Chapter 6

A Mayer—Vietoris boundary map

In this chapter (as throughout), if B is a separable C *-algebra, then £p and Kp
denote respectively the adjointable and compact operators on the standard Hilbert
B-module {> ® B. For each n, we consider £ as a subalgebra of M,(£p) via the
“diagonal inclusion” £3 = 1y, ® £p S M, @ £p = M,(LB).

Our goal in this chapter is to construct and analyse a “Mayer—Vietoris boundary
map” in controlled K K -theory. The main results of the chapter prove the existence of
this boundary map (Proposition 6.1) and show it has an exactness property (Proposi-
tion 6.6). These results are the technical heart of the paper.

6.1 Existence

Here, is the construction of the boundary map.

Proposition 6.1. Define an increasing function Ny : [1,00) — [0, 00) by the formula
No(k) = 2%7k?*. This function has the following properties.

Let k > 1, let Ny = Ny(k), let ¢ > 0, let B be a separable C*-algebra, and let
X be a subset of the unit ball of £p. Let h € £ be a positive contraction such that
l[h, x]|| < & forall x € X. Then, there is a homomorphism

9: KK\ (h(1—h)X U{h}, B) > KK} n (X U{h}, B)

defined by applying the following process to a class from KK;’S(h(l —h)XU{h},B):

(i)  Choose a representative w € Uy  (h(1 —h)X U {h}, B) for the class, and
use Proposition 4.13 (i) to find an element

u€ Uy o, (h(1—=h)X U{h}, B)

that is in the same path component as w in U, 2 ,..(h(1 —h)X U {h}, B).
(i) Define

c=cu,h)y:=hu+1—-h), d=duh):=hu'+1—-h) 6.1

in M,(£p), and

1 ¢ I 0\ /1 ¢ 0 1
v=vu,h):= (0 1) (—d 1)(0 1) (_1 O)EMzn(é@B). (6.2)
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wr=[o (5 ) 6 9)]

Moreover, the boundary map is “natural with respect to forget control maps”; pre-
cisely, if for some k < A and & < 8, the boundary maps

(iii)) Define

3: KKy (h(1 —h)X U{h}, B) = KK () Nowors(X U {1}, B)

and
d: KKijS(h(l —h)X U{h}, B) —> KKXIO(A),NO(A)S(X U{h}, B)

both exist, then the diagram

9
KK (h(1—h)X U{h}, B) —— KK?]O(K),NO(K)&‘

|

).Noys (X ULh}, B)

(X U {h}. B)

KK} 5(h(1 = )X U {h}, B) —— KKY,

0
(with vertical maps the forget control maps of Definitions 3.4 and 3.7) commutes.

In order to make the proof more palatable, we split off some computations as
lemmas. The proofs of these lemmas are elementary, but the second one is quite
lengthy. We record them for the sake of completeness, but recommend the reader
skips the proofs.

Lemma 6.2. Let B be a separable C*-algebra. Let u € M,,(£p) be an invertible
element such that 1 —u € M, (Kp), and let h € £p be a positive contraction. Then,
the elements ¢ = c¢(u, h) and d = d(u, h) from line (6.1) above have the following
propetrties.
(1)  The elements cd — 1 and dc — 1 are in M,,(Kp).
() Ifk > 1and s > 0 are such that |u|| <k, ||[u=| < «, ||[h, u]|| <e, and
I[h, u=Y]|| <& then cd — 1 and dc — 1 are both closer than (k + 1)e to
h(1—h)(u +ut —2).

Proof. We just look at the case of cd — 1 for both parts (i) and (ii); the case of dc¢ — 1
is similar. Note first that because 1 — u is in M, (Kp) and M, (Kp) is an ideal in
M, (£p), we must have that 1 —u~! is in M, (Kp) also. We compute that

cd —1 = huhu™' + (1 — hhu™' + hu(1 — h) = 2h + h?

=h% + hulh,u™ Y+ h(1 = h)u™!
+ h(1 = h)u + [h,u](1 — h) — 2h + h2. (6.3)
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Using that  and u~! equal 1 modulo the ideal M,, (K g), we compute that this equals
0 modulo M, (Kp). Hence, cd — 1 isin M, (Kp)

Looking at part (ii), note that the terms hu[h, u~'] and [k, u](1 — k) in line (6.3)
above have norms at most k¢ and ¢ respectively. Hence, cd — 1 is within (k 4 1)e of
h? +h(1—h)u~' +h(1 —h)u —2h + h?, whichequals h(1 —h)(u +u~' —2). =

Lemma 6.3. Let B be a separable C*-algebra. Let k > 1, £ > 0, and let X be a subset
of the unit ball of £p. Let h € £p be a positive contraction such that ||[h, x]|| < &
for all x € X, and let u be an element of the set ‘l,l,ll,,(,a(h(l —h)X U {h}, B) from
Definition 4.11. Let ¢ = ¢(u, h) and d = d(u, h) be as in line (6.1) above, and let
v = v(u, h) be as in line (6.2).

