
Appendix A

Examples

In this appendix we give some examples of C �-algebras with finite complexity.

A.1 Cuntz algebras

The material in this section is based closely on work of Winter and Zacharias [70,
Section 7]1. Our aim is to establish the following result.

Proposition A.1. For any n with 2 � n <1, the Cuntz algebra On has complexity
rank one.

We should remark that the proof of Proposition A.1 uses classification results for
Cuntz algebras, and so depends on prior knowledge of the UCT; it therefore cannot
be said that Proposition A.1 gives a new proof of the UCT for Cuntz algebras (and
even if it did, it would be quite a complicated one!). Indeed, the main point of estab-
lishing Proposition A.1 for us is to use it as an ingredient in Theorem 1.7 from the
introduction, not to establish the UCT.

We should also remark that Proposition A.1 was subsequently generalized in [37,
Theorem 1.5]; nonetheless, we hope that the different argument given here still has
some interest.

We now embark on the proof of Proposition A.1. We will follow the notation from
[70, Section 7]. Fix n 2N with n� 2. LetH be an n-dimensional Hilbert space, with
fixed orthonormal basis ¹e1; : : : ; enº. Define

�.n/ WD

1M
lD0

H˝l ; (A.1)

where H˝l is the l th tensor power of H (and H˝0 is by definition a copy of C). Let
Wn be the set of all finite words based on the alphabet ¹1; : : : ; nº. In symbols

Wn WD

1G
kD0

¹1; : : : ; nºk

(with ¹1; : : : ; nº0 by definition consisting only of the empty word). For each � D
.i1; : : : ; ik/ 2 Wn, define e� WD ei1 ˝ � � � ˝ eik , and define e¿ to be any unit-length

1More specifically, it is based on the slightly different approach to the material in [70,
Section 7] suggested in [70, Remark 7.3].
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element of H˝0 D C. Then, the set ¹e� j � 2 Wnº is an orthonormal basis of �.n/.
For � 2 Wn, write j�j for the length of �, i.e., j�j D k means that

� D .i1; : : : ; ik/

for some i1; : : : ; ik 2 ¹1; : : : ; nº. Then, the canonical copy of H˝k inside �.n/ from
line (A.1) has orthonormal basis ¹e� j j�j D kº.

For each i 2 ¹1; : : : ; nº let Ti be the bounded operator on �.n/ that acts on basis
elements via the formula

Ti W e� 7! ei ˝ e�:

The Cuntz–Toeplitz algebra Tn is defined to be the C �-subalgebra of B.�.n// gen-
erated by T1; : : : ; Tn. We note that each Ti is an isometry, and that 1 �

Pn
iD1 TiT

�
i

is the projection onto the span of e¿. It follows directly from this that Tn contains
all matrix units with respect to the basis ¹e�º of �.n/, and therefore contains the
compact operators K on �.n/. Moreover, in the quotient Tn=K , the images si of the
generators Ti satisfy the Cuntz relations s�i si D 1 and

Pn
iD1 sis

�
i D 1, and therefore

the quotient is a copy of the Cuntz algebra On.
Now, for x 2 RC, define dxe WD min¹n 2 N j n � xº, and define2

�0;k WD

2k�1M
lDk

H˝l and �1;k WD

2kCdk=2eM
lDkCdk=2e

H˝l : (A.2)

For i 2 ¹0; 1º, define B.0/
i;k
WD B.�i;k/. For each l;m 2 N, we identify H˝l ˝H˝m

with H˝.lCm/ via the bijection of orthonormal bases�
ei1 ˝ � � � ˝ eil

�
˝
�
ej1 ˝ � � � ˝ ejm

�
$ ei1 ˝ � � � ˝ eil ˝ ej1 ˝ � � � ˝ ejm :

Fix for the moment k 2 N (it will stay fixed until Lemma A.2 below). Then, for each
j 2 N we get a canonical identification

�0;k ˝H
˝jk
D

2k�1M
lDk

H˝l ˝H˝jk D

.jC1/k�1M
lDjk

H˝l :

Combining this with line (A.1) we get a canonical identification

�.n/ D

 
k�1M
lD0

H˝l

!
„ ƒ‚ …

DWH0

˚

 
1M
jD0

�0;k ˝H
˝jk

!
:

2In [70, Section 7], �0;k is written �k;2k and �1;k is written �kCdk=2e;2kCdk=2e.
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Let id be the identity representation of B.0/
0;k

on �0;k and write B0;k for the image of

B
.0/

0;k
in the representation on �.n/ that is given by

0H0 ˚

 
1M
kD0

id˝ 1H˝jk

!
with respect to the above decomposition above. Similarly, we get a decomposition

�.n/ D

 
kCdk=2e�1M

lD0

H˝l

!
„ ƒ‚ …

DWH1

˚

 
1M
jD0

�1;k ˝H
˝jk

!

and define B1;k to be the image of B.0/
1;k

under the representation

0H1 ˚

 
1M
kD0

id˝ 1H˝jk

!
:

Now, let f W Œ0; 1�! Œ0; 1� be the piecewise linear function that takes the value 0
on Œ0; 1=6� and Œ5=6; 0�, the value 1 on Œ2=6; 4=6�, and interpolates linearly between 0
and 1 on Œ1=6;2=6� and Œ4=6;5=6�. Let h.0/

0;k
2B

.0/

0;k
be the operator on �0;k that acts on

the summandH˝l from line (A.2) by multiplication by the scalar f ..l � k/=.k � 1//.
Similarly, let h.0/

1;k
2B

.1/

1;k
be the operator on �1;k that acts on the summandH˝l from

line (A.2) by multiplication by the scalar 1 � f ..l � k � dk=2e/=.k � 1//. Let h0;k
and h1;k be the images of h.0/

0;k
and h.0/

1;k
in B0;k and B1;k respectively. Note that the

operator on h0;k C h1;k on �.n/ acts on the summand on H˝l from line (A.1) by
multiplication by 1 as long as l � k C dk=2e. In particular,

h0;k C h1;k equals the identity on �.n/ up to a finite rank perturbation. (A.3)

We will need two technical lemmas about these operators.

Lemma A.2. For any T in the Cuntz–Toeplitz algebra Tn and i 2 ¹0; 1º, we have
that kŒhi;k; T �k ! 0 as k !1.

Proof. We will focus on h0;k; the case of h1;k is essentially the same. It suffices
to consider the case where T is one of the canonical generators Ti of the Cuntz–
Toeplitz algebra. Let e� be a basis element with j�j D jk C l for some j; l 2 N
with l 2 ¹0; : : : ; k � 1º. Then, we compute that Œh0;k; Ti �e� D 0 if j D 0, and that
otherwise

Œh0;k; Ti �e� D
�
f ..l C 1/=.k � 1// � f .l=.k � 1//

�
ei ˝ e�:
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As the elements ¹ei ˝ e� j � 2 Wnº are an orthonormal set, this implies that

kŒh0;k; Ti �k � max
l2¹0;:::;k�1º

jf ..l C 1/=.k � 1// � f .l=.k � 1//j:

The choice of function f implies that the right-hand side above is approximately
6=k, so we are done.

Lemma A.3. For any T in the Cuntz–Toeplitz algebra Tn we have that

(i) for i 2 ¹0; 1º, d.hi;kT;Bi;k/! 0 as k !1;

(ii) d.h0;kh1;kT;B0;k \ B1;k/! 0 as k !1.

Proof. We will focus on the case of h0;k; the other cases are similar. It suffices to
consider T a finite product S1 � � � Sm, where each Sj is either one of the generators
Ti or its adjoint. Using Lemma A.2, we see that Œh1=l

0;k
; Sj �! 0 as k !1 for any j ,

and any l 2 N with l � 1. Hence, the difference

h0;kS1 � � �Sm �
�
h
1=.2m/

0;k
S1h

1=.2m/

0;k

��
h
1=.2m/

0;k
S2h

1=.2m/

0;k

�
� � �
�
h
1=.2m/

0;k
Smh

1=.2m/

0;k

�
tends to zero as k !1. It thus suffices to prove that the distance between each of
the terms h1=.2m/

0;k
Sjh

1=.2m/

0;k
and B0;k tends to zero as k !1. Define pk to be the

strong operator topology limit of h1=l
0;k

as l !1; in other words, pk is the support

projection of h0;k . Then, we have that h1=.2m/
0;k

Sjh
1=.2m/

0;k
D h

1=.2m/

0;k
pkSjpkh

1=.2m/

0;k
.

