
Chapter 4

Homotopies, similarities, and normalization

In this chapter (as throughout), if B is a separable C �-algebra, then LB and KB

denote respectively the adjointable and compact operators on the standard Hilbert
B-module `2 ˝ B . For each n, we consider LB as a subalgebra of Mn.LB/ via the
“diagonal inclusion” LB D 1Mn ˝LB �Mn ˝LB DMn.LB/.

Our goal is to establish some technical lemmas about the controlled KK-groups
KK0�;".X; B/ and KK1�;".X; B/ and the underlying sets of cycles P1;�;".X; B/ and
U1;�;".X; B/ from Definitions 3.1 and 3.5 respectively. These are all variants of
standard facts from C �-algebra K-theory, but the arguments are more involved as
we need to do extra work to control commutator estimates. Some of the material
is adapted from the foundational work of Oyono-Oyono and the second author on
controlled K-theory [47]; those authors work in the “dual” setting to us in some
sense, and similar techniques are often useful.

Most of the results in this chapter come with explicit estimates. We have generally
not tried to get optimal estimates, but as it might be useful for future work we have
tried to point out where one might expect the estimates to be optimal where this is
simple to do.

4.1 Background on idempotents

In this section we look at idempotents in C �-algebras and their relationship to pro-
jections. Most of this is well-known; nonetheless, we give proofs for the sake of
completeness where we could not find a good reference.

To establish notation, let us first note that if p 2 B.H/ is an idempotent, then
with respect to the decomposition H D Image.p/˚ Image.p/?, p has a matrix rep-
resentation

p D

�
1 a

0 0

�
(4.1)

for some a 2 B.Image.p/?; Image.p//; conversely, any operator admitting a mat-
rix of this form with respect to some orthogonal direct sum decomposition of the
underlying Hilbert space defines an idempotent.

Lemma 4.1. If p is an idempotent bounded operator on a Hilbert space that is
neither zero nor the identity, then

k1 � pk D kpk and kp � p�k � kpk:
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Proof. Writing p as in line (4.1) (and using that neither Image.p/ nor Image.p/? are
the zero subspace), we compute that

kpk2 D kpp�k D k1C aa�k D 1C kak2 (4.2)

and moreover that

k1 � pk2 D k.1 � p/�.1 � p/k D k1C a�ak D 1C kak2 D kpk2:

Looking now at p � p�, we see that

.p � p�/.p � p�/� D

�
0 a

�a� 0

��
0 �a

a� 0

�
D

�
aa� 0

0 a�a

�
;

whence kp � p�k2 D kak2 � kpk2.

Corollary 4.2. If � � 1, and p is any idempotent in a C �-algebra with kpk � �, then
k1 � pk � �, kp � p�k � �, and k2p � 1k � 2�.

Proof. The estimates for k1� pk and kp � p�k are immediate from Lemma 4.1 (and
direct checks for the degenerate cases p D 0 and p D 1). The estimate for 2p � 1
follows as

2p � 1 D p � .1 � p/:

It will be convenient to formalize a standard construction in C �-algebraK-theory
for turning idempotents into projections (compare for example [7, Proposition 4.6.2]).

Definition 4.3. Let p be an idempotent in a C �-algebra C . Define

z WD 1C .p � p�/.p� � p/ 2 CC;

and note that z � 1CC so z is invertible. Define

r WD pp�z�1;

which is an element of C . We call r the projection1 associated to p.

Remark 4.4. If C is a concrete C �-algebra and p is an idempotent with matrix
representation as in line (4.1), then one computes that the associated projection has
matrix representation

r D

�
1 0

0 0

�
(4.3)

with respect to the same decomposition of the underlying Hilbert space. In particular,
r is the projection with the same image as the idempotent p.

1It will be shown to be a projection in the next lemma.
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Lemma 4.5. Let p be an idempotent in a C �-algebra C , and assume that kpk � �
for some � � 1. Let r be the projection associated to p as in Definition 4.3, and for
t 2 Œ0; 1� define rt WD .1 � t /p C t r . Then, the following hold:

(i) The element r is a projection in C , and there is an invertible u 2 CC such
that upu�1 D r . Moreover, u and its inverse have norm at most 1C kpk,
and u is connected to the identity through a path of invertibles such that
all the invertibles in the path and all of their inverses have norm at most
1C kpk.

(ii) Each rt is an idempotent such that krtk � � for all t , and the map t 7! rt
is �-Lipschitz.

(iii) For any c 2 C and t 2 Œ0; 1� we have

kŒrt ; c�k � .1C 2t/kŒp; c�k C tkŒp; c
��k:

(iv) The map

¹p 2 C j p D p2º ! ¹p 2 C j p D p2 D p�º

that takes an idempotent to its associated projection is 1-Lipschitz.

