Chapter 1

Introduction

This is the first in a series of papers where we analyze the projective positive energy
representations of gauge groups.

Our main motivation is the Wigner—Mackey classification [60, 113] of projective
unitary representations of the Poincaré group. Every irreducible such representation
is labeled by an SOT(1,d — 1)-orbit in momentum space R, together with an irre-
ducible unitary representation of the corresponding little group. It is called a positive
energy representation if for every 1-parameter group of timelike translations, the cor-
responding Hamilton operator is bounded from below. This excludes the tachyonic
orbits, leaving the positive mass hyperboloids p,, p* = m?, the positive light cone
pup® =0, po > 0, and the origin p = 0. The corresponding little groups yield an
intrinsic description of spin (for the positive mass hyperboloids) and helicity (for the
positive light cone).

In this series of papers we aim to extend this picture with an infinite-dimensional
group § of gauge transformations, placing internal symmetries and space-time sym-
metries on the same footing.

1.1 Outline of Part I and II of this series

For a gauge theory with structure group K, the fields over the space-time manifold M
are associated to a principal K-bundle & — M. We consider the equivariant setting,
where the group P of space-time symmetries acts by automorphisms on & — M, and
the Lie algebra p of P contains a distinguished cone C C p of “timelike generators”.
For Minkowski space, this is of course the Poincaré group P with the cone C of
timelike translations.

The relevant group § of gauge transformations depends on the context. It always
contains the group

G, =T.(M,Ad(E))

of compactly supported vertical automorphisms of & — M, and it is this group that
we will focus on in Part I of this series. In Part IT we consider also global gauge
transformations. The group § is then larger than 9., but it may be smaller than the
group I'(M, Ad(E)) of all vertical automorphisms due to boundary conditions at
infinity.

A projective unitary representation of & x P assigns to every timelike generator
po € C a one-parameter group of projective unitary transformations, and hence a
selfadjoint Hamiltonian H (p¢) that is well defined up to a constant.
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Our main objective is to study the projective unitary representations of § x P
that are of positive energy, in the sense that the Hamiltonians H(pg) are
bounded from below.

Perhaps surprisingly, this places rather stringent restrictions on the representation
theory of §, leading to a complete classification in favorable cases.

1.1.1 Outline of Part 1

In the first part of this series, we focus on the group §, = I'c (M, Ad(E)) of compactly
supported gauge transformations. Our main result concerns the case where M has no
fixed points for the cone C of timelike generators, and K is a 1-connected, semisimple
Lie group.

Localization theorem. For every projective positive energy representation (p, #)
of the identity component T'c(M, Ad(E))o, there exists a 1-dimensional, P-equiva-
riantly embedded submanifold S € M and a positive energy representation ps of
[ (S, Ad(E)) such that the following diagram commutes,

(M, Ad(E))o —— PU(H)

I'.(S,Ad(E)),
where the vertical arrow denotes restriction to S.

This effectively reduces the classification of projective positive energy represen-
tations to the 1-dimensional case. If M is compact, then

is a finite union of circles. If K is noncompact and simple, then we show that all
positive energy representations are trivial. If K is compact, then the group

k
I(S.Ad(E)) = [ (5. Ad(E))
=1

is a finite product of twisted loop groups, yielding a complete classification in terms
of tensor products of highest weight representations for the corresponding affine Kac—
Moody algebras [32, 54,94, 104].

To some extent these results generalize to the case of noncompact manifolds M,
where S can then have infinitely many connected components. We are able to classify
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the projective positive energy representations under the additional assumption that
they admit a cyclic ground state vector which is unique up to scalar. These vacuum
representations are classified in terms of infinite tensor products of vacuum repre-
sentations of affine Kac—Moody algebras. In particular, every such representation
is of type I. Without the vacuum condition, the classification is considerably more
involved. We study in detail the case where all connected components of .S are circles.
Under a geometric “spectral gap” condition, we reduce the classification of projec-
tive positive energy representations to the representation theory of UHF C *-algebras,
yielding a rich source of representations of type II and III.

1.1.2 Outline of Part I1

In the second part of this series, we consider the case where § contains global as
well as compactly supported gauge transformations. To study the projective positive
energy representations, we use the exact sequence

1>6.—>8§—>9/5 — 1.

