � Jk�1, be
the first-order Rsine-differences. Then, the prescription given in the above verse may be
expressed as

�2 D J1 �
J1

J1

(4)

D �1 �
J1

J1

: (5)

In general,
�kC1 D �k �

Jk

J1

.k D 1; 2; : : : ; 23/: (6)

Since Āryabhaṭa also takes �1 D J1 D R sin.2250/ � 2250, the above relations reduce to

�2 D 2240; (7)

�kC1 � �k D
�Jk

2250
.k D 1; 2; : : : ; 23/: (8)

The renowned mathematician David Mumford refers to the above equation as “the differen-
tial equation for the sine function in its finite difference form” [24].

2.5. Instantaneous velocity of a planet (tātkālika-gati)
In Indian astronomy, the motion of a planet is computed by making use of two cor-

rections: the manda-saṃskāra which essentially corresponds to the equation of center and
the śīghra-saṃskāra which corresponds to the conversion of the heliocentric longitudes to
geocentric longitudes.

In Figure 1, C is the center of a circle on which the mean planet P0 is located; CU

is the direction of the ucca (aphelion or apogee as the case may be); P is the true planet
which lies on the epicycle of (variable) radius r centered at P0, such that P0P is parallel to
CU . If M is the mean longitude of a planet, ˛ the longitude of the ucca, then the correction
(manda-phala) �� is given by

R sin.��/ D

�
r

K

�
R sin.M � ˛/: (9)
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Figure 1

Manda correction.

Here K is the karṇa (hypotenuse) or the (variable) distance of the planet from
the center of the concentric. The texts on Indian astronomy while giving the manda-phala,
present the following formula:

R sin.��/ D

�
r0

R

�
R sin.M � ˛/; (10)

where r0 is the tabulated (or mean) radius of the epicycle in the measure of the concentric
circle of radius R.

Thus there seems to have been an implicit understanding among the Indian astro-
nomers in accepting this model that the true planet P moves on the variable epicycle of
radius r in a way such that the following equation is satisfied:

r

K
D

r0

R
: (11)

For small r , the left-hand side of (10) is usually approximated by the arc itself. Thus we have

�� D

�
1

R

��
r0

R

�
R sin.M � ˛/: (12)

The manda-correction is to be applied to the mean longitude M , to obtain the true or manda-
corrected longitude � given by

� D M � ��

D M �

�
r0

R

��
1

R

�
R sin.M � ˛/: (13)
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If nm and nu are the mean daily motions of the planet and the ucca, then the true longitude
of the planet on the next day may be expressed as

� C n D .M C nm/ �

�
r0

R

��
1

R

�
R sin.M C nm � ˛ � nu/: (14)

Thus the true daily motion .n/, obtained by finding the difference of the two equations (13)
and (14) is given by

n D nm �

�
r0

R

��
1

R

��
R sin

®
.M � ˛/ C .nm � nu/

¯
� R sin.M � ˛/

�
: (15)

The second term in the above is the correction to mean daily motion (gati-phala), which
strictly involves evaluating the rate of change of the sine function. While an expression for
this has been pursued by Bhāskara I (c. 629) in his Mahābhāskarīya, the correct formula for
the true daily motion of a planet, employing the Rcosine as the “rate of change” of Rsine,
seems to have been first given by Muñjāla (c. 932) in his short manual Laghumānasa [18,

p. 125] and also by Āryabhaṭa II (c. 950) in his Mahā-siddhānta [20, p. 58]:

कोࣺटफलӫी भुࣼѱगर्իाभѱा कलाࣺदफलम्॥
koṭiphalaghnī bhuktirgajyābhaktā kalādiphalam॥
The koṭiphala multiplied by the [mean] daily motion and divided by the radius
gives the minutes of the correction [to the rate of the motion].

Essentially, the above verse gives the true daily motion in the form

n D nm � .nm � nu/

�
r0

R

��
1

R

�
R cos.M � ˛/: (16)

Bhāskarācārya (c. 1150) in his Siddhānta-śiromaṇi clearly distinguishes the true
daily motion from the instantaneous rate of motion [32]. And he gives the Rcosine correction
to the mean rate of motion as the instantaneous rate of motion. He further emphasizes the
fact that the velocity is changing every instant and this is particularly important in the case
of the moon because of its rapid motion [27, pp. 225–227].

