
Chapter 6

A Mayer–Vietoris boundary map

In this chapter (as throughout), if B is a separable C �-algebra, then LB and KB

denote respectively the adjointable and compact operators on the standard Hilbert
B-module `2 ˝ B . For each n, we consider LB as a subalgebra of Mn.LB/ via the
“diagonal inclusion” LB D 1Mn ˝LB �Mn ˝LB DMn.LB/.

Our goal in this chapter is to construct and analyse a “Mayer–Vietoris boundary
map” in controlledKK-theory. The main results of the chapter prove the existence of
this boundary map (Proposition 6.1) and show it has an exactness property (Proposi-
tion 6.6). These results are the technical heart of the paper.

6.1 Existence

Here, is the construction of the boundary map.

Proposition 6.1. Define an increasing functionN0 W Œ1;1/! Œ0;1/ by the formula
N0.�/ D 2

27�24. This function has the following properties.
Let � � 1, let N0 D N0.�/, let " > 0, let B be a separable C �-algebra, and let

X be a subset of the unit ball of LB . Let h 2 LB be a positive contraction such that
kŒh; x�k < " for all x 2 X . Then, there is a homomorphism

@ W KK1�;".h.1 � h/X [ ¹hº; B/! KK0N0;N0".X [ ¹hº; B/

defined by applying the following process to a class fromKK1�;".h.1� h/X[¹hº;B/:

(i) Choose a representativew 2Un;�;".h.1� h/X [ ¹hº;B/ for the class, and
use Proposition 4.13 (i) to find an element

u 2 U1
n;�2;�"

.h.1 � h/X [ ¹hº; B/

that is in the same path component as w in Un;�2;�".h.1� h/X [ ¹hº; B/.

(ii) Define

c D c.u; h/ WD huC .1 � h/; d D d.u; h/ WD hu�1 C .1 � h/ (6.1)

in Mn.LB/, and

v D v.u; h/ WD

�
1 c

0 1

��
1 0

�d 1

��
1 c

0 1

��
0 1

�1 0

�
2M2n.LB/: (6.2)
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(iii) Define

@Œw� WD

�
v

�
1 0

0 0

�
v�1;

�
1 0

0 0

��
:

Moreover, the boundary map is “natural with respect to forget control maps”; pre-
cisely, if for some � � � and " � ı, the boundary maps

@ W KK1�;".h.1 � h/X [ ¹hº; B/! KK0N0.�/;N0.�/".X [ ¹hº; B/

and
@ W KK1�;ı.h.1 � h/X [ ¹hº; B/! KK0N0.�/;N0.�/ı.X [ ¹hº; B/

both exist, then the diagram

KK1�;".h.1 � h/X [ ¹hº; B/
@ //

��

KK0
N0.�/;N0.�/"

.X [ ¹hº; B/

��

KK1
�;ı
.h.1 � h/X [ ¹hº; B/

@ // KK0
N0.�/;N0.�/ı

.X [ ¹hº; B/

(with vertical maps the forget control maps of Definitions 3.4 and 3.7) commutes.

In order to make the proof more palatable, we split off some computations as
lemmas. The proofs of these lemmas are elementary, but the second one is quite
lengthy. We record them for the sake of completeness, but recommend the reader
skips the proofs.

Lemma 6.2. Let B be a separable C �-algebra. Let u 2 Mn.LB/ be an invertible
element such that 1� u 2Mn.KB/, and let h 2 LB be a positive contraction. Then,
the elements c D c.u; h/ and d D d.u; h/ from line (6.1) above have the following
properties.

(i) The elements cd � 1 and dc � 1 are in Mn.KB/.

(ii) If � � 1 and " > 0 are such that kuk � �, ku�1k � �, kŒh; u�k < ", and
kŒh; u�1�k < ", then cd � 1 and dc � 1 are both closer than .� C 1/" to
h.1 � h/.uC u�1 � 2/.

Proof. We just look at the case of cd � 1 for both parts (i) and (ii); the case of dc � 1
is similar. Note first that because 1 � u is in Mn.KB/ and Mn.KB/ is an ideal in
Mn.LB/, we must have that 1 � u�1 is in Mn.KB/ also. We compute that

cd � 1 D huhu�1 C .1 � h/hu�1 C hu.1 � h/ � 2hC h2

D h2 C huŒh; u�1�C h.1 � h/u�1

C h.1 � h/uC Œh; u�.1 � h/ � 2hC h2: (6.3)
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Using that u and u�1 equal 1modulo the idealMn.KB/, we compute that this equals
0 modulo Mn.KB/. Hence, cd � 1 is in Mn.KB/

Looking at part (ii), note that the terms huŒh; u�1� and Œh; u�.1 � h/ in line (6.3)
above have norms at most �" and " respectively. Hence, cd � 1 is within .� C 1/" of
h2C h.1� h/u�1C h.1� h/u� 2hC h2, which equals h.1� h/.uC u�1 � 2/.

Lemma 6.3. LetB be a separableC �-algebra. Let � � 1, "> 0, and letX be a subset
of the unit ball of LB . Let h 2 LB be a positive contraction such that kŒh; x�k < "
for all x 2 X , and let u be an element of the set U1

n;�;".h.1 � h/X [ ¹hº; B/ from
Definition 4.11. Let c D c.u; h/ and d D d.u; h/ be as in line (6.1) above, and let
v D v.u; h/ be as in line (6.2).