Proof. Part (i) as in line (4.1), we may write p D
�
1 a
0 0

�
, and note as in line (4.2) that

kpk D
p
1C kak2, so in particular kak � kpk. Using the discussion in Remark 4.4

we see that u D
�
1 a
0 1

�
satisfies upu�1 D r , and that the path ut D

�
1 ta
0 1

�
connects u

to the identity through invertibles of norm at most 1C ktak � 1C kpk. The claims
on the norms of the inverses follow as

�
1 ta
0 1

��1
D
�
1 �ta
0 1

�
.

(Or see for example the proof of [7, Proposition 4.6.2]).
For part (ii), we write p as in line (4.1), note that kak � �, and also that r has the

matrix representation as in line (4.3). This implies the claimed properties.
For part (iii), we again write p as a matrix as in line (4.1). Let c 2 C , and with

respect to the same decomposition of the underlying Hilbert space, let us write

c D

�
c11 c12
c21 c22

�
:

Then, one computes that

Œp; c� D

�
ac21 c12 C ac22 � c11a

�c21 �c21a

�
: (4.4)

As the conditional expectation that sends a matrix to its diagonal is contractive, we
have 



�ac21 0

0 �c21a

�



 � kŒp; c�k



Homotopies, similarities, and normalization 38

and combining this with line (4.4) gives



� 0 c12 C ac22 � c11a

�c21 0

�



 � 2kŒp; c�k: (4.5)

One computes that the top right entry of Œp � p�; c� is ac22 � c11a, whence

kac22 � c11ak � kŒp � p
�; c�k � kŒp; c�k C kŒp; c��k:

This and line (4.5) together imply that



� 0 c12
�c21 0

�



 � 3kŒp; c�k C kŒp; c��k: (4.6)

As r has the matrix representation from line (4.3), the left-hand side of the inequal-
ity in line (4.6) equals kŒr; c�k, and so line (4.6) can be rewritten as the inequality
kŒr; c�k � 3kŒp; c�k C kŒp; c��k. As rt D .1 � t /p C t r , this implies the claimed
estimate.

For part (iv) we may assume that C is a concrete C �-algebra. As noted in Remark
4.4, the projection r associated to an idempotent p is then simply the orthogonal
projection with the same image as p. In this language, part (iv) is [41, Chapter One,
Theorem 6.35].

4.2 From similarities to homotopies

Our goal in this short section is to establish an analogue of the standard K-theoretic
fact that similar idempotents are homotopic, at least up to increasing matrix sizes.
Compare for example [7, Proposition 4.4.1].

Proposition 4.6. Let B be a separable C �-algebra, let X be a subset of the unit ball
of LB , and let � � 1 and " > 0. Let .p0; q/ and .p1; q/ be elements of Pn;�;".X;B/,
and let u2Un;�;".X;B/ be such that up0u�1Dp1. Then, the elements .p0˚ 0n;q˚
0n/ and .p1˚ 0n; q˚ 0n/ are in the same path component of P2n;�3;3�2".X;B/, and
in particular, .p0; q/ and .p1; q/ define the same class in KK0

�3;3�2"
.X;B/.

The analogous statement holds with the roles of the first (“p”) and second (“q”)
components reversed.

Proof. Define

vt WD

�
cos.t/ � sin.t/
sin.t/ cos.t/

��
1 0

0 u

��
cos.t/ sin.t/
� sin.t/ cos.t/

�
2M2n.K

C

B /:

Then, the path

t 7! .vt .p0 ˚ 0n/v
�1
t ; q ˚ 0n/; t 2 Œ0; �=2�
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connects .p0 ˚ 0n; q ˚ 0n/ to .p1 ˚ 0n; q ˚ 0n/ through P2n;�3;3�2".X; B/. We
leave the direct checks involved to the reader.

4.3 Normalization

Our goal in this section is to show that cycles forKK0�;".X;B/ andKK1�;".X;B/ can
be assumed to have prescribed “scalar part”, at least up to some deterioration of �
and ".

The following lemma is well-known without the Lipschitz condition2; see for
example [7, Theorem 4.6.7] or [36, Corollary 4.1.8].

Lemma 4.7. Let L > 0. Then, if .pt /t2Œ0;1� is an L-Lipschitz path of projections in a
unital C �-algebra C , there is a .3L/-Lipschitz path .ut /t2Œ0;1� of unitaries in C such
that u0 D 1, and such that pt D utp0u�t for all t 2 Œ0; 1�.

We need a preliminary lemma.

Lemma 4.8. Let � � 1, and let C be a unital C �-algebra. Then, the map

¹c 2 C j c � ��1º ! C; c 7! c�1=2

is 1
2
�3=2-Lipschitz3.