By the results from Part I on the positive energy representations of §,, the problem
essentially reduces to the group § /8, of gauge transformations “at infinity”.
Needless to say, the resulting representation theory is very sensitive to the bound-
ary conditions at infinity. We focus on the situation where M is an asymptotically
simple space-time in the sense of Penrose [24,37,91,92], and § consists of gauge
transformations that extend smoothly to the conformal boundary. For the motivating
example of the Poincaré group acting on d -dimensional Minkowski space, we obtain
the following detailed account of the projective positive energy representation theory.

Minkowski space in dimension d > 2. In this setting we show that the projective
positive energy representations of ¥ depend only on the 1-jets of the gauge transfor-
mation at spacelike infinity ¢¢ and at past and future timelike infinity ¢4 . This reduces
the problem to the classification of projective positive energy representations of the
(finite-dimensional!) semidirect product

(sO'(1,d — 1) x K?) x (R? @ (£* ® R?")),

where SO(1,d — 1) acts on R? in the usual fashion, and K acts on its Lie algebra ¥
by the adjoint representation. The three copies of K encode the values of the gauge
transformation at 1o and (4, whereas the three copies of the additive group £ ® R¢*
encode the derivatives.

In the special case where the derivatives act trivially, we recover a projective
positive energy representations of the Poincaré group R4 x SO'(1,d — 1), together
with 3 projective unitary representations of the structure group K. More generally, by
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Mackey’s theorem of imprimitivity, the irreducible projective positive energy repre-
sentations are labeled by an orbit of SOT(1,d — 1) x K3 in R? @ (£3 ® R?*) whose
energy is bounded from below, together with a projective unitary representation of
the corresponding little group. In general these little groups will not contain the three
copies of K, giving rise to phenomena that are reminiscent of spontaneous symmetry
breaking.

Minkowski space in dimension d = 2. In contrast to the higher dimensional case,
the projective positive energy representations in d =2 do not in general factor through
a finite-dimensional Lie group. For simplicity, we consider the group ¥ of gauge
transformations that extend smoothly to the conformal compactification of 2-dimen-
sional Minkowski space. Here the three points ¢ and ¢+ at space- and timelike infinity
are collapsed to a single point 7, and past and future null infinity J~ and J* are
identified along lightlike geodesics (cf. [92]). The boundary of this space is a union of
two circles Si and S}e (corresponding to left and right moving modes) that intersect
transversally in a single point /. We prove that the positive energy representations of
§ depend only on the values of the gauge transformations at null infinity

J=(Sp USRI\ {1},

and on the 2-jets at the single point /.
At the Lie algebra level, the problem therefore reduces to classifying the projec-
tive positive energy representations of the abelian extension

0— || > g — geq = 0.
Here, the equalizer Lie algebra
Geq = {(§.1) € T(S1.ad(E)) x ['(Sk.ad(8)):£(1) = n(1)}

represents the values of the infinitesimal gauge transformations on the conformal
boundary Si u S}Q, the abelian Lie algebra |£| with underlying vector space { rep-
resents the mixed second derivatives at /, and geq acts on [f| by evaluating at / and
composing with the adjoint representation.

Even in the untwisted case, where E is the trivial K-bundle, the classification of
the projective positive energy representations is by no means trivial. This is because
the positive energy condition is not with respect to rigid rotations of Si /R? but with
respect to the translations of the real projective line

Si/r =RU{I)

fixing the point / at infinity.
Under the restrictive additional condition that the projective unitary representa-
tions are of positive energy with respect to rotations as well as translations, we obtain
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a classification in terms of highest weight representations of the two untwisted affine
Kac—Moody algebras corresponding to S}d and S}e’ together with a projective positive
energy representation of the finite-dimensional Lie group of 2-jets of gauge transfor-
mations at /.

Although the Kac—-Moody representations are familiar from the construction of
loop group nets in conformal field theory, the positive energy representations involv-
ing 2-jets (which are Poincaré invariant but not conformally invariant) appear to be a
novel feature.

1.2 Structure of the present memoir

For a closed quantum system that is described by a Hilbert space #, any two states
that differ by a global phase are physically indistinguishable. The state space of the
system is therefore described by the projective Hilbert space P(F). By Wigner’s
theorem, a connected Lie group G acts on the projective Hilbert space P(#) by
projective unitary transformations, resulting in a projective unitary representation
0:G — PU(H).