Then, kvk � .� C 2/3, kv�1k � .� C 2/3, and the pair�
v

�
1 0

0 0

�
v�1;

�
1 0

0 0

��
is an element of P 1

2n;36�6;216�5"
.X [ ¹hº; B/ from Definition 4.9.

Proof. From the definition of v in line (6.2) above,

v D

�
c.dc � 2/ 1 � cd

dc � 1 �d

�
(6.4)

and

v�1 D

�
0 �1

1 0

��
1 �c

0 1

��
1 0

d 1

��
1 �c

0 1

�
D

�
�d dc � 1

1 � cd c.dc � 2/

�
:

Hence,

v

�
1 0

0 0

�
v�1 D

�
cd.2 � cd/ c.dc � 2/.dc � 1/

.1 � dc/d .dc � 1/2

�
and so

v

�
1 0

0 0

�
v�1 �

�
1 0

0 0

�
D

�
�.cd � 1/2 .cd � 1/c.dc � 2/

.1 � dc/d .dc � 1/2

�
: (6.5)

This formula, part (i) of Lemma 6.2, and the fact thatMn.KB/ is an ideal inMn.LB/

imply that

v

�
1 0

0 0

�
v�1 �

�
1 0

0 0

�
2M2n.KB/;

whence v
�
1 0
0 0

�
v�1 is in M2n.K

C

B /, and v
�
1 0
0 0

�
v�1 and

�
1 0
0 0

�
have the same image

under the image of the canonical quotient map

� WM2n.K
C

B /!M2n.C/:
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Note moreover that kvk � .� C 2/3 and kv�1k � .� C 2/3 from the formula for v
(whence also v�1) as a product of four matrices in line (6.2). As � � 1, this implies
that 



v �1 0

0 0

�
v�1





 � .� C 2/6 � 36�6:
To complete the proof that the pair�

v

�
1 0

0 0

�
v�1;

�
1 0

0 0

��
defines an element of P 1

2n;36�6;216�5"
.X; B/ it remains to check the relevant com-

mutator estimates, i.e., condition (ii) from Definition 3.1 with x in X [ ¹hº and "
replaced by 216�5". As

�
1 0
0 0

�
(and indeed, any scalar matrix) commutes with ele-

ments of X [ ¹hº exactly, it suffices to show that



�x; v �1 0

0 0

�
v�1 �

�
1 0

0 0

��



 � 216�5" (6.6)

for all x 2 X [ ¹hº. We focus on the case when x is in X ; the case when x D h

follows from similar (and much simpler) estimates that we leave to the reader.
Working towards the estimate in line (6.6), we compute that the element in line

(6.5) equals �
cd � 1 0

0 dc � 1

��
1 � cd c.dc � 2/

�d dc � 1

�
: (6.7)

The second matrix above satisfies



�1 � cd c.dc � 2/

�d dc � 1

�



 � k1 � cdk C kckkdc � 2k C kdk C kdc � 1k
� ..� C 1/2 C 1/C .� C 1/..� C 1/2 C 2/

C .� C 1/C ..� C 1/2 C 1/:

As � C 1 � 1, we therefore see that



�1 � cd c.dc � 2/

�d dc � 1

�



 � 8.� C 1/4: (6.8)

On the other hand, using part (ii) of Lemma 6.2, the first matrix in line (6.7) above
is closer than ".� C 1/ to h.1 � h/.u C u�1 � 2/ (we identify this as usual with
the diagonal matrix with both entries equal to h.1 � h/.uC u�1 � 2/). Hence, the
difference in line (6.5) is closer than 8.� C 1/5" to

h.1 � h/.uC u�1 � 2/

�
1 � cd c.dc � 2/

�d dc � 1

�
:
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Hence, for x 2 X ,



�x; v �1 0

0 0

�
v�1 �

�
1 0

0 0

��




< 16.� C 1/5"C





�x; h.1 � h/.uC u�1 � 2/�1 � cd c.dc � 2/

�d dc � 1

��



: (6.9)

As kŒx; h�k < ", we have kŒx; h.1 � h/�k < 2"; combining this with line (6.8) gives



�x; h.1 � h/.uC u�1 � 2/�1 � cd c.dc � 2/

�d dc � 1

��




< 2" � 8.� C 1/5 C





h.1 � h/�x; .uC u�1 � 2/�1 � cd c.dc � 2/

�d dc � 1

��



:
Combining this with line (6.9) gives



�x; v �1 0

0 0

�
v�1 �

�
1 0

0 0

��




< 32.� C 1/5"C





h.1 � h/�x; .uC u�1 � 2/�1 � cd c.dc � 2/

�d dc � 1

��



: (6.10)

Every entry of the matrix .u C u�1 � 2/
�
1�cd c.dc�2/
�d dc�1

�
can be written as a sum

of at most 30 terms, each of which is a product of at most 5 elements from the set
¹u; u�1; h; 1º, each of which has norm at most �. As kŒh.1 � h/x; y�k < " for all
y 2 ¹u; u�1; h; 1º, Lemma 4.16 gives



�h.1 � h/x; .uC u�1 � 2/�1 � cd c.dc � 2/

�d dc � 1

��



 < 4 � 30 � 5 � �4": (6.11)

On the other hand, kŒh.1 � h/; y�k < 2" for all y 2 ¹u; u�1; h; 1º, whence



�h.1 � h/; .uC u�1 � 2/�1 � cd c.dc � 2/

�d dc � 1

��
x





 < 4 � 30 � 5 � �4": (6.12)

Finally, note that

h.1 � h/

�
x; .uC u�1 � 2/

�
1 � cd c.dc � 2/

�d dc � 1

��
D

�
h.1 � h/x; .uC u�1 � 2/

�
1 � cd c.dc � 2/

�d dc � 1

��
C

�
h.1 � h/; .uC u�1 � 2/

�
1 � cd c.dc � 2/

�d dc � 1

��
x;
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so combining lines (6.10), (6.11), and (6.12) implies



�x; v �1 0

0 0

�
v�1 �

�
1 0

0 0

��



 < 1232.� C 1/5":
Recalling that � � 1, this is enough for the estimate in line (6.6).