3. Kerala School of Mathematics and Astronomy

The banks of the river Nīlā in the south Malabar region of Kerala witnessed for over
300 years, beginning from about the mid-14th century, what may arguably be considered the
golden age of Indian mathematics. The Kerala School of Mathematics and Astronomy pio-
neered by Mādhava (c. 1340–1420) of Saṅgamagrāma, extended well into the 19th century
as exemplified in the work of Śaṅkaravarman (c. 1830), Rājā of Kaḍattanāḍu. Only a cou-
ple of astronomical works of Mādhava (Veṇvāroha, Lagnaprakaraṇa and Sphuṭacandrāpti)
seem to be extant now. Most of his celebrated mathematical discoveries—such as the infinite
series for � and the sine and cosine functions—are available only in the form of citations in
later works.
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Mādhava’s disciple Parameśvara (c. 1380–1460) of Vaṭasseri is reputed to have
carried out detailed observations for around 55 years. Though a large number of original
works and commentaries written by him have been published, one of his important works
on mathematics, the commentary Vivaraṇa on Līlāvatī of Bhāskarācārya, is yet to be pub-
lished. Nīlakaṇṭha Somayājī (c. 1444–1550) of Kuṇḍagrāma, disciple of Parameśvara’s son
Dāmodara (c. 1410–1520), is the most celebrated member of Kerala School after Mādhava.
Nīlakaṇṭha has cited several important results of Mādhava in his various works, the most
prominent of them being Tantrasaṅgraha (c. 1500) and Āryabhaṭīya-bhāṣya. In the latter
work, while commenting on the Gaṇitapāda of Āryabhaṭīya, Nīlakaṇṭha has also provided
ingenious demonstrations or proofs for various mathematical formulae [21].

However, the most detailed exposition of the work of the Kerala School, starting
from Mādhava, and including the seminal contributions of Parameśvara, Dāmodara, and
Nīlakaṇṭha, is to be found in the famous Malayalam work Gaṇita-yuktibhāṣā (henceforth
simply Yuktibhāṣā) (c. 1530) of Jyeṣṭhadeva (c. 1500–1610), who was a junior contempo-
rary of Nīlakaṇṭha. The direct lineage from Mādhava continued at least till Acyuta Piśāraṭi
(c. 1550–1621), a disciple of Jyeṣṭhadeva, who wrote many important independent works in
Sanskrit, as well as a couple of commentaries in the local language Malayalam.

In the following sections we shall present an overview of the contribution of the
Kerala School to the development of calculus (during the period 1350–1500), following
essentially the exposition given in Yuktibhāṣā. In order to indicate some of the concepts
and methods developed by the Kerala astronomers, we first take up the summation of infi-
nite geometric series as discussed by Nīlakaṇṭha Somayājī in his Āryabhaṭīya-bhāṣya, that
was alluded to just before. We then consider the derivation of binomial series expansion and
the estimation of the sum of integral powers of integers, 1k C 2k C � � � C nk for large n, as
presented in Yuktibhāṣā. These results constitute the basis for the derivation of the infinite
series for �

4
and its various fast convergents given by Mādhava. Following this, we shall

outline another interesting work of Mādhava on the estimation of the end-correction terms
called the antya-saṃskāra,10 that had enabled him to arrive at the transformation of the �-
series to fast convergent ones—whose multifarious forms may be noted from a citation in
Section 4.3.

3.1. Discussion of the sum of an infinite geometric series
In his Āryabhaṭīya-bhāṣya, while explaining the upapatti (rationale) behind an inter-

esting approximation for the arc of a circle in terms of the jyā (Rsine) and the śara (Rversine),
Nīlakaṇṭha presents a detailed demonstration of how to sum an infinite geometric series. The
context of this discussion is Nīlakaṇṭha’s pursuit to approximate the arc of a circle in terms
of jyā (sine) and śara (versine). The verse that succinctly presents this approximation is the
following:

10 Interestingly, this term in common parlance refers to the last rites to be performed.
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सٟशंाࣺदषुवगЄत् իावगЄ؊ात् पदं धनुः प्रायः।
satryaṃśādiṣuvargāt jyāvargāḍhyāt padaṃ dhanuḥ prāyaḥ।
The arc is nearly (prāyaḥ) equal to the square root of the sum of the square of the
śara added to one-third of it, and the square of the jyā.

In Figure 2, AB is the arc whose length (assumed to be small) is to be determined
in terms of the chord lengths AD and BD. In the Indian mathematical literature, the arc
AB , the semichord AD, and the segment BD are referred to as the cāpa, jyārdha, and śara,
respectively. As can be easily seen from the figure, this terminology arises from the fact that
these geometrical objects look like a bow, string, and arrow, respectively. Denoting them by
c, j , and s, the expression for the arc given by Nīlakaṇṭha may be written as

c �

s�
1 C

1

3

�
s2 C j 2: (17)

The proof of the above equation which has been discussed in detail by Sarasvati Amma [29,

pp. 179–182] involves a summation of an infinite geometric series given by (19).

Figure 2

Arc-length in terms of jyā and śara.

The question that Nīlakaṇṭha poses as he commences his detailed discussion on the
sum of geometric series is very important and pertinent to the current discussion. In fact,
this is a general question that arises quite naturally whenever one encounters the sum of an
infinite series [1, p. 106]:

कथं पुनः तावदवे वधर्ते तावڙधर्ते च ?
kathaṃ punaḥ tāvadeva vardhate tāvadvardhate ca ?

