Chapter 4

Covariant extensions of gauge algebras

The results in the preceding chapter concerned the general level of Lie groups of the
form G x, R. Now we turn to the specifics of gauge groups. After introducing gauge
groups and their Lie algebras in Section 4.1, we describe in Section 4.2 a procedure
that provides a reduction from semisimple to simple structure Lie algebras, at the
expense of replacing M by a finite covering manifold M. In Section 4.3, we recall
the classification [51] of 2-cocycles for the extended gauge algebra g xp R.

4.1 Gauge groups and gauge algebras

Let X — M be a smooth bundle of Lie groups, and let & — M be the corresponding
Lie algebra bundle with fibers

Ky = Lie(Ky).

If M is connected, then the fibers K, of K — M are all isomorphic to a fixed
structure group K, and the fibers &, of K are isomorphic to its Lie algebra

£ = Lie(K).

Definition 4.1 (Gauge group). The gauge group is the group I'(M, K) of smooth
sections of K — M , and the compactly supported gauge group is the group I'c. (M, K)
of smooth compactly supported sections.

Definition 4.2 (Gauge algebra). We define the gauge algebra as the Fréchet-Lie
algebra I'(M, &) of smooth sections of & — M, equipped with the pointwise Lie
bracket. The compactly supported gauge algebra T'.(M, K) is the LF-Lie algebra of
smooth compactly supported sections.

The compactly supported gauge group I'. (M, K) is a locally convex Lie group,
whose Lie algebra is the compactly supported gauge algebra I'. (M, &). It is locally
exponential, with exp: I'c(M, &) — I'.(M, K) given by pointwise exponentiation
[51, Proposition 2.3].

Definition 4.3. In the following we write T (M, K)o for the simply connected cov-
ering group of the identity component . (M, K)o and

gr:Te(M, K)o — Te(M, K)o

for the covering map. Then, [.(M, KX)o has the same Lie algebra ['. (M, &) as the
gauge group . (M, K), and its exponential function Exp satisfies gr o Exp = exp.
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4.1.1 Gauge groups from principal fiber bundles

The motivating example of a gauge group is of course the group Gau(E) of vertical
automorphisms of a principal K-bundle 7: & — M.

~

Definition 4.4. A vertical automorphism of a principal fiber bundle 7: E — M is a

K-equivariant diffeomorphism «: E — & such that 7 o « = 7. The group Gau(E)
of vertical automorphisms is called the gauge group of E.

In order to interpret Gau(E) as a gauge group in the sense of Definition 4.1, define
the bundle of groups Ad(E) — M with typical fiber K by

Ad(E) := Ex K/ ~,

where the relation ~ is given by (pk,h) ~ (p,khk™1) for p € E and k,h € K. We
obtain an isomorphism
Gau(E) ~ I'(M, Ad(E))

by mapping the section o € I'(M, Ad(E)) to the corresponding vertical automor-
phism o, € Gau(E), defined by

as(p)=p-k

if o(sw(p)) is the class of (p, k) in Ad(E) = E x K/ ~.
The bundle of Lie algebras associated to E is the adjoint bundle ad(E) — M,
defined as the quotient
ad(E) := B xaq t

of & x ¥ modulo the relation (pk, X) ~ (p,Adg(X))forpe E, X e fand k € K.
Here Adj € Aut(¥) is the Lie algebra automorphism induced by the group automor-
phism & — khk~!.

The compactly supported gauge group Gau,(E) C Gau(E) is the group of verti-
cal bundle automorphisms of = that are trivial outside the preimage of some compact
subset of M . Since it is isomorphic to I'. (M, Ad(E)), it is a locally convex Lie group
with Lie algebra gau,.(E) = (M, ad(E)).

Remark 4.5. In applications to gauge theory on noncompact manifolds M, the rele-
vant group § of gauge transformations may be smaller than Gau(Z) due to boundary
conditions at infinity. One expects ¥ to contain at least Gau.(E), or perhaps even
some larger Lie group of gauge transformations specified by a decay condition at
infinity (cf. [31, 110]). In Part II of this series of papers, we will focus on the case
where M = R is Minkowski space, and § C I'(R?, Ad(E)) is the group of gauge
transformations that extend continuously to the conformal completion of Minkowski
space. If the extension of E to the conformal completion is trivial, then § contains
global as well as compactly supported gauge transformations.
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4.1.2 Gauge groups and space-time symmetries

An automorphism of w: KX — M is a pair (y, ypr) € Diff(K) x Diff(M) withw o y =
Ym o , such that for each fiber K, the map y|x,: Kx — K,,, (x) is a group homo-
morphism. Since yy is determined by y, we will omit it from the notation. We denote
the group of automorphisms of K by Aut(X).

