Chapter 1

Introduction

Our aim in this memoir is to present some new techniques to establish the Universal
Coefficient Theorem in C *-algebra K-theory, and some new necessary and sufficient
conditions for the Universal Coefficient Theorem to hold for all nuclear C *-algebras.

Unless otherwise stated, anything in this introduction called A or B is a separable
C*-algebra.

1.1 The universal coefficient theorem

A C*-algebra A satisfies the Universal Coefficient Theorem (UCT) of Rosenberg and
Schochet [55] if for any C *-algebra B, there is a canonical short exact sequence

0 — Ext(Kx(4), K+(B)) — KK(A, B) — Hom(Kx(A), K+ (B)) — 0.

Equivalently (see [55, p. 456] or [60, Proposition 5.2]), A satisfies the UCT if it is
K K -equivalent to a commutative C *-algebra.

The UCT is known to hold for a large class of C *-algebras. The fundamental
examples are the C *-algebras in the bootstrap class N . This is the smallest collec-
tion of separable, nuclear C *-algebras that contains all type I C *-algebras, and that
is closed under the following operations: extensions; stable isomorphisms; inductive
limits; and crossed products by R and Z. Rosenberg and Schochet [55] showed that
any C*-algebra in N satisfies the UCT. Another important class of examples was
established by Tu in [64, Proposition 10.7]; building on the work of Higson and Kas-
parov [35] on the Baum—Connes conjecture for a-T-menable groups, Tu showed that
the groupoid' C *-algebra of any a-T-menable groupoid satisfies the UCT. In particu-
lar, Tu’s work applies to the groupoid C *-algebras of amenable groupoids.

There has been other significant work giving sufficient conditions for the UCT
to hold, and in some cases also necessary conditions as well as the work mentioned
already, one has for example [60, Proposition 5.2], [53, Corollary 8.4.6], [21], [43,
Remark 2.17], [6, Theorem 4.17], [4], and [5]. Nonetheless, the bootstrap class and
the class of C *-algebras of a-T-menable groupoids, which are defined in terms of
global properties of the C*-algebras involved, remain the most important classes of
C *-algebras known to satisfy the UCT.

To be more precise, we need standard assumptions so that the groupoid C*-algebra is
defined and separable. Here, appropriate assumptions are that the groupoid is locally compact,
Hausdorff, and second countable, and that it admits a Haar system.
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On the other hand, Skandalis [60, p. 571] has shown? that there are C *-algebras
that do not satisfy the UCT. Skandalis’s examples are quite concrete; they are reduced
group C *-algebras of countably infinite hyperbolic groups with property (T), and
in particular are exact [44, Section 6.E]. Looking to more exotic examples, failures
of exactness can also be used to produce non-UCT C *-algebras; see for example
[14, Remark 4.3].

Despite these counterexamples, there are no known nuclear C *-algebras that do
not satisfy the UCT. Whether or not the UCT holds for all nuclear C*-algebras is
a particularly important open problem. One reason for this is the spectacular recent
progress (see for example [11,23,24,26,27,42,50,63]) in the Elliott program [22]
to classify simple, separable, nuclear C *-algebras by K-theoretic invariants. Estab-
lishing the range of validity of the UCT is now the only barrier to getting the “best
possible” classification result in this setting.

On the other hand, work inspired by the Elliott program has led to recent, and
again spectacular, success in the general structure theory of nuclear C *-algebras,
including the recent solution of a large part of the Toms—Winter conjecture [12, 13].
Our motivation in the current paper is to try to bridge the gap between properties
that are relevant in this structure theory — in particular the theory of nuclear dimen-
sion [70] introduced by Winter and Zacharias — and properties that imply the UCT.
In particular, our aim is to give local conditions that imply the UCT, in contrast to
the global conditions from the work of Rosenberg and Schochet [55] and Tu [64]
mentioned above.

1.2 Decompositions and the main theorem

‘We now introduce our sufficient condition for the UCT. For the statement below, if
X is a metric space, S is a subset of X, x € X, and ¢ > 0 we write “x €, S” if there
exists s € S with d(x, s) < e.

Definition 1.1. Let € be a class of unital C*-algebras. A unital C*-algebra’® A
decomposes over € if for every finite subset X of the unit ball of A and every ¢ > 0
there exist C *-subalgebras C, D, and E of A that are in the class € and contain 14,
and a positive contraction & € E such that

@ [k, x]|| <eforall x € X;
(i) hxe., C,(1—h)x €, D,and h(1 — h)x €, E forall x € X;
(iii) for all e in the unitball of E, e €, C and e €, D.