How does one know that [the sum of the series] increases only up to that [limiting
value] and that it certainly increases up to that [limiting value]?
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Proceeding to answer the above question, Nīlakaṇṭha first states the general result

a

��
1

r

�
C

�
1

r

�2

C

�
1

r

�3

C � � �

�
D

a

r � 1
: (18)

Here, the left-hand side is an infinite geometric series with the successive terms
being obtained by dividing by a common divisor, r , known as cheda, whose value is assumed
to be greater than 1. He further notes that this result is best demonstrated by considering a
particular case, say a D 1 and r D 4. In his own words [1, pp. 106–107]:

उՊते — एवं यः तु߰Ճेदपरभागपरޮरायाः अनۖायाः अࣺप संयोगः, तࡺ
अनۖानामࣺप क߾मानࡺ योगࡺ आښावयࣺवनः परޮरांशՃेदात्
एकोनՃेदांशसां޳ सवर्त्र समानमेव। तښथा — चतुरंशपरޮरायामेव तावत् प्रथमं
प्रࣻतपाښते।
ucyate — evaṃ yaḥ tulyacchedaparabhāgaparamparāyāḥ anantāyāḥ api
saṃyogaḥ, tasya anantānāmapi kalpyamānasya yogasya ādyāvayavinaḥ param-
parāṃśacchedāt ekonacchedāṃśasāmyaṃ sarvatra samānameva। tadyathā —
caturaṃśaparamparāyāmeva tāvat prathamaṃ pratipādyate।
It is being explained. Thus, in an infinite (ananta) geometrical series
(tulyaccheda-parabhāga-paramparā)11 the sum of all the infinite number of terms
considered will always be equal to the value obtained by dividing by a factor
which is one less than the common factor of the series. That this is so will be
demonstrated by first considering the series obtained with one-fourth (caturaṃśa-
paramparā).

What is intended to be demonstrated is��
1

4

�
C

�
1

4

�2

C

�
1

4

�3

C � � �

�
D

1

3
: (19)

It is noted that one-fourth and one-third are the only terms appearing in the above equation.
Nīlakaṇṭha first defines these numbers in terms of one-twelfth of the multiplier a referred to
by the word rāśi. For the sake of simplicity, we take the rāśi to be unity:

3 �
1

12
D

1

4
I 4 �

1

12
D

1

3
: (20)

Having defined them, Nīlakaṇṭha first obtains the sequence of results:
1

3
D

1

4
C

1

.4 � 3/
;

1

.4 � 3/
D

1

.4 � 4/
C

1

.4 � 4 � 3/
;

1

.4 � 4 � 3/
D

1

.4 � 4 � 4/
C

1

.4 � 4 � 4 � 3/
;

11 This compound word that has been coined in Sanskrit for the geometric series is very cute
and merits attention. It literally means “A series of terms (paramparā) in which the succes-
sive ones (parabhāga) are obtained by the same divisor (tulyaccheda) [as the previous].”
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and so on, which leads to the general result

1

3
�

�
1

4
C

�
1

4

�2

C � � � C

�
1

4

�n�
D

�
1

4

�n�
1

3

�
: (21)

Nīlakaṇṭha then goes on to present the following crucial argument to derive the sum of the
infinite geometric series: As we sum more terms, the difference between 1

3
and sum of powers

of 1
4

(as given by the right-hand side of the above equation) becomes extremely small, but
never zero. Only when we take all the terms of the infinite series together, do we obtain the
equality

1

4
C

�
1

4

�2

C � � � C

�
1

4

�n

C � � � D
1

3
: (22)

3.2. Derivation of binomial series expansion
The text Yuktibhāṣā presents a very interesting derivation of the binomial series for

.1 C x/�1 by making iterative substitutions in a simple algebraic identity. The method given
here may be summarized as follows:

Consider the product a. c
b
/, where some quantity a is multiplied by the multiplier c,

and divided by the divisor b. Here, a is called guṇya, c the guṇaka and b the hāra, which
are all assumed to be positive integers, with b > c. Now the above product can be rewritten
as

a

�
c

b

�
D a � a

.b � c/

b
: (23)

In the expression a .b�c/
b

of the equation above, if we want to replace the division by b (the
divisor) by division by c (the multiplier), then we have to make a subtractive correction
(called śodhya-phala) which amounts to the following equation:

a
.b � c/

b
D a

.b � c/

c
�

�
a

.b � c/

c
�

.b � c/

b

�
: (24)

Now, in the second term (inside parentheses) if we again replace the division by the divisor
b by the multiplier c, then we have to make a subtractive-correction once again. Proceeding
thus we obtain an alternating series:

a
c

b
D a � a

.b � c/

c
C a

�
.b � c/

c

�2

� � � � C .�1/m�1a

�
.b � c/

c

�m�1

C .�1/ma

�
.b � c/

c

�m

C � � � : (25)

It may be noted that if we set .b�c/
c

D x, then c
b

D
1

.1Cx/
. Hence, the series given by (25) is

none other than the well-known binomial series
a

1 C x
D a � ax C ax2

� � � � C .�1/maxm
C � � � ;

which is known to be convergent for �1 < x < 1.
Regarding the question of termination of the process, both texts, Yuktibhāṣā and

Kriyākramakarī, clearly mention that logically there is no end to the process of generating
śodhya-phalas.
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It is also noted that the process may be terminated after having obtained the desired
accuracy by neglecting the subsequent phalas as their magnitudes become smaller and
smaller. In fact, Kriyākramakarī explicitly mentions that .b � c/ should be smaller than c,
so that the successive phalas become smaller and smaller. In other words, the text, besides
presenting a technique to turn a simple algebraic expression into an infinite series, also states
the condition that would ensure the convergence of the series.

