
Chapter 4

Covariant extensions of gauge algebras

The results in the preceding chapter concerned the general level of Lie groups of the
form G Ì˛ R. Now we turn to the specifics of gauge groups. After introducing gauge
groups and their Lie algebras in Section 4.1, we describe in Section 4.2 a procedure
that provides a reduction from semisimple to simple structure Lie algebras, at the
expense of replacing M by a finite covering manifold yM . In Section 4.3, we recall
the classification [51] of 2-cocycles for the extended gauge algebra g ÌD R.

4.1 Gauge groups and gauge algebras

Let K!M be a smooth bundle of Lie groups, and let K!M be the corresponding
Lie algebra bundle with fibers

Kx D Lie.Kx/:

If M is connected, then the fibers Kx of K ! M are all isomorphic to a fixed
structure group K, and the fibers Kx of K are isomorphic to its Lie algebra

k D Lie.K/:

Definition 4.1 (Gauge group). The gauge group is the group �.M;K/ of smooth
sections of K!M , and the compactly supported gauge group is the group �c.M;K/

of smooth compactly supported sections.

Definition 4.2 (Gauge algebra). We define the gauge algebra as the Fréchet–Lie
algebra �.M;K/ of smooth sections of K! M , equipped with the pointwise Lie
bracket. The compactly supported gauge algebra �c.M;K/ is the LF-Lie algebra of
smooth compactly supported sections.

The compactly supported gauge group �c.M;K/ is a locally convex Lie group,
whose Lie algebra is the compactly supported gauge algebra �c.M;K/. It is locally
exponential, with expW �c.M;K/ ! �c.M;K/ given by pointwise exponentiation
[51, Proposition 2.3].

Definition 4.3. In the following we write z�c.M;K/0 for the simply connected cov-
ering group of the identity component �c.M;K/0 and

q� W z�c.M;K/0 ! �c.M;K/0

for the covering map. Then, z�c.M;K/0 has the same Lie algebra �c.M;K/ as the
gauge group �c.M;K/, and its exponential function Exp satisfies q� ı Exp D exp.
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4.1.1 Gauge groups from principal fiber bundles

The motivating example of a gauge group is of course the group Gau.„/ of vertical
automorphisms of a principal K-bundle � W„!M .

Definition 4.4. A vertical automorphism of a principal fiber bundle � W„! M is a
K-equivariant diffeomorphism ˛W„! „ such that � ı ˛ D � . The group Gau.„/
of vertical automorphisms is called the gauge group of „.

In order to interpret Gau.„/ as a gauge group in the sense of Definition 4.1, define
the bundle of groups Ad.„/!M with typical fiber K by

Ad.„/ WD „ �K= �;

where the relation � is given by .pk; h/ � .p; khk�1/ for p 2 „ and k; h 2 K. We
obtain an isomorphism

Gau.„/ ' �.M;Ad.„//

by mapping the section � 2 �.M;Ad.„// to the corresponding vertical automor-
phism ˛� 2 Gau.„/, defined by

˛� .p/ D p � k

if �.�.p// is the class of .p; k/ in Ad.„/ D „ �K= �.
The bundle of Lie algebras associated to „ is the adjoint bundle ad.„/!M ,

defined as the quotient
ad.„/ WD „ �Ad k

of „ � k modulo the relation .pk;X/ � .p;Adk.X// for p 2 „, X 2 k and k 2 K.
Here Adk 2 Aut.k/ is the Lie algebra automorphism induced by the group automor-
phism h 7! khk�1.

The compactly supported gauge group Gauc.„/ � Gau.„/ is the group of verti-
cal bundle automorphisms of„ that are trivial outside the preimage of some compact
subset ofM . Since it is isomorphic to �c.M;Ad.„//, it is a locally convex Lie group
with Lie algebra gauc.„/ D �c.M; ad.„//.

Remark 4.5. In applications to gauge theory on noncompact manifolds M , the rele-
vant group G of gauge transformations may be smaller than Gau.„/ due to boundary
conditions at infinity. One expects G to contain at least Gauc.„/, or perhaps even
some larger Lie group of gauge transformations specified by a decay condition at
infinity (cf. [31, 110]). In Part II of this series of papers, we will focus on the case
where M D Rd is Minkowski space, and G � �.Rd ;Ad.„// is the group of gauge
transformations that extend continuously to the conformal completion of Minkowski
space. If the extension of „ to the conformal completion is trivial, then G contains
global as well as compactly supported gauge transformations.
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4.1.2 Gauge groups and space-time symmetries

An automorphism of � WK!M is a pair .;M /2Diff.K/�Diff.M/with � ı  D
M ı � , such that for each fiber Kx , the map  jKx

WKx !KM .x/ is a group homo-
morphism. Since M is determined by  , we will omit it from the notation. We denote
the group of automorphisms of K by Aut.K/.