2See also the exposition in [34, Sections 6.1 and 6.2].

3Not necessarily separable. For applications to the UCT, only the separable case is relevant,
but the definition admits interesting examples in the non-separable case, and it seems plausible
there will be other applications.
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One should think of C and D as being approximately (unitizations of) ideals in
A such that C + D = A, and E being approximately equal to (the unitization of)
C N D. We will discuss examples later.

Here, is our main theorem, which was inspired by our earlier work on the Kiinneth
formula (in collaboration with Oyono-Oyono) [48, 67], and by our earlier work on
finite dynamical complexity and finite decomposition complexity (in collaboration
with Guentner and Tessera) [29,31]. See Corollary 7.5 below for the proof.

Theorem 1.2. If A is a separable, unital C*-algebra that decomposes over the class
of separable, nuclear C*-algebras that satisfy the UCT, then A is nuclear and satis-
fies the UCT.

One can thus think of decomposability as an addition to the closure operations
that are used in the definition of the bootstrap class N .

1.3 C*-algebras with finite complexity

Following the precedent established by [30] in coarse geometry, the notion of decom-
posability suggests a complexity hierarchy on C *-algebras.

Definition 1.3. Let £ denote a class of unital C *-algebras. For an ordinal number «,
(i) ifa =0, let Do be the class of C*-algebras D that are locally* in D;

(i) if @ > 0, let Dy be the class of C*-algebras that decompose over C*-
algebras in (g, Dp.
A unital C*-algebra D has finite complexity relative to D if it is in D, for some «.
If D is the class of finite-dimensional C *-algebras, we just say that D has finite
complexity.

If a unital C *-algebra D has finite complexity relative to D, the complexity rank
of D relative to D is the smallest o such that D is in D,. If D is the class of finite-
dimensional C*-algebras, we just say the complexity rank of D with no additional
qualifiers.

The following result is equivalent to Theorem 1.2 above. However, we think the
reframing in terms of complexity is quite suggestive.

Theorem 1.4. Let € be a class of separable, unital, nuclear C*-algebras that satisfy
the UCT. Then, the class of separable, unital C*-algebras that have finite complexity
relative to € consists of nuclear C *-algebras that satisfy the UCT.

4A C*-algebra is locally in a class D if for any finite subset X of D and any & > 0 there is
a C™*-subalgebra C of D thatis in £, and such that x €, C forall x € X.
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In particular, every separable C*-algebra of finite complexity is nuclear and sat-
isfies the UCT.

Examples 1.5. We can now give some non-trivial examples of C *-algebras that
decompose over natural, simpler, classes.

(i)  InProposition A.1, we show that for
2<n< oo,

the Cuntz algebra (9, has complexity rank one.

(i) In [31], Guentner and the authors introduced “finite dynamical complex-
ity” for groupoids, which also comes with a notion of complexity rank. In
Proposition A.8 we show that if G is a locally compact, Hausdorff, étale,
principal, ample groupoid with compact base space, then the complexity
rank of C;*(G) is bounded above by that of G. The class of groupoids
with finite dynamical complexity is quite large; see Examples A.9 and A.11
below.

Combining part (ii) above with Theorem 1.4 gives a new proof of the UCT for the
groupoid C *-algebras of a large class of groupoids. However, we cannot claim any
genuinely new examples; this is because the groupoids involved are all amenable, so
the UCT for their C *-algebras also follows from Tu’s theorem [64] (see Remark A.13
below for more details).

1.4 Kirchberg algebras

Generalizing the Cuntz algebras from (i) above, recall that a Kirchberg algebra is a
separable, nuclear C *-algebra A such that for any non-zero a € A, there are b,c € A
such that bac = 14. Kirchberg algebras are closely connected to the UCT problem for
nuclear C *-algebras thanks to the following theorem of Kirchberg; see [53, Corollary
8.4.6] or [43, Remark 2.17].

