
Chapter 3

Flexible models for controlled KK -theory

In this section (as throughout), if B is a separable C �-algebra, then LB and KB

denote respectively the adjointable and compact operators on the standard Hilbert
B-module `2 ˝ B . For each n, we consider LB as a subalgebra of Mn.LB/ via the
“diagonal inclusion” LB D 1Mn ˝LB �Mn ˝LB DMn.LB/.

Our goal in this chapter is to give flexible models for controlled KK-theory that
will be useful for computations. Contrary to the usual conventions of C �-algebra K-
theory, we base our new even and odd groups on idempotents and invertibles rather
than projections and unitaries. The extra flexibility this allows is very useful for com-
putations. The main reason for not writing the whole paper using the more flexible
model is that we previously established Theorem 2.13 in [68] using the version of
controlledKK-theory from Definition 2.2 above, so need to use that model where we
are directly applying Theorem 2.13. Moreover, we need the results from Chapter 4
in the current paper (which are also independently needed in Chapter 6) to relate the
two models.

3.1 The even case

Our goal in this section is to define a variant of the controlled KK-theory groups of
Chapter 2, but based on idempotents rather than projections. For the next definition,
we recall that CC denotes the unitization of a C �-algebra C , and that if a 2Mn.C /

and b 2Mm.C / are matrices over a C �-algebra, then a˚ b denotes the matrix
�
a 0
0 b

�
in MnCm.C /.

Definition 3.1. Let B be a separable C �-algebra, let X be a subset1 of the unit ball
of LB , let � � 1, let " > 0, and let n 2 N. Define Pn;�;".X;B/ to be the collection of
pairs .p; q/ of idempotents in Mn.K

C

B / satisfying the following conditions:

(i) kpk � � and kqk � �;

(ii) kŒp; x�k < " and kŒq; x�k < " for all x 2 X ;

(iii) the classes Œ�.p/�; Œ�.q/� 2 K0.C/ defined by the images of p and q under
the canonical quotient map � WMn.K

C

B /!Mn.C/ are the same.

1Unlike Definition 2.2, we do not require X to be “large” in the sense of Definition 2.1.
Essentially, largeness is needed to ensure that the setsKK".X;B/ of Definition 2.2 are groups;
we show the sets we define in Definition 3.1 are groups by using matrix arguments and a weaker
equivalence relation in this definition.
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Define

P1;�;".X;B/ WD

1G
nD1

Pn;�;".X;B/;

i.e., P1;�;".X;B/ is the disjoint union of all the sets Pn;�;".X;B/.
Equip each Pn;�;".X; B/ with the norm topology it inherits from Mn.LB/ ˚

Mn.LB/, and equip P1;�;".X; B/ with the disjoint union topology. Let � be the
equivalence relation on P1;�;".X;B/ generated by the following relations:

(i) .p; q/ � .p ˚ r; q ˚ r/ for any element .r; r/ 2 P1;�;".X; B/ with both
components the same;

(ii) .p1; q1/ � .p2; q2/ whenever these elements are in the same path compon-
ent of P1;�;".X;B/.2

DefineKK0�;".X;B/ to be equal as a set to P1;�;".X;B/=�, and provisionally define
a binary operationC on KK0�;".X;B/ by

Œp1; q1�C Œp2; q2� WD Œp1 ˚ q1; p2 ˚ q2�:

The next lemma is essentially the same as [68, Lemma A.21].

Lemma 3.2. With notation as in Definition 3.1,KK0�;".X;B/ is a well-defined abelian
group with identity element the class Œ0; 0� of the zero idempotent.

Proof. Checking directly from the definitions shows that KK0�;".X; B/ is a well-
defined (associative) monoid with identity element the class Œ0;0�. A standard rotation
homotopy shows that KK0�;".X; B/ is commutative. To complete the proof we need
to show that any element Œp; q� has an inverse. We claim that this is given by Œq; p�.
Indeed, applying the rotation homotopy��

p 0

0 q

�
;

�
cos.t/ sin.t/
� sin.t/ cos.t/

��
q 0

0 p

��
cos.t/ � sin.t/
sin.t/ cos.t/

��
; t 2 Œ0; �=2�

shows that .p ˚ q; q ˚ p/ � .p ˚ q; p ˚ q/, and the element .p ˚ q; p ˚ q/ is
equivalent to .0; 0/ by definition of the equivalence relation.

