Chapter 4

Homotopies, similarities, and normalization

In this chapter (as throughout), if B is a separable C *-algebra, then £p and Kp
denote respectively the adjointable and compact operators on the standard Hilbert
B-module {> ® B. For each n, we consider £ as a subalgebra of M,(£p) via the
“diagonal inclusion” £3 = 1y, ® £p S M, @ £p = M,(LB).

Our goal is to establish some technical lemmas about the controlled K K-groups
KK (X,B)and KK, (X, B) and the underlying sets of cycles Peo (X, B) and
Uook,e(X, B) from Definitions 3.1 and 3.5 respectively. These are all variants of
standard facts from C*-algebra K-theory, but the arguments are more involved as
we need to do extra work to control commutator estimates. Some of the material
is adapted from the foundational work of Oyono-Oyono and the second author on
controlled K-theory [47]; those authors work in the “dual” setting to us in some
sense, and similar techniques are often useful.

Most of the results in this chapter come with explicit estimates. We have generally
not tried to get optimal estimates, but as it might be useful for future work we have
tried to point out where one might expect the estimates to be optimal where this is
simple to do.

4.1 Background on idempotents

In this section we look at idempotents in C *-algebras and their relationship to pro-
jections. Most of this is well-known; nonetheless, we give proofs for the sake of
completeness where we could not find a good reference.

To establish notation, let us first note that if p € B(H) is an idempotent, then
with respect to the decomposition H = Image(p) @ Image(p)*, p has a matrix rep-

resentation
1 a
= 4.1
P (0 0) (4.1)

for some a € B(Image(p)*, Image(p)); conversely, any operator admitting a mat-
rix of this form with respect to some orthogonal direct sum decomposition of the
underlying Hilbert space defines an idempotent.

Lemma 4.1. If p is an idempotent bounded operator on a Hilbert space that is
neither zero nor the identity, then

I1=pll=1lpl and |p—p*l<lpl.
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Proof. Writing p as in line (4.1) (and using that neither Image(p) nor Image(p)* are
the zero subspace), we compute that

Ipl* = llpp*l = I1 +aa*| =1+ ||a|? (4.2)
and moreover that
1= plI> = 11— p)*( = p)ll = 1 +a*al =1+ |al* = ||Ip]*.

Looking now at p — p*, we see that

" wx_( 0 a\(0 —a\ _(aa* O
(p—r)p—p") —(_a* O)(a* 0)—(0 a*a),

whence || p — p*|I> = [la|> < [ p|*. "

Corollary 4.2. Ifx > 1, and p is any idempotent in a C *-algebra with || p|| < k, then
I1=pl <k llp—p*Il =« and |2p — 1]| < 2.

Proof. The estimates for |1 — p|| and || p — p*|| are immediate from Lemma 4.1 (and
direct checks for the degenerate cases p = 0 and p = 1). The estimate for 2p — 1
follows as

2p—1=p—(1-p). ]

It will be convenient to formalize a standard construction in C *-algebra K -theory
for turning idempotents into projections (compare for example [7, Proposition 4.6.2]).

Definition 4.3. Let p be an idempotent in a C *-algebra C. Define
z:=1+(p—-pHp*—peC™,
and note that z > 1+ so z is invertible. Define
ri=pp*z7",
which is an element of C. We call r the projection' associated to p.

Remark 4.4. If C is a concrete C *-algebra and p is an idempotent with matrix
representation as in line (4.1), then one computes that the associated projection has

matrix representation
1 0
= 4.3
=5 o) @3)

with respect to the same decomposition of the underlying Hilbert space. In particular,
r is the projection with the same image as the idempotent p.

Tt will be shown to be a projection in the next lemma.
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Lemma 4.5. Let p be an idempotent in a C*-algebra C, and assume that || p| < «
for some k > 1. Let r be the projection associated to p as in Definition 4.3, and for
t €10, 1] define ry := (1 —t)p + tr. Then, the following hold:

(i)  The element r is a projection in C, and there is an invertible u € C ™ such
that upu™! l,
and u is connected to the identity through a path of invertibles such that
all the invertibles in the path and all of their inverses have norm at most
L+l

(ii)  Each ry is an idempotent such that ||r¢| < « for all t, and the map t +— r;
is k-Lipschitz.