1.2.1 Positive energy representations

Since we are interested in the group of compactly supported gauge transformations,
we need to work with infinite-dimensional Lie groups modeled on locally convex
spaces, or locally convex Lie groups for short. In Chapter 2 we recall and extend
some recent results from [52,76] that allow us to go back and forth between smooth
projective unitary representations of a locally convex Lie group G, smooth unitary
representations of a central Lie group extension G*, and the derived representations
of its Lie algebra g*.

In Chapter 3 we introduce projective positive energy representations in the con-
text of a Lie group P that acts smoothly on G by automorphisms. For a distinguished
positive energy cone € C p, we require that the spectrum of the corresponding selfad-
joint operators in the derived representation is bounded from below. Since a represen-
tation is of positive energy for the cone C if and only if it is of positive energy for the
1-parameter subgroups generated by € C p, we can always reduce to the case P = R,
where the non-negative spectrum condition pertains to a single Hamilton operator H .
Using the Borchers—Arveson theorem, we further reduce the classification to the min-
imal representations, where H > 0 is the smallest possible Hamilton operator with
non-negative spectrum.

In Chapter 4 we then turn to our subject proper, namely the locally convex Lie
group §. of compactly supported gauge transformations. We consider the setting
where M is a manifold, P is a Lie group acting smoothly on M, and KX — M is
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a bundle of 1-connected semisimple Lie groups that is equipped with a lift of this
action. The group §, = I'c(M, K) of compactly supported sections then carries a
smooth action of P by automorphisms, and we consider the smooth projective uni-
tary representations of the semidirect product I'c (M, K) x P.

The motivating example is of course the case where K = Ad(E) is the adjoint
bundle of a principal fiber bundle 2 — M, and I'. (M, Ad(E)) is the group of vertical
automorphisms of E that are trivial outside a compact subset of M. The reason for
the minor generalization to bundles of Lie groups is purely technical; the reduction to
simple structure groups in Section 4.2 is somewhat easier in that setting.

1.2.2 The localization theorem

The main result in the present memoir is the following localization result (a minor
generalization of the one in Section 1.1.1), which essentially reduces the classification
of projective positive energy representations to the 1-dimensional case.

Localization theorem (Theorem 7.19). Let (p, #) be a projective positive energy
representation of I'c(M, K) X P. If the cone C has no fixed points in M, then there
exists a 1-dimensional, P -equivariantly embedded submanifold S C M such that on
the connected component T'.(M, K)o, the projective representation p factors through
the restriction homomorphism rs: Te(M, K)o — T'c(S, K).

We sketch the proof in the special case that the structure group K of KX is a
compact simple Lie group. The result for (not necessarily compact) semisimple Lie
groups is reduced to the simple case in Section 4.2, and to the compact simple case in
Section 6.1. We require K to be 1-connected, but this is by no means essential; results
beyond 1-connected groups are discussed in Sections 7.1 and 8.3.

Further, we will assume without loss of generality that P is the additive group
R of real numbers. The corresponding flow is then given by a non-vanishing vector
field vy on M, which lifts to a vector field v on K. We denote the corresponding
derivation of the gauge algebra by D& := L,&. The reduction from P to R is carried
out in Section 7.5 by considering the 1-parameter subgroups of P that are generated
by elements of the positive energy cone C C p.

Step 1. Let & — M be the bundle of Lie algebras derived from X — M. Then,
every smooth projective unitary representation of I'.(M, K) x R gives rise to an
R-invariant 2-cocycle @ on the compactly supported gauge algebra [ (M, K). In
Section 4.3 we show that every such cocycle is cohomologous to one of the form

w(§.n) = Alk(§.dvn)) for§.neTe (M K), (1.1)

where V is a Lie connection on & — M, « is a positive definite invariant bilinear form
on the Lie algebra ¥ of K, and A: Q1(M) — R is a closed current that is invariant
under the flow.
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Step 2. The positive energy condition for (p, #) gives rise to a Cauchy—-Schwarz
inequality for the derived Lie algebra representation dp. In Section 3.4 we show that
if £, D] = 0 and w(§, D) = 0, then

