
Chapter 5

Cocycles for positive energy representations

Having classified all the possible 2-cocycles on �c.M;K/ Ì R, we now address the
restrictions that are imposed on these cocycles by the Cauchy–Schwarz estimates
from Section 3.4.

In Section 5.1 we derive a local normal form of the cocycle ! in a flow box around
a point m 2 M , where vM 2 V.M/ does not vanish. In Section 5.2, we use this to
derive a global normal form for !, provided that vM is nowhere vanishing. It turns out
that ! is characterized by a measure � on the covering space yM . In Section 5.3, we
plug this information back into the Cauchy–Schwarz estimate. This yields the basic
estimates needed for the continuity results in Chapter 6.

The setting of this chapter is as follows. As before, � WK ! M is a bundle of
Lie groups with semisimple fibers, and K! M is the corresponding bundle of Lie
algebras. We consider positive energy representations of yG, where G D �c.M;K/ is
the compactly supported gauge group with Lie algebra gD �c.M;K/. In fact, we will
work mainly at the Lie algebra level, so our results continue to hold for the slightly
more general case that G D z�c.M;K/0 is the simply connected cover of the identity
component. Using Section 4.2, we identify gD �c.M;K/with gD �c. yM; yK/, where
yK! yM is a Lie algebra bundle with simple fibers over a covering space yM ofM . We
assume that the 1-parameter group of automorphisms is of geometric type in the sense
of Definition 4.6. The analogs of the generators vM 2 V.M/ and v 2 �.M;a.K// for
yK are denoted by ��yv 2 V. yM/ and yv 2 �. yM; a.yK//.

5.1 Local gauge algebras

The following simple lemma will be used extensively throughout the rest of the mem-
oir. It gives a normal form for the pair .�c.M;K/; v/ in the neighborhood of a point
m 2M where the vector field vM does not vanish.

Definition 5.1 (Good flowbox). A good flowbox is a v-equivariant, local trivialization
.I � U0/ �K ! K of K over an open neighborhood U � M that is equivariantly
diffeomorphic to I � U0. Here I � R is a bounded open interval, and U0 � Rn�1 is
open. Note that for n D 1, we may take U0 D ¹0º.

In particular, we have coordinates t WD x0 for I and Ex WD .x1; : : : ; xn�1/ for U0
such that vM 2 V.U / corresponds to @t 2 V.I � U0/.

Lemma 5.2. For any point m 2 M with vM .m/ ¤ 0, there exists a good flowbox
U ' I � U0 containing m. Under the trivialization U � k ! KjU , the induced
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isomorphism C1c .U; k/ ' �c.U;K/ yields an inclusion

IU WC
1
c .U; k/ Ì@t R ,! �c.M;K/ ÌD R:

Proof. Since vM .m/ ¤ 0, we can find a neighborhood U �M of m and local coor-
dinates t; x1; : : : ; xn�1 such that the vector field vM on U is of the form @t . We may
assume that U ' I � U0 where U0 � Rn�1 corresponds to t D 0 and I � R cor-
responds to Ex D 0. We choose U0 sufficiently small for there to exist a trivialization
ˆWU0 � K ! KjU0 , which we then extend to a trivialization U � K ' KjU over
U by .t; x; k/ 7! .�t /ˆ.x; k/. As d

dt
jtD0.�t / D v, the vector field v 2 V.K/ is

horizontal in this trivialization.

We consider gU WD C
1
c .U; k/ as a subalgebra of gD �c.M;K/ and wish to study

the restriction d�U of the representation d� to the subalgebra

ygU WD R˚! .gU Ì@t R/:

Note that the subalgebra ygU ,! yg does not correspond to a Lie subgroup of yG unless
U is  -invariant, so we cannot work at the level of Lie groups.

If A 2 �1.U; k/ is the local connection 1-form corresponding to the Lie connec-
tionr, then up to coboundaries, by (4.3) and (4.4) the restriction!U of! to gU Ì@t R
takes the form

!U .fX; gY / ' �U .�.fX; dg � Y C gŒA; Y �// (5.1)

!U .@t ; fX/ ' �U .�.@tA; fX//; (5.2)

for some �U 2 �1c.U; V .k//
0, where f; g 2 C1c .U;R/ and X; Y 2 k.