= r. Moreover, u and its inverse have norm at most 1 + || p

(iii) Foranyc € C andt € [0, 1] we have
Ilre.clll = (L +20)[1[p. clll + ¢l [p. c*]Il-
(iv) The map
{peClp=pt—>{peClp=p"=p"
that takes an idempotent to its associated projection is 1-Lipschitz.

Proof. Part (i) as in line (4.1), we may write p = ((1) g), and note as in line (4.2) that
Izl = +/1+ |la||?, so in particular ||a|| < || p||. Using the discussion in Remark 4.4
we see that u = ((1) ‘1’) satisfies upu~™! = r, and that the path u, = ((1) ’1”) connects u
to the identity through invertibles of norm at most 1 + ||ta|| < 1 + || p||. The claims
on the norms of the inverses follow as (§ /¢ )_1 = (§719).

(Or see for example the proof of [7, Proposition 4.6.2]).

For part (ii), we write p as in line (4.1), note that ||a|| < k, and also that r has the
matrix representation as in line (4.3). This implies the claimed properties.

For part (iii), we again write p as a matrix as in line (4.1). Let ¢ € C, and with
respect to the same decomposition of the underlying Hilbert space, let us write

. (6’11 012)
c = .
€21 €22
Then, one computes that

ac C12 +acyy —cr1a
[p,c] = ( 21 12 22 11 ) (4.4)
—C21 —C210

As the conditional expectation that sends a matrix to its diagonal is contractive, we

have
acypy 0
<
‘( 0 —C21a) = lllp.clll
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and combining this with line (4.4) gives

0 C12 +acyy —cr1a
—C21 0

One computes that the top right entry of [p — p*, ¢] is acas — ¢11a, whence

= 2[[p.lll- (4.5)

lacaz = crrall < lllp = p*. cll = lllp.clll + llp. ]Il

This and line (4.5) together imply that

0 c12
—C21 0

As r has the matrix representation from line (4.3), the left-hand side of the inequal-
ity in line (4.6) equals ||[r, c]||, and so line (4.6) can be rewritten as the inequality
Ilr. clll < 3l[p. clll + lI[p. ¢*]ll. As rs = (1 —t)p + tr, this implies the claimed
estimate.

For part (iv) we may assume that C is a concrete C *-algebra. As noted in Remark
4.4, the projection r associated to an idempotent p is then simply the orthogonal
projection with the same image as p. In this language, part (iv) is [41, Chapter One,
Theorem 6.35]. ]

] <30p.clll + lp.c™ll. 46)

4.2 From similarities to homotopies

Our goal in this short section is to establish an analogue of the standard K-theoretic
fact that similar idempotents are homotopic, at least up to increasing matrix sizes.
Compare for example [7, Proposition 4.4.1].

Proposition 4.6. Let B be a separable C*-algebra, let X be a subset of the unit ball
of £p, and let k > 1 and & > 0. Let (po,q) and (p1, q) be elements of P (X, B),
and letu € U, (X, B) be such that upou~' = py. Then, the elements (po ® 0,,q
0n) and (p1 @ Opn,q @ 0y) are in the same path component of P, 3 342.(X, B), and
in particular, (po, q) and (p1,q) define the same class in KK’? ’

The analogous statement holds with the roles of the first (“p”) and second (“q”)
components reversed.

Proof. Define
B (cos(t) —sin(t)) (1 O) ( cos(?) sin(l)) € Moy (K)
- 2n B/

sin(¢)  cos(?) 0 u) \—sin(t) cos(?)
Then, the path

1+ (Vi (po ®0p)v; g BO,), 1 €[0,7/2]
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connects (po @ On,q @ 0,) to (p1 ® 04, g ® 0,) through Py, .3 3,2.(X, B). We
leave the direct checks involved to the reader. n

4.3 Normalization

Our goal in this section is to show that cycles for KK,?’S(X, B) and KK,LE (X, B) can
be assumed to have prescribed “scalar part”, at least up to some deterioration of k
and ¢.

The following lemma is well-known without the Lipschitz condition?; see for
example [7, Theorem 4.6.7] or [36, Corollary 4.1.8].

Lemma 4.7. Let L > 0. Then, if (pt)+e[o,1] is an L-Lipschitz path of projections in a
unital C*-algebra C, there is a (3L)-Lipschitz path (1) efo,1] of unitaries in C such
that ug = 1, and such that p; = u; pouy forallt € [0, 1].

We need a preliminary lemma.
Lemma 4.8. Let n > 1, and let C be a unital C*-algebra. Then, the map
{ceCle=ny>C, cr 7?2
is %773/ 2_Lipschitz’.

