Chapter 7

Main theorems

In this chapter (as throughout), if B is a separable C^{*}-algebra, then \mathcal{L}_B and \mathcal{K}_B are respectively the adjointable and compact operators on the standard Hilbert B-module $\ell^2 \otimes B$. We identify \mathcal{L}_B with the "diagonal subalgebra" $1_{M_n} \otimes \mathcal{L}_B \subseteq M_n \otimes \mathcal{L}_B =$ $M_n(\mathcal{L}_R)$ for each n.

In this chapter we prove our main result; that is, the class of separable and nuclear C^* -algebras with the UCT is closed under decomposability.

7.1 Two technical "local" controlled vanishing results

In order to make the structure of the proof of Theorem [1.2](#page--1-0) as clear as we can, in this section we split off two "local" technical results. These are based on our work in Chapters [5](#page--1-1) and [6;](#page--1-1) given the material in these earlier chapters, at this point the proofs are essentially bookkeeping.

The next result is the first key technical ingredient we need; it is based on the material from Chapter [5.](#page--1-1) For the statement, recall that if x and S are respectively an element and subset of a metric space, and $\varepsilon > 0$, then " $x \in \varepsilon S$ " means that there is $s \in S$ with $d(x, s) < \varepsilon$.

Proposition 7.1. *There exists a function* $M : [1, \infty) \rightarrow [1, \infty)$ *with the following property. Let* $\kappa \geq 1$, and let $M := M(\kappa)$. Let B be a separable C^{*}-algebra such that

$$
K_*(B)=0.
$$

Let $\varepsilon > 0$, and let X be a finite subset of the unit ball of \mathcal{L}_{SB} . Let $F \subseteq \mathcal{L}_{SB}$ be a *separable, nuclear, unital* C *-subalgebra of* LSB *such that the identity representation* $F \to \mathcal{L}_{SB}$ *is strongly unitally absorbing (see Definition [2.5](#page--1-2)), such that for all* $x \in X$ *,* $x \in_{\varepsilon} F$, and such that F satisfies the UCT.

Then, for each $i \in \{0, 1\}$ *there exists a finite subset* Z *of* F_1 *such that the forget control map*

$$
KK_{\kappa,\varepsilon}^i(Z,B)\to KK_{M,M\varepsilon}^i(X,B)
$$

of Definition [3.4](#page--1-3) *(for i = 0) or Definition* [3.7](#page--1-4) *(for i = 1) is zero.*

Proof. Let us focus on the case of $i = 0$ first. Let Y be a finite subset of F_1 such that for all $x \in X$ there exists $y \in Y$ with $||x - y|| < \varepsilon$. Then, for any n, any $\delta > 0$, we see that with notation in Definition [3.1](#page--1-5)

$$
\mathcal{P}_{n,\kappa,\delta}(Y,SB) \subseteq \mathcal{P}_{n,\kappa,\delta+2\kappa\varepsilon}(X,SB).
$$

Hence, the forget control map

$$
KK_{\kappa,\delta}^0(Y, SB) \to KK_{\kappa,\delta+2\kappa\varepsilon}^0(X, SB)
$$
\n
$$
(7.1)
$$

is defined. On the other hand, Corollary [5.3](#page--1-6) implies that there is a finite subset Z of F_1 such that the forget control map

$$
KK_{\kappa,\varepsilon}^0(Z, SB) \to KK_{\kappa,160\varepsilon}^0(Y, SB)
$$

is defined and zero. Taking $\delta = 160\varepsilon$, and composing this with the forget control map in line (7.1) above, we see that the forget control map

$$
KK_{\kappa,\varepsilon}^0(Z, SB) \to KK_{\kappa,(160+2\kappa)\varepsilon}^0(Y, SB)
$$

is well-defined and zero. We are therefore done in the case $i = 0$; any function M satisfying $M(\kappa) > 160 + 2\kappa$ will work. The case of $i = 1$ is similar (although requiring a much larger $M(\kappa)$, using Lemma [5.5](#page--1-7) in place of Corollary [5.3.](#page--1-6)

The second key technical result we need is as follows; it is based on the material from Chapter [6.](#page--1-1)

Proposition 7.2. Let X be a finite subset of the unit ball of \mathcal{L}_B , let $\varepsilon > 0$, and let $\kappa \geq 1$. Assume there exists a positive contraction $h \in \mathcal{L}_B$, finite self-adjoint subsets Z_h , Z_{1-h} , and $Z_{h(1-h)}$ of the unit ball of \mathcal{L}_B , and $\lambda, \mu \geq 1$ and $\delta, \gamma > 0$ with the *following properties:*