We are now ready for the proof of Proposition 6.1.

Proof of Proposition 6.1. Assume that w 2 Un;�;".h.1 � h/X [ ¹hº; B/, and let

u 2 U1
n;�2;�"

.h.1 � h/X [ ¹hº; B/

be in the same path component asw in Un;�2;�".h.1� h/X [¹hº;B/; u is guaranteed
to exist by Proposition 4.13 (i). Define v WD v.u; h/ as in line (6.2), so Lemma 6.3
gives an element�

v

�
1 0

0 0

�
v�1;

�
1 0

0 0

��
2 P2n;36�12;216�11".X [ ¹hº; B/:

Moreover, if u0 WD u, and u1 is another choice of element in

U1
n;�2;�"

.h.1 � h/X [ ¹hº; B/

that is connected to w in Un;�2;�".h.1 � h/X [ ¹hº; B/ then Proposition 4.13 (ii)
implies that there is a homotopy .ut /t2Œ0;1� that connects u0 and u1 through

U1
n;�4;�"

.h.1 � h/X [ ¹hº; B/:

Let vt WD v.ut ; h/ be as in line (6.2). Then, Lemma 6.3 implies that the path

t 7!

�
vt

�
1 0

0 0

�
v�1t ;

�
1 0

0 0

��
; t 2 Œ0; 1�

has image in P 1
2n;36�24;216�21"

.X [ ¹hº; B/. In particular, the class

@Œw� 2 KK0
36�24;216�21"

.X [ ¹hº; B/

does not depend on the choice of u, so at this point we have a well-defined set map

Un;�;".h.1 � h/X [ ¹hº; B/! KK0
36�24;216�21"

.X [ ¹hº; B/:

We next claim that this map sends block sums on the left to sums on the right.
For this, assume thatw1 andw2 are elements of Un;�;".h.1� h/X [ ¹hº;B/. Let

u1 and u2 be elements of U1
n;�2;�"

.h.1� h/X [ ¹hº;B/ that are connected tow1 and
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w2 respectively in U1
n;�2;�"

.h.1� h/X [ ¹hº; B/. For i 2 ¹1; 2º let vi D v.ui ; h/ be
as in line (6.2), and let v WD v.u1 ˚ u2; h/ 2M4n.LB/. Then, the pairs�

v1

�
1n 0

0 0

�
v�11 ˚ v2

�
1n 0

0 0

�
v�12 ;

�
1n 0

0 0

�
˚

�
1n 0

0 0

��
and �

v

�
12n 0

0 0

�
v�1;

�
12n 0

0 0

��
in M4n.K

C

B / ˚M4n.K
C

B / differ by conjugation by the same (scalar) permutation
matrix in each component, and so define the same class in KK0

36�24;216�21"
.X [

¹hº; B/.
At this point, we have a semigroup homomorphism

Un;�;".h.1 � h/X [ ¹hº; B/! KK0
36�24;216�21"

.X [ ¹hº; B/:

We claim that it respects the equivalence relation definingKK1�;".h.1�h/X[¹hº;B/.
First, we check that w ˚ 1k goes to the same class as w. As we already know
we have a semigroup homomorphism, it suffices to show that 1k goes to zero in
KK0

36�24;216�20"
.X [ ¹hº; B/. For this, note that if v WD v.1k; h/ is as in line (6.2),

then v D 12k , whence the image of 1k in KK0
36�24;216�21"

.X [ ¹hº; B/ is the class
Œ1k ˚ 0k; 1k ˚ 0k�, which is zero by definition.

Let us now show that elements of Un;�;".h.1 � h/X [ ¹hº; B/ that are homo-
topic through Un;2�;".h.1 � h/X [ ¹hº; B/ go to the same class. For this, say that
w0 and w1 are homotopic through Un;2�;".h.1 � h/X [ ¹hº; B/. Choose u0 and u1
in U1

n;�2;�"
.h.1 � h/X [ ¹hº; B/ that are connected to w0 and w1 respectively in

Un;�2;�".h.1 � h/X [ ¹hº; B/ as in Proposition 4.13 (i). Using Proposition 4.13 (ii),
u0 and u1 are connected by a homotopy .ut /t2Œ0;1� in U1

n;4�4;2�"
.h.1�h/X[¹hº;B/.

Let vt WD v.ut ; h/ be as in line (6.2). Then, Lemma 6.3 implies that the path�
vt

�
1 0

0 0

�
v�1t ;

�
1 0

0 0

��
defines a homotopy between the images of w0 and w1 in P 1

2n;314�24;227�21"
.X [

¹hº; B/. We thus see that N0.�/ WD 227�24 has the desired property, and we are done
with the existence of @.

As the formulas for the boundary map @ do not depend on the constants � and "
the naturality statement is clear.

6.2 Exactness

We now turn to the exactness property of the boundary map. In order to state this, we
need two lemmas.