Proof. For any positive real number ¢, one has
2 o0
e —/ (A% +1)7dA,
T Jo
whence for any positive invertible elements ¢, d € C
2 o0
V2 g2 = ;/ (A +o) ' =2+ d) M)da. 4.7
0

Using the formula

Mo ' -+ =R+ d - +a)!

Vand d > n~!, the continuous functional calculus implies

and assuming that ¢ > n~
that

132 + )™ = A2+ )7 = e =dl(* + 77 )72

The constant 3 appearing in the statement is not optimal; one can see from the proof that
3 can be replaced with 2 + ¢, for any ¢ > 0. We do not know what the optimal constant is.
3The constant is optimal in some sense; this follows as the absolute value if the derivative

of the function # — ¢ ~1/2 on [y~!, c0) has maximum value %773/2.
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This inequality and line (4.7) imply that

2Hle — 00
||C—1/2 _ d—1/2|| < ”C d” / (12 + U_l)_zd)t.
4 0

The integral on the right-hand side equals (1%/2)/4, whence the result. n

Proof of Lemma 4.7. We first claim that it suffices to show we can choose a § > 0 such
that if [¢1, 5] is a sub-interval of [0, 1] of length at most §, and ¢ — p; is a projection-
valued L-Lipschitz function on [f1, t5], then there is a unitary-valued (3 L)-Lipschitz
function t > u; on [t;, 1] such thatug = 1 and p; = u, pouj forall¢ € [t;,;]. Indeed,
if we can do this, thenlet 0 =7y < t; <--- <ty = 1 be a partition of the interval [0, 1]

such that each subinterval has length at most §, and for each i € {0, ..., N — 1} choose
a unitary-valued (3L)-Lipschitz function 7 — u'” on [t;, #j11] such that ug) =1

and p; = ugi)p,i (ugi))* for all ¢ € [t;, tj+1]. The function on [0, 1] defined on each
subinterval [t;, t; +-1] by

t ugi)ug_l)ugjz) . --ug?)

then has the right properties to establish the lemma.
Let us then establish the statement in the claim. Let ¢ > 0 be small enough that

(1-2+8)e) 2+ (1 +e)21-2+e)e)/? <3,

and let § > 0 be such that if 7, s € [0, 1] satisfy |t — 5| < §, then || ps — p¢] < &. Let
[t1, 2] be an interval of length at most §. For ¢ € [t1, t,], define

Xt = pipy, + (1= pe)(1 = pyy)
and note that
lx: — 1 = 12p: — D(pey — PNl = 12p = Ul pry — pell <&,

and so each x; is invertible, ||x;|| < 1 + ¢, and also || x; | < (1 —&)~! by the Neu-
mann series formula for the inverse. One computes that x; p;;, = p; p;, = p:X;, and
SO x,p,lxt_l = p:. Moreover, p; x; = x] p;, and S0 ps, X xX; = X prX; = X[ Xt Pt
i.e., x;x; commutes with p;, . If we define w; := x,(x;kx,)_l/z, we have that w; is
unitary and moreover

-1 *_\—1/2 *_\1/2.—1 -1
Wt Pty Wy =xt(xt Xt) / Ptl(x, Xt) / Xy = Xepy Xy = Dt

It remains to show that the path defined on [¢1, f2] by  — wy, is (3L)-Lipschitz.
We first note that for 5,7 € [t1, 1], we have that

lxs = xell = (Pt = ps)2pey — DIl = Il pe — psll < Lls — 1] (4.8)
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by assumption that (p;) is L-Lipschitz. Using that ||x;|| < 1 + &, this implies that for
any s,t € [tq, t3]

7 xe — x5xsll < Ml = xg el + x5 Hlxe — xsll < 2(1 + e)Ls —¢].
Moreover, |1 — x/x;|| < (2 4+ ¢)e, whence 1 — (2 + )& < x[x; and so in particular
||(xt*xt)_1/2|| <(1=Q2+¢e) V2 foralls € [t1,1]. 4.9)
Hence, moreover Lemma 4.8 (with 7 = (1 — (2 + &))~!) implies that for any s, €
11, 2]
I ™2 = () T2 = (A= @+ 0)e) P+ )Lls —1]. (4.10)
Lines (4.8), (4.10), and (4.9) combined with the fact that
lx:]l <1+e
forall ¢ € [t1,t,] implies that for any s, ¢ € [t1, t3]
e = well < e = X102+ sl o) ™2 = ()2
<(1-=Q+ee) 2L|s —t| + (1 + &)*(1 — 2+ e)e) >2L|s — 1|
which implies the desired estimate by choice of ¢. |

For the statement of the next definition, recall that for [ € {1,...,n}, we let
1; € M, (C) be the rank / projection with / ones in the top-left part of the diagonal
and zeros elsewhere.