Then, ||v| < (k +2)3, [[v7| < (k + 2)3, and the pair

; 1 0 - 1 0
00 "\0 0
is an element of ‘7)21;1 36,6 2165, (X U {h}, B) from Definition 4.9.

Proof. From the definition of v in line (6.2) above,

_(c(dc—=2) 1—cd
”‘( de—1  —d ) ©®
and
1 _ (0 =1\ (1 —c\ (1 O\ (1 —c\ _ [ —d dc—1
R V| o) 0 1 (d 1) \o 1)_(1—cd c(de—2))
Hence,
1 0\ _; (cd2—cd) c(dc—2)(dc—1)
”(o 0)” _((1—dc)d (de —1)2 )
and so

1 0\ _ 1 0 _ [—(cd—-1)? (cd—1)c(dc—2)
”(o 0)” 1_(0 0)_((1—dc)d (dc —1)2 ) 65)

This formula, part (i) of Lemma 6.2, and the fact that M, (Kpg) is an ideal in M, (£p)

imply that
10\ _; (10
v(O 0)v —(0 O)eMzn(Jch

whence v(§ §)v!is in M2, (K7 ), and v(} §)v" and (§ §) have the same image
under the image of the canonical quotient map

o MZn(J{I_g'—) — M2, (C).
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Note moreover that ||v]| < (x + 2)3 and |[v™!|| < (x + 2)* from the formula for v
(whence also v™!) as a product of four matrices in line (6.2). As k > 1, this implies

that
v 1o v!
0 0

To complete the proof that the pair

. 1 0 - 1 0
00 "\0 O
defines an element of £

2n,36x6,216:<53(X , B) it remains to check the relevant com-
mutator estimates, i.e., condition (ii) from Definition 3.1 with x in X U {h} and &
replaced by 2!6x%¢. As ((1) 8) (and indeed, any scalar matrix) commutes with ele-
ments of X U {h} exactly, it suffices to show that

(o o) (o o))

for all x € X U {h}. We focus on the case when x is in X; the case when x = h
follows from similar (and much simpler) estimates that we leave to the reader.
Working towards the estimate in line (6.6), we compute that the element in line

(6.5) equals
cd —1 0 l—cd c(dec—-2)
( 0 dc—l)(—d dc—l)' ©.7

The second matrix above satisfies

1—cd c(dc—2)
( —d dc—l)

< (k + 2)6 < 3%,

< 21645 (6.6)

< 1 =cdl + [cllllde = 2] + |d]| + llde =1

<((k+D>+1)+ K+ Dk +1)*+2)
+ K+ 1)+ ((k+1D>+1).

As k + 1 > 1, we therefore see that
1—cd c(dc—2)
—d de —1
On the other hand, using part (ii) of Lemma 6.2, the first matrix in line (6.7) above
is closer than e(k + 1) to A(1 — h)(u + u~! — 2) (we identify this as usual with

the diagonal matrix with both entries equal to A(1 — h)(u + u~! — 2)). Hence, the
difference in line (6.5) is closer than 8(k + 1)°¢ to

< 8(k + D*. (6.8)

h(1—h)u +u"t—2) (1 —ed clde— 2)) .

—d de —1
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Hence, for x € X,
. 1 0 vl 1 0
’ 0 0 0 0

[x,h(l—h)(u+u —2)( ;d c(ddcc__lz))”‘. (6.9)

< 16(k + 1)°¢ +

As ||[x, h]|| < &, we have ||[x, (1 — h)]|| < 2&; combining this with line (6.8) gives

|:x,h(1—h)(u+u —2)( ;d C;‘ZCC__IZ))]H

<2e-8(k +1)° + Hh(l—h)[x (u+u~ —2)( & C(dc_Z))]”'

—d de —1

Combining this with line (6.9) gives

o) =60

<32(K+1)58+Hh(1—h)|: (4 u! 2)( ;d "(ddcc 2))]H (6.10)