Proposition 5.3. Let m 2 M be a point with vM .m/ ¤ 0 and let U ' I � U0 be
a good flowbox (cf. Definition 5.1). Let �WU0 ,! M be the corresponding inclusion.
Then, the map �1c.U; V .k//! �c.U0; �

�T �M ˝ V.k//; ˇ 7! x̌, defined by the inte-
gration

x̌.x1; : : : ; xn�1/ WD

Z 1
�1

ˇ.t; x1; : : : ; xn�1/dt;

yields a split exact sequence

0! L@t�
1
c.U; V .k// ,! �1c.U; V .k//! �c.U0; �

�T �M ˝ V.k//! 0

of locally convex spaces. In particular, �U W�1c.U; V .k//! R factors through a con-
tinuous linear map x�U0 W�c.U0; �

�T �M ˝ V.k//! R.

Proof. The second statement follows from the first because

�U .L@t�
1
c.U; V .k/// D ¹0º
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by Theorem 4.16. The kernel of ˇ 7! x̌ is precisely L@t�
1
c.U; V .k// by the funda-

mental theorem of calculus. A bump function ' 2 C1c .I;R/ of integral 1 yields the
required continuous right inverse �c.U0; ��T �M ˝ V.k// ! �1c.U; V .k// for the
integration map by sending Ex 7! ˇ.Ex/ to .t; Ex/ 7! '.t/ˇ.x1; : : : ; xn�1/.

For X D Y we obtain with (5.1) the relation

!.@tfX; fX/ D �U
�
@tf � df � �.X;X/

�
:

Unlike (5.1), which holds only modulo coboundaries, this equation is exact because
.@tf /X and fX commute. Lemma 3.10 (the Cauchy–Schwarz estimate) then yields

� �U
�
@tf � df � �.X;X/

�
� 0: (5.3)

This allows us to characterize �U as follows.

Proposition 5.4. Let m 2 M be a point with vM .m/ ¤ 0. Then, there exists an
open neighborhood U � M of m such that, for each X 2 k, there exists a unique
vM -invariant positive locally finite regular Borel measure �U;X on U such that the
functional �U;X 2�1c.U;R/

0 defined by �U;X .ˇ/ WD��U .ˇ � �.X;X// takes the form

�U;X .ˇ/ D

Z
U

.ivMˇ/d�U;X .m/:

Proof. Introduce coordinates x0 WD t and Ex WD .x1; : : : ; xn�1/ on U ' I � U0 as in
Definition 5.1. Define �U;i2C1c .U;R/

0, iD0; : : : ;n� 1, by �U;i .f / WD �U;X .f dxi /
and let �i 2C1c .U0;R/

0 be the corresponding distribution onU0 (cf. Proposition 5.3),
so

�U;i .f / D �i . Nf /

with
Nf .Ex/ WD

Z
I

f .t; Ex/dt:

Then,

�U;X .f dg/ D
n�1X
iD0

�i .f @ig/ for all f; g 2 C1c .U;R/:

Equation (5.3) then yields

�0
�
.@tf /2

�
C

n�1X
iD1

�i
�
@tf @if

�
� 0: (5.4)

First, we show that �0.h2/ � 0 for any h in C1c .U0;R/. Note that every element
B of C1c .I;R/ satisfies Z

I

B@tBdt D 0:
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We choose B ¤ 0, normalize it byZ
I

.@tB/
2dt D 1

and define
f .t; Ex/ WD B.t/h.Ex/:

We then have

.@tf /2 D h
2 and @tf @if D h@ih

Z
I

B@tBdt D 0 for i � 1:

Therefore, (5.4) yields �0.h2/ � 0 as required.
Since �0 extends1 to a positive linear functional on Cc.U0;R/, Riesz’ representa-

tion theorem [96, Theorems 2.14 and 2.18] yields a unique locally finite regular Borel
measure �0 on U0 such that �0.f / D

R
U0
fd�0.x/. This implies

�U;0.f / D

Z
U

f .u/d�U;X .u/;

with �U;X the product of �0 with the Lebesgue measure on I .
To finish the proof, we now prove that �i D 0 for i > 0. It suffices to show that

�i .h
2/ D 0 for all h 2 C1c .U0;R/. Choose BC ; BS 2 C1c .I;R/ so thatZ

I

BS .t/B
0
C .t/dt D 1;

choose C; S 2 C1c .U0;R/ so that

C.x/ D cos
� nX
iD1

kix
i

�
and S.x/ D sin

� nX
iD1

kix
i

�
for x 2 supp.h/, ki 2 Z, and set

f .t; Ex/ WD h.Ex/
�
BC .t/C.Ex/C BS .t/S.Ex/

�
:

Then, with

E WD

Z
I

�
jB 0C .t/j C jB

0
S .t/j

�2
dt;

we have

0 � .@tf /2 D h
2.Ex/

Z
I

�
B 0C .t/C.Ex/C B

0
S .t/S.Ex/

�2
dt � Eh2.x/:

1For every compact S � U0, there exists a ' 2 C1c .U0;R/ with 'jS > 1. With LS D
�0.'