Definition 4.9. With notation as in Definition 3.1, define

P ce(X,B) :={(p.q) € Puse(X.B) |3l €N such that (p,q) — (1;. 1))
is in My (Kp) & My (Kp)}.

Define J’OIO’K’S(X , B) to be the disjoint union of these sets as n ranges over N.

Here, is the first of our main goals for this section; it allows control of the “scalar
part” of cycles for KK (X, B).
Proposition 4.10. Let B be a separable C*-algebra. Let X be a self-adjoint* subset
of the unit ball of £p, let e > 0, let k > 1, and let n € N.

(i) Any element Py (X, B) is in the same path component of P, 4,3 (X, B)
as an element of P! , , (X, B)’.

4We mean here that X = X *, not the stronger assumption that every x € X is self-adjoint.
SIf k = 1, one can replace 413 with 1 in the statement; we leave the details to the reader.
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(i1)  If two elements (po, qo) and (p1,q1) of r)an (X, B) are connected by a
path in P (X, B), then they are connected by a path in K 4:(X, B).
Moreover, if L > 1 is such that there is an L-Lipschitz pathin Py (X, B)
connectlng (po, qo) and (p1, q1), then there is a (20k L)-Lipschitz path in

P ,46(X. B) connecting (po. qo) and (p1.q1).

Proof of Proposition 4.10. For part (i), we assume that (p, ¢) is an element of
P x.e(X, B). Hence, by definition of P, (X, B), if X4 is the unitization of Kp
ando : My, (JC;) — M, (C) is the canonical quotient map then the classes [0 (p)] and
[0(q)] in Ko(C) are the same, so in particular the idempotents o (p) and o (q) have
the same rank. Using Lemma 4.5 (i), there are paths of invertibles (u,);c[o,1] and
(v¢)¢ef0,1] in M, (C) and projections r, s such that u; = v, is the identity, such that
uorug' = o(p), such that vosvy ' = o(¢), and such that the norms of all the u,, all
the v, and their inverses are all at most 1 + x < 2x. On the other hand, r and s have the
same rank, whence there are paths of unitaries (1;);¢[1,2) and (v¢)sefo,1] in M, (C)
such that u; = vy is the identity, and such that u,ruj = 1;, and vpsvy = 1;. As
scalar matrices commute with X, the path ((u; pu; ', v;qv; ') e(0,2) passes through
P a3, (X, B), and connects (p, ¢) to an element of !Pn1’4k3,8(X, B) as required.

For part (ii), we just look at the statement involving Lipschitz paths; the case of
general continuous paths follows (in a simpler way) from the same arguments, and is
left to the reader. Assume that (pg, go) and (p1,q1) are elements of J’nl «.c (X, B) that
are connected by an L-Lipschitz path that passes through 5, ..(X, B). In particular,
there exists / € N such that 6(pg) = 0(q9) = 1; = 6(p1) = 0(q1). Let ro be the
projection associated to pg as in Definition 4.3. As in Lemma 4.5 (ii), the path defined
fort € [0,1] by t — (1 — 1) po + tro is k-Lipschitz and connects po and ro through
idempotents of norm at most k. Moreover, Lemma 4.5 (iii) implies that for all x € X
and all ¢ € [0, 1]

(1 = 1) po + tro. x]Il = (1 4 20)|[po. ]Il + tll[po. x*]II.

As X = X*, this implies that ||[(1 — ) po + tro, x]|| < 4eforall x € X,and all f €
[0, 1]. Note also that o ((1 — t) pg + trg) = 1; for all ¢. Similarly, we get so which has
the same properties with respect to go. We have thus shown that (pg, go) is connected
to the element (rg, o) via a k-Lipschitz path in n v.4¢(X, B). Completely analog-
ously, ( pl, q1) is connected to its associated projection (71, s;) via a x-Lipschitz
path in § n ‘. 4¢(X, B). Moreover, using Lemma 4.5 (iv), we have that (ro, so) and
(r1, s1) are connected by an L-Lipschitz path of projections in &, 1 4¢(X, B), say
(("t,St))ze[o,l .