Definition 4.6 (Geometric R-actions). In the context of gauge groups, we will be
interested in R-actions o: R — Aut(I'(M, X)) which are of geometric type, i.e.,
derived from a 1-parameter group y: R — Aut(X) by

ai(0) ;=Y 000y

The R-action on I'(M, K) preserves the subgroup I'. (M, K)o on which it defines a
smooth action. Moreover, it lifts to a smooth action on the simply connected covering
group ['c (M, K)g (cf. [62, Theorem VI.3]).

Remark 4.7. If X is of the form Ad(E) for a principal fiber bundle E — M, then a
1-parameter group of automorphisms of & induces a 1-parameter group of automor-
phisms of XK.

The 1-parameter group o: R — Aut(I"(M, X)) of group automorphisms differen-
tiates to a 1-parameter group «%: R — Aut(I'(M, K)) of Lie algebra automorphisms
given by

Y-t © eSS O VM-
=0

d
HOE

The corresponding derivation D := % { tzoa,g of I'(M, &) can be described in terms
of the infinitesimal generator of y,

Vi=—

=/ r= €V

t=0

We identify the element £ € I'(M, &) with the vertical, fiberwise left invariant vector
field B¢ € V(K) defined by Eg(ky) = % }Ezokxesé(x). Using the equality [v, E¢] =
E (&), we write

D(§) = Ly¢.
For g = I'.(M, K), the Lie algebra g xp R then has the bracket

E@r.8 Dt =([6.61+ (LE —1'Li§)) & 0. 4.1

Remark 4.8. Alternatively, we can consider y: R — Aut(X) as a smooth 1-parameter
group of bisections of the gauge groupoid §(K) = M, the Lie groupoid whose
objects are points x, y € M, and whose morphisms are Lie group isomorphisms
Ky — K. It gives rise to a smooth 1-parameter family y of bisections of the Lie
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groupoid ¥(K) = M, whose morphisms from x to y are Lie algebra isomorphisms
Kx— &K, . Its generator v= —% |;=0Y is thus a section of its Lie algebroid a(K) - M,
called the Atiyah algebroid. A section £ € I'(M, &) can be considered as an element
of I'(M, ber(R)) C I'(M, a(K)), and we interpret L& as the commutator [v, £] in
'(M, a(K)). We will need this picture in Section 4.2, where the bundle of Lie groups
is not available.

4.2 Reduction to simple structure algebras

In this memoir, we consider gauge algebras with a semisimple structure algebra ¥.
The following theorem shows that, without further loss of generality, we may restrict
attention to the case where ¥ is simple.

Theorem 4.9 (Reduction from semisimple to simple structure algebras). If & — M
is a smooth locally trivial bundle of Lie algebras with semisimple fibers, then there
exists a ﬁmte cover M — M and a smooth locally trivial bundle of Lie algebras
K — M with simple ﬁbers such that there exist isomorphisms I'(M, &) ~ F(M S?)
and Te (M, R) ~ T, (M R) of locally convex Lie algebras.

This is proven in [51, Theorem 3.1]. In brief, one uses local trivializations of
K — M to give a manifold structure to

= | Spec(Kx),
XEM

where Spec(&Ky) is the finite set of maximal ideals I, C K. The bundle of Lie alge-
bras is then defined by
U Stx/lx ’

IeM

and one shows that the natural projection r: K >Misa locally trivial vector bundle.
Note that the finite cover M — M is not necessarily connected, and that the isomor-
phism classes of the fibers of & — M are not necessarily the same over different
connected components of M.