Theorem 1.6 (Kirchberg). To establish the UCT for all separable, nuclear C*-
algebras, it suffices to establish the UCT for any Kirchberg algebra with zero K-
theory. ]

Theorems 1.4 and 1.6 imply that if any Kirchberg algebra with zero K-theory
has finite complexity, then the UCT holds for all separable, nuclear C*-algebras.
Conversely, if the UCT holds for all separable, nuclear C *-algebras, then from the
Kirchberg—Phillips classification theorem [42, 50] (see also [53, Corollary 8.4.2] for
the precise statement we want here), any unital Kirchberg algebra with zero K-theory
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will be isomorphic to the Cuntz algebra ,, and so will have complexity rank one by
Examples 1.5 (i). We summarize this discussion in the theorem below.

Theorem 1.7. The following are equivalent:
(1)  Any Kirchberg algebra with zero K -theory has complexity rank one.
(i1)  All separable nuclear C*-algebras satisfy the UCT. |

Generalizing Examples 1.5 (i) above Jaime and the first author show in [37] that
a Kirchberg algebra that satisfies the UCT has complexity rank one if and only if its
K group is torsion free, and that moreover any UCT Kirchberg algebra has com-
plexity rank at most two. From Theorem 1.7, if one could prove this without the UCT
assumption, then the UCT for all separable nuclear C *-algebras would follow.

The paper [37] also discusses several other connections between complexity rank,
real rank zero, and nuclear dimension. We will not go into this any more deeply
here; suffice to say that these other connections inspired us to make the following
conjectures.

Conjecture 1.8. Any separable unital C*-algebra with real rank zero and finite nuc-
lear dimension has finite complexity.

Conjecture 1.9. Any separable unital C*-algebra with finite nuclear dimension has
finite complexity relative to the class of subhomogeneous® C *-algebras.

Thanks to Theorem 1.7 and the fact that all Kirchberg algebras have nuclear
dimension one (see [9, Theorem G]) and real rank zero (see [72]), either of these
conjectures implies the UCT for all separable, nuclear C *-algebras. There are many
other related conjectures one could reasonably make that imply the UCT for all nuc-
lear C *-algebras. About the strongest such conjecture would be that any separable,
nuclear C*-algebra with real rank zero has finite complexity®. One of the weakest is
that any Kirchberg algebra with zero K-theory has finite complexity.

1.5 A local reformulation of the UCT

We now discuss the methods that go into the proof of Theorem 1.2.

SRecall that a C *-algebra C is subhomogeneous if there is N € N and a compact Hausdorff
space X such that C is a C*-subalgebra of My (C(X)); see for example [8, Section IV.1.4]
for background.

6Tt would also be natural to drop the real rank zero assumption, and then only ask for finite
complexity relative to the subhomogeneous C *-algebras, or even just relative to the type I
C*-algebras.
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In our earlier work [68], we introduced controlled K K -theory groups KK (X, B)
associated to a C*-algebra B, a finite subset X of a C*-algebra A and a constant
& > 0. Very roughly (we give more details below), one defines these by representing
A in “general position” inside the stable multiplier algebra M(B ® K) of B. The
group KK (X, B) then consists of the “part of the K-theory of B that commutes
with X, up to &”.

To be more precise about this, assume that A and B are C *-algebras, and assume
for simplicity’ that A4 is unital. Let 7 : A — M(B ® X) be a faithful, unital, and
strongly unitally absorbing® representation. Fixing such a representation, identify A
with a diagonal subalgebra of M,(M(B ® X)) via the representation 7 @ 7. For
a finite subset X of the unit ball of A and & > 0, define (X, B) to be the set
of projections in M>(M(B ® X)) such that p-(49) is in M>(B ® K), and such
that ||[p, x]|| < & for all x € X. The associated controlled K K -theory group’ is then
defined to be the set

KK2(X, B) := no(P(X, B))

of path components in #;(X, B). One can show that this group is determined up to
canonical isomorphism by the subset inclusion X C A, by B, and by ¢; it does not
depend on the choice of representation.

Note that if X = &, then KKS (2, B) is canonically isomorphic to the usual
K-theory group Ko(B) (for any ¢); this is what we mean when we say K K.(X, B)
consists of the “part of the K-theory of B that commutes with X, up to &”.

Now, if 0 < § <eandif Y D X are finite subsets of 41, then there is an inclusion
Ps(Y, B) C P.(X, B) that induces a “forget control map”

KK;3(Y, B) — KK:(X, B).

In [68, Theorem 1.1], we showed that there is a short exact “Milnor sequence” relat-
ing the inverse system built from these forget control maps to the usual K K-group
KK(A, B); see Theorem 2.13 below for details. This sequence is an analogue of the
Milnor sequence appearing in Schochet’s work [56, 57]; however, unlike Schochet’s
version, it is local in nature, and does not require the UCT.

