
Chapter 2

Reformulating the UCT

In this chapter (as throughout), if B is a separable C �-algebra, then LB and KB are
respectively the adjointable and compact operators on the standard Hilbert B-module
`2 ˝ B .

Our goal in this chapter is to recall the definition of the controlled KK-theory
groups, and then to reformulate the universal coefficient theorem in these terms.

We first recall the definition of the controlled KK-theory groups from [68]; to be
precise, we need the version from [68, Sections A.1 and A.2] that is specific to unital
C �-algebras. We need a definition.

Definition 2.1. Let B be a separable C �-algebra. Choose a unitary isomorphism
`2 Š C2 ˝ `2 ˝ `2, which induces a unitary isomorphism

`2 ˝ B Š .C2
˝ `2 ˝ `2/˝ B

of Hilbert B-modules. With respect to this isomorphism, let e 2LB be the projection
corresponding to

�
1 0
0 0

�
˝ 1`2˝`2˝B . We call e the neutral projection. A subset X of

LB is called large if every x 2X is of the form 1C2˝`2 ˝ y for some y 2L.`2˝B/

with respect to this decomposition.

Definition 2.2. Let B be a separable C �-algebra. Let " > 0, let X be a finite, large,
subset of the unit ball of LB and let e 2 LB be the neutral projection as in Defini-
tion 2.1. Let P".X;B/ consist of those projections p in LB such that

(i) p � e 2KB ; and

(ii) kŒp; x�k < " for all x 2 X .

Define KK".X;B/ to be the set �0.P".X;B// of path components of P".X;B/. We
write Œp� 2 KK".X;B/ for the class of p 2 P".X;B/.

Choose now isometries t1; t2 2 B.`2/ satisfying the Cuntz relation

t1t
�
1 C t2t

�
2 D 1;

and define si WD 1C2 ˝ ti ˝ 1`2˝B 2 LB . Define an operation onKK".X;B/ by the
Cuntz sum

Œp�C Œq� WD Œs1ps
�
1 C s2qs

�
2 �:

The same proof as [68, Lemma A.4] shows that KK".X; B/ is an abelian group,
with identity element given by the class Œe� of the neutral projection.

We finish this section with two ancillary lemmas. The first is extremely well-
known; we include an argument for completeness as we do not know a convenient
reference.
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Lemma 2.3. Let a and b be elements of a unital C �-algebra with b normal. Then,
any z in the spectrum of a is contained within distance ka � bk of the spectrum of b.

Proof. We need to show that if z is further than ka � bk from the spectrum of b, then
a � z is invertible. Indeed, in this case the continuous functional calculus implies that
k.b � z/�1k < ka � bk�1. Hence,

k.a � z/.b � z/�1 � 1k � k.a � z/ � .b � z/kk.b � z/�1k < 1;

whence .a � z/.b � z/�1 is invertible, and so a � z is invertible too.

Lemma 2.4. Let B be a separable C �-algebra, let " > 0, and letX be a finite, large,
subset of the unit ball of LB . With notation as in Definition 2.2, the groupKK".X;B/
is countable.

Proof. As B is separable KB is separable, and so the set P".X;B/ is also separable.
Let S be a countable dense subset of P".X; B/. It suffices to show that the map
S ! KK".X;B/ defined by p 7! Œp� is surjective.

Let p 2 P".X;B/ be arbitrary, and define

ı WD min
²
1

4
." �max

x2X
kŒp; x�k/;

1

2

³
:

Let q 2 S be such that kp � qk < ı, and let pt WD .1 � t /p C tq for t 2 Œ0; 1�.
Then, for each t 2 Œ0; 1�, kpt � pk < ı, so Lemma 2.3 and that pt is a positive
contraction implies that the spectrum pt is contained in Œ0; ı/ [ .1 � ı; 1�. Let �
be the characteristic function of .1

2
;1/. Then, k�.pt / � ptk < ı for all t , whence

k�.pt / � pk < 2ı for all t , from which it follows that kŒ�.pt /; x�k < " for all t and
all x 2X . As pt � e 2KB for all t , it follows from the fact that KB is an ideal in LB

that �.pt / � e 2 KB too. Hence, .�.pt //t2Œ0;1� is a path connecting p and q within
P".X;B/ so Œp� D Œq�, and we are done.

2.1 The general case

We need a special class of representations on Hilbert B-modules, essentially taken
from work of Thomsen [62, Definition 2.2] (see also [68, Definition A.11]). We do
not need the details of the definition below, and only include it for completeness; all
we really need are the facts about existence of such representations in Lemma 2.6
below.