As h1=.2m/
0;k

is in B0;k , it suffices to prove that the distance between pkTipk and B0;k
tends to zero as k !1. However, pkTipk is actually in B0;k , so we are done.

Now, as in the discussion on [70, p. 488], define

�k.n/ WD

k�1M
lD0

H˝l :

For a word � 2 Wn in ¹1; : : : ; nº, we may uniquely write � D �0�1, where the
lengths j�0j and j�1j satisfy j�0j 2 ¹0; : : : ; k � 1º, and j�1j 2 kN. Then, the bijective
correspondence of orthonormal bases

e� $ e�0 ˝ e�1

gives rise to a decomposition

�.n/ D �k.n/˝ �.n
k/:

Identify the C �-algebra B.�k.n// ˝ Tnk with its image in the representation on
�.n/ arising from the above decomposition. The following is essentially part of [70,
Lemma 7.1].
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Lemma A.4. With notation as above, B.�k.n//˝Tnk contains the finite-dimensional
C �-algebras we have called B0;k and B1;k , and in particular also contains h0;k
and h1;k .

Proof. In the notation of [70, Lemma 7.1], B0;k D ƒk.B.�k;2k//, and

B1;k D ƒk.B.�kCdk=2e;2kCdk=2e//:

Part (i) of [70, Lemma 7.1] says exactly that the image of ƒk is contained in

B.�k.n//˝ Tnk ;

however, so we are done.

It is explained on [70, p. 488] that B.�k.n// ˝ Tnk contains Tn, so we get a
canonical inclusion.

Tn ! B.�k.n//˝ Tnk : (A.4)

The dimension of �k.n/ is dk WD 1 C n C n2 C � � � C nk�1, so we may make the
identification B.�k.n//˝ Tnk D Mdk .Tnk /. With respect to this identification, the
inclusion in line (A.4) takes the compact operators on �.n/ toMdk .K.�.nk///. Tak-
ing the quotient by the compacts on both sides of line (A.4) thus gives rise to an
inclusion

� W On !Mdk .Onk /: (A.5)

In this language, we get the following immediate corollary of Lemmas A.2 and A.3.
To state it, let q W B.�.n//! Q.�.n// be the quotient map from the bounded oper-
ators on �.n/ to the Calkin algebra.

Corollary A.5. For any a2On, we have that the following all tend to zero as k!1:
kŒq.h0;k/; �.a/�k, kŒq.h1;k/; �.a/�k, d.q.h0;k/�.a/;q.B0;k//, d.q.h1;k/�.a/;q.B1;k//,
and d.q.h0;kh1;k/�.a/; q.B0;k \ B1;k//.

We are finally ready for the proof of Proposition A.1.

Proof of Proposition A.1. Let " > 0, and letX be a finite subset of the unit ball of On.
Corollary A.5 implies that for any large k we have that for all a 2X and i 2 ¹0;1º, the
quantities kŒq.hi;k/; �.a/�k, d.q.hi;k/�.a/; q.Bi;k//, and d.q.h0;kh1;k/�.a/; q.B0;k \
B1;k// are smaller than "=2. We may assume moreover that k � 1 modulo n� 1. Fix
this k for the remainder of the proof.

As discussed on [70, p. 488], we have a canonical unital inclusion Onk ! On by
treating suitable products of the generators of On as generators of Onk . Moreover,
dk is equal to k modulo n � 1. It follows that the K-theory of Mdk .On/ is given
by Z=.n � 1/Z in dimension zero and zero in dimension one, with the class Œ1� of
the unit in K0 represented by the residue of k in Z=.n � 1/Z. Hence, the K-theory
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invariants ofMdk .On/ and On agree, as we are assuming that k � 1modulo n � 1. In
particular, the Kirchberg–Phillips classification theorem (see for example [53, Corol-
lary 8.4.8]) gives a unital isomorphism Mdk .On/ Š On. Combining this with the
inclusion Onk ! On mentioned above gives a unital inclusion

ˇ WMdk .Onk /! On: (A.6)