The following lemma gives a useful description of cycles .p; q/ 2 P1;�;".X;B/

that define the zero class in KK0�;".X;B/.

Lemma 3.3. With notation as in Definition 3.1, let .p;q/ 2Pn;�;".X;B/, and assume
that Œp; q� D 0 in KK0�;".X; B/. Then, there is m 2 N and an element .s; s/ of
PnC2m;�;".X; B/ such that .p ˚ 1m ˚ 0m; q ˚ 1m ˚ 0m/ is in the same path com-
ponent of PnC2m;2�;".X;B/ as .s; s/.

2Equivalently, both are in the same Pn;�;".X; B/, and are in the same path component of
this set.



The even case 31

Proof. For elements .p1; q1/ and .p2; q2/ in P1;�;".X; B/ let us write .p1; q1/!
.p2; q2/ if

.p2; q2/ D .p1 ˚ r; q1 ˚ r/

for some .r; r/ 2P1;�;".X;B/; .p1; q1/
h
� .p2; q2/ if there is a path connecting these

elements; and .p1; q1/ .p2; q2/ if .p2; q2/! .p1; q1/. Then, Œp; q�D 0means that

there is some sequence of moves from ¹!; ; h�º starting at .p; q/ and finishing at

.0; 0/. It is not difficult to see the following: any time a move from ¹!; ; h�º is
consecutively repeated we may replace it by a single move of the same type; any

occurrence of “ h�!” may be replaced by an occurrence of “! h
�”; any occurrence

of “ h
�” may be replaced by an occurrence of “ h� ”; any occurrence of “ !” or

“ h
�!” may be replaced by “! h

� ” (we leave the details to the reader in each
case). Using these replacements, we see that our moves relating .p; q/ to .0; 0/ may
be assumed to be of the form

.p; q/!
h
� .0; 0/;

or in other words that there are elements .r; r/ and .t; t/ in P1;�;".X; B/ such that
.p ˚ r; q ˚ r/ is homotopic to .t; t/.

To complete the proof, note then that .p˚ r ˚ 1� r;q˚ r ˚ 1� r/ is homotopic
to .t ˚ 1 � r; t ˚ 1 � r/. For t 2 Œ0; �=2�, define

rt WD

�
r 0

0 0

�
C

�
cos.t/ � sin.t/
sin.t/ cos.t/

��
0 0

0 1 � r

��
cos.t/ sin.t/
� sin.t/ cos.t/

�
so .rt /t2Œ0;�=2� is a path connecting r ˚ 1 � r and 1˚ 0. One computes that krtk �
1C � � 2� for all t , and that kŒrt ; x�k < " for all x 2 X . Hence, with s D t ˚ 1 � r
we get the claimed result.

We will need a more general variation of Definitions 2.10 and 2.11.

Definition 3.4. Let C be a C �-algebra. Let X0C consist of all triples of the form
.X; �; "/ where X is a finite subset of the unit ball of C , � � 1, and " > 0. Put a
partial order on X0C by .X; �; "/ � .Y; �; ı/ if ı � ", � � � and if for all x 2 X there
exists y 2 Y with kx � yk � 1

2�
." � ı/.

Let now B be a separable C �-algebra. Then, if .X; �; "/ � .Y; �; ı/ in X0
LB

, one
checks that for each n we have

Pn�;ı.Y; B/ � Pn;�;".X;B/: (3.1)

We call the canonical map

KK0�;ı.Y; B/! KK0�;".X;B/

induced by the inclusions in line (3.1) above a forget control map.
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3.2 The odd case

Our goal in this section is to introduce an odd parity version of the controlled KK-
theory groups of the previous section. For the statement, recall that CC denotes the
unitization of a C �-algebra C .