Definition 2.5. Let A be a separable, unital C �-algebra, and let B be a separable
C �-algebra. A representation � W A ! LB is unitally absorbing if for any unital
completely positive map � WA!LB there exists a sequence of isometries .vn/ in LB
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such that kv�n�.a/vn � �.a/k ! 0 as n!1, and such that v�n�.a/vn � �.a/ 2KB

for all n 2 N.
For a representation � WA!LB DL.HB/, let �1 WA!L.H˚1B / be its infinite

amplification, which we identify with a representation �1 W A! LB via a choice of
unitary isomorphism .`2/˚1 Š `2 as in the string of identifications below

L.H˚1B / D L..`2 ˝ B/˚1/ D L..`2/˚1 ˝ B/ Š L.`2 ˝ B/ D LB

(all of the identifications labeled “=” are canonical). A unital representation � W A!
LB is strongly unitally absorbing if there is a unitally absorbing representation

� W A! LB

such that � D �˚1.

Note that a (strongly) unitally absorbing representation is faithful. The following
result is essentially due to Thomsen and Kasparov. Our main use of part (ii) occurs
much later in the paper.

Lemma 2.6. Let A be a separable, unital C �-algebra, and let B be a separable
C �-algebra. Then,

(i) There exists a strongly unitally absorbing representation � W A! LB .

(ii) Assume in addition that A or B is nuclear. Let � W A ! B.`2/ be any
faithful unital representation, let � WB.`2/!LB be the canonical inclusion
arising from the decomposition HB D `2 ˝ B , and let � W A! LB be the
infinite amplification of � ı � . Then, � is strongly unitally absorbing.

Proof. For part (i), Thomsen shows in [62, Theorem 2.4] that a unitally absorbing
representation � W A! LB exists under the given hypotheses. Its infinite amplifica-
tion � is then strongly unitally absorbing.

For part (ii), note first that identifying .� ı �/1 with .� ı .�˚1//1 we may
assume � is the infinite amplification of some faithful unital representation A !
B.`2/. Having made this assumption, note that �.A/\K.`2/D¹0º. In [40, Theorem
5], Kasparov shows that if A is a separable, unital C �-algebra and � W A! B.`2/

is a faithful representation such that �.A/ \K.`2/ D ¹0º, and moreover if either A
or B is nuclear, then the composition � ı � satisfies the condition Thomsen gives in
[62, Theorem 2.1, condition (4)]. Comparing [62, Theorem 2.1] and Definition 2.5,
we see that � ı � is unitally absorbing. Hence, � D .� ı �/˚1 is strongly unitally
absorbing.

The following corollary is immediate from part (ii) of Lemma 2.6.

Corollary 2.7. Let A be a separable, unital, nuclear C �-algebra, and let B be a
separable C �-algebra. Then, there exists a strongly unitally absorbing representation
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� W A! LB such that the restriction of � to any unital, nuclear C �-subalgebra of A
is also strongly unitally absorbing.

Remark 2.8. Corollary 2.7 is one of the two places nuclearity is used in the proof of
Theorem 1.2, so it would be interesting to establish the corollary under some weaker
assumption than nuclearity. The following observation shows that the method we used
to establish Corollary 2.7 cannot extend beyond the nuclear case, however.

Let A be a separable, unital C �-algebra, and let A D B . Let � W A! B.`2/ be
a unital representation, and let � WD � ı � W A ! LA be as in Lemma 2.6 (ii). We
claim that if � is unitally absorbing, then A is nuclear1. Let � W A! LA be the �-
homomorphism a 7! 1`2 ˝ a. If � is unitally absorbing then for any " and finite subset
X of A there is an isometry v 2 LA such that kv��.a/v � �.a/k < " for all a 2 X .
For each n, let pn 2 B.`2/ be the orthogonal projection onto `2.¹1; : : : ; nº/, and let
qn WD pn ˝ 1A 2 LA. Note that q1LAq1 identifies canonically with A, and up to this
identification q1�.a/q1 D a for all a 2 A, so in particular kq1v��.a/vq1 � ak < "
for all a 2 X . As .qn/ converges strictly to the identity in LA, and as q1v 2 KA, we
have moreover that q1v�qn�.a/qnvq1 converges in norm to q1v��.a/v�q1, so there
is n such that kq1v�qn�n.a/qnvq1 � ak < " for all a 2 X . We thus have ucp maps

A
a 7!qn�.a/qn // qn.B.`

2/˝ 1A/qn ŠMn.C/
b 7!q1v

�bvq1 // A

whose composition agrees with the identity on X to within " error. As X and " were
arbitrary, this implies nuclearity of A (see for example [10, Chapter 2]).