Definition 4.6 (Geometric R-actions). In the context of gauge groups, we will be
interested in R-actions ˛WR ! Aut.�.M;K// which are of geometric type, i.e.,
derived from a 1-parameter group  WR! Aut.K/ by

˛t .�/ WD �t ı � ı M;t :

The R-action on �.M;K/ preserves the subgroup �c.M;K/0 on which it defines a
smooth action. Moreover, it lifts to a smooth action on the simply connected covering
group z�c.M;K/0 (cf. [62, Theorem VI.3]).

Remark 4.7. If K is of the form Ad.„/ for a principal fiber bundle „!M , then a
1-parameter group of automorphisms of „ induces a 1-parameter group of automor-
phisms of K .

The 1-parameter group ˛WR!Aut.�.M;K// of group automorphisms differen-
tiates to a 1-parameter group ˛gWR! Aut.�.M;K// of Lie algebra automorphisms
given by

˛
g
t .�/ D

d

d"

ˇ̌̌̌
"D0

�t ı e
"�
ı M;t :

The corresponding derivation D WD d
dt

ˇ̌
tD0
˛

g
t of �.M;K/ can be described in terms

of the infinitesimal generator of  ,

v WD
d

dt

ˇ̌̌̌
tD0

�t 2 V.K/:

We identify the element � 2 �.M;K/ with the vertical, fiberwise left invariant vector
field„� 2 V.K/ defined by„�.kx/D d

d"

ˇ̌
"D0

kxe
"�.x/. Using the equality Œv;„� �D

„D.�/, we write
D.�/ D Lv�:

For g D �c.M;K/, the Lie algebra g ÌD R then has the bracket

Œ� ˚ t; � 0 ˚ t 0� D
�
Œ�; � 0�C .tLv�

0
� t 0Lv�/

�
˚ 0: (4.1)

Remark 4.8. Alternatively, we can consider  WR!Aut.K/ as a smooth 1-parameter
group of bisections of the gauge groupoid G .K/ � M , the Lie groupoid whose
objects are points x; y 2 M , and whose morphisms are Lie group isomorphisms
Kx ! Ky . It gives rise to a smooth 1-parameter family P of bisections of the Lie
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groupoid G .K/� M , whose morphisms from x to y are Lie algebra isomorphisms
Kx!Ky . Its generator vD� d

dt
jtD0 P is thus a section of its Lie algebroid a.K/!M ,

called the Atiyah algebroid. A section � 2 �.M;K/ can be considered as an element
of �.M; der.K// � �.M; a.K//, and we interpret Lv� as the commutator Œv; �� in
�.M;a.K//. We will need this picture in Section 4.2, where the bundle of Lie groups
is not available.

4.2 Reduction to simple structure algebras

In this memoir, we consider gauge algebras with a semisimple structure algebra k.
The following theorem shows that, without further loss of generality, we may restrict
attention to the case where k is simple.

Theorem 4.9 (Reduction from semisimple to simple structure algebras). If K!M

is a smooth locally trivial bundle of Lie algebras with semisimple fibers, then there
exists a finite cover yM ! M and a smooth locally trivial bundle of Lie algebras
yK! yM with simple fibers such that there exist isomorphisms �.M;K/ ' �. yM; yK/

and �c.M;K/ ' �c. yM; yK/ of locally convex Lie algebras.

This is proven in [51, Theorem 3.1]. In brief, one uses local trivializations of
K!M to give a manifold structure to

yM WD
[
x2M

Spec.Kx/;

where Spec.Kx/ is the finite set of maximal ideals Ix � Kx . The bundle of Lie alge-
bras is then defined by

yK WD
[
Ix2 yM

Kx

ı
Ix;

and one shows that the natural projection � W yK! yM is a locally trivial vector bundle.
Note that the finite cover yM !M is not necessarily connected, and that the isomor-
phism classes of the fibers of yK ! yM are not necessarily the same over different
connected components of yM .