- (i) $\Vert [h, x] \Vert < \varepsilon$ for all $x \in X$;
- (ii) *for each* $z \in Z_{h(1-h)}$ *,* $z \in \mathbb{Z}_h$ *and* $z \in \mathbb{Z}_{1-h}$ *;*
- (iii) *with* $N_1 := N_1(\lambda)$ as in Proposition [6.6](#page--1-8), the forget control map

$$
KK^1_{N_1,N_1\delta}(h(1-h)X \cup \{h\} \cup Z_{h(1-h)}) \to KK^1_{\mu,\gamma}(h(1-h)X \cup \{h\},B)
$$

of Definition [3.7](#page--1-4) *is defined and zero;*

(iv) *the forget control map*

$$
KK_{4\kappa^2,2\varepsilon}^0(Z_h \cup hX \cup \{h\}, B) \rightarrow KK_{\lambda,\delta}^0(hX \cup \{h\} \cup Z_{h(1-h)}, B)
$$

of Definition [3.4](#page--1-3) *is defined and zero;*

(v) *the forget control map*

$$
KK_{4\kappa^2,2\varepsilon}^0(Z_{1-h} \cup (1-h)X \cup \{h\}, B)
$$

\n
$$
\rightarrow KK_{\lambda,\delta}^0((1-h)X \cup \{h\} \cup Z_{h(1-h)}, B)
$$

of Definition [3.4](#page--1-3) *is defined and zero.*

Then, if $Z := Z_h \cup Z_{1-h} \cup X \cup \{h\}$ and $N_2 := N_2(\mu)$ is as in Proposition [6.6](#page--1-8)*, we have that the forget control map*

$$
KK_{\kappa,\varepsilon}^0(Z,B) \to KK_{N_2,N_2\gamma}^0(X,B)
$$

of Definition [3.4](#page--1-3) *is zero.*

Proof. We need to show that an arbitrary class $\alpha \in KK^0_{\kappa,\varepsilon}(X, B)$ vanishes under the forget control map

$$
KK^0_{\kappa,\varepsilon}(Z,B)\to KK^0_{N_2,N_2\gamma}(X,B).
$$

Using Proposition [4.10](#page--1-9) [\(i\),](#page--1-10) with notation as in Definition [4.9,](#page--1-11) we may assume that there is a cycle $(p, q) \in \mathcal{P}^1_{n, 4\kappa^3, \varepsilon}(Z, B)$ such that $[p, q] \in KK^0_{4\kappa^3, \varepsilon}(Z, B)$ agrees with the image of α under the forget control map

$$
KK^0_{\kappa,\varepsilon}(Z,B)\to KK^0_{4\kappa^3,\varepsilon}(Z,B).
$$

It thus suffices to show that $[p, q] \in KK^0_{4\kappa^3, \varepsilon}(Z, B)$ vanishes under the forget control map

$$
KK^0_{4\kappa^2,\varepsilon}(Z,B)\to KK^0_{N_2,N_2\gamma}(X,B)
$$

(we leave the check that this map is defined under our assumptions to the reader). Now, with notation as in Proposition [6.6,](#page--1-8) the composition

$$
KK_{4\kappa^2,\varepsilon}^0(X \cup Z_h \cup Z_{1-h} \cup \{h\}, B)
$$
\n
$$
\downarrow
$$
\n
$$
KK_{4\kappa^2,\varepsilon}^0(X \cup Z_h \cup \{h\}, B) \xrightarrow{\eta_h} KK_{4\kappa^2,2\varepsilon}^0(hX \cup Z_h \cup \{h\}, B)
$$
\n
$$
\downarrow
$$
\n
$$
KK_{\lambda,\delta}^0(hX \cup Z_{h(1-h)} \cup \{h\}, B)
$$

(compare line [\(6.13\)](#page--1-12)) is the zero map; indeed, the right-hand vertical map is zero by assumption (iv) . Similarly, using assumption (v) , we see that the composition

$$
KK_{4\kappa^{2},\varepsilon}^{0}(X \cup Z_{h} \cup Z_{1-h} \cup \{h\}, B)
$$
\n
$$
\downarrow
$$
\n
$$
KK_{4\kappa^{2},\varepsilon}^{0}(X \cup Z_{1-h} \cup \{h\}, B) \xrightarrow{\eta_{1-h}} KK_{4\kappa^{2},2\varepsilon}^{0}((1-h)X \cup Z_{1-h} \cup \{h\}, B)
$$
\n
$$
\downarrow
$$
\n
$$
KK_{\lambda,\delta}^{0}((1-h)X \cup Z_{h(1-h)} \cup \{h\}, B)
$$