To state the main result of [68], we need some more definitions.

Definition 2.9. Let A be a separable, unital C �-algebra, and let B be a separable
C �-algebra. A representation � W A! LB is large if there is a unitally absorbing
representation � W A! LB such that with respect to the choice of isomorphism

`2 ˝ B Š C2
˝ `2 ˝ `2 ˝ B

of Definition 2.1, we have �.a/ D 1C2˝`2 ˝ �.a/ for all a 2 A.

Lemma 2.6 (i) implies that large representations exist for any (separable)A andB .
Note that if � is large in the sense of Definition 2.9 then for any X � A, the subset
�.X/�LB is large in the sense of Definition 2.1. In particular, if we identifyX with
�.X/, the group KK".X;B/ of Definition 2.2 makes sense.

Definition 2.10. Let C be a C �-algebra, and let XC consist of all pairs of the form
.X; "/ where X is a finite subset of C1, and " > 0. Put a partial order on XC by

1The following argument is inspired by [60, Théorème 1.5, Definition 1.6, and Remarque
1.7].
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stipulating that .X; "/ � .Y; ı/ if ı � ", and if for all x 2 X there exists y 2 Y with
kx � yk � 1

2
." � ı/.

A good approximation of C is a cofinal sequence2 ..Xn; "n//
1
nD1 of elements

of XC .

Note that if X � Y and ı � ", then .X; "/ � .Y; ı/; in particular, this implies
that XC is a directed set. Note also that good approximations exist if and only if C is
separable: if ."n/ is a decreasing sequence that tends to zero, and .Xn/ is an increasing
sequence with dense union in C1, then ..Xn; "n//1nD1 is a good approximation; and
if ..Xn; "n//1nD1 is a good approximation, then

S1
nD1Xn is a countable dense subset

of C1.

Definition 2.11. Let B be a separable C �-algebra, and let XLB be the directed set
from Definition 2.10 above for the C �-algebra LB . If .X; "/ � .Y; ı/ and X and Y
are both large in the sense of Definition 2.1, then with notation as in Definition 2.2
there is an inclusion

Pı.Y; B/ � P".X;B/: (2.1)

We call the canonical map

KKı.Y; B/! KK".X;B/

induced by the inclusion in line (2.1) above a forget control map.

We now briefly recall some terminology from homological algebra; see for exam-
ple [66, Section 3.5] or [58, Section 3] for more background on this material3. An
inverse system of abelian groups consists of a sequence of abelian groups and homo-
morphisms

� � �
�n // An

�n�1 // An�1
�n�2 // � � �

�2 // A2
�1 // A1:

Associated to such a system is a homomorphism

� W
Y
n2N

An !
Y
n2N

An; .an/ 7! .�n.anC1//:

The inverse limit, denoted lim
 
An, is defined to be the kernel of id � �, and the lim

 

1-

group, denoted lim
 

1An, is defined to be the cokernel of id � �. Note that if m � n,
there is a canonical homomorphism Am ! An defined as �n ı �nC1 ı � � � ı �m�1.
The inverse system satisfies the Mittag–Leffler condition if for any n there is N � n

2A sequence .sn/1nD1 in a partially ordered set S is cofinal if s1 � s2 � s3 � � � � and if for
all s 2 S there is n such that s � sn.

3Readers interested in a more sophisticated and general treatment can also see [38].
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such that for all m � N , the image of the canonical map Am ! An equals the image
of the canonical map AN ! An.

Proposition 2.12. Let .An/ be an inverse system of abelian groups. If .An/ satisfies
the Mittag–Leffler condition, then lim

 

1An D 0. Conversely, if lim
 

1An D 0 and each
An is countable, then the inverse system satisfies the Mittag–Leffler condition.

Proof. It is well-known that the Mittag–Leffler condition implies vanishing of

lim
 

1An D 0I

see for example [66, Proposition 3.5.7]. The converse in the case of countable groups
follows from [28, Proposition on page 242].

Now, let A be a separable, unital C �-algebra, let B be a separable C �-algebra,
and use a large representation � W A! LB (see Definition 2.9) to identify A with a
C �-subalgebra of LB . Let ..Xn; "n//1nD1 be a good approximation of A as in Defini-
tion 2.10, so the forget control maps of Definition 2.11 form an inverse system

� � � ! KK"n.Xn; B/! KK"n�1.Xn�1; B/! � � � ! KK"1.X1; B/

from which we define lim
 
KK"n.Xn; B/ and lim

 

1KK"n.Xn; B/ as above.
The following is [68, Proposition A.10].