Now, the composition ˇ ı � W On ! On of ˇ as in line (A.6) and � as in line (A.5) is
a unital inclusion, whence necessarily induces an isomorphism on K-theory. As On
satisfies the UCT, ˇ ı � is therefore aKK-equivalence (see for example [55, Proposi-
tion 7.3]). Hence, the uniqueness part of the Kirchberg–Phillips classification theorem
(see for example [53, Theorem 8.3.3, (iii)]) implies that ˇ ı � W On ! On is approx-
imately unitarily equivalent to the identity. Thus, there is a sequence .um/ of unitaries
in On such that

ka � umˇ�.a/u
�
mk ! 0

for all a 2On. Choosem large enough so that ka� umˇ�.a/u�mk< "=2 for all a 2X .
Set h WD umˇ.q.h0;k//u

�
m, C0 WD umˇ.q.B0;k//u

�
m, D0 WD umˇ.q.B1;k//u

�
m,

and E0 WD umˇ.q.B1;k \ B0;k//u�m. Set C to be the C �-subalgebra of On spanned
by C0 and the unit, and similarly for D and E. Our choices, plus the fact that

q.h0;k C h1;k/ D 1

(see line (A.3)), imply that this data satisfies the definition of decomposability (Defin-
ition 1.1), so we are done.

A.2 Groupoids with finite dynamical complexity

In this section, we give another interesting class of C �-algebras with finite com-
plexity, that is, C �-algebras of groupoids with finite dynamical complexity. To avoid
repeating the same assumptions, let us stipulate that throughout this appendix the
word “groupoid” means “locally compact, Hausdorff, étale groupoid”; we will often
also assume that G has compact base space, but not always. For background on this
class of groupoids and their C �-algebras, we recommend [10, Section 5.6], [51, Sec-
tion 2.3], or [59].

Note that if G is a groupoid in this sense, then any open subgroupoid H of G
(i.e., H is an open subset of G that is algebraically a groupoid with the inherited
operations) is also a groupoid in this sense. Again, to avoid too much repetition, let
us say that the word “subgroupoid” means “open subgroupoid”.

The following definitions are essentially contained in the authors’ joint work with
Guentner [31, Definition A.4].
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Definition A.6. Let G be a groupoid, let H be a subgroupoid of G, and let C be a
set of subgroupoids of G. We say that H is decomposable over C if for any compact
subsetK ofH there exists an open cover ¹U0;U1º of r.K/[ s.K/ such that for each
i 2 ¹0; 1º the subgroupoid of H generated by

¹h 2 K j s.h/ 2 Uiº

is contained in an element of C .

Definition A.7. For an ordinal number ˛,

(i) if ˛ D 0, let C0 be the class of groupoids G such that for any compact
subset K of G there is a subgroupoid H of G such that K � H , and such
that the closure of H is compact;

(ii) if ˛ > 0, let C˛ be the class of groupoids that decompose over the collection
of their subgroupoids in the class

S
ˇ<˛ Cˇ .

We say that a groupoid G has finite dynamical complexity if G is contained in C˛ for
some ordinal ˛. If G has finite dynamical complexity, the complexity rank of G is the
smallest ˛ such that G is in C˛ .

The main result of this section is as follows. For the statement, recall that a group-
oid is ample if it has totally disconnected base space, and principal if the units are the
elements g 2 G that satisfy s.g/ D r.g/. Recall also that a C �-algebra is subhomo-
geneous if it is isomorphic to a C �-subalgebra of MN .C.X// for some N 2 N and
compact Hausdorff space X . Recall finally the notion of complexity rank relative to
a class of C �-algebras from Definition 1.3.

Proposition A.8. Let G be a groupoid with compact base space.

(i) The complexity rank of C �r .G/ relative to the class of subhomogeneous
C �-algebras is bounded above by the complexity rank of G.

(ii) If G is ample and principal, then the complexity rank of C �r .G/ (relative
to the class of finite-dimensional C �-algebras) is bounded above by the
complexity rank of G.

In particular, if G is second countable and has finite dynamical complexity, then
C �r .G/ satisfies the UCT.

Before getting into the proof of this, let us discuss some remarks and examples.

