
Abstract

A C �-algebra satisfies the Universal Coefficient Theorem (UCT) of Rosenberg and
Schochet if it is equivalent in Kasparov’s KK-theory to a commutative C �-algebra.
This paper is motivated by the problem of establishing the range of validity of the
UCT, and in particular, whether the UCT holds for all nuclear C �-algebras.

We introduce the idea of a C �-algebra that “decomposes” over a class C of C �-
algebras. Roughly, this means that locally there are approximately central elements
that approximately cut the C �-algebra into two C �-subalgebras from C that have
well-behaved intersection. We show that if a C �-algebra decomposes over the class
of nuclear, UCT C �-algebras, then it satisfies the UCT. The argument is based on a
Mayer–Vietoris principle in the framework of controlled KK-theory; the latter was
introduced by the authors in an earlier work. Nuclearity is used via Kasparov’s Hilbert
module version of Voiculescu’s theorem, and Haagerup’s theorem that nuclear C �-
algebras are amenable.

We say that a C �-algebra has finite complexity if it is in the smallest class of
C �-algebras containing the finite-dimensional C �-algebras, and closed under decom-
posability; our main result implies that all C �-algebras in this class satisfy the UCT.
The class of C �-algebras with finite complexity is large, and comes with an ordinal-
number invariant measuring the complexity level. We conjecture that a C �-algebra
of finite nuclear dimension and real rank zero has finite complexity; this (and sev-
eral other related conjectures) would imply the UCT for all separable nuclear C �-
algebras. We also give new local formulations of the UCT, and some other necessary
and sufficient conditions for the UCT to hold for all nuclear C �-algebras.
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