Remark 4.10. Since a smooth 1-parameter family of automorphisms of K!M acts
naturally on the maximal ideals, we obtain a smooth action on the Lie algebra bundle
yK! yM . We denote the corresponding section of the Atiyah algebroid a.yK/! yM

by yv 2 �. yM; a.yK//, and we denote the corresponding vector field on yM by

v yM WD ��yv:

Since yK has simple fibers, the Atiyah algebroid a.yK/ fits in the exact sequence

yK! a.yK/! T yM;
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where the first map is given by the pointwise adjoint action, and the second by the
anchor. Note that the action on yM is locally free or periodic if and only if the action
on M is. In that case, the period on yM is a multiple of the period on M .

In many situations, the connected components of yM are diffeomorphic to M .
However, non-trivial covers yM ! M do occur naturally, for example in connection
to non-orientable 4-manifolds.

Example 4.11. If the fibers of K!M are simple, then yM DM .

Example 4.12. If K D M � k is trivial, then yM D M � Spec.k/ and all connected
components of yM are diffeomorphic to M .

Example 4.13. Suppose that M is connected, and that the typical fiber k of K!M

is a semisimple Lie algebra with r simple ideals that are mutually non-isomorphic.
Then,

yM D

rG
iD1

M

is a disjoint union of copies of M .

Example 4.14 (Frame bundles of 4-manifolds). Let M be a 4-dimensional Rie-
mannian manifold. Let „ WD OF.M/ be the principal O.4;R/-bundle of orthogonal
frames, and let K D ad.„/. Then, K D O.4;R/ and k D so.4;R/ is isomorphic to

suL.2;C/˚ suR.2;C/:

The group �0.K/ is of order 2, the non-trivial element acting by conjugation with
T D diag.�1; 1; 1; 1/. Since this permutes the two simple ideals, the manifold yM is
the orientable double cover of M . This is the disjoint union yM D ML tMR of two
copies of M if M is orientable, and a connected twofold cover yM !M if it is not.

4.3 Central extensions of gauge algebras

Let g be the compactly supported gauge algebra �c.M;K/, where K! M is a Lie
algebra bundle with simple fibers. In this section, we classify all possible central
extensions of gÌD R. This amounts to calculating the continuous second Lie algebra
cohomology H 2.g ÌD R;R/ with trivial coefficients. In Chapter 5, we will charac-
terize those cocycles coming from a positive energy representation.

4.3.1 Universal invariant symmetric bilinear forms

Let k be a finite-dimensional, simple real Lie algebra. Then, its automorphism group
Aut.k/ is a closed subgroup of GL.k/, hence a Lie group with Lie algebra der.k/' k.
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Since k acts trivially on the space

V.k/ WD S2.k/
ı
.k � S2.k//

of k-coinvariants of the twofold symmetric tensor power S2.k/, the Aut.k/-represen-
tation on V.k/ factors through �0.Aut.k//. The universal k-invariant symmetric bilin-
ear form is defined by

�W k � k ! V.k/; �.x; y/ WD Œx ˝s y� D
1

2
Œx ˝ y C y ˝ x�:

We associate to � 2 V.k/� the R-valued, der.k/-invariant, symmetric, bilinear form

�� WD � ı �:

This correspondence is a bijection between V.k/� and the space of der.k/-invariant
symmetric bilinear forms on k.

Since k is simple, we haveV.k/'C if k admits a complex structure, and V.k/'R
if it does not (cf. [84, Appendix B]). In the latter case, k is called absolutely simple.
The universal invariant symmetric bilinear form can be identified with the Killing
form of the real Lie algebra k if V.k/'R and with the Killing form of the underlying
complex Lie algebra if V.k/'C. In particular, in the important special case that k is a
compact simple Lie algebra, a universal invariant bilinear form �W k � k! V.k/ is the
negative definite Killing form given by tr.ad x ad y/. However, in the following, we
shall always use the normalized invariant positive definite symmetric bilinear form �

that satisfies
�.i˛_; i˛_/ D 2 (4.2)

for the coroots ˛_ corresponding to long roots in the root decomposition of kC

(cf. [68, 94] and Appendix A).

4.3.2 The flat bundle V D V.K/

If K!M is a bundle of Lie algebras with simple fibers, then we denote by V !M

the vector bundle with fibers Vx D V.Kx/. It carries a canonical flat connection d,
defined by

d�.�; �/ WD �.dr�; �/C �.�; dr�/ for �; � 2 �.M;K/;

where r is a Lie connection on K, meaning that

dr Œ�; �� D Œdr�; ��C Œ�; dr�� for all �; � 2 �.M;K/:

Since the fibers are assumed to be simple, any two Lie connections differ by a K-
valued 1-form, so that the preceding definition is independent of the choice of r
(cf. [53]).
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Let ki be the fiber of K over a connected component Mi of M . If ki is absolutely
simple (hence, in particular, when k is compact), we have V.ki /'R, and �0.Aut.k//
acts trivially on V.ki /. In this case, V !Mi is the trivial line bundleMi �R!Mi .