Theorem 2.13. Let A and B be separable C �-algebras with A unital. Let

� W A! LB

be a large representation, and use this to identify A with a C �-subalgebra of LB . Let
..Xn; "n//

1
nD1 be a good approximation for A. Then, there is a short exact sequence

0! lim
 

1KK"n.Xn; SB/! KK.A;B/! lim
 
KK"n.Xn; B/! 0:

We are now almost ready to state and prove our reformulation of the UCT. It
will be convenient to use the following well-known reformulation of the UCT; see
[55, p. 457] or [60, Proposition 5.3] for a proof.

Theorem 2.14. A separable C �-algebra A satisfies the UCT if and only if for any
separable C �-algebra B such that K�.B/ D 0 we have that

KK.A;B/ D 0:

Theorem 2.15. Let A be a separable C �-algebra. The following are equivalent:

(i) A satisfies the UCT.
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(ii) Let B be a separable C �-algebra with K�.B/ D 0. Let

� W A! LSB

be a large representation, and use this to identify A with a C �-subalgebra
of LSB . Then, for any .X; / in the set XA of Definition 2.10, there is
.Z; "/ 2 XA with .X; / � .Z; "/ and so that the forget control map

KK".Z; SB/! KK .X; SB/

of Definition 2.11 is zero.

Proof. Assume first that A satisfies condition (i), and let X , ", B and � be as in
condition (ii). Let ..Xn; "n//1nD1 be a good approximation of A with X1 D X and
"1 D  . As A satisfies the UCT and as K�.B/ D 0, we have KK.A;B/ D 0. Hence,
using Theorem 2.13, lim

 

1KK"n.Xn; SB/ D 0. Lemma 2.4 implies that the groups

KK"n.Xn; SB/ are all countable, whence by Proposition 2.12, the inverse system
.KK"n.Xn; SB//

1
nD1 satisfies the Mittag–Leffler condition. On the other hand, as

A satisfies the UCT and K�.SB/ D 0, we have KK.A; SB/ D 0 by Theorem 2.14.
Hence, by Theorem 2.13 again, lim

 
KK"n.Xn; SB/ D 0, whence the definition of the

inverse limit implies that for any n,\
m�n

Image
�
KK"m.Xm; SB/! KK"n.Xn; SB/

�
D 0:

The Mittag–Leffler condition implies that there is N � n such that\
m�n

Image
�
KK"m.Xm; SB/! KK"n.Xn; SB/

�
D Image

�
KK"N .XN ; SB/! KK"n.Xn; SB/

�
so we may conclude that the forget control map

KK"N .XN ; SB/! KK"n.Xn; SB/

is zero. In particular, such anN exists for nD 1, and we may setZDXN and "D "N .
Conversely, say A satisfies condition (ii). Using Theorem 2.14, it suffices to show

that if B is a separable C �-algebra with K�.B/ D 0, then KK.A; B/ D 0. Let
�2 W A! LS2B (respectively, �3 W A! LS3B ) be a large representation, and use
this to identify A with a C �-subalgebra of LS2B (respectively, LS3B ). Using condi-
tion (ii) we may construct a good approximation ..Xn; "n//1nD1 for A in the sense of
Definition 2.10 such that for any n the maps

KK"nC1.XnC1; S
3B/! KK"n.Xn; S

3B/ (2.2)
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and
KK"nC1.XnC1; S

2B/! KK"n.Xn; S
2B/ (2.3)

are zero. As the maps in line (2.2) are all zero, the inverse system

.KK"n.Xn; S
3B//1nD1

satisfies the Mittag–Leffler condition, whence by Proposition 2.12 we have that

lim
 

1KK"n.Xn; S
3B/ D 0:

On the other hand, the fact that the maps in line (2.3) are all zero and the definition
of the inverse limit immediately imply that lim

 
KK"n.Xn; S

2B/ D 0. Hence, in the
short exact sequence

0! lim
 

1KK"n.Xn; S
3B/! KK.A; S2B/! lim

 
KK"n.Xn; S

2B/! 0

from Theorem 2.13 the left and right groups are zero, whence KK.A; S2B/ D 0.
Hence, by Bott periodicity, KK.A;B/ D 0 as desired.