3.3. Estimation of sums of integral powers of natural numbers
The word employed in the Indian mathematical literature for summation is saṅkalita.

Yuktibhāṣā gives a general method of estimating the sums of integral powers of natural num-
bers or samaghāta-saṅkalita.12 The detailed procedure given in the text, which is tantamount
to providing a proof by induction may be outlined as follows. Before proceeding further with
the discussion, a brief note on the notation employed may be useful. We employ S to denote
the sum with a subscript and superscript. The subscript denotes the number of terms that are
being summed and the superscript denotes the nature of the numbers that are being summed.
For the sum of natural numbers, we use (1) as the superscript. For squares of natural num-
bers, we use (2), and so on. Now, the sum of the first n natural numbers may be written
as:

S .1/
n D n C .n � 1/ C � � � C 1

D n C Œn � 1� C Œn � 2� C � � � C
�
n � .n � 2/

�
C

�
n � .n � 1/

�
D n � n �

�
1 C 2 C � � � C .n � 1/

�
: (26)

When n is very large, the quantity to be subtracted from n2 is practically (prāyeṇa) the same
as S

.1/
n , thus leading to the estimate

S .1/
n � n2

� S .1/
n ; or S .1/

n �
n2

2
: (27)

The sum of the squares of the natural numbers up to n may be written as

S .2/
n D n2

C .n � 1/2
C � � � C 12: (28)

It can also easily be shown that

nS .1/
n � S .2/

n D S
.1/
n�1 C S

.1/
n�2 C S

.1/
n�3 C � � � : (29)

For large n, we have already estimated that S
.1/
n �

n2

2
. Thus, for large n, the right-hand side

of (29) can be written as

nS .1/
n � S .2/

n �
.n � 1/2

2
C

.n � 2/2

2
C

.n � 3/2

2
C � � � : (30)

Thus, the excess of nS
.1/
n over S

.2/
n is essentially S

.2/
n

2
for large n, so that we obtain

nS .1/
n � S .2/

n �
S

.2/
n

2
: (31)

12 The compound sama-ghāta in this context means the product of a number with itself.
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Again, using the earlier estimate for S
.1/
n , we obtain the result

S .2/
n �

n3

3
: (32)

Proceeding along these lines, Yuktibhāṣā presents an argument essentially based on mathe-
matical induction that the summation of the kth powers of natural numbers for a large n may
be written as

S .k/
n �

nkC1

.k C 1/
: (33)

3.4. Mādhava’s infinite series for π
The infinite series for � attributed to Mādhava is cited by Śaṅkara Vāriyar in his

commentaries Kriyākramakarī and Yuktidīpikā. Mādhava’s quoted verse runs as follows [19,

p. 379]:

ࠖासे वािरࣾधࣺनहते रूपहृते ࠖाससागराࣾभहते।
ࣻत्रशराࣺदࣺवषमसԕाभѱमृणं ंࡼ पृथक् क्रमात् कुयЄत्॥
vyāse vāridhinihate rūpahṛte vyāsasāgarābhihate।
triśarādiviṣamasaṅkhyābhaktamṛṇaṃ svaṃ pṛthak kramāt kuryāt॥
The diameter multiplied by four and divided by unity [is found and saved]. Again
the products of the diameter and four are divided by the odd numbers (viṣama-
saṅkhyā) three, five, etc., and the results are subtracted and added sequentially [to
the earlier result saved].

The words paridhi and vyāsa in the above verse refer to the circumference (C ) and diam-
eter (D), respectively. Hence the content of the verse above, expressed in the form of an
equation, becomes

C D
4D

1
�

4D

3
C

4D

5
�

4D

7
C � � � : (34)

Rearranging the terms and using the notation � , we get
�

4
D 1 �

1

3
C

1

5
�

1

7
C � � � : (35)

We shall now present the derivation of the above result as outlined in Yuktibhāṣā
of Jyeṣṭhadeva and Kriyākramakarī of Śaṅkara Vāriyar. For this purpose, let us consider
the quadrant OP0PnA of the square circumscribing the given circle (see Figure 3). Let r

be the radius of the circle. Divide the side P0Pn.D r/ into n equal parts (n large). Then
P0Pi (i D 1; 2; : : : ; n) are the bhujās (sides) and ki D OPi are the karṇas (hypotenuses) of
the triangle to be conceived of. The points of intersection of these karṇas and the circle are
marked as Ai s.

It is straightforward to see that the bhujās P0Pi , the karṇas ki , and the East–West
line OP0 form right-angled triangles. Hence we have the relation

k2
i D r2

C

�
ir

n

�2

: (36)
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Figure 3

Geometrical construction used in the proof of the infinite series for � .