(Y, idp(DE)Y)? < 2w(E, DE) (Y, HY) (1.2)

for every smooth unit vector 1. Moreover, w(&, D) is non-negative. In Chapter 5
this is used to show that the closed current A from (1.1) takes the form

M) = /M (g @) (X))

for a flow-invariant regular Borel measure ;& on M. In terms of this measure, the
Cauchy—Schwarz inequality (1.2) becomes

(V. idp(LyvE)Y)* < 2y, Hy) || LyE|7. (1.3)

In other words, if £ is in the image of the derivation
D =Ly,

then the expectation value of the unbounded operator idp(§) is controlled in terms
of the energy (v, Hv), and the L?-norm of £ with respect to the measure j. In fact,
a small but important refinement allows one to control the expectation of idp(€) in
terms of similar data if £ is not in the image of the derivation.

Step 3. In Chapter 6 we use the Cauchy—Schwarz estimate (1.3) and its refinement
to show that

+idp(§) < Il + €Nl H (1.4)

as unbounded operators. The measure v is absolutely continuous with respect to p,
with a density that is upper semi-continuous and invariant under the flow. From a
technical point of view, this is the heart of the proof. It allows us to extend dp to
a positive energy representation of the Banach-Lie algebra H32 (M, X) of sections
that are twice differentiable in the direction of the flow, but only v-measurable in the
direction perpendicular to the flow.

Step 4. The final steps of the proof are carried out in Chapter 7. Every point in M
admits a flow box Uy x I >~ U C M, where the flow fixes all points in Uy and acts
by translation on the interval / € R for small times. Accordingly, the flow-invariant
measure on U decomposes as

n= o ®dt.

Since the sections in H az(U, K)C H 32 (M, K) need only be measurable in the direc-
tion perpendicular to the flow, we can continuously embed C>°(1, ¥) as a Lie subal-
gebra of H az(U , &) by multiplying with an indicator function y g for a Borel subset
E C U, of finite measure. This yields a projective unitary representation of C (1, ¥)
with central charge 27 1o (E).
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Step 5. Since the dense space of analytic vectors for H is analytic for the extension
ofdpto H 32 (M, X), the projective unitary representation of C2° ([, f) extends to the
1-connected Lie group G that integrates C2°(/, ¥). This gives rise to a smooth central
T-extension G¥ — G. For every smooth map 0: S? — G, the pullback 0*G* — S?
is a principal circle bundle, and integrality of the corresponding Chern class implies
that 2w wo(E) € Ny. Since this holds for every Borel set, we conclude that wg is a
locally finite sum of point measures, and hence that u = po ® dt is concentrated on a
closed embedded submanifold Sy € U of dimension 1. Since the argument is local,
the measure u is concentrated on a closed, embedded, 1-dimensional submanifold
S € M. Using (1.4), one shows that dp vanishes on the ideal of sections that vanish
u-almost everywhere. This proves the theorem at the Lie algebra level. The result at
the group level follows because I (S, K) is 1-connected.

1.2.3 Classification of positive energy representations

For manifolds with a fixed point free R-action, the Localization theorem effectively
reduces the projective positive energy representation theory to the 1-dimensional
setting.

Compact manifolds. For compact manifolds M, we show in Chapter 8 that the
localization theorem leads to a full classification. Indeed, since

k
s=Js;
j=1

is a finite union of periodic orbits .S;, the group I'(S, X) is a finite product of twisted
loop groups I' (S}, K). The projective positive energy representations of twisted loop
groups are classified in Section 8.1, using the rich structure and representation theory
of affine Kac—Moody Lie algebras [54], combined with the method of holomorphic
induction for Fréchet-Lie groups developed in [77,79].

This leads to a full classification of projective positive energy representations of
'(M, X), which is detailed in Section 8.2. Up to unitary equivalence, every irre-
ducible projective positive energy representation is determined by the following data.

* Finitely many periodic R-orbits §; € M, each equipped with a central charge
Cj € N.

» For every pair (S}, ¢;), an anti-dominant integral weight A; of the corresponding
affine Kac-Moody algebra with central charge ¢; € N.

Moreover, every projective positive energy representation is a direct sum of irre-

ducible ones.

Noncompact manifolds. For noncompact manifolds M, the situation is somewhat
more intricate. Here S is a union of countably many R-orbits S;, each of which
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is diffeomorphic to either R or S!. These two cases are considered separately in
Chapter 9.