We include the following remark as the comparison to the existing literature might
help orient some readers; it also gives a sense of why Corollary 2.7 is useful (our main
use of that corollary will come later in the paper).

Remark 2.16. Theorem 2.15 can be used to deduce a weak version of a theorem
of Dadarlat [21, Theorem 1.1]. Dadarlat shows that if A is a separable nuclear C �-
algebra such for any finite subset X of A and any " > 0, one has a UCT subalgebra C
of A such that x 2" C for all x 2 X , then A satisfies the UCT. Theorem 1.2 implies
the special case of Dadarlat’s theorem where the subalgebras C can also be taken
nuclear.

To see this, note first that as a C �-algebra satisfies the UCT (respectively, is
nuclear) if and only if its unitization satisfies the UCT (respectively, is nuclear) by
[55, Proposition 2.3 (a)] (respectively, by [10, Exercise 2.3.5]), we may assume that
A is unital. We aim to establish the condition in Theorem 2.15 (ii). Let then B be
a separable C �-algebra with K�.B/ D 0. Using Corollary 2.7, there exists a large
representation � W A! LSB such that the restriction of � to any unital nuclear C �-
subalgebra of A is also large. Let X be a finite subset of A1, and let " > 0. Let C be
a nuclear, unital, UCT C �-subalgebra of A such that x 2"=5 C for all x 2 X . Let X 0

be a finite subset of C1 such that for each x 2 X there is x0 2 X 0 such that

kx � x0k < 2"=5:

Then, the forget control map

KK"=5.X
0; SB/! KK".X;B/ (2.4)
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of Definition 2.11 is defined. As C satisfies the UCT, and as the restriction of � to C
is also large, condition (ii) from Theorem 2.15 gives a finite subset Y of C1 and ı > 0
such that the forget control map

KKı.Y; SB/! KK"=5.X
0; SB/ (2.5)

is defined and zero. Composing the forget control maps in lines (2.4) and (2.5), we
have established the condition from Theorem 2.15 (ii) for A, and are done.

It would be interesting if one could use these techniques to recover Dadarlat’s
theorem without the extra nuclearity assumption on the UCT subalgebras. This would
seem to require better control over the representations involved; however, compare
Remark 2.8 above.

2.2 The nuclear case

In this section, we prove a stronger version of Theorem 2.15 in the special case that
the C �-algebra A is nuclear. The key ingredient for this is an averaging argument
due to Christensen, Sinclair, Smith, White, and Winter [17, Section 3], which in turn
relies on Haagerup’s theorem [33] that nuclear C �-algebras are amenable.

Let us recall some terminology about bimodules.

Definition 2.17. Let A be a unital C �-algebra. An A-bimodule is a Banach space E
equipped with left and right module actions of A such that 1Ae D e1A D e for all
e 2 E, and such that kaekE � kakAkekE and keakE � kekEkakA for all a 2 A and
e 2 E.

The following reformulation of nuclearity is implicit in [17, Section 3]; the reader
is encouraged to see that reference for further background.

Lemma 2.18. Let A be a unital C �-algebra. Then, the following are equivalent:

(i) A is nuclear;

(ii) for any " > 0 and any finite subset X of A, there exist contractions

a1; : : : ; an 2 A

and scalars t1; : : : ; tn 2 Œ0; 1� such that
Pn
iD1 ti D 1, such that1A � nX

iD1

tiaia
�
i


A

< ";

and such that for any A-bimodule E, any e 2 E1, and any x 2 X ,x
 

nX
iD1

tiaiea
�
i

!
�

 
nX
iD1

tiaiea
�
i

!
x


E

< ": (2.6)
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Proof. We will need to recall the projective tensor product of Banach spaces. Let
E and F be (complex) Banach spaces, and let E ˇ F denote their algebraic tensor
product (over C). The projective norm of g 2 E ˇ F is defined by

kgk WD inf
nX
iD1

keikEkfikF ; (2.7)

where the infimum is taken over all ways of writing g as a sum
Pn
iD1 ei ˝ fi of

elementary tensors. The projective tensor product of E and F , denoted E y̋ F , is the
completion of E ˇ F for the projective norm. If A is a C �-algebra, we make A y̋ A
into an A-A-bimodule via the actions defined on elementary tensors by

a.b ˝ c/ WD ab ˝ c and .b ˝ c/a WD b ˝ ca: (2.8)

Now, it is shown in [17, Lemma 3.1]4 that a unital C �-algebra is nuclear if and only
if the following holds: “for any " > 0 and any finite subset X of A, there exist con-
tractions a1; : : : ; an 2 A and scalars t1; : : : ; tn 2 Œ0; 1� such that

Pn
iD1 ti D 1, such

that 1A � nX
iD1

tiaia
�
i


A

< ";

and such that x
 

nX
iD1

tiai ˝ a
�
i

!
�

 
nX
iD1

tiai ˝ a
�
i

!
x


A y̋A

< " (2.9)

for all x 2 X .” For the sake of this proof, let us call this the “CSSWW” condition. It
suffices for us to show that condition (ii) is equivalent to the CSSWW condition.