A Mayer–Vietoris boundary map 66

Lemma 6.4. Let B be a separable C �-algebra. Let X and Y be subsets of the unit
ball of LB , " > 0 and � � 1. Let h 2LB be a positive contraction such that kŒh;x�k<
" for all x 2 X . With notation as in Definition 3.1, let

.p; q/ 2 Pn;�;".X [ Y [ ¹hº; B/

(respectively, with notation as in Definition 4.9, let .p; q/ 2P
.1/
n;�;".X [ Y [ ¹hº;B/).

Then,
.p; q/ 2 Pn;�;2".hX [ Y [ ¹hº; B/

(respectively, .p; q/ 2 P 1
n;�;2".hX [ Y [ ¹hº; B/).

In particular, there are homomorphisms

�h W KK
0
�;".X [ Y [ ¹hº; B/! KK0�;2".hX [ Y [ ¹hº; B/

and

�1�h W KK
0
�;".X [ Y [ ¹hº; B/! KK0�;2"..1 � h/X [ Y [ ¹hº; B/

induced by the identity map on cycles .p; q/.

Proof. We compute that for x 2 X ,

kŒp; hx�k � khkkŒp; x�k C kŒp; h�kkxk < "C ":

These estimates hold similarly for q so .p; q/ 2 P 1
n;�;2".hX [ Y [ ¹hº; B/. As the

identity map on cycles takes homotopies to homotopies, and block sums to block
sums, existence of the homomorphism �h is clear. Existence of �1�h follows on not-
ing that the assumptions on h also holds for 1 � h.

We leave the direct checks needed for the proof of the next lemma for the reader.

Lemma 6.5. Let B be a separable C �-algebra. Let X and Y be subsets of the unit
ball of LB , " > 0 and � � 1. Assume moreover that there is ı > 0 such that for
all y 2 Y , x 2ı X . Then, for any 
 � �ı C " and � � �, the forget control map of
Definition 3.4

KK0�;".X;B/! KK�;
 .Y; B/

is well-defined.

The next proposition is the exactness property of the Mayer–Vietoris boundary
map that we are aiming for. We refer the reader to Section 1.6 for motivation behind
the statement. For the statement, recall that for an element x and subset Y of a metric
space, and for " > 0, we write “x 2" S” to mean that there is y 2 Y with d.x; y/ <
". Moreover, in the statement below, all unlabeled arrows between controlled KK-
groups are the forget control maps of Definition 3.4 or Definition 3.7.
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Proposition 6.6. The increasing functions N1; N2 W Œ1;1/! Œ1;1/ defined by

N1.�/ D 2
9000000�3 and N2.�/ D 2

37�25:

satisfy the following properties.
Let � � 1, and let " > 0. Let � � �, and let ı � 3�". Let N1 WD N1.�/, and let

� � N1 and 
 � N1ı. With notation as in Proposition 6.1, define

N0 WD N0.�/;

and let N2 WD N2.�/.
Let B be a separable C �-algebra, and let X be a self-adjoint subset of the unit

ball of LB . Let h 2LB be a positive contraction such that kŒh; x�k < " for all x 2 X .
Let Yh, Y1�h, and Y be self-adjoint subsets of the unit ball of LB such that y 2" Yh
and y 2" Y1�h for all y 2 Y . With notation as in Definition 4.9, let .p; q/ be an
element of P 1

n;�;".X [ Yh [ Y1�h [ ¹hº; B/. With �h and �1�h as in Lemma 6.4, and
suing Lemma 6.5 to define the right hand vertical maps in each case, assume that the
images of Œp; q� under the maps

KK0�;".X [ Yh [ Y1�h [ ¹hº; B/

��

KK0�;".X [ Yh [ ¹hº; B/
�h // KK0�;2".hX [ Yh [ ¹hº; B/

��

KK0
�;ı
.hX [ Y [ ¹hº; B/

(6.13)

and

KK0�;".X [ Yh [ Y1�h [ ¹hº; B/

��

KK0�;".X [ Y1�h [ ¹hº; B/
�1�h // KK0�;2"..1 � h/X [ Y1�h [ ¹hº; B/

��

KK0
�;ı
.hX [ Y [ ¹hº; B/

(6.14)

are zero.
Then, with notation as in Definition 4.11, there exists an element

u 2 U1
1;N1;N1ı

.h.1 � h/X [ ¹hº [ Y;B/



A Mayer–Vietoris boundary map 68

such that in the diagram below

KK1
N1;N1ı

.h.1 � h/X [ ¹hº [ Y;B/

��

KK0�;".X [ Yh [ Y1�h [ ¹hº; B/

��

KK1�;
 .h.1 � h/X [ ¹hº; B/
@ // KK0N0;N0
 .X [ ¹hº; B/

��

KK0N2;N2
 .X [ ¹hº; B/

the images of the classes Œu� 2 KK1
N1;N1ı

.h.1 � h/X [ ¹hº [ Y / and

Œp; q� 2 KK0�;".X [ Yh [ Y1�h [ ¹hº; B/

in the bottom right group KK0N2;N2
 .X [ ¹hº; B/ are the same.

Just as for Proposition 6.1, to make the argument more palatable, we split off
some computations as two technical lemmas. As in that earlier case, the arguments
we give for these lemmas are elementary, but quite lengthy (in fact, much longer than
the earlier ones). We record them for the sake of completeness, but again recommend
that the reader skips the proofs.