Our first goal in this memoir is to use the Milnor sequence to establish the fol-
lowing “local reformulation” of the UCT.

"The theory also works for C *-algebras that are not unital, but the definitions are a little
more complicated.

8Roughly, a strongly unitally absorbing representation is one that satisfies the conclusion
of Voiculescu’s theorem for all representations of A on Hilbert B-modules; for the current
discussion, it is just important that such a representation always exists. See Definition 2.5 below
for details.

%It is canonically a group, with the operation given by Cuntz sum in an appropriate sense.
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Theorem 1.10. Let A be a unital C*-algebra. Then, the following are equivalent:
(1) A satisfies the UCT.

(ii) Let B be a separable C*-algebra such that K«(B) = 0, and let w : A —
M(SB ® K) be a strongly unitally absorbing representation into the stable
multiplier algebra of the suspension of B. Then, for any finite subset X of
A and any & > 0 there exists a finite subset Y of A containing X and § < &
such that the canonical forget control map

KKgs(Y,SB) > KK (X, SB)
Jor the suspension of B is zero.

This is a key ingredient in our main results, but we hope it will prove to be useful
in its own right. Note in particular that there are no assumptions on A other than that
it is separable and unital'’.

There is a technical variation of Theorem 1.10 that applies to nuclear C *-algebras,
and that plays an important role in our arguments. The key point is one of order of
quantifiers; condition (ii) from Theorem 1.10 starts with quantifiers of the form

“YBVYrn VX VedY 36...7.
If A is nuclear, the same statement is true with the order of quantifiers replaced with

“Yed§ VBV VX IY ...”,

i.e., 6 depends only on ¢ and not on any of the other choices involved. To establish
this, we adapt an averaging argument due to Christensen, Sinclair, Smith, White, and
Winter [17, Section 3], which is in turn based on Haagerup’s theorem that nuclear
C *-algebras are amenable [33].

1.6 Strategy for the proof of the main theorem

Assume that A4 is a nuclear, unital C *-algebra that decomposes with respect to the
class of nuclear UCT C *-algebras as in the statement of Theorem 1.2. Assume more-
over that K, (B) = 0. Thanks to Theorem 1.10 above, to establish the UCT for 4 it
suffices to show that for any finite subset X of the unit ball A; of A, and any ¢ > 0
there exist ¥ 2 X and § < & such that the canonical forget control map

KKJ(Y,SB) — KK2(X, SB)

is zero.

10Unitality is not really necessary — we do not do it in this memoir, but similar techniques
establish the result above for non-unital separable C *-algebras, with appropriately reformu-
lated controlled K K-groups.
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Our approach to this is inspired directly by our earlier work with several col-
laborators; this includes the work on the Kiinneth formula of Oyono-Oyono and the
second author [48], and separately by the first author [67]; the work of Guentner and
the authors on the Baum—Connes conjecture for transformation groupoids with finite
dynamical complexity [31]; and the work of Guentner, Tessera, and the second author
on the stable Borel conjecture for groups of finite decomposition complexity [29].
These other papers all use controlled K-theory as opposed to K K-theory; the sem-
inal result along these lines is the second author’s work on the Novikov conjecture
for groups with finite asymptotic dimension [71].

In the current context, we use decomposability and a Mayer—Vietoris argument.
Let y > 0 be a very small constant, which is in particular smaller than &. Then, any
suitably small'' § > 0 will have the following property. Let 4 and C, D, and E be
nuclear UCT algebras as in the definition of decomposability for the given set X and
parameter §. Let Y¢, Yp and Yg be finite subsets of the unit balls C;, D1, and E;
respectively that contain X U {h}, (1 —h)X U {h}and k(1 — h) X U {h} respectively
up to §-error, and so that Y¢ and Yp both contain Yg up to §-error. Let

Y=YcUYpUYgUJX.

Then, one can construct a diagram'? of the form

@
KKY(Y,SB) 8 KK (Yc,SB) ® KK (Yp, SB)

l

KK,(Yg,S2B) —2— KKO(X.SB)
(1.1)

where the vertical arrow is the canonical forget control map. This diagram has the
“exactness” property that if [p] goes to zero under the map

kc ®kp : KKJ(Y,B) > KK (Yc,SB) ® KK3(Yp, SB) (1.2)

then the image of [p] under the forget control map KKJ (Y, SB) — KK2(X, SB) is
in the image of the map

d: KK,(Yg,S?B) — KK2(X, SB). (1.3)

"'The size of y depends linearly on ¢ and the size of § depends linearly on y; the constants
involved are very large.