Remark 4.10. Since a smooth 1-parameter family of automorphisms of & — M acts
naturally on the maximal ideals, we obtain a smooth action on the Lie algebra bundle
K — M. We denote the corresponding section of the Atiyah algebrmd a(R) —~ M
by Vv e F(M a(S?)) and we denote the corresponding vector field on M by

Vi = % V.
Since K has simple fibers, the Atiyah algebroid a(S%) fits in the exact sequence

§—>a(§)—>TM,
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where the first map is given by the pointwise adjoint action, and the second by the
anchor. Note that the action on M is locally free or periodic if and only if the action
on M is. In that case, the period on M is a multiple of the period on M.

In many situations, the connected components of M are diffeomorphic to M.
However, non-trivial covers M — M do occur naturally, for example in connection
to non-orientable 4-manifolds.

Example 4.11. If the fibers of & — M are simple, then M=M.

Example 4.12. If & = M x ¥ is trivial, then M =M x Spec(¥) and all connected
components of M are diffeomorphic to M.

Example 4.13. Suppose that M is connected, and that the typical fiber £ of & — M
is a semisimple Lie algebra with r simple ideals that are mutually non-isomorphic.
Then,
,
M=||m
i=1

is a disjoint union of copies of M.

Example 4.14 (Frame bundles of 4-manifolds). Let M be a 4-dimensional Rie-
mannian manifold. Let E := OF(M) be the principal O(4, R)-bundle of orthogonal
frames, and let & = ad(E). Then, K = O(4,R) and ¥ = s0(4, R) is isomorphic to

sur(2,C) dsur(2,C).

The group 7o(K) is of order 2, the non-trivial element acting by conjugation with
T = diag(—1, 1, 1, 1). Since this permutes the two simple ideals, the manifold M is
the orientable double cover of M. This is the disjoint union M=M . LU Mg of two
copies of M if M is orientable, and a connected twofold cover M — M ifitis not.

4.3 Central extensions of gauge algebras

Let g be the compactly supported gauge algebra I'c (M, &), where & — M is a Lie
algebra bundle with simple fibers. In this section, we classify all possible central
extensions of @ xp R. This amounts to calculating the continuous second Lie algebra
cohomology H?(g xp R, R) with trivial coefficients. In Chapter 5, we will charac-
terize those cocycles coming from a positive energy representation.

4.3.1 Universal invariant symmetric bilinear forms

Let ¥ be a finite-dimensional, simple real Lie algebra. Then, its automorphism group
Aut(¥) is a closed subgroup of GL(¥), hence a Lie group with Lie algebra der(f) ~ ¥.
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Since ¥ acts trivially on the space
V() = S2(E)/(¢- S?(®))

of ¥-coinvariants of the twofold symmetric tensor power S2(£), the Aut(f)-represen-
tation on V'(¥) factors through o (Aut(¥)). The universal £-invariant symmetric bilin-
ear form is defined by

1
KExE—VE), «(x,y):= [x®sy]=§[x®y+y®x].

We associate to A € V(¥)* the R-valued, der(f)-invariant, symmetric, bilinear form
Ky :=Aok.

This correspondence is a bijection between V(¥)* and the space of der(¥)-invariant
symmetric bilinear forms on ¥.

Since ¥ is simple, we have V(£) >~ C if ¥ admits a complex structure, and V() ~R
if it does not (cf. [84, Appendix B]). In the latter case, ¥ is called absolutely simple.
The universal invariant symmetric bilinear form can be identified with the Killing
form of the real Lie algebra ¥ if V(£) >~ R and with the Killing form of the underlying
complex Lie algebra if V(¥) ~ C. In particular, in the important special case that £ is a
compact simple Lie algebra, a universal invariant bilinear form k: £ x ¥ — V/(¥) is the
negative definite Killing form given by tr(ad x ad y). However, in the following, we
shall always use the normalized invariant positive definite symmetric bilinear form «
that satisfies

k(iaY,ia") =2 4.2)

for the coroots oV corresponding to long roots in the root decomposition of ¢
(cf. [68,94] and Appendix A).

4.3.2 The flat bundle V = V(&)

If & — M is a bundle of Lie algebras with simple fibers, then we denote by V. — M
the vector bundle with fibers V,, = V(&,). It carries a canonical flat connection d,
defined by

dr(§,m) := k(dvé,n) + k(€ ,dvyn) for§,ne'(M,K),
where V is a Lie connection on &, meaning that
dv[§. n] = [dv&.n] + [§.dvn] forallé,n e I'(M,K).