First assume A satisfies condition (ii) above. Then, taking E D A y̋ A and e D
1A˝ 1A shows that A satisfies the CSSWW condition. Conversely, say A satisfies the
CSSWW condition. Let X be a finite subset of A and let " > 0, and let a1; : : : ; an
and t1; : : : ; tn satisfy the properties in the CSSWW condition with respect to this X
and ". Let E be an A-bimodule, and e 2 E1. Consider the map

� W Aˇ A! E; a˝ b 7! aeb

from the algebraic tensor product (over C) of A with itself to E. Using the definition
of the projective tensor norm (line (2.7) above), it is straightforward to check that �

4This is based on several deep ingredients: the key points are the result of Connes [20,
Corollary 2] that amenability for a C�-algebra implies nuclearity; the converse to this due
to Haagerup [33, Theorem 3.1]; and Johnson’s foundational work on amenability and virtual
diagonals [39, Section 1].
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is contractive for that norm, whence it extends to a contractive linear map

� W A y̋ A! E:

Moreover, the extended map � is clearly an A-bimodule map for the bimodule struc-
ture on A y̋ A defined in line (2.8). Applying � to the expression inside the norm in
line (2.9) therefore implies the inequality in line (2.6), so we are done.

Remark 2.19. We will only need to apply Lemma 2.18 in the special case that the
bimodule E in part (ii) is a C �-algebra containing A as a unital C �-subalgebra, with
the bimodule actions defined by left and right multiplication. The corresponding,
formally weaker, variant of condition (ii) still implies nuclearity, as we now sketch5.
LetA be a unital C �-algebra satisfying the variant of condition (ii) from Lemma 2.18,
whereE is a C �-algebra containing A as a unital C �-subalgebra. Let � W A!B.H/

be an arbitrary unital representation, which we use to make B.H/ an A-bimodule.
Let I be the directed set consisting of all pairs i D .X; "/ whereX is a finite subset of
A, and " > 0, and where .X; "/ � .Y; ı/ ifX � Y and ı � ". For each i D .X; "/ 2 I ,
let a.i/1 ; : : : ; a

.i/
ni and t .i/1 ; : : : ; t

.i/
ni have the properties in Lemma 2.18 (ii). For each i ,

define a ccp map

�i W B.H/! B.H/; b 7!

niX
jD1

t
.i/
j �.a

.i/
j /b�.a

.i/
j /�;

and let � W B.H/! B.H/ be any point-ultraweak limit point of the net .�i / (such
exists by [10, Theorem 1.3.7], for example). Then, one checks that � is a conditional
expectation from B.H/ onto �.A/0, whence the latter is injective. As � was arbitrary,
this implies that A is nuclear; indeed, applying this to the universal representation �
implies that �.A/0 is injective, whence

A�� D �.A/00

is injective by [8, Theorem IV.2.2.7], whence A is nuclear by the main result of [16].

Variants of the next lemma we need are well-known; see for example the lemma
on page 332 of [3], which we could have used for a purely qualitative version. For the
sake of concreteness, we give a quantitative6 version.

5This also gives an approach to the theorem of Connes that amenable C�-algebras are
nuclear that is maybe slightly more direct than the original argument from [20, Corollary 2].
However, it still factors through the theorem that injective von Neumann algebras are semi-
discrete (see [19, Theorem 6] for the case of factors, and [65] for the general case), so cannot
really be said to be genuinely simpler.

