Chapter 3

Flexible models for controlled K K -theory

In this section (as throughout), if B is a separable C *-algebra, then £p and Kp
denote respectively the adjointable and compact operators on the standard Hilbert
B-module ¢> ® B. For each n, we consider £ as a subalgebra of M, (£p) via the
“diagonal inclusion” £3 = 1y, ® £p S M, @ £p = M,(LB).

Our goal in this chapter is to give flexible models for controlled K K -theory that
will be useful for computations. Contrary to the usual conventions of C *-algebra K -
theory, we base our new even and odd groups on idempotents and invertibles rather
than projections and unitaries. The extra flexibility this allows is very useful for com-
putations. The main reason for not writing the whole paper using the more flexible
model is that we previously established Theorem 2.13 in [68] using the version of
controlled K K-theory from Definition 2.2 above, so need to use that model where we
are directly applying Theorem 2.13. Moreover, we need the results from Chapter 4
in the current paper (which are also independently needed in Chapter 6) to relate the
two models.

3.1 The even case

Our goal in this section is to define a variant of the controlled K K-theory groups of
Chapter 2, but based on idempotents rather than projections. For the next definition,
we recall that C ™ denotes the unitization of a C *-algebra C, and that if a € M,,(C)
and b € M,,(C) are matrices over a C *-algebra, then a @ b denotes the matrix (& ?)
in My 4m(C).

Definition 3.1. Let B be a separable C*-algebra, let X be a subset' of the unit ball
of £p,letk > 1,lete > 0, and let n € N. Define & (X, B) to be the collection of
pairs (p, g) of idempotents in M, (JC;) satisfying the following conditions:

@ lpl =«and g <«;
@)  ||[p,x]ll < eand|[g,x]|| <& forall x € X;

(iii) the classes [0 (p)], [0(¢)] € Ko(C) defined by the images of p and ¢ under
the canonical quotient map o : M,, (JC;) — M, (C) are the same.

!'Unlike Definition 2.2, we do not require X to be “large” in the sense of Definition 2.1.
Essentially, largeness is needed to ensure that the sets K K¢ (X, B) of Definition 2.2 are groups;
we show the sets we define in Definition 3.1 are groups by using matrix arguments and a weaker
equivalence relation in this definition.
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Define o
yoo,/c,s(X, B) = I_l j)n,K,s(X’ B),
n=1

i.e., Poo,e(X, B) is the disjoint union of all the sets P, (X, B).

Equip each £, (X, B) with the norm topology it inherits from M,(£p) &
M, (£p), and equip Poo (X, B) with the disjoint union topology. Let ~ be the
equivalence relation on P (X, B) generated by the following relations:

@ (p,q) ~(p ®r,qg@®r) for any element (r,r) € Poo (X, B) with both

components the same;

(i)  (p1,4q1) ~ (p2,q2) whenever these elements are in the same path compon-

ent of Pog ke (X, B).?
Define KK ,9, (X, B) tobe equal as a set to Poo (X, B)/ ~, and provisionally define
a binary operation + on KK? (X, B) by

(P1.q1] + [p2.92] :=[P1 ® q1. P2 ® g2].
The next lemma is essentially the same as [68, Lemma A.21].

Lemma 3.2. With notation as in Definition 3.1, KK,?,E(X,B) is a well-defined abelian
group with identity element the class [0, 0] of the zero idempotent.

Proof. Checking directly from the definitions shows that K K,?,S(X , B) is a well-
defined (associative) monoid with identity element the class [0, 0]. A standard rotation
homotopy shows that KK ,?,8 (X, B) is commutative. To complete the proof we need
to show that any element [p, g] has an inverse. We claim that this is given by [g, p].
Indeed, applying the rotation homotopy

p 0 cos(t) sin(t)\ (g O\ f(cos(t) —sin(¢)
, . . , 1el0,m/2
((0 q) (— sin(t) cos(¢)) \O p)J \sin(¢) cos(t) €[0.7/2]
shows that (p ® ¢,q ® p) ~ (p B ¢q, p ® q), and the element (p B g, p P q) is
equivalent to (0, 0) by definition of the equivalence relation. ]

The following lemma gives a useful description of cycles (p, ) € Pook,e(X, B)
that define the zero class in KK? (X, B).

Lemma 3.3. With notation as in Definition 3.1, let (p,q) € P (X, B), and assume
that [p,q] = 0 in KKBJE(X, B). Then, there is m € N and an element (s, s) of
Prt2mue(X, B) such that (p @ 1y ® O, q ® 1y @ Op) is in the same path com-
ponent of Pnyom21.e(X, B) as (s, 5).

2Equivalently, both are in the same %, (X, B), and are in the same path component of
this set.
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Proof. For elements (p1,q1) and (p2, g2) in Pook,e(X, B) let us write (p1,g1) —
(p2.q2) if

(p2.92) = (P1®T.q1 D7)
for some (7, 7) € Poo ke (X, B); (P1,41) 9 (p2,q») if there is a path connecting these
elements; and (p1,q1) < (p2,42) if (p2,q2) = (p1,41). Then, [p, g] = 0 means that
there is some sequence of moves from {—, <, !i} starting at (p, ¢) and finishing at

(0, 0). It is not difficult to see the following: any time a move from {—, <, ,’},} is
consecutively repeated we may replace it by a single move of the same type; any

h h
occurrence of “~—" may be replaced by an occurrence of “—~"; any occurrence
h h
of “<—~” may be replaced by an occurrence of “~<—"; any occurrence of “<——" or

h h . .
“«—~—" may be replaced by “—~<«-"" (we leave the details to the reader in each
case). Using these replacements, we see that our moves relating (p, ¢) to (0, 0) may
be assumed to be of the form

(p.q) =2 (0,0),

or in other words that there are elements (r, ) and (¢, ¢) in Poo (X, B) such that
(p ®r,q & r) is homotopic to (¢, 1).