(compare line (6.14)) is zero. Hence, Proposition [6.6](#page--1-8) gives us an element

$$
u\in \mathcal{U}^1_{\infty,N_1,N_1\delta}(h(1-h)X\cup\{h\}\cup Z_{h(1-h)},B)
$$

such that in the diagram below (with $N_0 = N_0(\mu)$ as in Proposition [6.1\)](#page--1-14)

$$
KK_{N_1, N_1\delta}^1(h(1-h)X \cup \{h\} \cup Z_{h(1-h)}, B) \qquad KK_{4\kappa^2, 2\varepsilon}^0(Z, B)
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
KK_{\mu, \gamma}^1(h(1-h)X \cup \{h\}, B) \longrightarrow KK_{N_0, N_0\gamma}^0(X \cup \{h\}, B) \quad (7.2)
$$

\n
$$
\downarrow
$$

\n
$$
KK_{N_2, N_2\gamma}^0(X \cup \{h\}, B)
$$

the images of the classes $[u] \in KK^1_{N_1,N_1\delta}(h(1-h)X \cup \{h\} \cup Z_{h(1-h)})$ and $[p,q] \in$ $KK_{\kappa,\varepsilon}^0(Z, B)$ in the bottom right group $KK_{N_2,N_2\gamma}^0(X \cup \{h\}, B)$ are the same; a fortiori their images are also the same if we further compose with the forget control map

$$
KK^0_{N_2,N_2\gamma}(X\cup\{h\},B)\to KK^0_{N_2,N_2\gamma}(X,B).
$$

Assumption [\(iii\)](#page-1-3) implies, however, that the left-hand vertical map in line [\(7.2\)](#page-3-0) is zero, however, so we are done.

7.2 Proof of the main theorems

We are now ready for our main results. For the statement of the first of these, we recall what it means for a C^* -algebra to decompose over a class of C^* -algebras from Definition [1.1](#page--1-15) above. After giving a proof of this, we will use it to establish the theorems from the introduction.

Theorem 7.3. Let $\kappa \geq 1$ and $\gamma > 0$. Let $M_1 := M(4)$ be as in Proposition [7.1](#page-0-0). Let $N_1 := N_1(M_1)$ be as in Proposition [6.6](#page--1-8)*. Let* $M_2 := M(N_1)$ be as in Proposi*tion* [7.1](#page-0-0)*. Let* $N_2 := N_2(M_2)$ *be as in Proposition* [6.6](#page--1-8)*. Then, any* $\nu \geq N_2$ *and* $\varepsilon \in$ $(0, \gamma(2N_2M_2N_1M_1)^{-1})$ have the following property.

Let A be a separable, unital C^{*}-algebra that decomposes over the class of nuclear C^{*}-algebras that satisfy the UCT. Let B be any separable C^{*}-algebra such that $K_*(B) = 0$. Then, for any finite subset X of A_1 , and $\varepsilon > 0$, there is a finite subset Z *of* A1*, such that the forget control map*

$$
KK_{\kappa,\varepsilon}^0(Z, SB) \to KK_{\nu,\gamma}^0(X, SB)
$$

of Definition [3.4](#page--1-3) *is defined and zero. In particular,* A *satisfies the UCT.* *Proof.* The claim that A satisfies the UCT follows as the vanishing property in the statement of Theorem [7.3](#page-3-1) implies condition [\(iii\)](#page--1-16) from Corollary [5.3.](#page--1-6) It thus suffices to prove the vanishing property. Let ν and ε satisfy the given assumptions.

As A is decomposable with respect to the family of nuclear C^* -subalgebras that satisfy the UCT, there are nuclear, UCT C^* -subalgebras C, D and E of A and a positive contraction $h \in E$ such that for all $x \in X$, $\| [h, x] \| < \varepsilon$, $hx \in E_{\varepsilon} C$, $(1 - h)x \in E_{\varepsilon} D$, and $h(1-h)x \in_{\varepsilon} E$, and such that all $e \in E$ we have that $e \in_{\varepsilon} C$, and $e \in_{\varepsilon} D$. Replacing C, D, and E by the C^* -subalgebra of A spanned by the algebra and the unit of A, we may assume that C , D , and E are unital subalgebras of A (note that the unitization of a nuclear C^* -algebra that satisfies the UCT is nuclear and satisfies the UCT; see [\[10,](#page--1-17) Exercise 2.3.5] for nuclearity and [\[55,](#page--1-18) Proposition 2.3 (a)] for the UCT).