Every entry of the matrix (v + u~! — 2)( 1—cd clde—2)

dc—1
of at most 30 terms, each of which is a product of at most 5 elements from the set
{u,u™!, h, 1}, each of which has norm at most k. As ||[2(1 — h)x, y]|| < & for all

y € {u,u"', h,1}, Lemma 4.16 gives

H[h(l—h)x u+u! 2)( ;d C(d‘if__lz))}

On the other hand, ||[[2(1 — h), y]|| < 2¢e forall y € {u,u~', h, 1}, whence

H[h(l h), i+ u~ —2)( ;d C(ddc‘f__lz))}x

Finally, note that

h(l—h)|:x,(u+u —2)( ;d c(d"_z))}

) can be written as a sum

<4.30-5-k*.  (6.11)

<4.30-5-k*.  (6.12)

de—1
= [h(l —h)x,(u+u =2 ( afd c(ddcc_—IZ)) :|

+[h(1—h),(u+u 2)( ;d C(d‘lcc__lz))}x,
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so combining lines (6.10), (6.11), and (6.12) implies

[x, v ((1) 8) vl — ((1) 8) :| H < 1232(k + 1)°e.

Recalling that k > 1, this is enough for the estimate in line (6.6). [

We are now ready for the proof of Proposition 6.1.

Proof of Proposition 6.1. Assume that w € U, . (h(1 — h)X U {h}, B), and let

ue Ul (h(1 —h)X U {h}, B)

n,k2,ke

be in the same path component as w in U,, 42 . (A(1 —h)X U {h}, B); u is guaranteed
to exist by Proposition 4.13 (i). Define v := v(u, k) as in line (6.2), so Lemma 6.3
gives an element

1 0\ _; (1 0
(6 8)7 (5 o)) e et v

Moreover, if uy := u, and u; is another choice of element in

u!t (h(1 —h)X U {h}, B)

n,k2,ke

that is connected to w in U, 2 . (h(1 —h)X U {h}, B) then Proposition 4.13 (ii)
implies that there is a homotopy (u;);<[0,1] that connects 1o and 1 through

‘u;mm(h(l —h)X U {h}, B).

Let v; := v(uy, h) be as in line (6.2). Then, Lemma 6.3 implies that the path

(oo (s ) vemo

has image in (?ZIn,36K24,216K218(X U {h}, B). In particular, the class

o[w] € KK36K245216K218(X U{h}, B)
does not depend on the choice of u, so at this point we have a well-defined set map
Un e (h(1 = )X U {h}, B) = KK 24 y16,21,(X U {h}, B).

We next claim that this map sends block sums on the left to sums on the right.
For this, assume that w; and w; are elements of U, (A (1 —h)X U {h}, B). Let
u1 and u, be elements of ‘u; 2.ce (1 —h)X U{h}, B) that are connected to wy and
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w, respectively in ‘ul (B —h)X U{h}, B). Fori € {1,2} letv; = v(ui, h) be
as in line (6.2), and let V= =v(u; D uz, h) € My, (Lp). Then, the pairs

(g S)oen(y o)t (5 )= 0)
(5 0 (5 0)

in My, (J{;) D Myy (J{;) differ by conjugation by the same (scalar) permutation
matrix in each component, and so define the same class in KK _26/<24 1621, (X U

{h}, B).

At this point, we have a semigroup homomorphism

Un e,e(h(1 —h)X U {h}, B) — KK;)6K24’216K215(X U {h}, B).

and

We claim that it respects the equivalence relation defining K K ,} (h(1=h)X U{h},B).
First, we check that w @ 1 goes to the same class as w. As we already know
we have a semigroup homomorphism, it suffices to show that 1; goes to zero in
KK26K24,216K208(X U {h}, B). For this, note that if v := v(lg, k) is as in line (6.2),
then v = 1,;, whence the image of 1; in KK26K24,216K21£(X U {h}, B) is the class
[1x @ Ok, 15 @ O], which is zero by definition.

Let us now show that elements of Uy« (h(1 —h)X U {h}, B) that are homo-
topic through U, 2. (h(1 —h)X U {h}, B) go to the same class. For this, say that
wp and w; are homotopic through U, 2. (A(1 —h)X U {h}, B). Choose ug and u
in ‘Ul (M1 —h)X U {h}, B) that are connected to wo and w; respectively in
Uy k2, Ka(h(l — h)X U {h}, B) as in Proposition 4.13 (i). Using Proposition 4.13 (ii),
uo and u are connected by a homotopy (u;);e[o,1] in ‘un act, 2eeM(1=h) X U{h}, B).
Let v; := v(uy, h) be as in line (6.2). Then, Lemma 6.3 1mphes that the path

(o o) (o 5))

defines a homotopy between the images of wg and w; in ;7’21”’31 4,624,227’(218(X u
{h}, B). We thus see that Ny (k) := 227«2* has the desired property, and we are done
with the existence of 0.