Proof. For any positive real number t , one has

t�1=2 D
2

�

Z 1
0

.�2 C t /�1d�;

whence for any positive invertible elements c; d 2 C

c�1=2 � d�1=2 D
2

�

Z 1
0

�
.�2 C c/�1 � .�2 C d/�1

�
d�: (4.7)

Using the formula

.�2 C c/�1 � .�2 C d/�1 D .�2 C c/�1.d � c/.�2 C d/�1

and assuming that c � ��1 and d � ��1, the continuous functional calculus implies
that

k.�2 C c/�1 � .�2 C d/�1k � kc � dk.�2 C ��1/�2:

2The constant 3 appearing in the statement is not optimal; one can see from the proof that
3 can be replaced with 2C ", for any " > 0. We do not know what the optimal constant is.

3The constant is optimal in some sense; this follows as the absolute value if the derivative
of the function t 7! t�1=2 on Œ��1;1/ has maximum value 1

2
�3=2.
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This inequality and line (4.7) imply that

kc�1=2 � d�1=2k �
2kc � dk

�

Z 1
0

.�2 C ��1/�2d�:

The integral on the right-hand side equals .��3=2/=4, whence the result.

Proof of Lemma 4.7. We first claim that it suffices to show we can choose a ı > 0 such
that if Œt1; t2� is a sub-interval of Œ0; 1� of length at most ı, and t 7! pt is a projection-
valued L-Lipschitz function on Œt1; t2�, then there is a unitary-valued .3L/-Lipschitz
function t 7!ut on Œt1; t2� such that u0D 1 and pt Dutp0u�t for all t 2 Œt1; t2�. Indeed,
if we can do this, then let 0D t0 < t1 < � � �< tN D 1 be a partition of the interval Œ0; 1�
such that each subinterval has length at most ı, and for each i 2 ¹0; : : : ;N � 1º choose
a unitary-valued .3L/-Lipschitz function t 7! u

.i/
t on Œti ; tiC1� such that u.i/ti D 1

and pt D u
.i/
t pti .u

.i/
t /
� for all t 2 Œti ; tiC1�. The function on Œ0; 1� defined on each

subinterval Œti ; tiC1� by

t 7! u
.i/
t u

.i�1/
ti

u
.i�2/
ti�1
� � �u

.0/
t1

then has the right properties to establish the lemma.
Let us then establish the statement in the claim. Let " > 0 be small enough that

.1 � .2C "/"/�1=2 C .1C "/2.1 � .2C "/"/�3=2 � 3;

and let ı > 0 be such that if t; s 2 Œ0; 1� satisfy jt � sj � ı, then kps � ptk < ". Let
Œt1; t2� be an interval of length at most ı. For t 2 Œt1; t2�, define

xt WD ptpt1 C .1 � pt /.1 � pt1/

and note that

kxt � 1k D k.2pt � 1/.pt1 � pt /k � k2pt � 1kkpt1 � ptk < ";

and so each xt is invertible, kxtk < 1C ", and also kx�1t k < .1 � "/
�1 by the Neu-

mann series formula for the inverse. One computes that xtpt1 D ptpt1 D ptxt , and
so xtpt1x

�1
t D pt . Moreover, pt1x

�
t D x

�
t pt , and so pt1x

�
t xt D x

�
t ptxt D x

�
t xtpt1 ,

i.e., x�t xt commutes with pt1 . If we define wt WD xt .x�t xt /
�1=2, we have that wt is

unitary and moreover

wtpt1w
�1
t D xt .x

�
t xt /

�1=2pt1.x
�
t xt /

1=2x�1t D xtpt1x
�1
t D pt :

It remains to show that the path defined on Œt1; t2� by t 7! wt is .3L/-Lipschitz.
We first note that for s; t 2 Œt1; t2�, we have that

kxs � xtk D k.pt � ps/.2pt1 � 1/k � kpt � psk � Ljs � t j (4.8)



Normalization 41

by assumption that .pt / is L-Lipschitz. Using that kxtk < 1C ", this implies that for
any s; t 2 Œt1; t2�

kx�t xt � x
�
s xsk � kx

�
t � x

�
s kkxtk C kx

�
s kkxt � xsk < 2.1C "/Ljs � t j:

Moreover, k1� x�t xtk < .2C "/", whence 1� .2C "/" � x�t xt and so in particular

k.x�t xt /
�1=2
k � .1 � .2C "/"/�1=2 for all t 2 Œt1; t2�: (4.9)

Hence, moreover Lemma 4.8 (with � D .1 � .2C "//�1) implies that for any s; t 2
Œt1; t2�

k.x�t xt /
�1=2
� .x�s xs/

�1=2
k � .1 � .2C "/"/�3=2.1C "/Ljs � t j: (4.10)

Lines (4.8), (4.10), and (4.9) combined with the fact that

kxtk < 1C "

for all t 2 Œt1; t2� implies that for any s; t 2 Œt1; t2�

kwt � wsk � kxt � xskk.x
�
t xt /

�1=2
k C kxskk.x

�
t xt /

�1=2
� .x�s xs/

�1=2
k

� .1 � .2C "/"/�1=2Ljs � t j C .1C "/2.1 � .2C "/"/�3=2Ljs � t j

which implies the desired estimate by choice of ".