Lemma 6.7. Let B be a separable C �-algebra. Let � � 1 and let 
 > 0. Let X
and Y be self-adjoint subsets of the unit ball of LB . Let h 2 LB be a positive con-
traction such that kŒh; x�k < 
 for all x 2 X . Let .p; q/ 2 P 1

n;�;
 .X [ Y [ ¹hº; B/

(see Definition 4.9 for notation), and let uh 2 U1
n;�;
 .hX [ ¹hº [ Y;B/ and u1�h 2

U1
n;�;
 ..1 � h/X [ ¹hº [ Y;B/ (see Definition 4.11 for notation).

Then, the element
u WD u1�h.1 � p/C uhp (6.15)

is in U1
n;2�2;10�


.h.1 � h/X [ ¹hº [ Y;B/.

Proof. We split the computations into the points labeled (i), (ii), (iii), (iv), and (v)
below.

(i) As uh � 1 2Mn.KB/ and u1�h � 1 2Mn.KB/, we compute from line (6.15)
that u � 1 2Mn.KB/.

(ii) Note that
k1 � pk � � (6.16)

by Corollary 4.2. Hence, max¹kuhk;ku1�hk;kpk;k1�pkº � �, and so by line (6.15),
kuk � 2�2.

(iii) Let y 2 Y . Then, by definition, kŒa; y�k < 
 for all a 2 ¹uh; u1�h; p; 1� pº.
Hence, the definition of u from line (6.15) implies that kŒy; u�k is bounded above by

kŒy; u1�h�kk1 � pk C ku1�hkkŒy; 1 � p�k C kŒy; uh�kkpk C kuhkkŒy; p�k < 4�
:
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(iv) Using the definition of u from line (6.15) and the assumptions on uh, u1�h
and p directly together with line (6.16) implies that

kŒu; h�k � kŒh; u1�h�kk1 � pk C ku1�hkkŒh; 1 � p�k

C kŒh; uh�kkpk C kuhkkŒh; p�k

< 4�
:

(v) Let x 2 X and note that

Œh.1 � h/x; uh� D .1 � h/Œhx; uh�C Œh; uh�.1 � h/x:

As kŒhx; uh�k < 
 , as kŒh; uh�k < 
 , as h is a positive contraction, and as x is a
contraction, we get

kŒh.1 � h/x; uh�k � kŒhx; uh�kk1 � hk C khxkkŒ1 � h; uh�k < 2
: (6.17)

Completely analogously, we see that

kŒh.1 � h/x; u1�h�k < 2
: (6.18)

We see also that

kŒh.1 � h/x; p�k � kŒx; p�kkh.1 � h/k C kŒ1 � h; p�kkhxk C kŒh; p�kk.1 � h/xk

< 3
:

Combining this with lines (6.16), (6.17), (6.18), we get

kŒh.1 � h/x; u�k � kŒh.1 � h/x; u1�h�kk1 � pk C ku1�hkkŒh.1 � h/x; 1 � p�k

C kŒh.1 � h/x; uh�kkpk C kuhkkŒh.1 � h/x; p�k

< 2�
 C 3�
 C 2�
 C 3�


D 10�
:

Putting the points (i), (ii), (iii), (iv), and (v) above together (and using that � �
1) we conclude that, u is an element of U1

n;2�2;10�

.h.1 � h/X [ ¹hº [ Y; B/ as

claimed.

Lemma 6.8. With assumptions as in Lemma 6.7, let

u WD u1�h.1 � p/C uhp 2 U1
n;2�2;10�


.h.1 � h/X [ ¹hº [ Y;B/

be the element considered there. Let v WD v.u; h/ be as in line (6.2) above, and define

w WD

�
u1�h.1 � p/ �q

p .1 � p/u�1
1�h

�
2M2n.LB/:

Then, w is invertible, and vw�1 is in U2n;.2�/8;237�25
 .X [ ¹hº; B/.
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Proof. Using the assumptions on kpk, ku1�hk, ku�11�hk and line (6.16) to estimate
k1 � pk, we have

kwk � ku1�h.1 � p/k C kqk C kpk C k.1 � p/u
�1
1�hk � 4�

2:

A direct computation shows that w is invertible with inverse

w�1 D

�
.1 � p/u�1

1�h
p

�q u1�h.1 � p/

�
: (6.19)

This satisfies the same norm estimate as w, and so we get the norm estimates

kwk � .2�/2 and kw�1k � .2�/2: (6.20)

Lemma 6.3 and the fact that kuk � 2�2 implies that kvk � .2�2 C 2/3 and kv�1k �
.2�2 C 2/3. As � � 1, we thus see that

kvk � .2�/6 and kv�1k � .2�/6: (6.21)

Lines (6.20) and (6.21) then imply

kvw�1k � .2�/8 and kwv�1k � .2�/8: (6.22)

To complete the proof, we need to show that for all x 2 X [ ¹hº, we have
kŒvw�1; x�k < 237�25
 and kŒwv�1; x�k < 237�25
 . We focus first on the case of
vw�1, and look first at Œh; vw�1�.