6The estimate it gives is optimal in some sense; to see this consider C D M2.C/, x D�
ı 0
0 1�ı

�
, and c D

�
0 1
1 0

�
.
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Lemma 2.20. Let ı 2 Œ0; 1
2
/, and let x be a self-adjoint element in a C �-algebra C

with spectrum that does not intersect the interval .ı;1� ı/. Let � be the characteristic
function of .1

2
;1/. Then, for any c 2 C ,

kŒ�.x/; c�k �
1

1 � 2ı
kŒx; c�k:

Proof. Let N > kxk. Let  be the positively oriented rectangular contour in the
complex plane with vertices at 1

2
˙ iN , and 2N ˙ iN . Then, by the holomorphic

functional calculus, �.x/ D 1
2�i

R

.z � x/�1dz. Hence, for any c 2 C , Œ�.x/; c� D

1
2�i

R

Œ.z � x/�1; c�dz. Applying the formula

Œ.z � x/�1; c� D .z � x/�1Œc; x�.z � x/�1

and estimating gives

kŒ�.x/; c�k �
kŒc; x�k

2�

Z


k.z � x/�1k2d jzj: (2.10)

Let 1 be the side of  described by ¹1
2
C i t j �N � t � N º, and let 2 be the union

of the other three sides. Then, for z in the image of 2, the continuous functional
calculus implies that

k.z � x/�1k � .N � kxk/�1:

As the length of 2 is 4N , we thus see thatZ
2

k.z � x/�1k2kd jzj �
4N

.N � kxk/2
: (2.11)

On the other hand, for z D 1
2
C i t in the image of 1, the continuous functional

calculus gives k.z � x/�1k � ..1
2
� ı/2 C t2/�1=2, whenceZ

2

k.z � x/�1k2d jzj �

Z N

�N

1

.1
2
� ı/2 C t2

dt

�

Z 1
�1

1

.1
2
� ı/2 C t2

dt D
�

1
2
� ı

: (2.12)

Combining lines (2.10), (2.11), and (2.12) we get

kŒ�.x/; c�k �
kŒc; x�k

2�

 
4N

.N � kxk/2
C

�
1
2
� ı

!
:

Letting N !1 gives kŒ�.x/; c�k � kŒc;x�k
1�2ı

, which is the claimed estimate.

The following lemma is our key application of Lemma 2.18.
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Lemma 2.21. Let " 2 .0; 1/. Let B be a separable C �-algebra, and let A be a sep-
arable, unital, nuclear C �-algebra. Let � W A! LSB be a large representation (see
Definition 2.9), and use this to identify A with a C �-subalgebra of LSB .

Let X be a finite subset of A1, and let .Y; ı/ be an element of the set XA of
Definition 2.10 such that .X; "/ � .Y; ı/. Then, there exists a finite subset Z of A1
containing X and a homomorphism

�� W KK"=8.Z;B/! KKı.Y; B/

such that the following diagram

KK"=8.Z;B/

��
�� ''

KKı.Y; B/ // KK".X;B/

(where the unlabeled maps are forget control maps as in Definition 2.11) commutes.

Proof. Let X , Y , and ı be as in the statement. If ı � "=8, we may just take Z D Y
and �� the forget control map. Assume then that ı < "=8. According to Lemma 2.18
there exists contractions a1; : : : ; an 2 A and t1; : : : ; tn 2 Œ0; 1� such that

Pn
iD1 ti D 1,

such that 1A � nX
iD1

tiaia
�
i


A

< ı=4;

and such that for all y 2 Y and b in the unit ball of LB ,y
 

nX
iD1

tiaiba
�
i

!
�

 
nX
iD1

tiaiba
�
i

!
y


LSB

< ı=4: (2.13)

We set Z WD X [ ¹a�1 ; : : : ; a
�
nº, and claim this works.

Let p 2P"=8.Z;B/, let e 2LB be the neutral projection (see Definition 2.1), and
define

˛.p/ WD

nX
iD1

tiaipa
�
i C

 
e �

nX
iD1

tiaiea
�
i

!
2 LB :

As the representation is large, we may use the fixed isomorphism `2 ˝ B Š C2 ˝

`2 ˝B to identify LB withM2.LB/ and have that with respect to this identification,
operators in A are diagonal matrices, and e D

�
1 0
0 0

�
. In particular, e commutes with

all the ai , and so we have

kp � ˛.p/k �


 
1 �

nX
iD1

tiaia
�
i

!
p

C nX
iD1

tikai Œp; a
�
i �k C


 
1 �

nX
iD1

tiaia
�
i

!
e


<
ı

4
C
"

8
C
ı

4
: (2.14)
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As ı < "=8 and as "< 1, we see that kp� ˛.p/k< 1
4

. As p is a projection, Lemma 2.3
implies that

spectrum.˛.p// \ .1=4; 3=4/ D ¿: (2.15)