Considering two successive karṇas, and the pairs of similar triangles OPi�1Ci and
OAi�1Bi , and Pi�1Ci Pi and OP0Pi , it can be shown that the length of the segment Ai�1Bi

is given by

Ai�1Bi D

�
r

n

��
r2

ki�1ki

�
: (37)

Now the text presents the crucial argument that, when n is large, the Rsines Ai�1Bi can be
taken as the arc-bits Ai�1Ai themselves.

पिरࣾधखؓࡺ अधर्իा पिरۀशं एव।
paridhikhaṇḍasya ardhajyā paridhyaṃśa eva।
The Rsines (ardhajyā) corresponding to the arc-bits (paridhikhaṇḍa) are essen-
tially the arc-bits themselves.

Recalling that A0 will merge with P0, we can easily see that
nX

iD1

Ai�1Ai D
C

8
: (38)

Thus, one-eighth of the circumference of the circle can be written as the sum of the
contributions made by the individual segment Ai�1Bi given by (37). That is,

C

8
�

�
r

n

���
r2

k0k1

�
C

�
r2

k1k2

�
C

�
r2

k2k3

�
C � � � C

�
r2

kn�1kn

��
: (39)
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It is further argued that the denominators may be replaced by the square of either of the
karṇas since the difference is negligible. Hence we obtain:

C

8
D

nX
iD1

r

n

�
r2

k2
i

�
D

nX
iD1

�
r

n

��
r2

r2 C . ir
n

/2

�
D

nX
iD1

�
r

n
�

r

n

�
. ir

n
/2

r2

�
C

r

n

�
. ir

n
/2

r2

�2

� � � �

�
: (40)

In the series expression for the circumference given above, factoring out powers of r
n

, the
sums involved are the even powers of the natural numbers. Now, recalling the estimates that
were obtained earlier (33) for these sums when n is large, we arrive at the result (35), which
was rediscovered by Gregory and Leibniz almost three centuries later.

3.5. Derivation of end-correction terms (antya-saṃskāra)
It is well known that the series given by (35) for �

4
is an extremely slowly converging

series. Mādhava seems to have found an ingenious way to circumvent this problem with a
technique known as antya-saṃskāra. The nomenclature stems from the fact that a correction
(saṃskāra) is applied towards the end (anta) of the series after we terminate it, by considering
only a certain number of terms from the beginning. We can, of course, terminate the series
at any term we desire, provided we find a correction 1

ap
to be applied, that happens to be a

good approximation for the rest of the truncated terms in the series. This seems to have been
the thought process that has gone in in discovering this antya-saṃskāra technique.

Suppose we terminate the series after the term 1
p

and consider applying the correc-
tion term 1

ap
, then

�

4
D 1 �

1

3
C

1

5
�

1

7
C � � � C .�1/

p�3
2

1

p � 2
C .�1/

p�1
2

1

p
C .�1/

pC1
2

1

ap

: (41)

Three successive approximations to the correction divisor ap given by Mādhava may be
expressed as:

ap.1/ D 2.p C 2/;

ap.2/ D .2p C 2/ C
4

.2p C 2/
;

ap.3/ D .2p C 2/ C
4

2p C 2 C
16

2pC2

:

(42)

Yuktibhāṣā contains a detailed discussion on how these correction terms of succes-
sive orders are arrived at. While the discussion in the text goes only up to the three terms as
above, presumably because the expressions become increasingly cumbersome, the idea that
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the partial quotients of the continued fraction

.2p C 2/ C
22

.2p C 2/ C
42

.2p C 2/ C
62

.2p C 2/ C � � �

serve as correction factors to higher and higher orders is seen to be inherently present in the
reasoning. A graph depicting the variation of error in the estimate of � using the three suc-
cessive end-corrections by truncating the series at different values of p is shown in Figure 4.
It may be noted that, when we use the third-order end-correction, by just considering about
25 terms in the series, we are able to obtain the � value correct to 10 decimal places.

Figure 4

Graph depicting the accuracy that is obtained in estimating the value of � by truncating the series at different
values of p and employing the three corrections given by (42).

The following accurate value of � (correct to 11 decimal places), given by Mād-
hava, has been cited by Nīlakaṇṭha in his Āryabhaṭīya-bhāṣya and by Śaṅkara Vāriyar in his
Kriyākramakarī:13

13 [1, p. 42], comm. on Gaṇitapāda verse 10; [19, p. 377].
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ࣺवबुधनेत्रगजाࣹहहुताशनࣻत्रगुणवेदभवारणबाहवः।
नवࣺनखवर्ࣻमते वृࣻतࣺवࡰरे पिरࣾधमानࣻमदं जगदुबुर्धाः॥
vibudhanetragajāhihutāśanatriguṇavedabhavāraṇabāhavaḥ।
navanikharvamite vṛtivistare paridhimānamidaṃ jagadurbudhāḥ॥

The � value given above is

� �
2827433388233

9 � 1011
D 3:141592653592 : : : (43)

The 13-digit number appearing in the numerator has been specified using object-numeral
(bhūta-saṅkhyā) system, whereas the denominator is specified by word numerals.14