For the statement of the next definition, recall that for l 2 ¹1; : : : ; nº, we let
1l 2 Mn.C/ be the rank l projection with l ones in the top-left part of the diagonal
and zeros elsewhere.

Definition 4.9. With notation as in Definition 3.1, define

P 1
n;�;".X;B/ WD

®
.p; q/ 2 Pn;�;".X;B/ j 9l 2 N such that .p; q/ � .1l ; 1l/

is in Mn.KB/˚Mn.KB/
¯
:

Define P 1
1;�;".X;B/ to be the disjoint union of these sets as n ranges over N.

Here, is the first of our main goals for this section; it allows control of the “scalar
part” of cycles for KK0�;".X;B/.

Proposition 4.10. Let B be a separable C �-algebra. Let X be a self-adjoint4 subset
of the unit ball of LB , let " > 0, let � � 1, and let n 2 N.

(i) Any element Pn;�;".X;B/ is in the same path component of Pn;4�3;".X;B/

as an element of P 1
n;4�3;"

.X;B/5.

4We mean here that X D X�, not the stronger assumption that every x 2 X is self-adjoint.
5If � D 1, one can replace 4�3 with 1 in the statement; we leave the details to the reader.



Homotopies, similarities, and normalization 42

(ii) If two elements .p0; q0/ and .p1; q1/ of P 1
n;�;".X; B/ are connected by a

path in Pn;�;".X; B/, then they are connected by a path in P 1
n;�;4".X; B/.

Moreover, if L � 1 is such that there is an L-Lipschitz path in Pn;�;".X;B/

connecting .p0; q0/ and .p1; q1/, then there is a .20�L/-Lipschitz path in
P 1
n;�;4".X;B/ connecting .p0; q0/ and .p1; q1/.

Proof of Proposition 4.10. For part (i), we assume that .p; q/ is an element of
Pn;�;".X; B/. Hence, by definition of Pn;�;".X; B/, if KCB is the unitization of KB

and � WMn.K
C

B /!Mn.C/ is the canonical quotient map then the classes Œ�.p/� and
Œ�.q/� in K0.C/ are the same, so in particular the idempotents �.p/ and �.q/ have
the same rank. Using Lemma 4.5 (i), there are paths of invertibles .ut /t2Œ0;1� and
.vt /t2Œ0;1� in Mn.C/ and projections r; s such that u1 D v1 is the identity, such that
u0ru

�1
0 D �.p/, such that v0sv�10 D �.q/, and such that the norms of all the ut , all

the vt and their inverses are all at most 1C � � 2�. On the other hand, r and s have the
same rank, whence there are paths of unitaries .ut /t2Œ1;2� and .vt /t2Œ0;1� in Mn.C/
such that u1 D v1 is the identity, and such that u2ru�2 D 1l , and v2sv�2 D 1l . As
scalar matrices commute with X , the path ..utpu�1t ; vtqv

�1
t //t2Œ0;2� passes through

Pn;4�3;".X;B/, and connects .p; q/ to an element of P 1
n;4�3;"

.X;B/ as required.
For part (ii), we just look at the statement involving Lipschitz paths; the case of

general continuous paths follows (in a simpler way) from the same arguments, and is
left to the reader. Assume that .p0; q0/ and .p1; q1/ are elements of P 1

n;�;".X;B/ that
are connected by an L-Lipschitz path that passes through Pn;��".X;B/. In particular,
there exists l 2 N such that �.p0/ D �.q0/ D 1l D �.p1/ D �.q1/. Let r0 be the
projection associated to p0 as in Definition 4.3. As in Lemma 4.5 (ii), the path defined
for t 2 Œ0; 1� by t 7! .1 � t /p0 C t r0 is �-Lipschitz and connects p0 and r0 through
idempotents of norm at most �. Moreover, Lemma 4.5 (iii) implies that for all x 2 X
and all t 2 Œ0; 1�

kŒ.1 � t /p0 C t r0; x�k � .1C 2t/kŒp0; x�k C tkŒp0; x
��k:

As X D X�, this implies that kŒ.1 � t /p0 C t r0; x�k < 4" for all x 2 X , and all t 2
Œ0; 1�. Note also that �..1� t /p0C t r0/D 1l for all t . Similarly, we get s0 which has
the same properties with respect to q0. We have thus shown that .p0; q0/ is connected
to the element .r0; s0/ via a �-Lipschitz path in P 1

n;�;4".X; B/. Completely analog-
ously, .p1; q1/ is connected to its associated projection .r1; s1/ via a �-Lipschitz
path in P 1

n;�;4".X; B/. Moreover, using Lemma 4.5 (iv), we have that .r0; s0/ and
.r1; s1/ are connected by an L-Lipschitz path of projections in Pn;1;4".X; B/, say
..rt ; st //t2Œ0;1�.