Definition 3.5. Let B be a separable C �-algebra, let X be a subset of the unit ball of
LB , let � � 1, let " > 0, and let n 2 N. Define Un;�;".X;B/ to be the subset of those
invertible elements u in Mn.K

C

B / satisfying the following conditions:

(i) kuk � � and ku�1k � �;

(ii) kŒu; x�k < " and kŒu�1; x�k < " for all x 2 X .

Define

U1;�;".X;B/ WD

1G
nD1

Un;�;".X;B/;

i.e., U1;�;".X;B/ is the disjoint union of all the sets Un;�;".X;B/.
Equip each Un;�;".X; B/ with the norm topology it inherits from Mn.LB/, and

equip
F1
nD1 Un;�;".X; B/ with the disjoint union topology. Define an equivalence

relation on U1;�;".X;B/ to be generated by the following relations:

(i) for any k 2 N, if 1k 2 Uk;�;".X;B/ is the identity element, then

u � u˚ 1kI

(ii) u1�u2 if both are elements of the same path component of U1;2�;".X;B/.3

DefineKK1�;".X;B/ to be U1;�;".X;B/= �, and provisionally define a binary oper-
ationC on KK1�;".X;B/ by

Œu1�C Œu2� WD Œu1 ˚ u2�:

Lemma 3.6. With notation as in Definition 3.5,KK1�;".X;B/ is a well-defined abelian
group with identity element the class Œ1B � of the unit of B .

Proof. It is straightforward to check thatKK1�;".X;B/ is a monoid, and the class Œ1� is
neutral by definition. A standard rotation homotopy shows that KK1�;".X;B/ is com-
mutative. It remains to show that inverses exist. We claim that for u 2 Un;�;".X;B/,
the inverse of the class Œu� is given by Œu�1�. Indeed, consider the homotopy

ut WD

�
u 0

0 1

��
cos.t/ � sin.t/
sin.t/ cos.t/

��
1 0

0 u�1

��
cos.t/ sin.t/
� sin.t/ cos.t/

�
; t 2 Œ0; �=2�:

3Equivalently, both are in the same Un;2�;".X; B/, and are in the same path compon-
ent of this set. Notice also the switch from � to 2� here, which is needed for our proof that
KK1�;".X;B/ is a group.
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This connects u ˚ u�1 and 12k , so it suffices to show that this passes through
U2n;2�;".X; B/. For the commutator condition, we compute that for a 2 X and t 2
Œ0; 2��

Œa; ut � D

�
Œa; u� 0

0 Œu�1; a�

��
cos2.t/ cos.t/ sin.t/

cos.t/ sin.t/ � cos2.t/

�
:

The scalar matrix on the right has norm jcos.t/j, and the matrix on the left has norm
at most max¹kŒa; u�k; kŒa; u�1�kº < ", so kŒa; ut �k < ". For the norm condition, we
compute that

utD

�
u 0

0 �u�1

��
cos2.t/ cos.t/ sin.t/

cos.t/ sin.t/ � cos2.t/

�
C

�
sin2.t/ � cos.t/ sin.t/

cos.t/ sin.t/ sin2.t/

�
:

The first scalar matrix appearing above has norm jcos.t/j, and the second has norm
jsin.t/j. We thus have that kutk � �jcos.t/j C jsin.t/j, which is at most4 2� as
required.

Definition 3.7. Let C be a C �-algebra, and let X0C be the directed set of Definition
3.4 above. Let B be a separable C �-algebra. Then, if .X; �; "/ � .Y; �; ı/ in X0

LB
,

one checks that for each n we have

Un;�;ı.Y; B/ � Un;�;".X;B/ (3.2)

for all n. We call the canonical map

KK1�;ı.Y; B/ � KK
1
�;".X;B/

induced by the inclusions in line (3.2) above a forget control map.

4We suspect the optimal estimate is � – this is the case if u is normal, for example – but
were unable to do better than

p
1C �2 in general.