12The form of this diagram is not new; the basic idea is modeled on [29, Diagram (5.8)]
from the work of the Guentner, Tessera, and the second author on the stable Borel conjecture
for groups with finite decomposition complexity. See also [31, Proposition 7.6] from work of
the Guentner and the authors in a more closely related context.
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However, as K«(B) = 0, if y and § are small enough, one can use Theorem 2.15 (in
the stronger form for nuclear C *-algebras) to choose Y¢c, Yp, and Yg large enough
so that the maps in lines (1.2) and (1.3) are zero. This completes the proof.

In the detailed exposition below we structure the proof to give it as “local” a flavor
as possible, partly as we suspect that the ideas might be useful in other contexts. The
two main “local”(ish) technical results are recorded as Propositions 7.1 and 7.2 below.

The argument above is directly inspired by the classical Mayer—Vietoris principle.
Indeed, assume that C and D are nuclear ideals in A with intersection E, and such
that

A=C+D.

Then, there is'’ an exact Mayer—Vietoris sequence
...— KK°(E,SB) - KK°(A,B) > KK°(C,B) ® KK°(D,B) — --- .

In particular, if the groups at the left and right are zero, then the group in the middle
is also zero. Our analysis of the diagram in line (1.1) is based on a concrete construc-
tion of this classical Mayer—Vietoris sequence that can be adapted to our controlled
setting. The idea has its roots in algebraic K-theory, going back at least as far as
[46, Chapter 2]. Having said this, there is significant work to be done adapting these
classical ideas to the analytic superstructure that we built in [68], and the resulting
formulas and arguments end up being quite different.

Remark 1.11. It would be very interesting to remove the nuclearity hypothesis from
Theorem 1.2, or at least to replace it with something weaker such as exactness. Let
us explain how nuclearity is used in the proof of Theorem 1.2, in the hope that some
reader will see a way around it.

The first use of nuclearity is to show that any nuclear, unital C *-algebra admits
strongly unitally absorbing representations whose restriction to any nuclear, unital
C *-subalgebra is also strongly unitally absorbing; see Corollary 2.7 below. The proof
of this is based on Kasparov’s version of Voiculescu’s theorem for Hilbert modules
[40, Section 7]. It seems plausible from the discussion in Remark 2.8 below that some
form of nuclearity is necessary for this to hold, but we do not know this.

The second place nuclearity is used is via an averaging argument due to Chris-
tensen, Sinclair, Smith, White, and Winter [17, Section 3]; this is applicable to nuc-
lear C *-algebras thanks to Haagerup’s theorem that nuclear C *-algebras are always
amenable [33]. This lets us prove a stronger version of Theorem 1.10; see Corol-
lary 2.22 below. We do not know if this result holds without nuclearity; see Remark
2.19 for a more detailed discussion.

131t is not in the literature as far as we can tell. For nuclear C *-algebras, it can be derived
from the usual long exact sequence in K K-theory using, for example, the argument of [69,
Proposition 2.7.15].
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1.7 Notation and conventions

For a subset S of a metric space X, x € X and ¢ > 0, we write “x €, S if there is
s € § with d(x,s) < e. For elements x, y of a metric space X, we write “x =, y” if
d(x,y) <e.

We write £2 for £2(N). Throughout, the letters A and B are reserved for separable
C *-algebras. The letter C will refer to a possibly non-separable C *-algebra. The unit
ball of C (or a more general normed space) is denoted by C1, its unitization is C T, its
multiplier algebra is M (C), its suspension is SC, and its n-fold suspension is S”C.
We write M,, or M, (C) for the n x n matrices, and M, (C) for the n x n matrices
over a C*-algebra C.

Our conventions on Hilbert modules follow those of Lance [45]. We will write
Hp := {?> ® B for the standard Hilbert B-module, and £p, respectively Kp, as
shorthand for the C*-algebra £(Hp) of adjointable operators on Hp, respectively
the C*-algebra JK (Hpg) of compact operators on Hpg. We will typically identify £p
with the “diagonal subalgebra” 1y, ® £p of M, ® £ = M,(£p). Thus, we might
write “[x, y]” for the commutator of x € £p and y € M,(£p), when it would be
more strictly correct to write something like “[137, ® x, ¥]”.