Now, consider the path (o(r/), 0(5¢))se[0,1] in M, (C) & M, (C), which is also
L-Lipschitz. Lemma 4.7 gives (3L)-Lipschitz paths (u;)se[0,1] and (v¢)efo,1] of
unitaries in M, (C) such that o(r;) = u;0(ro)uy and o(s;) = v;0(so)v; for all
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t € [0, 1]. The path ((u;r:us, v;s;vs))refo,1] then passes through 5’,}’1,48()(, B), is
(6L)-Lipschitz, and connects (7o, so) to (uiriuy, vysivy).
Summarizing where we are, we have the following paths:

(1) A «-Lipschitz path through {Pnl,K, 4¢(X, B), parametrized by [0, 1], and that
connects (po, go) and (ro, So)-

(i) A (6L)-Lipschitz path through {Pnl,l’ 4¢(X, B), parametrized by [0, 1], and
that connects (rg, so) and (ujriuy, vys1v1).

(iii) A k-Lipschitz path through £}, (X, B), parametrized by [0, 1], and that

connects (p1,¢1) and (r1, 51).

k4

We claim that there is a 2w -Lipschitz path passing through ;7’”151’ 4¢(X, B), paramet-
rized by [0, 1] and connecting (u}r1u1, vis1v1) and (r1, s1). Concatenating this new
path with the three paths above (and using that ¥ > 1 and that L. > 1), and rescaling the
two x-Lipschitz paths by 1/12, the 6 L-Lipschitz path by 4/12, and the 67-Lipschitz
by 6/12, this will give us a (20« L)-Lipschitz path connecting (po, go) and (p1,q1)
through £, ,. (X, B), which will complete the proof.

To establish the claim note that 1#; commutes with 1;, and is therefore connec-
ted to the identity in M, (C) via a w-Lipschitz path of unitaries that all commute
with 17, say (1) e[1,2). Similarly, we get a w-Lipschitz path (v;)e[1,2] with the same
properties with respect to vy. The path ((u}r1u;, v;'S1V:))se[1,2] then passes through

‘7)?11,1,48(X’ B), is 2m-Lipschitz, and connects (ujriu, visivy) to (r1, s1), so we are
done. n

We now move on to results that let us prescribe the “scalar part” of cycles for
KK, which is much simpler.

Definition 4.11. With notation as in Definition 3.5, define
Up o(X.B) :={u € Unee(X,B) |u—1¢€ My(Kp)}.

Define ‘Lléo,x’e (X, B) to be the disjoint union of these sets as n ranges over N.

We need a slight variant of the well-known fact that the group of invertibles in a
C *-algebra deform retracts onto the group of unitaries.

Lemma 4.12. Let k > 1, let C be a unital C*-algebra, and let C.! be the set of
invertible elements u € C such that ||u| < k and |u~"|| < k. Then, the unitary group
of C is a deformation retract of C'. In particular, M, (C);! is connected.

Proof. Letu € C;!, and for ¢ € [0, %] define u; := u(u*u)~". This is a homotopy
between the identity u > 1o on C, ! and the map u > u,; the latter is a retraction
of C 1 onto the unitary group of C, giving the first part. In particular, it follows that
C. ! is connected if and only if C; ! is connected; as the unitary group of M, (C) is
connected, this gives the last statement. |
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Proposition 4.13. Let B be a separable C*-space, let X be a subset of the unit ball
of £p, lete > 0, let k > 1, and let n € N.

(i) Anyelementv € Up (X, B) is connected to an element of‘u; (X,B)
by a pathin U, 2 ,..(X, B).

. 1
(i) Iftwo elements vo,v1 € U, , .

Un ke (X, B), then they are in the same path component of ‘ujl

K2 ke

(X, B) are in the same path component of
(X, B).

K2 .Kke

Proof. For part (i), let JC; be the unitization of Kpg, let o : M, (JC;) — M, (C) be
the canonical quotient map, and set w = o (u~!). Using Lemma 4.12, there is a path
(w¢)sefo,1] of invertibles connecting w = w to the identity and all with norm at most
«. Then, the path (w;v)sefo,1] is in U, 42 (X, B) and connects v to the element
u := wyv, which satisfies o(u) = 1,andso 1 —u € M,(Kp).