As the formulas for the boundary map d do not depend on the constants x and &
the naturality statement is clear. |

6.2 Exactness

We now turn to the exactness property of the boundary map. In order to state this, we
need two lemmas.
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Lemma 6.4. Let B be a separable C*-algebra. Let X and Y be subsets of the unit
ball of £p, ¢ > 0and k > 1. Let h € £ p be a positive contraction such that ||[h, x]|| <
¢ for all x € X. With notation as in Definition 3.1, let

(P.q) € Pnye(XUY U{h}, B)

(respectively, with notation as in Definition 4.9, let (p,q) € f/’,f,l,z,g(X UY uU{h},B)).
Then,
(P.9) € Pnipe(hX UY U{h}, B)

(respectively, (p,q) € P! ., .(hX UY U {h}, B)).

n,k,2¢e
In particular, there are homomorphisms

mh: KK (X UY U{h}, B) > KK2,.(hX UY U {h}, B)
and

M—-n: KK (X UY U{h}, B) > KKQ,,(1—h)X UY U {h}, B)

K,2¢
induced by the identity map on cycles (p, q).

Proof. We compute that for x € X,
Ilp, ax]ll < A[H Lo, XTI + . A1l x|l < & + €.

These estimates hold similarly for ¢ so (p,q) € :Pnl’K,ZS(hX UY U{h}, B). As the
identity map on cycles takes homotopies to homotopies, and block sums to block
sums, existence of the homomorphism 7y, is clear. Existence of 11—z follows on not-

ing that the assumptions on 4 also holds for 1 — A. ]
We leave the direct checks needed for the proof of the next lemma for the reader.

Lemma 6.5. Let B be a separable C*-algebra. Let X and Y be subsets of the unit
ball of £, € > 0 and k > 1. Assume moreover that there is § > 0 such that for
ally €Y, x €5 X. Then, for any y > k6 + ¢ and A > «, the forget control map of
Definition 3.4

KK .(X.B) —> KK, , (Y, B)

is well-defined. |

The next proposition is the exactness property of the Mayer—Vietoris boundary
map that we are aiming for. We refer the reader to Section 1.6 for motivation behind
the statement. For the statement, recall that for an element x and subset Y of a metric
space, and for ¢ > 0, we write “x €, S” to mean that there is y € Y with d(x, y) <
&. Moreover, in the statement below, all unlabeled arrows between controlled K K -
groups are the forget control maps of Definition 3.4 or Definition 3.7.
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Proposition 6.6. The increasing functions N1, N> : [1,00) — [1, 00) defined by
Ni(A) = 990000004 . 4 Na() = 2372,

satisfy the following properties.
Let k > 1, and let ¢ > 0. Let A > «, and let § > 3ke. Let N1 := N1(A), and let
W > N1 and y > N18. With notation as in Proposition 6.1, define

No := No(u),

and let Ny := Np(u).

Let B be a separable C*-algebra, and let X be a self-adjoint subset of the unit
ball of £p. Let h € £p be a positive contraction such that ||[h, x]|| < eforall x € X.
Let Yy, Y1_p, and Y be self-adjoint subsets of the unit ball of £p such thaty €. Y,
and y €. Yy for all y € Y. With notation as in Definition 4.9, let (p, q) be an
element ofj)nl,K,S(X U Y, UYi_p U{h}, B). With ny, and ni—y, as in Lemma 6.4, and
suing Lemma 6.5 to define the right hand vertical maps in each case, assume that the
images of [p, q] under the maps

KKQ (X UY,UY_,U{h},B)

l

KK2, (X UYyU{h), B) —— KK, (hX UY, U{h},B)  (6.13)

K,2¢

KK} 5(hX UY U {h}, B)

and

KK?2 (X UY,UYi_; U{h},B)

|

KKQ,(X UYi_j U {h}, B) 7% KKC, (1 — )X UYi_, U{h}, B) (6.14)

l

KK} s(hX UY U {h}, B)

are zero.
Then, with notation as in Definition 4.11, there exists an element

u e ‘u;o,N],ng(h(l —h)X U{h}UY,B)



A Mayer—Vietoris boundary map 68

such that in the diagram below

KK}VMN](S(h(l —h)XU{h}UY,B) KK? (X UY,UY_, U{h}, B)

| |

d
KK, ,(h(1 —=h)X U{h}, B) —————— KK} n . (X U{h}, B)

KKY, n,, (X U{h}. B)

the images of the classes [u] € KK}Vl Nlb‘(h(l — X U{htUY)and
[p.q] € KK} (X UY, UY,_; U{h}, B)
in the bottom right group KKR’LNZV(X U {h}, B) are the same.