Now, consider the path .�.rt /; �.st //t2Œ0;1� in Mn.C/˚Mn.C/, which is also
L-Lipschitz. Lemma 4.7 gives .3L/-Lipschitz paths .ut /t2Œ0;1� and .vt /t2Œ0;1� of
unitaries in Mn.C/ such that �.rt / D ut�.r0/u

�
t and �.st / D vt�.s0/v

�
t for all
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t 2 Œ0; 1�. The path ..u�t rtut ; v
�
t stvt //t2Œ0;1� then passes through P 1

n;1;4".X; B/, is
.6L/-Lipschitz, and connects .r0; s0/ to .u�1r1u1; v

�
1 s1v1/.

Summarizing where we are, we have the following paths:

(i) A �-Lipschitz path through P 1
n;�;4".X;B/, parametrized by Œ0; 1�, and that

connects .p0; q0/ and .r0; s0/.

(ii) A .6L/-Lipschitz path through P 1
n;1;4".X; B/, parametrized by Œ0; 1�, and

that connects .r0; s0/ and .u�1r1u1; v
�
1 s1v1/.

(iii) A �-Lipschitz path through P 1
n;�;4".X;B/, parametrized by Œ0; 1�, and that

connects .p1; q1/ and .r1; s1/.

We claim that there is a 2�-Lipschitz path passing through P 1
n;1;4".X; B/, paramet-

rized by Œ0; 1� and connecting .u�1r1u1; v
�
1 s1v1/ and .r1; s1/. Concatenating this new

path with the three paths above (and using that � � 1 and thatL� 1), and rescaling the
two �-Lipschitz paths by 1=12, the 6L-Lipschitz path by 4=12, and the 6�-Lipschitz
by 6=12, this will give us a .20�L/-Lipschitz path connecting .p0; q0/ and .p1; q1/
through P 1

n;1;4".X;B/, which will complete the proof.
To establish the claim note that u1 commutes with 1l , and is therefore connec-

ted to the identity in Mn.C/ via a �-Lipschitz path of unitaries that all commute
with 1l , say .ut /t2Œ1;2�. Similarly, we get a �-Lipschitz path .vt /t2Œ1;2� with the same
properties with respect to v1. The path ..u�t r1ut ; v

�
t s1vt //t2Œ1;2� then passes through

P 1
n;1;4".X;B/, is 2�-Lipschitz, and connects .u�1r1u1; v

�
1 s1v1/ to .r1; s1/, so we are

done.

We now move on to results that let us prescribe the “scalar part” of cycles for
KK1, which is much simpler.

Definition 4.11. With notation as in Definition 3.5, define

U1
n;�;".X;B/ WD ¹u 2 Un;�;".X;B/ j u � 1 2Mn.KB/º:

Define U1
1;�;".X;B/ to be the disjoint union of these sets as n ranges over N.

We need a slight variant of the well-known fact that the group of invertibles in a
C �-algebra deform retracts onto the group of unitaries.

Lemma 4.12. Let � � 1, let C be a unital C �-algebra, and let C�1� be the set of
invertible elements u 2 C such that kuk � � and ku�1k � �. Then, the unitary group
of C is a deformation retract of C�1� . In particular, Mn.C/�1� is connected.

Proof. Let u 2 C�1� , and for t 2 Œ0; 1
2
� define ut WD u.u�u/�t . This is a homotopy

between the identity u 7! u0 on C�1� and the map u 7! u1=2; the latter is a retraction
of C�1� onto the unitary group of C , giving the first part. In particular, it follows that
C�1� is connected if and only if C�11 is connected; as the unitary group of Mn.C/ is
connected, this gives the last statement.
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Proposition 4.13. Let B be a separable C �-space, let X be a subset of the unit ball
of LB , let " > 0, let � � 1, and let n 2 N.

(i) Any element v 2Un;�;".X;B/ is connected to an element of U1
n;�2;�"

.X;B/

by a path in Un;�2;�".X;B/.

(ii) If two elements v0; v1 2 U1
n;�;".X; B/ are in the same path component of

Un;�;".X;B/, then they are in the same path component of U1
n;�2;�"

.X;B/.

Proof. For part (i), let KCB be the unitization of KB , let � WMn.K
C

B /!Mn.C/ be
the canonical quotient map, and set w D �.u�1/. Using Lemma 4.12, there is a path
.wt /t2Œ0;1� of invertibles connecting w D w1 to the identity and all with norm at most
�. Then, the path .wtv/t2Œ0;1� is in Un;�2;�".X; B/ and connects v to the element
u WD w1v, which satisfies �.u/ D 1, and so 1 � u 2Mn.KB/.

For part (ii), let .vt /t2Œ0;1� be a path in Un;�;".X; B/ connecting v0 and v1. Let
wt D �.v�1t /, and note that w0 D w1 D 1. Moreover, kwtk � � for all t . Then,
ut WD wtvt is a path connecting v0 and v1 in U1

n;�2;�"
.X;B/ as required.