4. Historiography of the inception of calculus in India

4.1. Brief note on Charles Whish and his collections
Charles Matthew Whish (1794–1833), as noted earlier, was instrumental in first

bringing to the notice of modern mathematical scholarship the achievements of the Kerala
School through his historic paper that got posthumously published in TRAS (1934) [36].
The fact that Whish had discovered them more than a decade before the paper got published
is evident from the correspondence between John Warren and George Hyne that has been
noted down by the former in his Kālasaṅkalita [35]. It may also be mentioned here that the
collection of manuscripts that Whish had made—which the author of this paper had an occa-
sion to look at—amply demonstrates the fact that he was interested not only in astronomy
and mathematics, but also in a wide variety of topics that includes vedic literature, itihāsas
and purāṇas. Fortunately, these manuscripts were deposited in the Royal Asiatic Society of
Great Britain and Ireland in July 1836 by his brother, and are still well preserved in the Royal
Asiatic Society, London.

The personal notes (see Figure 5) found in various manuscripts in Whish’s collection
also reveal that during his stay in South Malabar, he had got in touch with several scholars,
and read some of the Sanskrit and Malayalam texts with them. Given his abiding interest
to acquire scholarship in a variety of fields by familiarizing with the culture, language, and
knowledge systems of India—and also share it back with his counterparts in Europe—it is
highly unfortunate that Charles Whish suffered a premature death in 1833 at the age of 38
years.15

14 In the bhūta-saṅkhyā system, vibudha = 33, netra = 2, gaja = 8, ahi = 8, hutāśana = 3,
tri = 3, guṇa = 3, veda = 4, bha = 27, vāraṇa = 8, bāhu = 2. In word numerals, nikharva
represents 1011. Hence, nava-nikharva = 9 � 1011.

15 The list of European tombs in the district of Cuddapah prepared by C. H. Mounsey in
1893 mentions: “Sacred to the memory of C. M. Whish, Esquire of the Civil Service, who
departed this life on the 14th April 1833, aged 38 years.”
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Figure 5

Excerpts from Whish’s manuscript showing the verses in Malayalam along with his metrical markings and a
portion from his mathematical notes in English (Courtesy: RAS, London).

4.2. About Kālasaṅkalita
Kālasaṅkalita, published in 1825 by John Warren who was the director of the

Madras observatory for sometime, is a compendium of the different methods employed
by the pañcāṅga-makers for reckoning time. The main purpose of preparing this text was
to facilitate a comparison of the European and Indian chronologies, as is mentioned in the
preface: “… their chief object being merely to explain the various modes according to which
the Natives of India divide time, in these southern provinces, and to render their Kalendars
intelligible. These may therefore be properly considered rather as instruments contrived for
Chronological purposes, than as Astronomical Tracts.”

It turns out that the text is useful in several other respects as well, especially from
a historical perspective. Among other things, the one which is of particular interest to us in
this paper is the exchange of ideas that took place among the three civil servants of the East
India Company, namely, Warren, Whish, and Hyne, particularly with regard to the invention
of the infinite series expansion by the “Natives.”

4.3. Extracts from the exchanges between Whish, Hyne, and Warren
In the Second Memoir of Kālasaṅkalita on the Hindu Lunisolar year, before com-

mencing his discussion on śaṇku16 and the diurnal problems associated with it, John Warren
notes:

16 The term śaṇku refers to a very simple contrivance, yet a powerful tool that has been exten-
sively employed by Indian astronomers – right from the period of the Śulvasūtras (c. 800
BCE) – to carry out a variety of experiments related to shadow measurements.
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Before entering into the resolution of the Problems which depend on the length of
the Meridian shadow, it is proper to enquire …
Of their manner of resolving geometrically the ratio of the diameter to the circum-
ference of a circle, I never saw any Indian demonstration: the common opinion,
however, is that they approximate it in the manner of the ancients, by exhaustion;
that is, by means of inscribed and circumscribed Polygons. However, a Native
Astronomer who was a perfect stranger to European Geometry, gave me the well-
known series 1 �

1
3

C
1
5

C � � � . This person reduced the five first terms of the series
before me, which he called Bagah Anoobanda, or Bagah Apovacha; to shew that
he understood its use. This proves at least that the Hindus are not ignorant of the
doctrine of series …

This passage clearly indicates that John Warren is confronting a dilemma: on the one
hand, he has met “a Native Astronomer who was a perfect stranger to European Geometry”
giving the well-known series 1 �

1
3

C
1
5

C � � � and, on the other hand, “he never saw any
Indian demonstration” of the series. To the above passage, Warren appends a note where he
mentions:

I owe the following note to Mr. Hyne’s favor: “The Hindus never invented the
series; it was communicated with many others, by Europeans, to some learned
Natives in modern times. Mr. Whish sent a list of the various methods of demon-
strating the ratio of the diameter and circumference of a Circle employed by the
Hindus to the literary society, being impressed with the notion that they were the
inventors. I requested him to make further inquiries, and his reply was that he had
reasons to believe them entirely modern and derived from Europeans, observing
that not one of those who used the Rules could demonstrate them. Indeed, the
pretensions of the Hindus to such a knowledge of geometry, is too ridiculous to
deserve refutation.” I join in substance Mr. Hyne’s opinion, but do not admit that
the circumstance that none of the Sastras mentioned by Mr. Whish, who used the
series could demonstrate them, would alone be conclusive.