Let � be the characteristic function of .1
2
;1/, so � is continuous on the spectrum

of ˛.p/ and we may define �.p/ WD �.˛.p//. The rest of the proof will be spent
showing that the formula Œp� 7! Œ�.p/� defines a homomorphism

�� W KK"=6.Z;B/! KKı.Y; B/

with the claimed properties.
We first claim that if p 2 P"=8.Z;B/, then �.p/ is in Pı.Y; B/. Note first that

˛.p/ � e D

nX
iD1

tiai .p � e/a
�
i ;

which is in KB . As KB is an ideal in LB , it follows f .˛.p// � f .e/ is in KB for
any polynomial f . Letting .fn/ be a sequence of polynomials that converges uniform
to � on the spectrum of ˛.p/ and letting n!1, we see that �.˛.p// � e is in KB .
Let now y 2 Y and apply the inequality in line (2.13) once with b D p and once with
b D e (and use that Œe; y� D 0) to deduce that

kŒ˛.p/; y�k < ı=2: (2.16)

Lines (2.16), (2.15), and Lemma 2.20 imply that kŒ�.˛.p//; y�k < ı, completing the
proof that �.p/ is an element of Pı.Y;B/. Moreover, it is straightforward to see that
the assignment

P"=8.Z;B/! Pı.Y; B/; p 7! �.p/

takes homotopies to homotopies and Cuntz sums to Cuntz sums. Hence, we do indeed
get a well-defined homomorphism

�� W KK"=8.Z;B/! KKı.Y; B/; Œp� 7! Œ�.p/�

as claimed.
It remains to show that the diagram

KK"=8.Z;B/

��
�� ''

KKı.Y; B/ // KK".X;B/

commutes. For this, let p 2 P"=8.Z; B/ represent a class in KK"=8.Z; B/, and for
t 2 Œ0; 1�, define

pt WD .1 � t /p C t˛.p/:
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Then, by line (2.14), we have that kpt � pk < "
8
C

ı
2
< 1

4
for all t 2 Œ0; 1�, so in

particular
spectrum.pt / \ .1=3; 3=4/ D ¿ for all t 2 Œ0; 1�: (2.17)

Hence, �.pt / is a well-defined projection for all t 2 Œ0; 1�. We claim that �.pt / is an
element of P".X;B/ for all t 2 Œ0; 1�; as �.p1/ D �.˛.p// and �.p0/ D p, this will
complete the proof.

For this last claim, note first that pt � e 2 KB for all t 2 Œ0; 1�, whence (ana-
logously to the case of �.˛.p// argued above) �.pt / � e 2 KB for all t 2 Œ0; 1�.
Moreover, for all z 2 Z,

kŒpt ; z�k � kŒpt � p; z�k C kŒp; z�k < 2
� "
8
C
ı

2

�
C
"

8
<
"

2
;

where the last inequality used that ı < "=8. Hence, by line (2.17) and Lemma 2.20,
kŒ�.pt /; z�k < " for all z 2 Z, and so in particular for all z 2 X . This completes the
proof that �.pt / 2 P".X;B/ for all t 2 Œ0; 1�, so we are done.

Corollary 2.22. Let A be a separable, unital, nuclear C �-algebra. The following are
equivalent:

(i) A satisfies the UCT.

(ii) Let " 2 .0; 1/, and let B be a separable C �-algebra B with K�.B/ D 0.
Let

� W A! LSB

be a large representation, and use this to identify A with a C �-subalgebra
of LSB . Then, for any finite subset X of A1 there is a finite subset Z of A1
such that .X; "/ � .Z; "=8/ in the sense of Definition 2.10, and so that the
forget control map

KK"=8.Z; SB/! KK".X; SB/

of Definition 2.11 is zero.

Proof. Using Theorem 2.15, it suffices to show that condition (ii) from that theorem
implies condition (ii) from the current corollary (the converse is immediate). Let then
", B , � , and X be as in the statement. Then, condition (ii) from Theorem 2.15 gives
.Y; ı/ � .X; "/ in the sense of Definition 2.10 such that the associated forget control
map

KKı.Y; SB/! KK".X; SB/

of Definition 2.11 is zero. Lemma 2.21 then gives a finite subset Z of A1 containing
X and a homomorphism

�� W KK"=8.Z; SB/! KKı.Y; SB/; Œp� 7! Œ�.p/�
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such that the following diagram

KK"=8.Z; SB/

��
�� ((

KKı.Y; SB/ // KK".X; SB/

commutes (the unlabeled arrows are forget control maps). Hence, the diagonal forget
control map in the above diagram is zero, which is what we wanted to show.