Represent A on \mathcal{L}_{SB} using a representation with the properties in Corollary [2.7](#page--1-19) (with B replaced by SB), and identify A (therefore also C, D, and E) with unital C^* -subalgebras of \mathcal{L}_{SB} using this representation. Note that the restrictions of this representation to each of E, C, D , (and the representation of A itself) are strongly unitally absorbing.

Throughout the rest of the proof, all unlabeled arrows are forget control maps as in Definitions [3.4](#page--1-3) or [3.7](#page--1-4) as appropriate.

Using Proposition [7.1](#page-0-0) there exists a finite self-adjoint subset $Z_{h(1-h)}$ of E_1 such that the forget control map

$$
KK_{N_1,2N_1M_1\varepsilon}^1(h(1-h)X \cup Z_{h(1-h)} \cup \{h\}, SB)
$$

\n
$$
\to KK_{M_2,2M_2N_1M_1\varepsilon}^1(h(1-h)X \cup \{h\}, SB)
$$
\n(7.3)

is zero. Similarly, Proposition [7.1](#page-0-0) and the facts that for all $z \in Z_{h(1-h)} \subseteq E_1$, $z \in_{\varepsilon} C$ and $z \in_{\varepsilon} D$ gives finite self-adjoint subsets Z_h and Z_{1-h} of C_1 and D_1 respectively such that the forget control maps

$$
KK_{4,2\varepsilon}^{0}(hX \cup Z_h \cup \{h\}, SB)
$$

\n
$$
\rightarrow KK_{M_1,2M_1\varepsilon}^{0}(hX \cup Z_{h(1-h)} \cup \{h\}, SB)
$$
 (7.4)

and

$$
KK_{4,2\varepsilon}^{0}((1-h)X \cup Z_{1-h} \cup \{h\}, SB)
$$

\n
$$
\rightarrow KK_{M_1,2M_1\varepsilon}^{0}((1-h)X \cup Z_{h(1-h)} \cup \{h\}, SB)
$$
\n(7.5)

are defined and zero. Expanding Z_h and Z_{1-h} if necessary (using that for all $e \in E$, $e \in_{\varepsilon} C$, and $e \in_{\varepsilon} D$), we may assume that,

for all
$$
z \in Z
$$
, $z \in_{\varepsilon} Z_h$ and $z \in_{\varepsilon} Z_{1-h}$. (7.6)

We are now in a position to apply Proposition [7.2](#page-1-4) with the given ε and κ , $\lambda = M_1$, $\delta = 2M_1 \epsilon$, $\mu = M_2$ and γ as given: assumption [\(i\)](#page-1-5) follows by choice of h; assump-tion [\(ii\)](#page-1-6) follows from line (7.6) ; assumption [\(iii\)](#page-1-3) follows as the map in line (7.3) is

٠

zero; assumption [\(iv\)](#page-1-1) follows as the map in line (7.4) is zero; and assumption [\(v\)](#page-1-2) follows as the map in line [\(7.5\)](#page-4-3) is zero. Therefore, Proposition [7.2](#page-1-4) implies that the forget control map

$$
KK^0_{\kappa,\varepsilon}(Z, SB) \to KK^0_{\nu,\gamma}(X, SB)
$$

is zero and we are done.

To establish the main results as stated in the introduction, we need a basic lemma.

Lemma 7.4. The class of unital, nuclear C^{*}-algebras is closed under decomposab*ility.*

Proof. Let A be a unital C^* -algebra that decomposes over the class of unital nuclear C^* -algebras. Let a finite subset X of A and $\varepsilon \in (0, 1)$ be given. To show that A is nuclear, it will suffice to construct a finite rank ccp map

$$
\phi: A \to A
$$

such that $\phi(x) \approx_{\varepsilon} x$ for all $x \in X$ (compare for example [\[8,](#page--1-20) Lemma IV.3.1.6, (iii)]). We may assume that X contains the unit of A .

Let then C, D, E^1 E^1 , and h be as in the definition of decomposability (Defini-tion [1.1\)](#page--1-15) with respect to the finite set X and the parameter $\delta = \frac{1}{18} (\varepsilon/(1+\varepsilon))^2$, and with C and D nuclear. Note that for any $x \in X$, $\Vert [h^{1/2}, x] \Vert \leq \frac{5}{4} \Vert [h, x] \Vert^{1/2}$ by the main result of [\[49\]](#page--1-21), whence

$$
||hx - h^{1/2}xh^{1/2}|| \le \frac{5}{4} ||[h, x]||^{1/2} < \frac{5}{4}\delta^{1/2} < 2\delta^{1/2};
$$
 (7.7)

as $hx \in \mathcal{E}$, and as $\delta < 1$, this implies that $h^{1/2}xh^{1/2} \in \mathcal{E}$, Choose a finite subset Y of C such that for all $x \in X$ there is $y_x \in Y$ with

$$
||y_x - h^{1/2}xh^{1/2}|| < 3\delta^{1/2}.
$$
 (7.8)