Example A.9. Let G.X/ be the coarse groupoid associated to a bounded geometry
metric space X ; see [61, Section 3] or [52, Chapter 10] for background. For such
spaces X , Guentner, Tessera and Yu [29] introduced a notion called finite decompos-
ition complexity; it comes with a natural complexity rank, defined to be the smallest
ordinal ˛ such that X is in the class D˛ of [30, Definition 2.2.1]. Then, [31, The-
orem A.7] shows that G.X/ has finite dynamical complexity if and only if X has
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finite decomposition complexity3; moreover, inspection of the proof shows that the
two complexity ranks agree. It follows from this and [30, Theorem 4.1] that for any
n 2 N there are spaces X such that G.X/ is not in Cn, but is in CN for some finite
N > n. Moreover, it follows from [30, discussion below Definition 2.2.1] or the main
result of [15] that there are spaces X such that G.X/ is in C˛ for some infinite ˛, but
not for any finite ˛.

Example A.9 shows that the range of possible values of the complexity rank for
groupoids is quite rich. As we do not know the corresponding fact for C �-algebras,
the following question is natural.

Question A.10. Are there any circumstances when the complexity rank of C �r .G/ is
bounded above by that of G?

It seems very unlikely that there is a positive answer in general, but it is conceiv-
able that there could be a positive answer for coarse groupoids.

Example A.11. Transformation groupoids provide natural examples with finite com-
plexity rank. Using the main result of [2], the complexity rank of the transforma-
tion groupoid associated to any free action of a virtually cyclic group on a finite-
dimensional space is one. We guess that the techniques used in the proof of [18,
Theorem 1.3] should show that for many discrete groups � , any free action on the
Cantor set X gives rise to a groupoid X Ì � with finite dynamical complexity; how-
ever, we did try to look into the details, and would be interested in any progress here.
These ideas lead to the following conjecture.

Conjecture A.12. If � has finite decomposition complexity then X Ì � has finite
dynamical complexity for any free action of � on the Cantor set.

Remark A.13. Proposition A.8 does not give new information on the UCT; this is
because all groupoids with finite dynamical complexity are amenable by [31, The-
orem A.9], whence their groupoid C �-algebras satisfy the UCT by Tu’s theorem [64,
Proposition 10.7]. However, it seems interesting to have an approach to the UCT for a
large class of groupoids that does not factor through the Dirac-dual-Dirac machinery
employed by Tu.

We now turn to the proof of Proposition A.8. For a subgroupoid H of a group-
oid G, write

H 0 WD H [G.0/;

which is also a subgroupoid of G.

3This result was one of the key motivations for the definition of finite dynamical complexity,
and also motivates the terminology.
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Lemma A.14. Let G be a groupoid with compact base space, and let H be a sub-
groupoid in C˛ . Then, H [G.0/ is a subgroupoid of G that is also in C˛ .

Proof. We proceed by transfinite induction on ˛. For the base case ˛ D 0, let H be
a subgroupoid of G in C0, and let K 0 be a compact subset of H 0. As the base space
in an étale groupoid is open, K WD K 0 n G.0/ is also a compact set, and is contained
inH . AsH is in C0, there exists a subgroupoid L ofH that containsK, and that has
compact closure. Hence, L0 is a subgroupoid ofH 0 that containsK 0 and has compact
closure. Thus, H 0 is in C0 too. The inductive step follows the same idea.

The lemma below is very similar to [67, Lemma B.3].

Lemma A.15. Let G be a groupoid with compact base space. Let H be a sub-
groupoid of G that decomposes over some class C of subgroupoids of G. Then, H 0

decomposes over the collection of subgroupoids L0, where L is a subgroupoid of H
that is in C .

Proof. Let X be a finite subset of the unit ball of C �r .H
0/, and " > 0. As Cc.H/C

C.G.0// is dense in C �r .H
0/, perturbing X slightly, we may assume that X is con-

tained in a subset of C �r .H
0/ of the form Cc.K/ C C.G

.0//, where K is an open
and relatively compact subset of H . The proof of [67, Lemma B.3] gives us open
subgroupoids H1 and H2 of H and a positive contraction h in Cc.H

.0/
1 / � C �r .H1/

such that H1, H2 and H1 \ H2 are in the class C , and such that for all x 2 X ,
hx 2 C �r .H1/, .1 � h/x 2 C

�
r .H2/, and .1 � h/hx 2 C �r .H1 \H2/. Then, the data

h, C WD C �r .H
0
1/, D D C

�
r .H

0
2/, and E D C �r .H

0
1 \H

0
2/ give the desired decom-

posability statement.