For part (ii), let (v);e[o,1] be a path in Uy, i (X, B) connecting vy and v;. Let
w; = a(vt_l), and note that wg = wy; = 1. Moreover, ||w;| < « for all ¢. Then,

U; 1= w; v, is a path connecting vo and v; in ‘L(}ll 2 ¢e(X, B) as required. ]

4.4 From homotopies to similarities

Our goal in this section is to establish a controlled variant of the fact that homotopic
idempotents are similar; compare for example [7, Proposition 4.3.2]. This requires
some work, as we need to control the “speed” of the homotopy in order to control the
commutator estimates for the invertible element appearing in the similarity. The final
target is Proposition 4.17 below; the other results build up to it.

Lemma 4.14. Let k > 1, and let py and py be idempotents in a C*-algebra C with
norm at most k, and such that || po — p1|| < 1/(12«?). Then, there is a path (p¢)te[0.1]
of idempotents connecting po and p1, and with the following properties:

(1)  each p; is an idempotent in C of norm at most 2k ;
(i) forallc € C andt € ]0,1],

lfe. poll = 212 max [ fe. pil:
(iii) the function t — p; is 1-Lipschitz.
Proof. Foreacht € [0, 1], define r; := (1 —¢t)po + tp1 € C, and define
ur = (1—r)(1—po) +ripoeC™.
Corollary 4.2 implies that ||2po — 1| < 2k, whence

IT—uell = 1(2po — D(po —ro)ll < 2¢llpo — p1ll = 1/6.
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In particular, u, is invertible, ||u;| < 7/6, and |lu;!|| < 6/5 by the Neumann series
formula of the inverse. Define p; := u; pout_l, which is an idempotent in C. We claim
that the path (p;);e[o,1] has the desired properties. Note first that ro = po, whence
uo = 1, and so the path (p;);e[o,1] does start at the original pg. On the other hand,
Ui po = ri1po = p1Po = piu1, whence ulpgul_l = p1. Thus, the path (p;) does
connect py and p;.

For part (i), note that as u; pg = r; po, we get

6 i 6 <2
K=+ k= < 2.
12625 5~

1pell = llre pouy 'l < 1(re = po) pous || + Il pouy Il <

For part (ii), let § = max;—o,; ||[c, p;]||. We compute using the identity 1 —u; =
(2po — 1)(po — r¢) that

[z, clll = 1 —u.cll < 2P0 — 1. clllll o — 72l + 12po — 1l[I[Po — r2. ]l
= 2l[po. clllll po = rell+112po — LI (Il[po- clll+NI[r. 1D

Using that ||2po — 1|| < 2« again, this implies that

1 1
e ]l < 2855 + 2 - 28 = (4/< + @)8.

Hence, also

_ _ _ 36 1
7t el = luy e u du Ml < E(mc + m)5||c||

and so

I(pe, clll = ll[ue pous . |l
< ue, clllll polllle; Il + el [pos ey I + Nlueellll ol [z " el
<<4 4 )5 6 7547 36(4 + )5
K+ —)8k=+ =8 + —k— 4k + —
= 62/ 5 T 5% 6 %5 o2
< 21«28

as claimed. Finally, for part (iii), we again use that ||2po — 1|| < 2« to compute that
for any 5,1 € [0, 1],

1
lhes —uell = 11@Zpo = D(rs —ro)ll = 12po = 1ls —tllpo — p1ll = 2kls =t 5

= —ls — 1]
6K

and so

36 1
—1 -1 —1 —1
u —Uu = ||U Uy —Ug))U < ——|8s—t| = —|5 —{].
” Ky t “ ” t ( t S) s ” — 25 6K| | 25K| I
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Hence,
1pe = psll < G —ug) pouy | + llug po(uy —ug ™|
< sl 4 D s ]
—s — ;c —Kk—|s —
~ 6k 6 25k
<|s—1]
as claimed. n

The next lemma gives universal control over the “speed” of a homotopy between
idempotents (at the price of moving to larger matrices). The basic idea is not new; see
for example [47, Proposition 1.31]. We give a complete proof, however, as we need to
incorporate commutator estimates and work with idempotents rather than projections.

Lemma 4.15. Let B be a separable C*-algebra, let X be a subset of the unit ball of
£p, lete > 0, and let n € N. Let (po, qo) and (p1,q1) be elements of the same path
component of P ic.¢(X, B). Then, there is k € N and a homotopy ((r1,5¢))ze[0,1] in
Pak+1)n,2¢,21626(Xs B) such that (ri,si) = (pi ® luk @ Onk, qi @ luk @ Onk) for
i €{0, 1}, and such that the map t > (ry, s;) is (16«)-Lipschitz.