Let c WD huC .1 � h/ and d WD hu�1 C .1 � h/ be as in line (6.1). It will be
technically convenient to define

S WD ¹h; 1 � h; p; q; 1 � p; 1 � q; uh; u
�1
h ; u1�h; u

�1
1�h; u; u

�1; c; dº; (6.23)

and to define Sn to be the set of all products of at most n elements from S . Note that
for every s 2 S we have ksk � .2�/2, and kŒs; h�k < 10�
 . Hence, by Lemma 4.16,
for all n 2 N we have

s 2 Sn) kŒh; s�k < n.2�/2.n�1/10�
: (6.24)

Using the formula in line (6.4) above,

Œh; v� D

 
Œcdc; h� � 2Œc; h� Œcd; h�

Œh; dc� Œd; h�

!
and so

kŒh; v�k � kŒcdc; h�k C 2kŒc; h�k C kŒcd; h�k C kŒh; dc�k C kŒd; h�k:
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Each summand on the right-hand side above is of the form kŒh; s�k where s 2 S3 for
S as in line (6.23). Hence, line (6.24) implies that

kŒh; v�k < 6 � 3 � .2�/4 � 10�
 � 211�5
: (6.25)

We also compute that

Œh; w�1� D

 
Œh; .1 � p/u�1

1�h
� Œh; p�

Œq; h� Œh; u1�h.1 � p/�

!
;

whence

kŒh; w�1�k � kŒh; .1 � p/u�11�h�k C kŒh; p�k C kŒq; h�k C kŒh; u1�h.1 � p/�k:

Each commutator appearing above is of the form Œh; s� for some s 2 S2 as in line
(6.23), whence line (6.24) gives

kŒh; w�1�k < 4 � .2�/2 � 10�
 � 27�3
: (6.26)

On the other hand,

kŒh; vw�1�k � kŒh; v�kkw�1k C kvkkŒh; w�1�k:

Combining this with lines (6.20), (6.21), (6.25), and (6.26), as well as that � � 1, we
see that

kŒh; vw�1�k < 211�5
 � .2�/2 C .2�/6 � 27�3
 � 214�9
: (6.27)

Now, let us look at Œx; vw�1� for x 2 X . The definition of v from line (6.2) gives

vw�1 D

�
c.dc � 1/ 1 � cd

dc � 1 0

�
w�1 �

�
c 0

0 d

�
w�1

D

�
cd � 1 0

0 dc � 1

��
c �1

1 0

�
w�1 �

�
c 0

0 d

�
w�1:

Hence, the formula for w�1 from line (6.19) gives

vw�1 D

 
cd � 1 0

0 dc � 1

! 
c.1 � p/u�1

1�h
cp � u1�h.1 � p/

.1 � p/u�1
1�h

p

!
„ ƒ‚ …

y1

� h

 
1 � q uhp

�u�1
h
q 1 � p

!
„ ƒ‚ …

y2

� .1 � h/

 
.1 � p/u�1

1�h
p

�q u1�h.1 � p/

!
„ ƒ‚ …

y3

: (6.28)
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We now estimate kŒvw�1; x�k for each x 2 X by looking at each of the terms y1, y2,
and y3 separately.

(i) First, we look at y1 from line (6.28). Let x 2 X . Lemma 6.2 implies that



�cd � 1 0

0 dc � 1

�
� h.1 � h/.uC u�1 � 2/





 < .� C 1/
 (6.29)

(where, as usual, we identify h.1� h/.uC u�1 � 2/ with the corresponding diagonal
matrix). Let

z1 WD

 
c.1 � p/u�1

1�h
cp � u1�h.1 � p/

.1 � p/u�1
1�h

p

!
: (6.30)

As in line (6.16), k1 � pk � �, whence using that � � 1,

kz1k � kckk1 � pkku
�1
1�hk C kckkpk C ku1�hkk1 � pk

C k1 � pkku�11�hk C kpk

� .2�2 C 1/�2 C .2�2 C 1/� C �2 C �2 C �

� 9�4: (6.31)

Combining this with line (6.29), we see that

ky1 � h.1 � h/.uC u
�1
� 2/z1k

�





�cd � 1 0

0 dc � 1

�
� h.1 � h/.uC u�1 � 2/





kz1k
< 9�4.� C 1/
 � .2�/5
:

As kxk � 1, this implies that

kŒx; y1�k � kŒx; y1 � h.1 � h/.uC u
�1
� 2/z1�k

C kŒx; h.1 � h/.uC u�1 � 2/z1�k

< .2�/5
 C kŒx; h.1 � h/.uC u�1 � 2/z1�k:

Hence, we see that

kŒx; y1�k < .2�/
5
 C kŒŒx; h.1 � h/�; .uC u�1 � 2/z1�k

C kŒh.1 � h/x; .uC u�1 � 2/z1�k

C kŒh.1 � h/; .uC u�1 � 2/z1�xk: (6.32)

Looking at line (6.30), every entry of the matrix .uC u�1 � 2/z1 is a sum of at most
8 elements from the set S4, where S is as in line (6.23). Hence, by line (6.24), we see
that

kŒh.1 � h/; .uC u�1 � 2/z1�k < 4 � 2 � 8 � 4 � .2�/
6
� 12�2
 � 218�8
: (6.33)
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We have kŒx; h.1 � h/�k < 2
 , and line (6.31) implies

k.uC u�1 � 2/z1k � .4�
2
C 2/ � 9�4 � 26�6;

whence
kŒŒx; h.1 � h/�; .uC u�1 � 2/z1�k � 2

8�6
: (6.34)

Combining lines (6.32), (6.33), and (6.34) thus implies that

kŒx; y1�k � 2
19�8
 C kŒh.1 � h/x; .uC u�1 � 2/z1�k: (6.35)