2/, it then follows from the inequality �0.kf k1'2 ˙ f / � 0 that j�0.f /j � LSkf k1
for all f with support in S .
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Making repeated use ofZ
I

F.t; Ex/@tF.t; Ex/dt D 0 and
Z
I

B 0CBS C B
0
SBCdt D 0;

we find, for i D 1; : : : ; n � 1,

@tf @if D kih
2:

Equation (5.4) then yields

�0
�
.@tf /2

�
C

n�1X
iD1

ki�i .h
2/ � 0 for all ki 2 Z; (5.5)

where the function f depends on the ki . As �0..@tf /2/�E�0.h2/, the non-negative
term �0..@tf /2/ is bounded by a number that does not depend on ki . It therefore
follows from inequality (5.5) that �i .h2/ D 0 for all i > 0, as was to be proven.

5.2 Infinitesimally free R-actions

In Section 4.2, we saw that �c.M;K/ is isomorphic to the gauge algebra �c. yM; yK/,
where yK ! yM is a Lie algebra bundle with simple fibers over a cover yM ! M .
The decomposition yM D

Fr
iD1

cMi in connected components therefore gives rise to
a direct sum decomposition

�c.M;K/ D

rM
iD1

�c. yMi ; yK/; (5.6)

where yK! yMi is a Lie algebra bundle with simple fibers isomorphic to ki .

5.2.1 Reduction to compact simple structure algebras

If vM is non-vanishing, then we can restrict attention to the terms in (5.6) where ki is
a compact simple Lie algebra.

Corollary 5.5. Suppose that ki is not compact, and let m 2 yMi be a point such that
��yvm ¤ 0. Let U � yMi be as in Proposition 5.4 and let �U 2 �1c.U; V .ki //

0 be as in
(5.1) and (5.2). Then, �U W�1c.U; V .k//! R is zero. Consequently, !U is cohomol-
ogous to zero on �c.U; yK/.

Proof. It suffices to show that �U;X D 0 for all X 2 ki . If X;Y 2 ki with �.X;X/ D
��.Y; Y /, then �U;X D ��U;Y implies �U;X D �U;Y D 0. If ki is a complex Lie
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algebra, i.e., V.ki / ' C (cf. Section 4.3.1), then the previous argument with Y D iX
yields �U;X D 0 for all X 2 ki . If V.ki / ' R, then ki is noncompact if and only if
¹�.X;X/IX 2 kiº D R. Therefore, the same reasoning applies.

Corollary 5.6. If � is a positive energy representation of yG and vM has no zeros,
then ! is cohomologous to a cocycle that vanishes on the subalgebras �c. yMi ; yK/,
where ki is noncompact.

Proof. By Theorem 4.16 applied to �c. yM; yK/, the class Œ!� 2 H 2.g ÌD R;R/ is
uniquely determined by a V -valued current �W�c. yM;V /! R. Since vM is every-
where non-zero, the same holds for ��yv. If ki is noncompact, by Corollary 5.5, yMi

can be covered with open sets Uij such that � vanishes on �c.Uij ;V /. As every ele-
ment of �c. yMi ;V / can be written as a finite sum of elements of �c.Uij ;V /, the
current � vanishes on �c. yMi ;V /.

5.2.2 Reduction of currents to measures

Let �W yG ! U.H / be a positive energy representation, where G D z�c.M;K/0 is
the simply connected Lie group with Lie algebra g D �c.M;K/, which covers the
identity component of the compactly supported gauge group. This gives rise to a Lie
algebra cocycle ! on g ÌD R. Using the results of Section 4.2, we identify the gauge
Lie algebra gD�c.M;K/with gD�c. yM; yK/, where yK! yM is a Lie algebra bundle
with simple fibers. The cocycle ! can then be represented by a measure on yM .

Theorem 5.7. Suppose that vM has no zeros, and that ! is a 2-cocycle on g ÌD
R induced by a positive energy representation �W yG ! U.H /. Then, there exists a
positive, regular, locally finite Borel measure � on yM invariant under the flow  yM on
yM induced by K , such that ! is cohomologous to the 2-cocycle !�;r , given by

!�;r.�; �/ D �

Z
yM

�.�;rcvM �/d�.m/; (5.7)

!�;r.D; �/ D �

Z
yM

�.icvM .Lyvr/; �/d�.m/ for �; � 2 �c. yM; yK/: (5.8)

The support of � is contained in the union of the connected components yMi where
the fibers of yK are compact simple Lie algebras. In (5.7) and (5.8), we identify � with
the positive definite invariant bilinear form normalized as in (4.2).