Just as for Proposition 6.1, to make the argument more palatable, we split off
some computations as two technical lemmas. As in that earlier case, the arguments
we give for these lemmas are elementary, but quite lengthy (in fact, much longer than
the earlier ones). We record them for the sake of completeness, but again recommend
that the reader skips the proofs.

Lemma 6.7. Let B be a separable C*-algebra. Let v > 1 and let y > 0. Let X
and Y be self-adjoint subsets of the unit ball of £p. Let h € £p be a positive con-
traction such that ||[h, x]|| < y forall x € X. Let (p,q) € J/"nl,v,y(X UY U{h}, B)
(see Definition 4.9 for notation), and let ujy € Cl,(,ll,v,y(h)( U{h}UY,B)andu,_p €
‘u},,w((l —h)X U{h} UY, B) (see Definition 4.11 for notation).

Then, the element

u:=ui—p(1—p)+uyp (6.15)
(h(1 —h)X U{h}UY, B).

is in cu111,2v2,10vy
Proof. We split the computations into the points labeled (i), (ii), (iii), (iv), and (v)
below.

(i) Asup—1e M, (Kp)andui—; — 1 € M, (Kp), we compute from line (6.15)
thatu — 1 € M, (Kp).

(i1) Note that

[T—pl=v (6.16)

by Corollary 4.2. Hence, max{||uy||, |41=x|. | 2|, ||1—p|I} < v, and so by line (6.15),
lul| < 2v2.

(iii) Let y € Y. Then, by definition, ||[a, y]|| < y foralla € {uy,u1_s, p,1 — p}.

Hence, the definition of u from line (6.15) implies that ||[y, u]|| is bounded above by

Iy, wrnl T = Pl + llea—rllllly, 1 =PI+ 1Ty wnlllll 2l + lun Ly, Pl < 4vy.
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(iv) Using the definition of u from line (6.15) and the assumptions on up, u;_p
and p directly together with line (6.16) implies that

e, AUE < 1A, wa—]INIT = PN+ ler—n [l IT2, 1 = p|
+ 110 wnl PN+ a2, P1I
< A4vy.

(v) Let x € X and note that
[A(1 = h)x,up] = A = hW)[hx,up] + [A,up](1 = h)x.

As ||[[hx, uplll <y, as ||[k, up]|| < v, as h is a positive contraction, and as x is a
contraction, we get

(A (1= h)x, uplll < [lThx. up] |1 = Al 4+ |Ax ]I = 2 up]ll < 2y (6.17)
Completely analogously, we see that
AL = h)x,ui—nlll < 2y. (6.18)
We see also that

A1 = m)x, plIl < lllx. plIHIAQ =B+ [I[1 = A, plllII2x]l + [[7. pIIHICE = R)x]|
< 3y.

Combining this with lines (6.16), (6.17), (6.18), we get
[ =R)x, ull| < [[R(1 = R)x, ur—p] |11 = pll + llur—p [[|[2(1 = h)x, 1= p]|
+ [[[R(1 = h)x, up]lll Pl + lluglll[2(1 = h)x, p]

<2vy 4+ 3vy 4+ 2vy + 3vy
= 10vy.

Putting the points (i), (ii), (iii), (iv), and (v) above together (and using that v >
1) we conclude that, u is an element of ‘Llrll 22 10vy(h(l —h)X U{h}UY,B) as
claimed. u

Lemma 6.8. With assumptions as in Lemma 6.7, let
u:=u_p(1 —p)+upp e u}l,w,mw(h(l —h)X U{h}UY,B)
be the element considered there. Let v := v(u, h) be as in line (6.2) above, and define

_ (ul—h(l - p) —q

P (1- p)ul‘_lh) € Man(L).

Then, w is invertible, and vw™" is in Uap (20)8 23725y (X U {h}, B).
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Proof. Using the assumptions on || p||, |[u1-z|l ||u1__1h|| and line (6.16) to estimate
I1 — p|l, we have

lwll < llur-a(1 = P+ llgll + T2l + (= puil, | < 402,

A direct computation shows that w is invertible with inverse

-1 _ (1 _P)u__lh V4
. ( —q 1 ui—n(l —p))' (6.19)

This satisfies the same norm estimate as w, and so we get the norm estimates
lwl| < @2v)* and [lw™'|| < (2v)*. (6.20)

Lemma 6.3 and the fact that ||u|| < 2v? implies that |[v|| < (2v? +2) and ||[v™!|| <
(2v2 4+ 2)3. As v > 1, we thus see that

vl < (21})6 and ||v_1|| < (21))6. (6.21)
Lines (6.20) and (6.21) then imply
||vw_1|| < (21))8 and ||wv_1|| < (2v)8. (6.22)

To complete the proof, we need to show that for all x € X U {h}, we have
I[vw™, x]|| <237v?°y and |[[wv™!, x]|| < 237v2%y. We focus first on the case of
vw™!, and look first at [, vw™!].