Since the fibers are assumed to be simple, any two Lie connections differ by a K-
valued 1-form, so that the preceding definition is independent of the choice of V
(cf. [53]).
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Let ¥; be the fiber of & over a connected component M; of M. If ¥; is absolutely
simple (hence, in particular, when £ is compact), we have V(¥;) ~ R, and 7o (Aut(¥))
acts trivially on V(¥;). In this case, V — M; is the trivial line bundle M; x R — M.

If £; possesses a complex structure, then V(¥;) ~ C, and o € Aut(¥;) flips the
complex structure on C if and only if it flips the complex structure on ¥;. In this case,
VY — M; is a vector bundle of real rank 2.

Remark 4.15. In the context of positive energy representations, we will see in Theo-
rem 6.2 below that ¥ must be compact, so that V. — M is the trivial real line bundle.
Although we need to consider the a priori possibility of non-trivial bundles, then, it
will become clear in the course of our analysis that they will not give rise to positive
energy representations.

4.3.3 Classification of central extensions

We define 2-cocycles wy v on g Xxp R whose classes span the cohomology group
H?(g xp R,R). They depend on a V-valued 1-current > € QL (M, V), and on a Lie
connection V on &. A 1-current A € QL(M, V)’ is said to be

(L1) closed it A(AC°(M,V)) =0,
(L2) va-invariant if A(Ly,, QL(M, V)) = {0}.

Given a closed, vy-invariant current A € Q;(M , V)’, we define the 2-cocycle w; v
on g Xp R by skew-symmetry and the equations

w3,v(§.m) = A(k(§. dvn)), (4.3)
w3,9(D,§) = A(k(LyV., §)), (4.4)

where we write £ for (£,0) € g xp Rand D for (0,1) € g xp R asin (2.2). We define
the der(K)-valued 1-form L,V € Q!(M, der(R)) by

(LyV)w (§) = Ly(dv)w — Vw Lv§ = Ly(VuE) = Vu Lv§ = Vv, w§ (45)

forallw € V(M), & e I'(M, K). Since the fibers of & — M are simple, all derivations
are inner, so we can identify L,V with an element of Q'(M, &). Using the formulae

dk(§,n) = k(dvé, n) + «(&, dvn), (4.6)
Lyykc(6,m) = k(Lvé, n) + k(& Lyn), 4.7)
LV(dVS) - dVLvE = [va’ E]’ 4.8)

it is not difficult to check that wy v is a cocycle. Skew-symmetry follows from (4.6)
and (L1). The vanishing of éw, v on g follows from (4.6), the derivation property
of V and invariance of «. Finally, ipdw, v = 0 follows from skew-symmetry, (4.8),
(4.7), (L2) and the invariance of «.



Covariant extensions of gauge algebras 38

Note that the class [0, v] in H?(g xp R,R) depends only on A, noton V. Indeed,
two connection 1-forms V and V' differ by 4 € Q1 (M, der(R)). Using der(R) ~ &,
we find

Wy, v — v =8xa with y4(§ & 1) := A(k(4.§)).

According to the following theorem, every continuous Lie algebra 2-cocycle on
g Xp R is cohomologous to one of the type w, v as defined in (4.3) and (4.4).

Theorem 4.16 (Central extensions of extended gauge algebras). Let KX — M be a
bundle of Lie groups with simple fibers, equipped with a I-parameter group of auto-
morphisms with generator v e V(K). Let g = T'c (M, &) be the compactly supported
gauge algebra, and let @ xp R be the Lie algebra (4.1). Then, the map A — [w) v]
induces an isomorphism

(QUM.V)/(dQ2M. V) + Ly, QLM. V) = H?(g xp R, R)

between the space of closed, vy -invariant V -valued currents and H?*(q xp R, R).

This is proven in [51, Theorem 5.3]. The proof relies heavily on the description
of H?(g,R) provided in [53, Proposition 1.1].

Remark 4.17 (Temporal gauge). If the Lie connection V on & can be chosen so as
to make v € V(KX) horizontal, Vy,,§ = L& forall § € I'(M, &), then equation (4.5)
shows that L,V = iy,, R, where R is the curvature of V. For such connections, (4.4)
is equivalent to

0,9(D.§) = Ak (ivy, R. §)).