John Warren returns to this issue in “Fragments II” attached at the end of his treatise
Kālasaṅkalita, entitled “On certain infinite Series collected in different parts of India, by
various Gentlemen, from Native Astronomers.”— Communicated by George Hyne, Esq. of
the H. C.’s Medical Service, which we reproduce below:

“MY DEAR SIR,
I have great pleasure in communicating the Series, to which I alluded …

C D 4D

�
1 �

1

3
C

1

5
� � � �

�
; (44)

C D
p

12D2 �

p
12D2

3 � 3
C

p
12D2

32 � 5
�

p
12D2

33 � 7
C � � � ; (45)
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C D 2D C
4D

.22 � 1/
�

4D

.42 � 1/
C

4D

.62 � 1/
� � � � ; (46)

C D 8D

�
1

.22 � 1/
C

1

.62 � 1/
C

1

.102 � 1/
C � � �

�
; (47)

C D 8D

�
1

2
�

1

.42 � 1/
�

1

.82 � 1/
�

1

.122 � 1/
� � � �

�
; (48)

C D 3D C
4D

.33 � 3/
�

4D

.53 � 5/
C

4D

.73 � 7/
� � � � ; (49)

C D 16D

�
1

15 C 4:1
�

1

35 C 4:3
C

1

55 C 4:5
� � � �

�
: (50)

I am, my dear Sir, most sincerely, your’s,
MADRAS, 17th August 1825. G. HYNE.”

Based on the nature of exchanges recorded by Warren in 1825, it is quite clear that:

1. Whish was convinced that the infinite series were discovered by the “Natives.”

2. Hyne was convinced that the infinite series were NOT discovered by the
“Natives” but was only borrowed, and that the Hindus were merely pretend-
ing as originators of the series.

3. Warren decides to go with the opinion of Hyne, though initially he felt that the
latter’s argument is not “conclusive.”

Under such circumstances, with a lot of communication back and forth, one could
only imagine how challenging it would have been for Whish17 to swim against the current,
and place on record his own understanding regarding the knowledge of the infinite series, or
of their demonstration in the Indian astronomical tradition. The mere fact the paper authored
by him in 1820s got accepted for publication in the 1830s posthumously, stands testimony
to his courage, perseverance, assiduity, and tenacity with which he would wear down his
opponents.

One of the remarkable statements in the paper of Whish that is of particular interest
to us in the present context is: “A further account of the Yucti-Bhāshā, the demonstrations
of the rules for the quadrature of the circle by infinite series, with the series for the sines,
cosines, and their demonstrations, will be given in a separate paper.” Unfortunately, Whish
did not survive to publish this paper with demonstrations from Yuktibhāṣā, which could
have silenced all those who doubted whether these series listed by them were discovered by
Indians.

17 It may also be recalled that Whish was hardly 30-year old in 1825, whereas George Hyne
and Warren were seniors. Warren was the director of Madras Observatory around 1805
and Hyne was a senior member of Madras Literary Society who was appointed as the first
Secretary of the Committee of Public Instruction by the Madras Government.
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More striking and intriguing development connected with Whish’s paper than what
is narrated above, is the kind of consensus that seems to have emerged among the European
indologists and historians of mathematics and astronomy to undermine and suppress it for
almost a hundred years since its publication in 1834. Either the work itself was not referenced
in their writings, or even if it were, some of the well-established mathematicians, such as
Augustus De Morgan and scholar administrators such as Charles P. Brown dismissed it—far
more strongly than was done by Hyne—by castigating it as “hoax” and “forgery” [11], [6,

pp. 48–49].
Not providing reference to this paper of Whish on the contributions of the Ker-

ala School, or discussing its contents, is certainly not out of ignorance, which is perfectly
understandable. But strangely it seems to be a volitional act! See, for instance, the scholarly
monograph of Geroge Thibaut (in German) on Indian Astronomy, Astrology, and Mathemat-
ics [34, p. 2] which makes note of 1827 article of Whish, on the Greek origin of the Hindu
Zodiac. However, it mysteriously fails to mention this 1934 paper of Whish, though the paper
is germane to the subject of his discussion. We present below a clip (Figure 6) of the relevant
section from Thibaut’s volume, along with a concise translation (done with the help Google).

Figure 6

A clip of the relevant section from Thibaut’s volume

J. WARREN’S work entitled Kālasaṅkalita, which contains a wealth of instruc-
tion on calendar and chronological, and generally astronomical, calculations,
especially according to the South Indian methods. A treatise by C. M. WHISH,
published in Madras in 1827, is the first to delve into the probable influence of
Greek astronomy and astrology on India.