Similarly, there is a finite subset Z of D such that for all $x \in X$ there is $z_x \in Z$ with

$$
||z_x - (1 - h)^{1/2}x(1 - h)^{1/2}|| < 3\delta^{1/2}.
$$

Now, as C and D are nuclear there are diagrams

¹One does not actually need E at all in the proof.

where all the arrows are ccp maps; F_C and F_D are finite dimensional C^* -algebras; and for all $y \in Y$, and all $z \in Z$,

$$
\phi_C(\psi_C(y)) \approx_{\delta^{1/2}} y \quad \text{and} \quad \psi_D(\phi_D(z)) \approx_{\delta^{1/2}} z. \tag{7.9}
$$

Using Arveson's extension theorem (see for example [\[10,](#page--1-17) Theorem 1.6.1]), extend ψ_C and ψ_D to ccp maps defined on all of A, which we keep the same notation for. Define

$$
\phi_0: A \to A, \quad a \mapsto \phi_C(\psi_C(h^{1/2}xh^{1/2})) + \phi_D(\psi_D((1-h)^{1/2}x(1-h)^{1/2})),
$$

and note that ϕ_0 is completely positive. For any $x \in X$, let y_x have the property in line [\(7.8\)](#page-5-1). As ψ_C is contractive, this and lines [\(7.9\)](#page-6-0) and [\(7.7\)](#page-5-2) imply that

$$
\phi_C(\psi_C(h^{1/2}xh^{1/2})) \approx_{3\delta^{1/2}} \phi(\psi_C(y_x)) \approx_{\delta^{1/2}} y_x \approx_{3\delta^{1/2}} h^{1/2}xh^{1/2} \approx_{2\delta^{1/2}} hx.
$$

Precisely analogously, for any $x \in X$,

$$
\phi_D(\psi_D((1-h)^{1/2}x(1-h)^{1/2})) \approx_{9\delta^{1/2}} (1-h)x
$$

and so for any $x \in X$, $\phi_0(x) \approx_{18\delta^{1/2}} x$. Applying this to $x = 1$ implies in particular that $\|\phi_0\| = \|\phi_0(1)\| \ge 1 - 18\delta^{1/2}$. Hence, if we define

$$
\phi: A \to A, \quad a \mapsto \frac{\phi_0(a)}{\|\phi_0(1)\|}
$$

then ϕ is a ccp map such that

$$
\|\phi(x) - x\| \le \frac{18\delta^{1/2}}{1 - 18\delta^{1/2}}
$$

for all $x \in X$. Using the choice of δ , this completes the proof.

The next corollary is Theorem [1.2](#page--1-0) from the introduction; it is an immediate consequence of Lemma [7.4](#page-5-3) and Theorem [7.3.](#page-3-1)

Corollary 7.5. If a separable, unital C^{*}-algebra decomposes over the class of nuclear, unital C^{*}-algebras that satisfies the UCT, then it is nuclear and satisfies the *UCT.*

The next result is Theorem [1.4](#page--1-22) from the introduction. For the definition of finite complexity and the classes \mathcal{D}_{α} used below, see Definition [1.3.](#page--1-23)

Corollary 7.6. Let $\mathcal C$ be a class of separable, unital, nuclear C^* -algebras that satisfy *the UCT. Then, the class of separable unital* C *-algebras that have finite complexity relative to* $\mathcal C$ *consists of nuclear* C^* -algebras that satisfy the UCT.

In particular, every separable C^{*}-algebra of finite complexity is nuclear and sat*isfies the UCT.*

Proof. With notation as in Definition [1.3,](#page--1-23) let $\mathcal{D}_0 = \mathcal{C}$, and for each ordinal α , let $\mathcal{D}_{\alpha,sep}$ consist of the separable C^{*}-algebras in the class \mathcal{D}_{α} from Definition [1.3.](#page--1-23) We proceed by transfinite induction to show that each $\mathcal{D}_{\alpha,sep}$ consists of nuclear, UCT C^* -algebras. If $\alpha = 0$, this is just the well-known fact that AF C^* -algebras satisfy the UCT. If $\alpha > 0$ (and either a successor or limit ordinal) then any C^* -algebra in $\mathcal{D}_{\alpha,sep}$ decomposes over C^{*}-algebras in $\bigcup_{\beta<\alpha}\mathcal{D}_{\beta,sep}$, and so is nuclear and UCT by Corollary [7.5](#page-6-1) and the inductive hypothesis.