In Section 9.1 we consider the case where S consists of countably many lines.
Since the bundle X trivializes over every line, the gauge group I'.(S, K) is a weak
direct product of countably many copies of C>°(R, K). In order to arrive at a (partial)
classification, we impose the additional condition that the projective positive energy
representation admit a cyclic ground state vector €2 € J that is unique up to a scalar.
In Theorem 9.11 we show that these vacuum representations are classified up to uni-
tary equivalence by a non-zero central charge ¢; € N for every connected component
S; >~ R. The proof proceeds by reducing to the (important) special case M = R,
where the classification is essentially due to Tanimoto [102].

In Section 9.2 we consider the case where S consists of infinitely many circles.
Here we impose the much less restrictive condition that J is a ground state repre-
sentation. This means that # is generated under . (S, ) by the space of ground
states, but we do not require these ground states to be unique. We show that under
an (essentially geometric) spectral gap condition, every positive energy representa-
tion is automatically a ground state representation. Since I'; (S, K') admits projective
positive energy representations of Type II and III, it is necessary to consider factor
representations instead of irreducible ones. If all orbits in M are periodic, we show
that the minimal, factorial ground state representations of I'. (M, X') are classified up
to unitary equivalence by 3 pieces of data. The first two are the same as in the case of
compact manifolds.

* Countably many periodic orbits §; € M, equipped with a central charge ¢; € N.

» For every pair (S}, ¢;) an anti-dominant integral weight A; of the corresponding
affine Kac-Moody algebra with central charge c;.

The integral weight A; gives rise to a unitary lowest weight representation J, ; of the
corresponding affine Kac—Moody algebra. Using the ground state projections P;, we
consider the collection of finite tensor products of the compact operators K(Jy ;) as
a directed system of C *-algebras. Its direct limit

B =) K(H),)
J

has a distinguished ground state projection
P =) P;.
i

The third datum needed to characterize a minimal factorial ground state representa-
tion is the following.

* A factorial representation of B that is generated by fixed points of the projec-
tion Puo.
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Since PooB Py is a UHF C *-algebra, this provides a rich supply of representations
of type II and III, in marked contrast with the compact case.

1.3 Connection to the existing literature

Abelian structure groups. If the structure Lie algebra ¥ is merely assumed to be
reductive, then it decomposes as a direct sum ¥ = 3 @ ¥’, where 3 is abelian and the
commutator algebra f is semisimple. Since this decomposition is invariant under all
automorphism, we obtain a corresponding decomposition on the level of Lie algebra
bundles & =~ 3 & K'. Accordingly, the Lie algebra g = T'.(M, &) decomposes as
a direct sum g = 3 ® ¢’ and this decomposition is orthogonal with respect to any
2-cocycle because g’ is perfect. Therefore, the classification of the positive energy
representations basically reduces to the cases where £ is semisimple and where ¥ is
abelian. We refer to Solecki’s paper [100] for some interesting results concerning
groups of maps with values in the circle group, and to [98] for related results pertain-
ing to defects in conformal field theory. G. Segal’s paper [97] contains a number of
interesting results on projective positive energy representations of loop groups with
values in a torus.

Integrating representations of infinite-dimensional Lie groups. The technique to
integrate representations of infinite-dimensional Lie algebras to groups by first verify-
ing suitable estimates has already been used by R. Goodman and N. Wallach in [32]
to construct the irreducible unitary positive energy representations of loop groups
and diffeomorphism groups. Their technique has later been refined by V. Toledano—
Laredo [104] to larger classes of infinite-dimensional Lie algebras. Related results on
integrating Lie algebra representations can be found in [52].

Non-commutative distributions. In [3] an irreducible unitary representation of §, =
I'.(M, Ad(E)) is called a non-commutative distribution. In view of the Borchers—
Arveson theorem [13], an irreducible projective positive energy representation of
G, Xy R remains irreducible when restricted to §.. In this sense we contribute to
the program outlined in [3] by classifying those non-commutative distributions for
M compact and K compact semisimple for which extensions to positive energy rep-
resentations exist.

Tensor product representations. For any, not necessary compact, Lie group K, the
group C(X, K) has unitary representations obtained as finite tensor products of evalu-
ation representations. However, for some noncompact groups, such as K = SU 1.2(C),
one even has “continuous” tensor product representations which are irreducible and
extend to groups of measurable maps (cf. [101] for finite-dimensional target groups,
[48], [9], [15], [16], [21], [23,108], [14, 107] for semisimple target groups, [35] for a
general discussion and classification results for locally compact target groups, [6] for
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classification results for compact and nilpotent target groups, and [88] for an example
where the target group U(o0) is infinite-dimensional). In the algebraic context, these
representations also appear in [47] which contains a classification of various types
of unitary representations generalizing highest weight representations. All these rep-
resentations are most naturally defined on groups of measurable maps, so that they
neither require a topology nor a smooth structure on X .

Derivative and energy representations. One of the first references concerning uni-
tary representations of groups of smooth maps such as C*°(R, SU(2, C)) is [22],
where the authors introduce the concept of a derivative representation which depends
only on the derivatives up to some order N in some point #y € R. These ideas can be
combined with continuous tensor product representations to obtain factorizable rep-
resentations that do not extend to groups of measurable maps [89], [90]. Further, there
exist factorial representations of mapping groups defined most naturally on groups of
Sobolev H 1-maps, the so-called energy representations (cf. [45,46], [2], [109], [3],
(4], [991, [5], [1D).

Central extensions. The problem of classifying all smooth projective irreducible
unitary representations of gauge groups is still wide open. Our treatment in Chapter 5
of the present memoir, as well as our earlier work on bounded representations [51],
suggests that a classification of the central extensions of gauge algebras can be a
key step towards this goal. The second Lie algebra homology of sl, () for a uni-
tal ring # is due to Bloch [10] and Kassel-Loday [56], and the full homology ring
of gl(+4) was characterized in terms of the cyclic homology of 4 by Tsygan and
Loday—Quillen [57,58, 106]. Some of these arguments were adapted to C°°(M, ¥)
with semisimple ¥ by Pressley—Segal [94, Section 4.2], and to 4 ® ¥ for general Lie
algebras ¥ by [36,82,115] in the setting where #4 is commutative. For non-trivial Lie
algebra bundles, the universal central extension of the gauge algebra was obtained
in [53] from the compactly supported trivial case [61] using a localization trick.

The case where M is a torus. In [105] (see also [3, Section 5.4]) Torresani studies
projective unitary “highest weight representations” of C®°(T¥¢, £), where ¥ is com-
pact simple. Besides the finite tensor products of so-called evaluation representations
(elementary representations) he finds finite tensor products of evaluation representa-
tions of C®(T¥,£) = C®(T9~!,C®(T,¥)), where the representations of the target
algebra C°°(T, £) are projective highest weight representations (semi-elementary
representations). Our results in Chapter 8 reduce to this picture in the special case
of a circle action on a torus.

Norm continuous representations. In a previous paper [50], we considered the
related problem of classifying norm continuous unitary representations of the con-
nected groups I'. (M, K)o. In this case the problem also reduces to the case where ¥
is compact semisimple and the representations are linear rather than projective. For
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every irreducible representation p, there exists an embedded 0-dimensional subman-
ifold §, i.e., a locally finite subset, S € M such that p factors through the restriction
map [ (M, K) — Te(S, &) = £ If M is compact, it follows that p is a finite tensor
product of irreducible representations obtained by composing an irreducible represen-
tation of ¥ with the evaluation in a point s € S. In particular, it is finite-dimensional.
If M is noncompact, then the bounded representation theory of the LF-Lie algebra
(M, K) is “wild” in the sense that there exist bounded factor representations of
type II and III. The main result in [50] is a complete reduction of the classification of
bounded irreducible representations to the classification of irreducible representations
of UHF C *-algebras.

Type III representations from noncompact orbits. For noncompact M, a different
source of representations comes from the group C°(R, K) corresponding to a single
noncompact connected component of S. Here representations of Type III; were con-
structed in [19, 112]. Other results in this context have recently been obtained in [17],
where solitonic representations of conformal nets on the circle are constructed from
non-smooth diffeomorphisms. These in turn provide positive energy representations
of CX(R, K) = CX(T \ {—1}, K) which do not extend to loop group representa-
tions [17, Theorem 3.4, Section 4.2]. In particular, irreducible representations of this
type are obtained.