4.4 From homotopies to similarities

Our goal in this section is to establish a controlled variant of the fact that homotopic
idempotents are similar; compare for example [7, Proposition 4.3.2]. This requires
some work, as we need to control the “speed” of the homotopy in order to control the
commutator estimates for the invertible element appearing in the similarity. The final
target is Proposition 4.17 below; the other results build up to it.

Lemma 4.14. Let � � 1, and let p0 and p1 be idempotents in a C �-algebra C with
norm at most �, and such that kp0 �p1k � 1=.12�2/. Then, there is a path .pt /t2Œ0;1�
of idempotents connecting p0 and p1, and with the following properties:

(i) each pt is an idempotent in C of norm at most 2�;

(ii) for all c 2 C and t 2 Œ0; 1�,

kŒc; pt �k � 21�
2 max
iD0;1

kŒc; pi �kI

(iii) the function t 7! pt is 1-Lipschitz.

Proof. For each t 2 Œ0; 1�, define rt WD .1 � t /p0 C tp1 2 C , and define

ut WD .1 � rt /.1 � p0/C rtp0 2 C
C:

Corollary 4.2 implies that k2p0 � 1k � 2�, whence

k1 � utk D k.2p0 � 1/.p0 � rt /k � 2�kp0 � p1k � 1=6:
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In particular, ut is invertible, kutk � 7=6, and ku�1t k � 6=5 by the Neumann series
formula of the inverse. Define pt WD utp0u�1t , which is an idempotent inC . We claim
that the path .pt /t2Œ0;1� has the desired properties. Note first that r0 D p0, whence
u0 D 1, and so the path .pt /t2Œ0;1� does start at the original p0. On the other hand,
u1p0 D r1p0 D p1p0 D p1u1, whence u1p0u�11 D p1. Thus, the path .pt / does
connect p0 and p1.

For part (i), note that as utp0 D rtp0, we get

kptk D krtp0u
�1
t k � k.rt � p0/p0u

�1
t k C kp0u

�1
t k �

1

12�2
�
6

5
C �

6

5
� 2�:

For part (ii), let ı D maxiD0;1 kŒc; pi �k. We compute using the identity 1 � ut D
.2p0 � 1/.p0 � rt / that

kŒut ; c�k D kŒ1 � ut ; c�k � kŒ2p0 � 1; c�kkp0 � rtk C k2p0 � 1kkŒp0 � rt ; c�k

� 2kŒp0; c�kkp0 � rtkCk2p0 � 1k.kŒp0; c�kCkŒrt ; c�k/:

Using that k2p0 � 1k � 2� again, this implies that

kŒut ; c�k � 2ı
1

12�2
C 2� � 2ı D

�
4� C

1

6�2

�
ı:

Hence, also

kŒu�1t ; c�k D ku
�1
t Œc; ut �u

�1
t k �

36

25

�
4� C

1

6�2

�
ıkck

and so

kŒpt ; c�k D kŒutp0u
�1
t ; c�k

� kŒut ; c�kkp0kku
�1
t k C kutkkŒp0; c�kku

�1
t k C kutkkp0kkŒu

�1
t ; c�k

�

�
4� C

1

6�2

�
ı�
6

5
C
7

5
ı C

7

6
�
36

25

�
4� C

1

6�2

�
ı

� 21�2ı

as claimed. Finally, for part (iii), we again use that k2p0 � 1k � 2� to compute that
for any s; t 2 Œ0; 1�,

kus � utk D k.2p0 � 1/.rs � rt /k � k2p0 � 1kjs � t jkp0 � p1k � 2�js � t j
1

12�2

D
1

6�
js � t j

and so

ku�1s � u
�1
t k D ku

�1
t .ut � us/u

�1
s k �

36

25

1

6�
js � t j D

6

25�
js � t j:
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Hence,

kpt � psk � k.ut � us/p0u
�1
t k C kusp0.u

�1
t � u

�1
s /k

�
1

6�
js � t j�

6

5
C
7

6
�
6

25�
js � t j

� js � t j

as claimed.

The next lemma gives universal control over the “speed” of a homotopy between
idempotents (at the price of moving to larger matrices). The basic idea is not new; see
for example [47, Proposition 1.31]. We give a complete proof, however, as we need to
incorporate commutator estimates and work with idempotents rather than projections.

Lemma 4.15. Let B be a separable C �-algebra, let X be a subset of the unit ball of
LB , let " > 0, and let n 2 N. Let .p0; q0/ and .p1; q1/ be elements of the same path
component of Pn;�;".X; B/. Then, there is k 2 N and a homotopy ..rt ; st //t2Œ0;1� in
P.2kC1/n;2�;21�2".X; B/ such that .ri ; si / D .pi ˚ 1nk ˚ 0nk; qi ˚ 1nk ˚ 0nk/ for
i 2 ¹0; 1º, and such that the map t 7! .rt ; st / is .16�/-Lipschitz.