Proof. Let ((p:.q1))tefo,1] be an arbitrary homotopy in &, (X, B) connecting
(po.qo) and (p1,q1). Let § > 0 be such that if 5,7 € [0, 1] satisfy |s — ]| < §, then
Ips = pell < 1/(126?) and |lgs — q;|| < 1/(12«). Let 0 = tg < 11 <--- <t = 1
be a sequence of points in [0, 1] such that ; ., — ¢; < 6 for all i. We claim that this
k works, and to show this we build an appropriate homotopy by concatenating the
various steps below.

(i) Connect (po @ lnk @ Onk,qo ® 1uk @ Oni) to

(Po®(1n ®0,) @ ®(1nD0y), go® (1, D0,) @+ ® (1, D O,) )

k times k times

via a 2-Lipschitz rotation homotopy parametrized by [0, /2] and passing through

‘?(Zk-i-l)n,K,E(Xv B)
(ii) In the ith “block” 1, & 0,, use the homotopy

l—p,; O i cos(t) —sin(¢)) (0 O cos(t)  sin(?)
0 0 sin(t)  cos(t) 0 ps; ) \—=sin(z) cos(t)
(parametrized by ¢ € [0, 7/2]) to connect 1, & 0, to 1 — p;, @ p;,, and similarly

for g. In order to compute commutator estimates, note that rearranging gives that the
homotopy above is the same as

10 py 0 —cos?(1) —sin(?) cos(t)
(0 0) + ( 0 pzi) (— sin(z) cos(t) cos?(t) ) , t€][0,m/2].
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The scalar matrix appearing on the right above has norm |cos(?)|, whence every ele-
ment in this homotopy has norm at most 2«. Hence, our homotopy connects the result
of the previous stage to

(Po®1—pt,®pr, @ Bl—py @ Py Go®1—q1, DGt B D1 —q1, Dqyy.)

through Pk 4 1yn,2¢,6 (X, B), and is 2« -Lipschitz.

(iii) From Corollary 4.2, each idempotent 1 — p,, has norm at most . For eachi €
{1,....k},using that | (1 — ps,) — (1 — ps;_,)|| < 1/(12«?), Lemma 4.14 gives a path
of idempotents connecting 1 — p,, and 1 — p;,_, and with the following properties:
it is 1-Lipschitz; it consists of idempotents of norm at most 2«; each idempotent r in
the path satisfies ||[r, x]|| < 21«2e for all x € X. We get similar paths with respect to
the elements 1 — g, , and use these paths to connect the result of the previous stage to

(Po®l = pto®ps;, @+ @1 = pr_ @ Py, qoDl — Gty DG, -+ ®1 — g1, DGyy)

via a 1-Lipschitz path in Pk 11y 2 21626 (X B).
(iv) Use an analog of the homotopy in step (ii) in each block of the form p;, @
1 — py; (and similarly for g) to connect the result of the previous stage to
((ln ©0,) DD (1 D0p) ®py,(1n ®0n) & --- & (1 & 0y) EB‘Itk)-

k times k times

This passes through P2k +1)n,2¢,6(X, B), and is 2k-Lipschitz.

(v) Finally, noting that p; = p; and q;, = ¢1, use a rotation homotopy paramet-
rized by [0, 7w /2] to connect the result of the previous stage to (p1 @ 1,x D Onr,q1 @
1,k @ Opg). This passes through Pk 41)nc,6(X, B) and is 2k-Lipschitz.

Concatenating the five homotopies above gives a 2k-Lipschitz homotopy, para-
metrized by [0, 27 4 1], that passes through Pk 41y 24, (X, B) and connects (po ®

Lk @ Ok, qo @ lug @ 0,%) and (p1 & Lug @ Ok, g1 D 1k D 0,%). Reparametriz-
ing by [0, 1], we get a (16«)-Lipschitz homotopy as required. ]

Before we get to the main result of this section, we give one more elementary
lemma; we record it as it will be used multiple times below.

Lemma 4.16. Say x and yq, ..., y, are elements of a C*-algebra such that
Ilx, yilll <8 and |yill <m

foralli. Then, if y := y1y2 -+ yn, we have ||[x, y]|| < nm"™18.