To complete the proof, note then that (p ®r b 1 —r,g ®r & 1 —r) is homotopic
to(t®1—r,td1—r). Fort €[0,n/2], define

P 0 + cos(t) —sin(¢)) (0O O cos(t) sin(¢)
7 o o sin(¢)  cos(t) 0 1—r/)\—sin(r) cos(?)
s0 (7t)¢e[0,7/2] is a path connecting ¥ @& 1 —r and 1 @ 0. One computes that ||r;|| <

1 4+ x < 2« for all ¢, and that ||[r;, x]|| < e forall x € X. Hence, withs =t & 1—r
we get the claimed result. =

We will need a more general variation of Definitions 2.10 and 2.11.

Definition 3.4. Let C be a C*-algebra. Let X consist of all triples of the form
(X, k, ) where X is a finite subset of the unit ball of C, x > 1, and ¢ > 0. Put a
partial order on X, by (X,«,¢) < (Y,A,8)if§ <, A <« and if for all x € X there
exists y € Y with ||x — y| < ﬁ(e —9).

Let now B be a separable C *-algebra. Then, if (X, «,¢) < (Y, A,6) in X/, 5> one
checks that for each n we have

J)HA,S(Y7 B) E?H,K,S(Xv B) (31)
We call the canonical map
KK s(Y.B) > KK (X.B)

induced by the inclusions in line (3.1) above a forget control map.
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3.2 The odd case

Our goal in this section is to introduce an odd parity version of the controlled K K-
theory groups of the previous section. For the statement, recall that C* denotes the
unitization of a C *-algebra C.

Definition 3.5. Let B be a separable C *-algebra, let X be a subset of the unit ball of
£p,letk > 1,1lete > 0,and let n € N. Define U, (X, B) to be the subset of those
invertible elements u in M, (JC;) satisfying the following conditions:

@ full <« and [u']] < «;

() ||, x]|| < eand ||[u~",x]|| < eforall x € X.
Define

o0
uoo,/c,s(X, B) = I_l cun,/c,s(X» B),

n=1
i.e., Uoo,k,e(X, B) is the disjoint union of all the sets Uy, (X, B).
Equip each U, (X, B) with the norm topology it inherits from M, (£g), and
equip |[°2; Un«e(X, B) with the disjoint union topology. Define an equivalence
relation on Uso ¢, (X, B) to be generated by the following relations:

(i) forany k € N, if 1x € Uk (X, B) is the identity element, then
u~udlg;

(i)  uj~u, if both are elements of the same path component of U oo 2¢.¢(X,B).

Define KK,LS(X, B) tobe Ueo ks (X, B)/ ~, and provisionally define a binary oper-
ation 4+ on KK, ,(X, B) by

[u1] + [uz] := [u1 & uz].

Lemma 3.6. With notation as in Definition 3.5, KK ,g (X, B) is a well-defined abelian
group with identity element the class [1g] of the unit of B.

Proof. 1tis straightforward to check that K K ,g (X, B) is amonoid, and the class [1] is
neutral by definition. A standard rotation homotopy shows that K K ,:’E(X , B) is com-
mutative. It remains to show that inverses exist. We claim that for u € U, (X, B),
the inverse of the class [u] is given by [u~!]. Indeed, consider the homotopy

= (v O) (s —sin@)Y (10 ) (cos(r) - sin()
U 1= (() 1) (sin(t) cos(t))(o u—l) (—sin(t) cos(t))’ t €[0,7/2].

3Equivalently, both are in the same U, 2«.-(X, B), and are in the same path compon-
ent of this set. Notice also the switch from k to 2« here, which is needed for our proof that
KK,LS(X, B) is a group.
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This connects u @ u~' and 15, so it suffices to show that this passes through
Uzn 2¢,6(X, B). For the commutator condition, we compute that fora € X and ¢ €

[0,27]
~ (la.u] 0 cos?(t)  cos(t)sin(t)
la el = ( 0 [u_l,a]) (cos(t) sin(t)  —cos?(t) ) '

The scalar matrix on the right has norm |cos(?)|, and the matrix on the left has norm
at most max{||[a, u]|[, ||[@, u™']||} < e, so ||[a,u;]|| < e. For the norm condition, we
compute that

o (u 0 )( cos?(t) cos(?) sin(l)) ( sin?(¢) —cos(?) sin(t))
t— .

0 —u~')\cos(t)sin(t) —cos?(t) cos(t) sin(t) sin?(t)

The first scalar matrix appearing above has norm |cos(?)|, and the second has norm
|sin(z)|. We thus have that |u,| < «|cos(z)| + |sin(¢)|, which is at most* 2k as
required. |

Definition 3.7. Let C be a C*-algebra, and let X ’C be the directed set of Definition
3.4 above. Let B be a separable C *-algebra. Then, if (X,x,e) < (Y, A,6) in XZZB,
one checks that for each n we have

un,A,S(Y, B) g un,K,S(X7 B) (32)
for all n. We call the canonical map
KK; 5(Y.B) € KK, .(X.B)

induced by the inclusions in line (3.2) above a forget control map.

4We suspect the optimal estimate is x — this is the case if u is normal, for example — but
were unable to do better than +/1 + 2 in general.