Proof of Proposition A.8. For part (i), fix a groupoid G. We show by transfinite in-
duction on ˛ that if H is an open subgroupoid of G in the class C˛ , and if

H 0 D H [G.0/;

then C �r .H
0/ is in the class D˛ of Definition 1.3, where we define D˛ relative to

the class of subhomogeneous C �-algebras. Applying this to H D G then gives the
desired conclusion for C �r .G/.

For the base case, we need to show that if H is an open subgroupoid of G in
the class C0 and if H 0 D H [ G.0/, then C �r .H

0/ is locally subhomogeneous. Let a
finite subset X of C �r .H

0/ and " > 0 be given. As Cc.H 0/ is dense in C �r .H
0/, up to

a perturbation, we may assumeX is contained in Cc.K/ for some open and relatively
compact subset K of H 0. Lemma A.14 implies that H 0 is in C0, whence there is an
open subgroupoid L of H 0 with compact closure that contains K, and therefore so
that X is contained in C �r .L/. On the other hand, C �r .L/ is subhomogeneous by the
proof [32, Lemma 8.14], so we are done with the base case.
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Assume now that ˛ > 0 (and is either a successor ordinal or limit ordinal), and let
H be a subgroupoid of G in the class C˛ . According to Lemma A.15, we have that
H 0 decomposes over°

C �r .L
0/ j L an open subgroupoid of H 0 in

[
ˇ<˛

Cˇ

±
which completes the proof of part (i) by inductive hypothesis.

We now look at part (ii), so let G be principal and ample. We will show that if G
is in C0, then C �r .G/ is locally finite dimensional; thanks to our work in part (i), this
will suffice for the proof.

Let then G be an element of C0. We claim that for any compact subset K of G
there is a compact open subgroupoid of H of G that contains K. The claim shows
that C �r .G/ is locally finite-dimensional. Indeed, up to a perturbation we can assume
any finite subset of C �r .G/ is contained in Cc.K/ for some open and relatively com-
pact subset K of G, and so in C �r .H/ for some compact, open subgroupoid of G. It
is well-known that a compact, Hausdorff, étale, principal groupoid with totally dis-
connected base space has a locally finite-dimensional C �-algebra; for example, this
follows directly from the structure theorem for “CEERs” in [25, Lemma 3.4].

To establish the claim, let a compact subset K of G be given. According to the
definition of C0 there exists an open subgroupoid L of G with compact closure such
that K is contained in L. Note first that as L has compact closure, there is some
m 2 N such that L is covered by m open bisections from G. Hence, in particular,
for any x 2 L.0/, we have that the range fibre Lx has at most m elements. Working
entirely inside L, it suffices to prove that if K is a compact subset of a principal,
ample groupoid L such that supx2L.0/ jL

xj D m <1, then there is a compact, open
subgroupoid H of L that contains K.

Now, as L is ample (and étale), each point l 2 K is contained in a compact, open
subset of L. As finitely many of these compact, open subsets cover K, there is a
compact, open subset K 0 of L such that K � K 0. Let H be the subgroupoid of L
generated by K 0. A subgroupoid generated by an open subset is always open (see for
example [32, Lemma 5.2]), so it suffices to prove thatH is compact. Let .hi /i2I be an
arbitrary net consisting of elements fromH . Each hi can be written as a finite product
hi D k

.1/
i � � �k

.ni /
i , with k.j /i in K 00 WD K 0 [ .K 0/�1 [ s.K 0/[ r.K 0/. As each range

fibre fromL has at mostm elements, we may assume that ni �m for allm; in fact we
may assume it is exactly m, as otherwise we can just “pad” it with identity elements.
Write then hi D k

.1/
i � � � k

.m/
i . As K 00 is compact, we may pass to a subnet of I , and

thus assume that each net .k.j /i /i2I has a convergent subnet, converging to some k.j /

in K 00. It follows on passing to this subnet that .hi / converges to k.1/ � � � k.m/. As we
have shown that every net in H has a convergent subnet, H is compact, completing
the proof.