Proof. This follows from the formula

[xd’]:i:( l_[ yj)[va’i]( l_[ yj),

i=1 1<j<i i<j<n
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which itself follows from induction on n and the usual Leibniz formula [x, y1 2] =
yilx, y2] + [x, y1ly2. ]

Here, is the main result of this section. The basic idea of the proof is contained
in [47, Corollary 1.32], but as usual we need to do more work in order to get our
estimates.

Proposition 4.17. Let B be a separable C*-algebra, let X be a self-adjoint subset
of the unit ball of £p, let k > 1, and let ¢ > 0. Let M = 201000 " Wirh notation
as in Definition 4.9, let n € N, and let (p, q) be in the same path component of
J’,},K’s(X , B) as an element (r, r) with both entries the same. Then, there is m € N
and (with notation as in Definition 4.11) an element u € urlt+2m,M,Ms(X’ B) such
that

u(p @ 1p, 690m)“_1 =q® Ly ® Op.

Proof. Let k € N be as in the conclusion of Lemma 4.15, so there exists a (16«)-
Lipschitz homotopy in Pk 4 1y,,2¢,21k2¢ (X, B) between (p @ 1k @ Onk,q & Lk @
0nr) and (r & 1, @ Opi, 7 & 1,k @ 0,1). Set m = kn. Proposition 4.10 gives a
(20« - 16«k)-Lipschitz path ((p:, g¢))zefo,1] passing through °{Pn1+2m,2/<,84/<28(X’ B)
that connects (p @ 1,k @ 0k, g D Lux D 0yx) and (r & 1,5 B Opp, v & 11 S 011).
To simplify notation, note this path is (2°x2)-Lipschitz, and that it passes through
j)rll+2m,2K,27K28(X’ B).

Define N := [2'3k3] (where [y] is the least integer at least as large as y), and
define ; = i/N fori € {0, ..., N}. As the path ((ps, g¢))ref0.1] is (2°k?)-Lipschitz,
foranyi € {1,....,N} ||ps, — pt;_, | < (16k)~ . Fori € {1,..., N}, define

V; 1= pt,-,lpt,: + (l - Ptl-,l)(l - pt,:)'
As || ps; || < 2« for all i, Corollary 4.2 implies that
12py; — 1| < 4« 4.11)

for all 7, and so

I —=vill = 2Py, = D(pri_y = pe)ll < 4 - (166)7H <

N =

It follows that each v; is invertible, ||v;|| < 2, and (by the Neumann series formula
for the inverse) ||vi_1 | < 2. Note also that as the homotopy ((p:.qr))se[0,1] Passes

[} @ 9
through & (2k+1)n,2x,27lc28(X’ B) all the elements p;, must have the same “scalar part

(i.e., the same image under the canonical map My 42, (,K;) — My42m(C)), and so
the elements v; must satisfy

1 —v; € Mytom(Kp).
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Moreover, for x € X, using line (4.11) again we see that

Ivi. Xl = [[fvi = 1. x]|
= ||[(2Pt,~_1 - 1)(Pt,-_1 - Pt,-)’x]”

< 2Mpe_y» XM 2ty |+ e D H 0208, — I Pty > X1+ gy - X1
< 12k - 27k 2.

Hence, moreover

1o X)) = o7 e, vilo | < 4+ 126 - 27k%e < 2833,

1
n+2m,2,213,3¢"

Note also that v; ps;; = ps;_, pr; = Pr;_, Vi and s0 v; p;,v;' = p;, | foreachi.
Define v to be the product vyv; -+ - vy, so v satisfies v_lpov = p1, or in other words

At this point we have that each v; is an element of U

VI p @ 1n ®@0p)v =7 @ 1,y ® 0,

Note that 1 —v € My42m(Kp). As ||| <2and |Jv;!|| < 2 for each i, we have that
[v|| <2V and similarly |[v~"|| < 2¥. Moreover, for any x € X, Lemma 4.16 gives
[[v, x]|| < N2N¥~1.213k3¢ and similarly ||[v!, x]|| < N2N—1.213k3¢. Applying
the same construction with (¢;) in place of (p;), we get an invertible element w
such that w™'(q ® 1,, ® Op)w =71 @ 1,,, ® Opy, such that 1 — w € My 42, (KB),
such that |w] < 2V, |Jw™!|| < 2%, and such that ||[w, x]|| < N2¥~1.213k3¢ and
I[w=!, x]|| < N2N—1.21343¢ for all x € X. Define u = wv™'. As N = [213«3],
this has the claimed properties. |