Let ¢ := hu + (1 —h) and d := hu™' + (1 — h) be as in line (6.1). It will be
technically convenient to define

S:={h,1—h,p,gq,1—p,1 —q,uh,u;l,ul_h,ul__lh,u,u_l,c,d}, (6.23)

and to define S” to be the set of all products of at most n elements from S. Note that
for every s € S we have ||s|| < (2v)2, and ||[s, k]| < 10vy. Hence, by Lemma 4.16,
for allm € N we have

s € 8" = ||[hs]]| < n@v)>*D10vy. (6.24)
Using the formula in line (6.4) above,

([cdc, h] —2[c.h] [cd, h])
[h,v] =
[h, dc] [d, h]

and so

A vlll < [lfede, pIIl + 2|l[e. ]Il + lled, A1l 4 I [R. de]ll + Nl[d. A1l
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Each summand on the right-hand side above is of the form ||[/, s]|| where s € S3 for
S as in line (6.23). Hence, line (6.24) implies that

[A, V]|l < 6-3-@v)*-10vy <2113y, (6.25)

We also compute that

o] = ([h,(l —puil,] [, p] )
g, h] [, u1p(1 = p)]

whence
I w11 < (A, (1 = p)urt, )+ A I+ g A1l + (1[h.u1—n (1 = p)]II.

Each commutator appearing above is of the form [/, s] for some s € S? as in line
(6.23), whence line (6.24) gives

7, w™ || < 4-@2v)?-10vy <27v3y. (6.26)
On the other hand,
T2, vw™ I < NI oY ™ ]+ [l w1

Combining this with lines (6.20), (6.21), (6.25), and (6.26), as well as that v > 1, we
see that
(7, vw ™| < 23y - 2v)% 4+ (2v)0 - 2713y < 2149y, (6.27)

Now, let us look at [x, vw™!] for x € X. The definition of v from line (6.2) gives
1 _(elde=1) 1—cd\ _; (c 0) _4
= ( de —1 o )¥ 0o d)?

_fcd -1 0 c =1y 4 (c O\
Lo de—1)\1 o)V 0o d)%

Hence, the formula for w™! from line (6.19) gives

vw !l = (Cd -1 0 ) (C(l —pul, ep—up(l— P))

0 de—1 1- p)ul__lh p
Y1
1_

_h _lq Upp

—u,q l=p

y2
1— —1
—(1—h) (1= Py, P . (6.28)
—q ur—p(1=p)

y3
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We now estimate ||[[vw ™!, x]|| for each x € X by looking at each of the terms y, y»,
and yj3 separately.
(1) First, we look at y; from line (6.28). Let x € X. Lemma 6.2 implies that

d—1 0 )
H (c 0 dc—l)_h(l_h)(”+“ =) <@+ Dy (6.29)

(where, as usual, we identify (1 — /) (u + u~' — 2) with the corresponding diagonal
matrix). Let

_ -1 _ _
. <6(1 purl, ep—ui(l p)>. (6.30)

( —p)ul__lh p
As in line (6.16), |1 — p|| < v, whence using that v > 1,
Iz1ll < el = U, | + lelllpll + lu-rllit = p]
+ 1= il iyl + D2l
<@+ D24+ Qv+ Dy + v+ 02 4
<n* (6.31)

Combining this with line (6.29), we see that
lyr = A1 —h)(u +u"" =2)z |
cd —1 0 1
< — — _
< ” ( 0 de — 1) h(1—=h)(u +u 2)

<*(v + 1y < 2Qv)°y.

[zl

As ||x]|| < 1, this implies that

1B, yall < NP y1 = h(1 =) +u™" = 2)z1]|
+ 1P A =)+ u™" = 2)z4]]
<@y + v A1 =) +u™" =2)z]].