If ki possesses a complex structure, then V.ki / ' C, and ˛ 2 Aut.ki / flips the
complex structure on C if and only if it flips the complex structure on ki . In this case,
V !Mi is a vector bundle of real rank 2.

Remark 4.15. In the context of positive energy representations, we will see in Theo-
rem 6.2 below that k must be compact, so that V !M is the trivial real line bundle.
Although we need to consider the a priori possibility of non-trivial bundles, then, it
will become clear in the course of our analysis that they will not give rise to positive
energy representations.

4.3.3 Classification of central extensions

We define 2-cocycles !�;r on g ÌD R whose classes span the cohomology group
H 2.g ÌD R;R/. They depend on a V -valued 1-current � 2 �1c.M;V /

0, and on a Lie
connection r on K. A 1-current � 2 �1c.M;V /

0 is said to be

(L1) closed if �.dC1c .M;V // D 0,

(L2) vM -invariant if �.LvM�
1
c.M;V // D ¹0º.

Given a closed, vM -invariant current � 2 �1c.M;V /
0, we define the 2-cocycle !�;r

on g ÌD R by skew-symmetry and the equations

!�;r.�; �/ D �.�.�; dr�//; (4.3)

!�;r.D; �/ D �.�.Lvr; �//; (4.4)

where we write � for .�; 0/ 2 gÌD R andD for .0; 1/ 2 gÌD R as in (2.2). We define
the der.K/-valued 1-form Lvr 2 �

1.M; der.K// by

.Lvr/w.�/ D Lv.dr�/w � rwLv� D Lv.rw�/ � rwLv� � rŒvM ;w�� (4.5)

for allw 2V.M/, � 2�.M;K/. Since the fibers of K!M are simple, all derivations
are inner, so we can identify Lvr with an element of �1.M;K/. Using the formulae

d�.�; �/ D �.dr�; �/C �.�; dr�/; (4.6)

LvM �.�; �/ D �.Lv�; �/C �.�; Lv�/; (4.7)

Lv.dr�/ � drLv� D ŒLvr; ��; (4.8)

it is not difficult to check that !�;r is a cocycle. Skew-symmetry follows from (4.6)
and (L1). The vanishing of ı!�;r on g follows from (4.6), the derivation property
of r and invariance of �. Finally, iDı!�;r D 0 follows from skew-symmetry, (4.8),
(4.7), (L2) and the invariance of �.
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Note that the class Œ!�;r � inH 2.gÌD R;R/ depends only on �, not onr. Indeed,
two connection 1-forms r and r 0 differ by A 2 �1.M; der.K//. Using der.K/ ' K,
we find

!�;r0 � !�;r D ı�A with �A.� ˚ t / WD �.�.A; �//:

According to the following theorem, every continuous Lie algebra 2-cocycle on
g ÌD R is cohomologous to one of the type !�;r as defined in (4.3) and (4.4).

Theorem 4.16 (Central extensions of extended gauge algebras). Let K ! M be a
bundle of Lie groups with simple fibers, equipped with a 1-parameter group of auto-
morphisms with generator v 2 V.K/. Let gD �c.M;K/ be the compactly supported
gauge algebra, and let g ÌD R be the Lie algebra (4.1). Then, the map � 7! Œ!�;r �

induces an isomorphism�
�1c.M;V /

ı
.d�0c.M;V /C LvM�

1
c.M;V //

�0 �
�! H 2.g ÌD R;R/

between the space of closed, vM -invariant V -valued currents and H 2.g ÌD R;R/.

This is proven in [51, Theorem 5.3]. The proof relies heavily on the description
of H 2.g;R/ provided in [53, Proposition 1.1].

Remark 4.17 (Temporal gauge). If the Lie connection r on K can be chosen so as
to make v 2 V.K/ horizontal, rvM � D Lv� for all � 2 �.M;K/, then equation (4.5)
shows that Lvr D ivMR, where R is the curvature of r. For such connections, (4.4)
is equivalent to

!�;r.D; �/ D �.�.ivMR; �//:


