
Chapter 3

Positive energy representations

In this chapter we introduce positive energy representations and some tools to handle
them. In Section 3.1 we give the precise definition on both the linear and the projective
level, and in Section 3.2 we define equivariant positive energy representations. In
Section 3.3, we use the Borchers–Arveson theorem to reduce the classification of
positive energy representations to the so-called minimal ones. Finally, in Section 3.4
we describe the key tool of this memoir in a first general form: the Cauchy–Schwarz
estimates for projective positive energy representations. Here we will discuss them for
general groups, but they will be refined in the context of gauge algebras in Section 5.3
below.

3.1 Positive energy representations

Let G be a locally convex Lie group with Lie algebra g and let ˛WR! Aut.G/ be
a homomorphism defining a smooth R-action on G. Then, it also induces a smooth
action ˛g on g and we write D 2 der.g/ for its infinitesimal generator

Dx WD
d

dt

ˇ̌̌̌
tD0

˛
g
t .x/ for x 2 g:

In this section, we investigate smooth projective unitary representations of G that
extend to projective positive energy representations of G Ì˛ R.

Definition 3.1 (Projective positive energy representations). A smooth, projective,
unitary representation N�WG Ì˛ R ! PU.H / is called a positive energy represen-
tation if one (hence any) strongly continuous homomorphic lift U WR ! U.H / of
xU WR! PU.H /; t 7! N�.1; t / has a generator

H WD i
d

dt

ˇ̌̌̌
tD0

Ut

whose spectrum is bounded below. We then callH a Hamiltonian and note that Ut D
e�itH holds in the sense of functional calculus.

Remark 3.2. By adding a constant, we can always choose a Hamiltonian H that
satisfies Spec.H/ � Œ0;1/.

We have seen in Section 2.5 that every smooth projective unitary representation
N� of G Ì˛ R gives rise to a smooth linear representation .�;H / of a locally convex
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Lie group yG D .G Ì˛ R/], a central T -extension of G Ì˛ R with Lie algebra

yg D R˚! .g ÌD R/ D RC ˚! .g ÌRD/

as in (2.2).

Definition 3.3 (Linear positive energy representations). Let �W yG ! U.H / be a
smooth unitary representation of yG. Then, � gives rise to a derived representation
d� of yg on the space H1 of smooth vectors. We call

H WD id�.D/

the Hamiltonian and we say that � is a positive energy representation if

d�.C / D i1 and if Spec.H/ � Œ0;1/:

Remark 3.4. (a) If d�.C / D i1 and Spec.H/ � ŒE0;1/ is bounded below, we can
always replace D by D C E0C to obtain a positive Hamiltonian. Note that this does
not change the cocycle! on gÌD R, only the isomorphism between yg and .gÌD R/].

(b) For a cocycle ! on g ÌD R, the relation

!.D; Œ�; ��/ D !.D�; �/C !.�;D�/

shows that the linear functional iD! measures the non-invariance of the restriction of
! to g � g under the derivation D. It also shows that if the Lie algebra g is perfect,
then the linear functional iD!Wg! R is completely determined by the restriction of
! to g � g.

3.2 Equivariant positive energy representations

We will also need an equivariant version of positive energy representations. Let P be
a Lie group with Lie algebra p and let ˛WP ! Aut.G/ be a homomorphism defining
a smooth P -action on G.

Definition 3.5 (Equivariant projective positive energy representations). A smooth,
projective, unitary representation N�WG Ì˛ P ! PU.H / is called a positive energy
representation with respect to p 2 p if the projective representation

N�pWG Ì˛ıexpp R! PU.H /

defined by
N�p.g; t/ WD N�.g; exp.pt//

is of positive energy in the sense of Definition 3.1. The positive energy cone C � p is
the set of all elements p 2 p for which N� is a positive energy representation.
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Note that C is an AdP -invariant cone. In particular, the representation N� is of
positive energy with respect to p 2 p if and only if it is of positive energy for all
elements in the cone generated by the adjoint orbit AdP .p/ � p of p.

The homomorphism ˛WP ! Aut.G/ can be twisted by an inner automorphism
Adg0 , g0 2 G, yielding

˛0 D Adg0˛Ad�1g0 :

Essentially, these inner twists do not affect the class of equivariant projective positive
energy representations.

Proposition 3.6. Let . N�;H / be an equivariant projective positive energy representa-
tion of G Ì˛ P , and let

xU0 WD N�.g0/:

Then
N�0.g; p/ WD xU0 N�.Ad�1g0 .g/; p/

xU�10

is an equivariant projective positive energy representation of G Ì˛0 P with the same
restriction to G, and with the same positive energy cone C � p.

Proof. To see that N�0 is a projective representation of G Ì˛0 P , one checks that the
following is a commutative diagram of group homomorphisms:

G Ì˛ P
N�
//

.Adg0 ;IdP /

��

PU.H /

AdU0
��

G Ì˛0 P
N�0
// PU.H /:

For the positive energy condition, note that any lift t 7! Vt of t 7! N�.exp.tp// yields
a lift t 7! U0VtU

�1
0 of t 7! N�0.exp.tp// whose generator has the same spectrum.

3.3 Minimal representations

The following refinement of the Borchers–Arveson theorem [13] will be used in the
proof of Corollary 3.9 below.

Theorem 3.7. Let H be a Hilbert space and let M � B.H / be a von Neumann
algebra. Further, let .Ut /t2R be a strongly continuous unitary one-parameter group
on H for which M is invariant under conjugation with the operators Ut , so that we
obtain a one-parameter group ˛WR! Aut.M/ by

˛t .M/ WD Ad.Ut /M WD UtMU �t for M 2M:
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If Ut D e�itH with H � 0, then the following assertions hold:

(i) there exists a strongly continuous unitary one-parameter group .Vt /t2R in
M with

Ad.Vt / D ˛t and Vt D e
�itH0

withH0 � 0. It is uniquely determined by the requirement that it is minimal
in the sense that, for any other one-parameter group .V 0t /t2R with these
properties, the central one-parameter group V 0t V�t D e

�itZ in M satisfies
Z � 0,

(ii) if VT D 1 for some T > 0 and F � H is an M-invariant subspace, then
the subspace

F0 WD
®
� 2 F W H0� D 0

¯
is M-generating in F ,

(iii) if ˛T D idM for some T > 0, then VT D 1.

Proof. (i) This is the Borchers–Arveson theorem (see [11, Theorem II.4.6]; also [13,
Theorem 3.2.46] and [8] for a detailed discussion).

(ii) If VT D 1, then Spec.H0/ � 2�
T

Z. In particular, H0 is diagonalizable. If F0
is not M-generating in F , then

E WD .MF0/
?
\ F

is a non-zero M-invariant subspace of F with

inf Spec.H0jE/ �
2�

T
:

As
H0 WD kerH0 � E?;

we also have MH0 � E?. Since MH0 is invariant under M and M0, the orthogonal
projection Z onto

H1 WD .MH0/
?

is central in M. On this subspace we have inf Spec.H0jH1/ �
2�
T

, so that

H WD H0 �Z
2�

T
� 0;

contradicting minimality.
(iii) If ˛T D idM, then VT is contained in the center Z.M/ DM \M0 of M. As

Z.M/ is a direct sum of L1-algebras, there exists a non-negative Z � 0 in Z.M/

with Spec.Z/ � Œ0; 2�
T
� and VT D eiTZ . Now

V 0t WD e
�it.H0CZ/ D Vte

�itZ
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also has a non-negative generator H1 WD H0 CZ and satisfies V 0T D 1. In particular,

Spec.H1/ �
2�

T
Z:

We claim that the minimality of V implies that, for every "> 0, the central support
of the spectral projection P WD PH0 Œ0; "� of H0 in M equals 1. To see this, note that
the central support Q of P is the orthogonal projection onto the closed subspace
generated by MPH . If this subspace is proper, then the restriction H1 of H0 to
H1 WD .1 �Q/H satisfies H1 � "1, so that

H 0 WD H0 � ".1 �Q/ � 0:

The minimality of H0 now yields 1 D Q.
We now show that Spec.Z/ � ¹0; 2�

T
º, which implies that

VT D V
0
T e
�iTZ

D V 0T D 1:

Assume that this is not the case. Then, there exists a non-zero spectral value 0<a< 2�
T

of Z. Let " > 0 be such that 0 < a � 2" < a C 2" < 2�
T

and consider the spectral
projection Q WD PZ.Œa � "; a C "�/ for Z, which is contained in Z.M/. Since the
central support of PH0 Œ0; "� is 1, we have QPH0.Œ0; "�/ 6D 0, so that

Spec.QH0/ \ Œ0; "� ¤ ;:

Since Spec.QZ/ � Œa � "; aC "�, this leads to

Spec..H0 CZ/Q/ \ Œa � "; aC 2"� 6D ;:

This contradicts

Spec..H0 CZ/Q/ D Spec.H1Q/ � Spec.H1/ �
2�

T
Z:

Using the Borchers–Arveson theorem, every smooth positive energy representa-
tion .�;H / can be brought in the following standard form.

Definition 3.8 (Minimal representations). A positive energy representation .�;H /

of yG is called minimal if the 1-parameter group Ut D �.exp.tD// is minimal with
respect to the von Neumann algebra �. yG/00.

Corollary 3.9. Let .�;H / be a positive energy representation of yG and let G] � yG
be the inverse image of the subgroup G of G Ì˛ R, so that yG Š G] ÌR. Then, there
exists a unitary 1-parameter group .Wt /t2R in the commutant �. yG/0 such that the
representation �0.g; t/ WD �.g; t/W �1t has the following properties:

(i) �0. yG/
00 D �.G]/00,
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(ii) if � is irreducible, then so is �jG] ,

(iii) if ˛T D idG , then �0.1; T / D 1 and, for every closed �. yG/-invariant sub-
space F � H , the subspace F0 WD ¹� 2 F W H0� D 0º is yG-generating
in F ,

(iv) �0 is a smooth positive energy representation.

Proof. (i) Theorem 3.7 implies that Ut WD �.exp tD/ can be written as Ut D VtWt ,
where .Vt /t2R is a continuous unitary one-parameter group in the von Neumann alge-
bra M WD �.G]/00 and Wt 2 �.G]/0.

(ii) If � is irreducible, then Schur’s Lemma implies that Wt 2 T1, hence that the
restriction �jG] remains irreducible.

(iii) follows from Theorem 3.7 (iii) and (ii).
(iv) As Vt D �0.1; t / has a positive generator, �0 also is a positive energy repre-

sentation. It remains to see that �0 is smooth. Since .Wt /t2R lies in the commutant
�. yG/0, all its spectral subspaces are invariant under yG. Therefore, � is a direct sum
of subrepresentations for which W is norm continuous. We may therefore assume,
without loss of generality, that W is norm continuous. Then, we can consider W as
a smooth representation of yG and therefore �0.g; t/ D �.g; t/W�t is a smooth repre-
sentation of yG.

In view of the factorization �.g; t/ D �0.g; t/Wt , we can adopt the point of view
that we know all positive energy representations if we know the minimal ones. On
the level of the irreducible representations, the only difference is a phase factor cor-
responding to the minimal energy level. In general, the ambiguity consists in unitary
one-parameter groups of the commutant, and these can be classified in terms of spec-
tral measures.

3.4 Cauchy–Schwarz estimates (general case)

We show that the requirement that a representation be of positive energy severely
restricts the class of cocycles that may occur.

Let � be a positive energy representation of yG. For a smooth unit vector  2H1

the expectation values

hH i WD h ;H i and hid�.�/i WD h ; id�.�/ i

of H and � 2 g are defined. The following is a non-commutative adaptation of [85,
Theorem 2.8].

Lemma 3.10 (Cauchy–Schwarz estimate). Let � be a positive energy representation
of yG, and let � 2 g be such that Œ�; D�� D 0. Then, for every unit vector  2 H1,
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we have �
hid�.D�/i C !.�;D/

�2
� 2!.�;D�/hH i ;

and further !.�;D�/ � 0.

Proof. Since H D id�.D/ has non-negative spectrum, the expectation value of the
energy in the state defined by exp.td�.�// is non-negative for all t 2 R;

0 � hH iexp.td�.�// D he
�t add�.�/H i : (3.1)

Since Œ�;D�� D 0, the exponential series terminates at order 2,

exp.�t add�.�//.H/ D id�.e�t ad�D/

D id�
�
D C tD� � t!.�;D/C �

t2

2
!.�;D�/C

�
D H C t

�
id�.D�/C !.�;D/

�
C
t2

2
!.�;D�/; (3.2)

so that substitution in (3.1) yields the inequality

0 � hH i C t
�
hid�.D�/i C !.�;D/

�
C
t2

2
!.�;D�/ for t 2 R:

The proposition now follows from the simple observation that at2 C bt C c � 0 for
all t 2 R is equivalent to 0 � a; c and b2 � 4ac.

The Cauchy–Schwarz estimate will play an important role in the rest of the mem-
oir. We will use it mainly in situations where !.D;g/D ¹0º, so that the bilinear form
.�; �/ 7! !.�;D�/ is symmetric. This is the case for gauge algebras (cf. Remark 5.8),
but also more generally for locally convex Lie algebras with an admissible derivation
in the sense of [52, Definition 9.1, Proposition 9.10].

In Chapter 5 we use Lemma 3.10 to show that .�; �/ 7! !.�; D�/ is a positive
semidefinite form on the gauge algebra g, and that every cocycle coming from a
positive energy representation can be represented by a measure (Theorem 5.7). In
Chapter 6, we make extensive use of the bound on the expectation value hid�.D�/i 
in terms of the average energy hH i afforded by Lemma 3.10. In fact, we shall need
such bounds also for Lie algebra elements which are not in the image of D. The
following refinement of the Cauchy–Schwarz estimate was designed for this purpose.

We start out with a proposition on Lie algebras which are Mackey complete, in
the sense that every smooth curve �W Œ0; 1�! g has a weak integral

R 1
0
�.t/dt in g.

For a Mackey complete Lie algebra g, the operatorZ 1

0

es adyds

on g is denoted eady�1
ady

.
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Proposition 3.11. Let yg D R˚! g be a central extension of a Mackey complete Lie
algebra g of the Lie group G with exponential function exp. Then, the adjoint action
Adyg of G on yg satisfies

Adygexpy.z; x/ D

�
z C !

�
y;
eady � 1

ady
.x/

�
; eadyx

�
:

Proof. This is verified by solving the ODE

 0.t/ D Œ.0; y/; .t/� with .0/ D .z; x/:

Writing .t/ D .˛.t/; et ady .x//, it leads to ˛0.t/ D !.y; et adyx/.

Lemma 3.12 (Refined Cauchy–Schwarz estimate). Let g be a Mackey complete Lie
algebra, and let � be a positive energy representation of yG. Let �; � 2 g be such that
Œ�;D�� D 0 and Œ�;D�� D 0. Then, for all s 2 R, we have�˝

id�.e�s ad�D�/
˛
 
C !.�;D/C !

�
e�s ad� � 1

ad�
.D�/; �

��2
� 2!.�;D�/

�
hH i C s.hid�.D�/i C !.�;D//C

s2

2
!.�;D�/

�
:

In particular, if !.�;D/ D 0, !.�;D/ D 0 and !.adnd�.�/.D�/; �/ D 0 for all n � 0,
then ˝

id�
�
e�s ad�D�

�˛2
 
� 2!.�;D�/

�
hH i C shid�.D�/i C

s2

2
!.�;D�/

�
:

Proof. We write Ws;t WD exp.td�.�// exp.sd�.�//, and exploit the fact that the oper-
ator Hs;t WD W �s;tHWs;t has non-negative spectrum. Repeated use of (3.2) on

Hs;t D exp.�s add�.�//
�

exp.�t add�.�//H
�

yields
Hs;t D A0.s/C A1.s/t C A2t

2

with

A0.s/ D H C s.id�.D�/C !.�;D/1/C
s2

2
!.�;D�/1;

A1.s/ D !.�;D/1C exp.�s add�.�//.id�.D�//;

A2 D
1

2
!.�;D�/1:

With the preceding proposition, we obtain for exp.�s add�.�//.id�.D�// the expres-
sion

id�.e�s ad�D�/C !

�
e�s ad� � 1

ad�
.D�/; �

�
1;
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and thus

A1.s/ D !.�;D/1C id�
�
e�s ad�.D�/

�
C !

�
e�s ad� � 1

ad�
.D�/; �

�
1:

Consider the expectation value hHs;t i � 0. Setting

˛0.s/ WD hA0.s/i ; ˛1.s/ WD hA1.s/i and ˛2 WD hA2i ;

we observe that
hHs;t i D ˛0.s/C ˛1.s/t C ˛2t

2

is a non-negative polynomial in t of degree at most 2. From this, we obtain the
inequality ˛1.s/2 � 4˛2˛0.s/. This is the first inequality mentioned above, the second
one is a direct consequence.