The symbol “®” always denotes a completed tensor product: either the external
tensor product of Hilbert modules (see [45, Chapter 4] for background on this), or the
minimal tensor product of C *-algebras (see for example [10, Chapter 3]).

We will sometimes write 0, and 1, for the zero matrix and identity matrix of
size n when this seems helpful to avoid confusion, although we will generally omit
the subscripts to avoid clutter. If n < m, we will also use 1, € M,,(C) for the rank
n projection with n ones in the top-left part of the diagonal and zeros elsewhere.
Given an n X n matrix a and an m X m matrix b, a @ b denotes the “block sum”
(n + m) x (n + m) matrix defined by

a O
aEBb.—(O b)'

Finally, K«(A) := K¢(A) & K1(A) denotes the graded K-theory group of a
C*-algebra, and KK*(A, B) := KK°(A, B) ® KK (A, B) the graded K K -theory
group. We will typically just write KK (A, B) instead of KK°(A, B).

1.8 Outline of the paper

Chapter 2 gives our reformulation of the UCT in terms of a concrete vanishing condi-
tion for controlled K K-theory. The key ingredients for this are the Milnor sequence
from [68, Theorem 1.1], and some ideas around the Mittag—Leffler condition from
the theory of inverse limits (see for example [66, Section 3.5]). We also show that
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a stronger vanishing result holds for nuclear, UCT C *-algebras using an averaging
argument of Christensen, Sinclair, Smith, White, and Winter [17, Section 3]; the aver-
aging argument is in turn based on Haagerup’s theorem [33] that nuclearity implies
amenability.

Chapter 3 discusses our controlled K K°-groups. We introduced these in [68],
but we need a technical variation here. This is essentially because in [68] we were
setting up general theory, and for this it is easier to work with projections in a fixed
C*-algebra. In this memoir we are doing computations with concrete algebraic for-
mulas, where it is more convenient to work with general idempotents, and to allow
taking matrix algebras. We will, however, use both versions in this memoir, as we
need to relate our work back here to the general theory of [68]. We also introduce
controlled K K !-groups in a concrete formulation using invertible operators; in our
earlier work [68] we (implicitly) defined controlled K K -groups using suspensions,
but here we also need the more concrete version.

Chapter 4 collects together some technical facts. These are all analogues for
controlled K K-theory of well-known results from K-theory; for example, we prove
“controlled versions” of the statements that homotopic idempotents are similar, and
that similar idempotents are homotopic (up to increasing matrix sizes). Some argu-
ments in this chapter are adapted from the work of Oyono-Oyono and the second
author [47] on controlled K -theory.

Chapter 5 revisits the vanishing conditions of Chapter 2. Using the techniques
of Chapter 4, we reformulate these results in the more flexible setting allowed by
Chapter 3. This gives us the vanishing conditions that are the first main technical
ingredient needed for Theorem 1.2.

Chapter 6 establishes the second main technical ingredient needed for Theorem
1.2. Here, we construct a “Mayer—Vietoris boundary map” for controlled K K -theory,
and prove that it has an exactness property. The construction is an analogue of the
usual index map of operator K-theory (see for example [54, Chapter 9]), although
concrete formulas for the Mayer—Vietoris boundary map unfortunately seem to be
missing from the C *-algebra literature. The formulas we use are instead inspired by
classical formulas from algebraic K-theory [46, Chapter 2], adapted to reflect our
analytic setting.

Finally, in the main body of the paper, Chapter 7 puts everything together and
gives the proofs of Theorem 1.2 and Theorem 1.4. We also include technical “local”
vanishing results that we hope to elucidate the structure of the proof, and might be
useful in other contexts.

The paper concludes with Appendix A, which gives examples of C*-algebras
with finite complexity. We first use a technique of Winter and Zacharias [70, Sec-
tion 7] to show that the Cuntz algebras (9,, with 2 < n < oo have complexity rank
one. We then use our joint work with Guentner on dynamic complexity [31] to show
that ample, principal, étale groupoids with finite dynamical complexity and compact
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base space have C *-algebras of finite complexity; we also get a similar result without
the ampleness assumption if we allow C *-algebras with finite complexity relative to
subhomogeneous C *-algebras.