Hence, we see that
I, y1ll < @v)°y + [l[lx. 2(1=h)], (u 4 u™" = 2)z4]]|

+ I[h (1= R)x, (u +u™" = 2)z4]|
+ [ (1 = h), (u +u~t —2)z1]x]. (6.32)

Looking at line (6.30), every entry of the matrix (u 4+ u~! — 2)z; is a sum of at most
8 elements from the set S4, where S is as in line (6.23). Hence, by line (6.24), we see
that

Ih(—h), (u+u"t—2)z1]| <4-2-8-4-(2v)8- 1202y <2188y, (6.33)
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We have ||[x, 2(1 — h)]|| < 2y, and line (6.31) implies
| +u™t —2)z1| < (402 +2)-9* <2508,

whence
I[lx. (1= R)], (u 4+ u™" —2)z1]|| < 2%0°. (6.34)

Combining lines (6.32), (6.33), and (6.34) thus implies that
B, yalll = 2208y + 11 = h)x, (u +u™! = 2)z4]]. (6.35)

Note now that for every element s € S we have that at least one of the following
holds: (a) ||[s, x]|| < 16v?y for all x € X; or (b) ||[s, (1 — A)x]|| < 16v%y for all
x € X;or(c)|[s, (1 —h)x]|| < 16v?y forall x € X; or (d) ||[s, (1 — h)x]|| < 16v?y
for all x € X. In any of these cases, using that ||[s, 4]|| < 12v2y forany s € S, we get
that for any s € S and x € X, ||[s, k(1 — h)x]|| < 40v?y. Applying Lemma 4.16, we
therefore see that

s € 8" = ||[h(1 = h)x,s]| < n(2v)?*~D40v2y. (6.36)

As we have observed above already, every entry in the matrix (u + u~! —2)z; isa
sum of at most 8 elements from the set S*, where S is as in line (6.23). From line
(6.36) we therefore see that

A1 —R)x, (u +u~" = 2)z1]|| <4-4-(2v)*- 4007y < 2'%.
Combining this with line (6.35) above therefore implies
Il vl < 22%0%y.

(i1) Now, we look at the element y, from line (6.28) above. If x € X, we see that

_ l—q upp l—q upp
[x? y2] - |:Xh’ (_ul:lq 1— p)] + |:h, (-M;lq 1 — » X. (637)

We have that
[h ( =g upp )] _ ( [q. 7] [h,uhp])
\-uylg 1=p [ gkl [p. ]
Each entry in the matrix on the right is the commutator of & with an element of S2,
where S is as in line (6.23) above. Hence, by line (6.24), we see that

=l

<4-2-2v)% 1207y < 2%v4y.




A Mayer—Vietoris boundary map 74

Combining this with line (6.37) gives

q Upp 9 4

eyl < | s (L0152 ) ]|+ 2 (639
On the other hand
)l )]
xh, _ = |[x,h], _

[ (—Mhlf] l—p [ ] _uhlq 1—]7
+ [hx,( =4 ”“’)}. (6.39)

—u,q l=p

As ||[h, x]|| < y, we have

(G5t ) =2 (Gt 25)1

As ||l — p|| <vand |1 —¢| < v by Corollary 4.2, every entry of the matrix on the
right has norm at most v2, and so

[ (it 1)

Hence, line (6.39) implies that

Hxh,(l__f] ”“’)} |:hx,( -4 ”hp)]H +2%%). (6.40)
—u,q l-—p —u,q l-p

The commutator appearing on the right above equals

( g, hx] (hx, up]p + up[hx, P])

<2302y

[y, hxlg — g [, g] [P, hx]

Using that uy, € un vy(hX, B), and applying Lemma 6.4, the norm of each entry
above is at most 2vy, whence

[ Gty 125)]

Combining this with lines (6.38) and (6.40) therefore implies that

< 23vy.

Iix, 2]l < 21%v%y.

(iii) Finally, we look at y3 from line (6.28). This can be handled very similarly
to the case of y,, giving the estimate ||[x, y3]|| < 2!%v*y for all x € X; we leave the
details to the reader.
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Putting together the concluding estimates of points (i), (ii), and (iii) above, we
see that ||[x, vw™!]|| < 22'v8y forall x € X. Combining this with line (6.27), we see
that

I[x, vw™ || <2210y (6.41)

forall x € X U {h}.
To complete the proof, let us estimate ||[x, wv™!]|| for x € X U {h}. Using the
formula [x, wv™!] = wvHvw ™!, x]Jwv ™!, we see that

-1 -1 -1 -1
I, wo™ | < Jlwo ™l fvw™", x]{{{wv™".

Lines (6.41) and (6.22) therefore imply that
e, wo ™| < 270y

and we are finally done. |
Finally, we are ready for the proof of Proposition 6.6.

Proof of Proposition 6.6. With notation as in the statement, let

(P.q) € Py, (X UY,UY_, U{h}, B),

n,K,&

and assume that the images of [p, q] in KK} (hX UY U {h}, B) and KK s((1 —
h)X UY U {h}, B) under the maps in lines (6.13) and (6.14) are zero.