Proof. Let ..pt ; qt //t2Œ0;1� be an arbitrary homotopy in Pn;�;".X; B/ connecting
.p0; q0/ and .p1; q1/. Let ı > 0 be such that if s; t 2 Œ0; 1� satisfy js � t j � ı, then
kps � ptk � 1=.12�

2/ and kqs � qtk � 1=.12�2/. Let 0 D t0 < t1 < � � � < tk D 1
be a sequence of points in Œ0; 1� such that tiC1 � ti � ı for all i . We claim that this
k works, and to show this we build an appropriate homotopy by concatenating the
various steps below.

(i) Connect .p0 ˚ 1nk ˚ 0nk; q0 ˚ 1nk ˚ 0nk/ to�
p0 ˚ .1n ˚ 0n/˚ � � � ˚ .1n ˚ 0n/„ ƒ‚ …

k times

; q0 ˚ .1n ˚ 0n/˚ � � � ˚ .1n ˚ 0n/„ ƒ‚ …
k times

�
via a 2-Lipschitz rotation homotopy parametrized by Œ0; �=2� and passing through
P.2kC1/n;�;".X;B/.

(ii) In the i th “block” 1n ˚ 0n, use the homotopy�
1 � pti 0

0 0

�
C

�
cos.t/ � sin.t/
sin.t/ cos.t/

��
0 0

0 pti

��
cos.t/ sin.t/
� sin.t/ cos.t/

�
(parametrized by t 2 Œ0; �=2�) to connect 1n ˚ 0n to 1 � pti ˚ pti , and similarly
for q. In order to compute commutator estimates, note that rearranging gives that the
homotopy above is the same as�

1 0

0 0

�
C

�
pti 0

0 pti

��
� cos2.t/ � sin.t/ cos.t/
� sin.t/ cos.t/ cos2.t/

�
; t 2 Œ0; �=2�:
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The scalar matrix appearing on the right above has norm jcos.t/j, whence every ele-
ment in this homotopy has norm at most 2�. Hence, our homotopy connects the result
of the previous stage to

.p0˚ 1�pt1 ˚pt1 ˚ � � �˚ 1�ptk ˚ptk ;q0˚ 1� qt1 ˚ qt1 ˚ � � �˚ 1� qtk ˚ qtk /

through P.2kC1/n;2�;".X;B/, and is 2�-Lipschitz.
(iii) From Corollary 4.2, each idempotent 1�pti has norm at most �. For each i 2

¹1; : : : ; kº, using that k.1�pti /� .1�pti�1/k � 1=.12�
2/, Lemma 4.14 gives a path

of idempotents connecting 1 � pti and 1 � pti�1 and with the following properties:
it is 1-Lipschitz; it consists of idempotents of norm at most 2�; each idempotent r in
the path satisfies kŒr; x�k � 21�2" for all x 2 X . We get similar paths with respect to
the elements 1� qti , and use these paths to connect the result of the previous stage to

.p0˚1� pt0˚pt1˚ � � � ˚1� ptk�1˚ptk ; q0˚1� qt0˚qt1˚ � � � ˚1� qtk�1˚qtk /

via a 1-Lipschitz path in P.2kC1/n;2�;21�2".X;B/.
(iv) Use an analog of the homotopy in step (ii) in each block of the form pti ˚

1 � pti (and similarly for q) to connect the result of the previous stage to�
.1n ˚ 0n/˚ � � � ˚ .1n ˚ 0n/„ ƒ‚ …

k times

˚ptk ; .1n ˚ 0n/˚ � � � ˚ .1n ˚ 0n/„ ƒ‚ …
k times

˚qtk
�
:

This passes through P.2kC1/n;2�;".X;B/, and is 2�-Lipschitz.
(v) Finally, noting that ptk D p1 and qtk D q1, use a rotation homotopy paramet-

rized by Œ0; �=2� to connect the result of the previous stage to .p1˚ 1nk ˚ 0nk; q1˚
1nk ˚ 0nk/. This passes through P.2kC1/n;�;".X;B/ and is 2�-Lipschitz.

Concatenating the five homotopies above gives a 2�-Lipschitz homotopy, para-
metrized by Œ0; 2� C 1�, that passes through P.2kC1/n;2�;".X;B/ and connects .p0˚
1nk ˚ 0nk; q0 ˚ 1nk ˚ 0nk/ and .p1 ˚ 1nk ˚ 0nk; q1 ˚ 1nk ˚ 0nk/. Reparametriz-
ing by Œ0; 1�, we get a .16�/-Lipschitz homotopy as required.

Before we get to the main result of this section, we give one more elementary
lemma; we record it as it will be used multiple times below.

Lemma 4.16. Say x and y1; : : : ; yn are elements of a C �-algebra such that

kŒx; yi �k � ı and kyik � m

for all i . Then, if y WD y1y2 � � �yn, we have kŒx; y�k � nmn�1ı.