Similarly, the popular translation of Sūryasiddhānta by Ebenezer Burgess [7, p. 174],
and the review article by John Burgess of the European studies of Indian astronomy in the
18th and 19th centuries [8, pp. 746–750] do not refer to the 1934 paper of Whish while they
take note of his other contributions.

Furthermore, David Eugene Smith (1860–1944), in his seminal two-volume history
of mathematics completed in 1925, simply refers to the article of Whish, but does not touch
upon its content except for noting that it deals with Indian values for � . Thus we find an
interesting period of almost a century in European historiography where either both the title
and the content, or at least the content of Whish’s article remained an untouchable!

Fortunately, the references given by David Smith [31, p. 309] caught the attention of
the renowned historian of Indian mathematics, Bibhutibhusan Datta, who drew attention to
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the various infinite series mentioned in Whish’s article in an article published in 1926 [10].
This was followed a decade later by Datta’s colleague, Avadesh Narayan Singh, who referred
to the various manuscripts of the Kerala texts which discuss these infinite series [30]. And the
next decade finally saw the publication of a series of articles by C. T. Rajagopal and his col-
laborators and the edition of the mathematics part of Yuktibhāṣā by Ramavarma Thampuran
and Akhileswara Ayyar (for details, please, see [22,23,25,26,28]).

5. Concluding remarks

It is quite evident from the above mathematical and historical discussions that the
mathematicians of the Kerala School, around the 14th century, had clearly mastered the
technique of handling the infinitesimal, the infinite and the notion of limit—the three pil-
lars on which the edifice of calculus rests upon. The context and purpose for which the
Kerala mathematicians developed these techniques are different from those in which they
got developed in Europe a couple of centuries later. It must also be mentioned here that
the Kerala mathematicians had restricted their discussions to the quadrature of a circle and
certain trigonometric functions.18 However, their mathematical formulation of the problem
involving the “infinitesimally” small and summing up the “infinite” number of the resulting
infinitesimal contributions, along with a clear understanding of the mathematical subtleties
involved in it, are not in any way fundamentally different from the way it would be formulated
or understood today.

While there were a number of European mathematicians and indologists who
expressed their appreciations for the contributions made by Indians, the historiography cap-
tured in Section 4, in no uncertain terms reveals that there were many others who promulgated
their views and tried to suppress the discovery of Kerala mathematicians, by brazenly dis-
counting their work.19 The cascading effect of it has resulted in some well-known authors
producing books even in 1930s—almost a century after the publication of the Whish’s his-
toric paper—containing descriptions such as “… the Hindus may have inherited some of the
bare facts of Greek science, but not the Greek critical acumen. Fools rush in where angels
fear to tread [9]20 …” that are quite misleading, derailing, and damaging. It is perhaps a
fitting tribute to Whish that today at least most historians of mathematics are aware of this
“neglected chapter” in the history of mathematics. For this reason, the following statement
by David Mumford is quite relevant [24]:

It is high time that the full story of Indian mathematics from Vedic times through
1600 became generally known. I am not minimizing the genius of the Greeks and

18 The mathematicians of Europe, however, took a different approach to the subject, by con-
sidering an arbitrary curve for analysis, and by providing formal definitions and generalized
treatment to the topic.

19 The episode essentially reminds us of the important lesson: if we look through a malicious
goggle, then even the genuine narratives may sound to be an elaborate hoax!

20 Quoted by A. A. K. Ayyangar in his article [3].

5809 The history and historiography of the discovery of calculus in India



their wonderful invention of pure mathematics, but other peoples have been doing
math in different ways, and they have often attained the same goals independently.
Rigorous mathematics in the Greek style should not be seen as the only way to
gain mathematical knowledge.
… the muse of mathematics can be wooed in many different ways and her secrets
teased out of her. And so they were in India …

Apart from the topics discussed in the present article, several other ideas of calcu-
lus seem to have been employed by Indian astronomers in their studies related to planetary
motion. For instance, one of the verses in the second chapter of Tantrasaṅgraha deals with
the derivative of the inverse sine function.21 We would also like to refer the reader to the lit-
erature for the very interesting proof of the sine and cosine series given in the Yuktibhāṣā. As
has been remarked recently by Divakaran [15, p. 335] that, unlike the derivation that was given
by Newton, which involved “guessing” successive terms “from their form,” the Yuktibhāṣā
approach of “integrating the difference/differential equation for sine and cosine is entirely
different and very modern”, which has also been briefly touched upon by Mumford in his
article cited above.

For most of us who have got trained completely in the modern scheme of educa-
tion, it may be hard to imagine doing mathematics without the “luxury” of expressing things
“neatly” in symbolic forms. It is equally hard to think of expressing power series for trigono-
metric functions, derivatives of functions, and the like, purely in metrical forms. But that
is how knowledge seems to have been preserved and handed down from generation to gen-
eration in India for millennia starting from Vedic age till the recent past. It only proves the
point: equations may be handy but not essential; notations may be useful, but not indispens-
able. Formal definitions and structures are certainly valuable and helpful, but the absence of
them does not inhibit or stagnate the birth and development of mathematical ideas. After all,
mathematics is mathematics irrespective of how, where, and why it is practiced!
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