Note first that the map in line (6.13) is induced by the identity map on cycles, so
Lemma 3.3 applied to the cycle (p,q) in P, 1 s(hX UY U {h}, B) implies that there
exists k € N such that (p @ 1x @ Ok, q & 1x @ Of) is in the same path component of
Prt2k,21,8(hX UY U {h}, B) as an element of the form (r, r). Replacing (r, r) with
(yry*, yry™*) for some appropriate unitary y € M,,»x(C) and using that the unitary
group of M, 1, (C) is connected, we may assume that (r, r) is in j)rtl+2k,2)\,8 (hX U
Y, U {h}, B) (see Definition 4.9 for notation). Moreover, as

(p.q) € P, ; 5(X UY, UY1_, U{h}, B)

there is a unitary z € M, 4, (C) such that (z(p & 1 ® 0x)z*,z(q B 1 & 0x)z*) is
in J’nl’x’b,(hX UY U {h}, B). As the elements (r,7) and (z(p & 1 & 0r)z*, z(q ®
1 ®0z)z*) of ‘(Pnl,zx,a (hX UY U{h}, B) are connected by a path P, 1 s(h X UY U
{h}, B), we may use Proposition 4.10 (ii) to connect them by a path in Jljnl,zk,zw (hX U
Y U {h}, B). Precisely analogously (increasing k if necessary), we may assume that
C(p® 1y ®O0p)z*,z(q & 1x D 0r)z™) is in the same path component of

P 2nas(1=m)X UY,_; U{h}, B)

as an element of the form (s, s).
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For notational simplicity, write m = n + 2k, and let M := 4 - 2(2000)° Thep
(with notation as in Definition 4.11), Proposition 4.17 gives j € N and elements

up € Upy i prprs (WX ULRYU Y, B)

and
ui—h € Upy oy s(1— WX U{RYUY, B)

such that
upz(p® Lk ®0)z" ® 1; & Oj)u,:1 =z(g® 1 ®0)z"B1; &0, (642)
and
U@l ®0)z* D1, @)U, =2(g® L ®0)z* D 1; ®0;. (6.43)

For notational simplicity, rename z(p @ 1x @ 0x)z* & 1; & 0; and z(p & 1x &
Ox)z* @ 1; @ 0; as p and g respectively and rewrite m + 2 as n; if the conclu-
sion of the proposition holds for this new pair then it also holds for the original pair
thanks to the definition of the controlled KK° groups (see Definition 3.1), so this
makes no real difference. In this new language, lines (6.42) and (6.43) can be rewrit-
ten uhpuzl = ¢q and ul_hpul__lh = ¢ respectively.
Define now
u:=u—p(1 = p) +unp,

which we claim has the properties in the statement. Using Lemma 6.7 with v = M
and y = M§, we see that (with notation as in Definition 4.11), u is an element of

. 3
urlz,zMZ,loMZA’(h(l — h)X U {h} UY, B). Recalling that M = 4 - 220" e see
that

Ni(A) = 2900000043

has the desired property.

To complete the proof, it remains to show that if N, = N, ()
then 8[u] = [p,q] in KK .. (X U {h}, B).

Now, v := v(u, h) is as in line (6.2), we have

w=[( 9 0 2]

_ (ul—h(l - p) —q
p (1 - p)ul__lh

— 2252000000#3
b

Define now

) € M, (ch)-
Applying Lemma 6.8 with

v=M and y= MS§,
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we see that w is in Uy, (2p1)8 237 p255 (X U {h}, B). For notational simplicity, set
M, := 237 M?°. Proposition 4.6 implies that in KKI?/I (X U{h},B)

=[5 o)™ (6 o))
g O ]
=[G o) (0]

Computing, we see that

3 3
3.3M38

whence
. l—gq O 1 0
=[(5" ) o)) s
in the group KK}%I?,3M136(X U {h}, B).
Note now that the matrix ( 1;‘1 lzq) € M, (X4 ) has norm at most 22 (as [|¢|| <

k < A,and so ||l —¢| < A by Corollary 4.2), and that it satisfies

(7 2]

for all x € X U {h}. Hence, (1;‘1 1€q) € Uap 2a,5(X U {h}, B). Applying Proposi-

tion 4.6 again and using that A < M, the identity

(0 2)6 o (" 2)= (6" 0)

shows that the class on the right-hand side of line (6.44) is the same as the class

1—gqg O 1—gq O
0 pJ 7L 0 ¢
in KK (X U {h}, B). Using a rotation homotopy, this is the same as [p, ¢] by

MOOM?PS

definition of KKJ?J{?QM{’& (X U {h}, B); recalling that

M, = 237M25, M = 4.2(200/1)3’

and that p > 290000004% e cee that Na (i) = 237425 indeed has the right prop-
erties. ]