Note now that for every element s 2 S we have that at least one of the following
holds: (a) kŒs; x�k < 16�2
 for all x 2 X ; or (b) kŒs; .1 � h/x�k < 16�2
 for all
x 2 X ; or (c) kŒs; .1� h/x�k < 16�2
 for all x 2 X ; or (d) kŒs; h.1� h/x�k < 16�2

for all x 2 X . In any of these cases, using that kŒs; h�k � 12�2
 for any s 2 S , we get
that for any s 2 S and x 2 X , kŒs; h.1 � h/x�k < 40�2
 . Applying Lemma 4.16, we
therefore see that

s 2 Sn) kŒh.1 � h/x; s�k < n.2�/2.n�1/40�2
: (6.36)

As we have observed above already, every entry in the matrix .uC u�1 � 2/z1 is a
sum of at most 8 elements from the set S4, where S is as in line (6.23). From line
(6.36) we therefore see that

kŒh.1 � h/x; .uC u�1 � 2/z1�k < 4 � 4 � .2�/
4
� 40�2
 � 214�6
:

Combining this with line (6.35) above therefore implies

kŒx; y1�k < 2
20�8
:

(ii) Now, we look at the element y2 from line (6.28) above. If x 2 X , we see that

Œx; y2� D

�
xh;

�
1 � q uhp

�u�1
h
q 1 � p

��
C

�
h;

�
1 � q uhp

�u�1
h
q 1 � p

��
x: (6.37)

We have that �
h;

�
1 � q uhp

�u�1
h
q 1 � p

��
D

�
Œq; h� Œh; uhp�

Œu�1
h
q; h� Œp; h�

�
:

Each entry in the matrix on the right is the commutator of h with an element of S2,
where S is as in line (6.23) above. Hence, by line (6.24), we see that



�h;� 1 � q uhp

�u�1
h
q 1 � p

��



 < 4 � 2 � .2�/2 � 12�2
 � 29�4
:
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Combining this with line (6.37) gives

kŒx; y2�k <





�xh;� 1 � q uhp

�u�1
h
q 1 � p

��



C 29�4
: (6.38)

On the other hand�
xh;

�
1 � q uhp

�u�1
h
q 1 � p

��
D

�
Œx; h�;

�
1 � q uhp

�u�1
h
q 1 � p

��
C

�
hx;

�
1 � q uhp

�u�1
h
q 1 � p

��
: (6.39)

As kŒh; x�k < 
 , we have



�Œx; h�;� 1 � q uhp

�u�1
h
q 1 � p

��



 � 2




� 1 � q uhp

�u�1
h
q 1 � p

�



:
As k1 � pk � � and k1 � qk � � by Corollary 4.2, every entry of the matrix on the
right has norm at most �2, and so



�Œx; h�;� 1 � q uhp

�u�1
h
q 1 � p

��



 < 23�2
:
Hence, line (6.39) implies that



�xh;� 1 � q uhp

�u�1
h
q 1 � p

��



 < 



�hx;� 1 � q uhp

�u�1
h
q 1 � p

��



C 23�2
: (6.40)

The commutator appearing on the right above equals 
Œq; hx� Œhx; uh�p C uhŒhx; p�

Œu�1
h
; hx�q � u�1

h
Œhx; q� Œp; hx�

!
:

Using that uh 2 U1
n;�;
 .hX; B/, and applying Lemma 6.4, the norm of each entry

above is at most 2�
 , whence



�hx;� 1 � q uhp

�u�1
h
q 1 � p

��



 < 23�
:
Combining this with lines (6.38) and (6.40) therefore implies that

kŒx; y2�k < 2
10�4
:

(iii) Finally, we look at y3 from line (6.28). This can be handled very similarly
to the case of y2, giving the estimate kŒx; y3�k < 210�4
 for all x 2 X ; we leave the
details to the reader.
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Putting together the concluding estimates of points (i), (ii), and (iii) above, we
see that kŒx; vw�1�k < 221�8
 for all x 2 X . Combining this with line (6.27), we see
that

kŒx; vw�1�k < 221�9
 (6.41)

for all x 2 X [ ¹hº.
To complete the proof, let us estimate kŒx; wv�1�k for x 2 X [ ¹hº. Using the

formula Œx; wv�1� D wv�1Œvw�1; x�wv�1, we see that

kŒx; wv�1�k � kwv�1kkŒvw�1; x�kkwv�1k:

Lines (6.41) and (6.22) therefore imply that

kŒx; wv�1�k � 237�25


and we are finally done.

Finally, we are ready for the proof of Proposition 6.6.

Proof of Proposition 6.6. With notation as in the statement, let

.p; q/ 2 P 1
n;�;".X [ Yh [ Y1�h [ ¹hº; B/;

and assume that the images of Œp; q� in KK0
�;ı
.hX [ Y [ ¹hº; B/ and KK0

�;ı
..1 �

h/X [ Y [ ¹hº; B/ under the maps in lines (6.13) and (6.14) are zero.
Note first that the map in line (6.13) is induced by the identity map on cycles, so

Lemma 3.3 applied to the cycle .p; q/ in Pn;�;ı.hX [ Y [ ¹hº;B/ implies that there
exists k 2 N such that .p˚ 1k ˚ 0k; q ˚ 1k ˚ 0k/ is in the same path component of
PnC2k;2�;ı.hX [ Y [ ¹hº; B/ as an element of the form .r; r/. Replacing .r; r/ with
.yry�; yry�/ for some appropriate unitary y 2MnC2k.C/ and using that the unitary
group of MnC2k.C/ is connected, we may assume that .r; r/ is in P 1

nC2k;2�;ı
.hX [

Yh [ ¹hº; B/ (see Definition 4.9 for notation). Moreover, as

.p; q/ 2 P 1
n;�;ı.X [ Yh [ Y1�h [ ¹hº; B/

there is a unitary z 2MnC2k.C/ such that .z.p˚ 1k ˚ 0k/z�; z.q ˚ 1k ˚ 0k/z�/ is
in P 1

n;�;ı
.hX [ Y [ ¹hº; B/. As the elements .r; r/ and .z.p ˚ 1k ˚ 0k/z�; z.q ˚

1k˚ 0k/z
�/ of P 1

n;2�;ı
.hX [Y [¹hº;B/ are connected by a path Pn;2�;ı.hX [Y [

¹hº;B/, we may use Proposition 4.10 (ii) to connect them by a path in P 1
n;2�;4ı