Proof. This follows from the formula

Œx; y� D

nX
iD1

� Y
1�j<i

yj

�
Œx; yi �

� Y
i<j�n

yj

�
;
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which itself follows from induction on n and the usual Leibniz formula Œx; y1y2� D
y1Œx; y2�C Œx; y1�y2.

Here, is the main result of this section. The basic idea of the proof is contained
in [47, Corollary 1.32], but as usual we need to do more work in order to get our
estimates.

Proposition 4.17. Let B be a separable C �-algebra, let X be a self-adjoint subset
of the unit ball of LB , let � � 1, and let " > 0. Let M D 2.100�/

3
. With notation

as in Definition 4.9, let n 2 N, and let .p; q/ be in the same path component of
P 1
n;�;".X; B/ as an element .r; r/ with both entries the same. Then, there is m 2 N

and (with notation as in Definition 4.11) an element u 2 U1
nC2m;M;M".X; B/ such

that
u.p ˚ 1m ˚ 0m/u

�1
D q ˚ 1m ˚ 0m:

Proof. Let k 2 N be as in the conclusion of Lemma 4.15, so there exists a .16�/-
Lipschitz homotopy in P.2kC1/n;2�;21�2".X;B/ between .p˚ 1nk ˚ 0nk; q˚ 1nk ˚
0nk/ and .r ˚ 1nk ˚ 0nk; r ˚ 1nk ˚ 0nk/. Set m D kn. Proposition 4.10 gives a
.20� � 16�/-Lipschitz path ..pt ; qt //t2Œ0;1� passing through P 1

nC2m;2�;84�2"
.X; B/

that connects .p˚ 1nk ˚ 0nk; q˚ 1nk ˚ 0nk/ and .r ˚ 1nk ˚ 0nk; r ˚ 1nk ˚ 0nk/.
To simplify notation, note this path is .29�2/-Lipschitz, and that it passes through
P 1
nC2m;2�;27�2"

.X;B/.
Define N WD d213�3e (where dye is the least integer at least as large as y), and

define ti D i=N for i 2 ¹0; : : : ; N º. As the path ..pt ; qt //t2Œ0;1� is .29�2/-Lipschitz,
for any i 2 ¹1; : : : ; N º, kpti � pti�1k � .16�/

�1. For i 2 ¹1; : : : ; N º, define

vi WD pti�1pti C .1 � pti�1/.1 � pti /:

As kpti k � 2� for all i , Corollary 4.2 implies that

k2pti � 1k � 4� (4.11)

for all i , and so

k1 � vik D k.2pti�1 � 1/.pti�1 � pti /k � 4� � .16�/
�1
�
1

2
:

It follows that each vi is invertible, kvik � 2, and (by the Neumann series formula
for the inverse) kv�1i k � 2. Note also that as the homotopy ..pt ; qt //t2Œ0;1� passes
through P 1

.2kC1/n;2�;27�2"
.X;B/ all the elements pti must have the same “scalar part”

(i.e., the same image under the canonical map MnC2m.K
C

B /!MnC2m.C/), and so
the elements vi must satisfy

1 � vi 2MnC2m.KB/:
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Moreover, for x 2 X , using line (4.11) again we see that

kŒvi ; x�k D kŒvi � 1; x�k

D kŒ.2pti�1 � 1/.pti�1 � pti /; x�k

� 2kŒpti�1 ; x�k.kpti�1kCkpti k/Ck2pti�1�1k.kŒpti�1 ; x�kCkŒpti ; x�k/

� 12� � 27�2":

Hence, moreover

kŒv�1i ; x�k D kv�1i Œx; vi �v
�1
i k � 4 � 12� � 2

7�2" � 213�3":

At this point we have that each vi is an element of U1
nC2m;2;213�3"

.
Note also that vipti D pti�1pti D pti�1vi , and so viptiv

�1
i D pti�1 for each i .

Define v to be the product v1v2 � � � vN , so v satisfies v�1p0v D p1, or in other words

v�1.p ˚ 1m ˚ 0m/v D r ˚ 1m ˚ 0m:

Note that 1� v 2MnC2m.KB/. As kvik � 2 and kv�1i k � 2 for each i , we have that
kvk � 2N and similarly kv�1k � 2N . Moreover, for any x 2 X , Lemma 4.16 gives
kŒv; x�k � N2N�1 � 213�3" and similarly kŒv�1; x�k � N2N�1 � 213�3". Applying
the same construction with .qt / in place of .pt /, we get an invertible element w
such that w�1.q ˚ 1m ˚ 0m/w D r ˚ 1m ˚ 0m, such that 1 � w 2 MnC2m.KB/,
such that kwk � 2N , kw�1k � 2N , and such that kŒw; x�k � N2N�1 � 213�3" and
kŒw�1; x�k � N2N�1 � 213�3" for all x 2 X . Define u D wv�1. As N D d213�3e,
this has the claimed properties.