.hX [

Y [ ¹hº; B/. Precisely analogously (increasing k if necessary), we may assume that
.z.p ˚ 1k ˚ 0k/z

�; z.q ˚ 1k ˚ 0k/z
�/ is in the same path component of

P 1
n;2�;4ı..1 � h/X [ Y1�h [ ¹hº; B/

as an element of the form .s; s/.
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For notational simplicity, write m D n C 2k, and let M WD 4 � 2.200�/
3
. Then,

(with notation as in Definition 4.11), Proposition 4.17 gives j 2 N and elements

uh 2 U1
mC2j;M;Mı.hX [ ¹hº [ Y;B/

and
u1�h 2 U1

mC2j;M;Mı..1 � h/X [ ¹hº [ Y;B/

such that

uh.z.p ˚ 1k ˚ 0k/z
�
˚ 1j ˚ 0j /u

�1
h D z.q ˚ 1k ˚ 0k/z

�
˚ 1j ˚ 0j (6.42)

and

u1�h.z.p ˚ 1k ˚ 0k/z
�
˚ 1j ˚ 0j /u

�1
1�h D z.q ˚ 1k ˚ 0k/z

�
˚ 1j ˚ 0j : (6.43)

For notational simplicity, rename z.p ˚ 1k ˚ 0k/z� ˚ 1j ˚ 0j and z.p ˚ 1k ˚
0k/z

� ˚ 1j ˚ 0j as p and q respectively and rewrite m C 2j as n; if the conclu-
sion of the proposition holds for this new pair then it also holds for the original pair
thanks to the definition of the controlled KK0 groups (see Definition 3.1), so this
makes no real difference. In this new language, lines (6.42) and (6.43) can be rewrit-
ten uhpu�1h D q and u1�hpu�11�h D q respectively.

Define now
u WD u1�h.1 � p/C uhp;

which we claim has the properties in the statement. Using Lemma 6.7 with � D M
and 
 D Mı, we see that (with notation as in Definition 4.11), u is an element of
U1
n;2M2;10M2ı

.h.1 � h/X [ ¹hº [ Y; B/. Recalling that M D 4 � 2.200�/
3
, we see

that
N1.�/ D 2

9000000�3

has the desired property.
To complete the proof, it remains to show that if N2 D N2.�/ D 2252000000�

3
,

then @Œu� D Œp; q� in KK0N2;N2
 .X [ ¹hº; B/.
Now, v WD v.u; h/ is as in line (6.2), we have

@Œu� D

�
v

�
1 0

0 0

�
v�1;

�
1 0

0 0

��
:

Define now

w WD

�
u1�h.1 � p/ �q

p .1 � p/u�1
1�h

�
2M2n.LB/:

Applying Lemma 6.8 with

� DM and 
 DMı;



Exactness 77

we see that w is in U2n;.2M/8;237M25ı.X [ ¹hº; B/. For notational simplicity, set
M1 WD 2

37M 25. Proposition 4.6 implies that in KK0
M3
1
;3M3

1
ı
.X [ ¹hº; B/

@Œu� D

�
v

�
1 0

0 0

�
v�1;

�
1 0

0 0

��
D

�
.vw�1/�1v

�
1 0

0 0

�
v�1.vw�1/;

�
1 0

0 0

��
D

�
w

�
1 0

0 0

�
w�1;

�
1 0

0 0

��
:

Computing, we see that

w

�
1 0

0 0

�
w�1 D

�
1 � q 0

0 p

�
;

whence

@Œu� D

��
1 � q 0

0 p

�
;

�
1 0

0 0

��
(6.44)

in the group KK0
M3
1
;3M3

1
ı
.X [ ¹hº; B/.

Note now that the matrix
�
1�q q
q 1�q

�
2M2n.K

C

B / has norm at most 2� (as kqk �
� � �, and so k1 � qk � � by Corollary 4.2), and that it satisfies



�x;�1 � q q

q 1 � q

��



 < " < ı
for all x 2 X [ ¹hº. Hence,

�
1�q q
q 1�q

�
2U2n;2�;ı.X [ ¹hº; B/. Applying Proposi-

tion 4.6 again and using that � �M1, the identity�
1 � q q

q 1 � q

��
1 0

0 0

��
1 � q q

q 1 � q

�
D

�
1 � q 0

0 q

�
shows that the class on the right-hand side of line (6.44) is the same as the class��

1 � q 0

0 p

�
;

�
1 � q 0

0 q

��
inKK0

M6
1
;9M9

1
ı
.X [ ¹hº;B/. Using a rotation homotopy, this is the same as Œp; q� by

definition of KK0
M6
1
;9M9

1
ı
.X [ ¹hº; B/; recalling that

M1 WD 2
37M 25; M D 4 � 2.200�/

3

;

and that � � 29000000�
3

we see that N2.�/ D 237�25 indeed has the right prop-
erties.