Proof. As vM is nowhere zero, we can cover yM by good flowboxes U � yM in
the sense of Definition 5.1. In the corresponding local trivialization �c.U; yK/ '
C1c .U; k/ (cf. Lemma 5.2), we may assume that k is compact by Corollary 5.5. We
normalize � as in (4.2) and define �U as �U;X for any X 2 k with �.X;X/D 1. If U
and U 0 are two such open sets, then the measures �U and �U 0 from Proposition 5.4
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coincide on the intersection U \ U 0, as both measures are uniquely determined by
the cocycle !. The measures �U thus splice together to form a positive regular
locally finite Borel measure on yM . Equations (5.7) and (5.8) then follow immedi-
ately from (4.3), (4.4) in Section 4.3.3, and (5.1), (5.2).

Remark 5.8. As the cohomology class Œ!�;r � is independent of the choice of the Lie
connection, we are free to choose r so that yv is horizontal. In that case, we have

icvM .Lyvr/ D 0 and Lyv� D r��yv�

(cf. Remark 4.17). Equation (5.8) then becomes

!�;r.D; �/ D 0:

From Examples 4.11-4.14 in Section 4.2, we obtain the following.

Example 5.9. If K ! M has simple fibers, then yM D M . The class Œ!�;r � then
corresponds to a measure � on M . It vanishes on the connected components of M
where the fibers of K!M are noncompact.

Example 5.10. Suppose that M is connected, and that the typical fiber k D
Lr
iD1 ki

is the direct sum of r mutually non-isomorphic simple ideals ki . Then, yM is the
disjoint union of r copies of M . The class Œ!�;r � is then given by r measures �i on
M , one for each simple ideal. The same holds if K DM � k is trivial, and the ki are
not necessarily non-isomorphic.

Example 5.11 (Frame bundles of 4-manifolds). (cf. Examples 4.14). Suppose that
M is a Riemannian 4-manifold, and K D ad.OF.M// is the adjoint bundle of its
orthogonal frame bundle. If M is orientable, then !� D !�L C !�R is the sum of
two cocycles with measures �L and �R on M corresponding to the simple factors
suL.2;C/ and suR.2;C/ of so.4;R/. If M is not orientable, then !� is described
by a single measure � on the orientable cover yM !M .

5.3 Cauchy–Schwarz estimates revisited

Using the explicit form of the cocycles determined in Theorem 5.7, we revisit the
Cauchy–Schwarz estimates of Section 3.4. In this section, we assume that K! M

has semisimple fibers, and that the vector field vM on M is nowhere vanishing. As
before, we identify �c.M;K/ with �c. yM; yK/, where yK! yM has simple fibers.

Define the positive semidefinite symmetric bilinear form on g D �c. yM; yK/ by

h�; �i� WD

Z
yM

�.�; �/d�.m/: (5.9)
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Using Theorem 5.7 and Remark 5.8, we may replace ! by !�;r for a Lie connection
r on yK that makes yv horizontal. In that case, we have icvM .Lyvr/ D 0 and Lyv� D
r��yv� (cf. Remark 4.17). We may thus assume, without loss of generality, that the
cocycle associated to a positive energy representation takes the form

!.�; �/ D �h�; Lyv�i� D hLyv�; �i�; !.D; �/ D 0: (5.10)

The Cauchy–Schwarz estimate (Lemma 3.10) can now be reformulated as follows.

Lemma 5.12 (Cauchy–Schwarz Estimate). Let � be a positive energy representation
of yG, where G D z�c.M;K/0 is the simply connected gauge group. If the vector field
vM on M has no zeros, then, after replacing the linear lift d�Wg! End.H1/ of the
projective representation d� of g by d�C i�1 for some continuous linear functional
�Wg! R, we have

hid�.Lyv�/i
2
 � 2hH i kLyv�k

2
� for all � 2 g with ŒLyv�; �� D 0 (5.11)

and every unit vector  2 H1.

Proof. First we observe that the passage from ! to an equivalent cocycle corresponds
to replacing the subspace g � yg by the subspace �.�/C C � , � 2 g, where �Wg! R
is a continuous linear functional. For the representation d� this changes the value
of d�.�/ by adding i�.�/, so that we can achieve a cocycle of the form (5.10) by
Theorem 5.7. Now we apply Lemma 3.10 with iD!�;r D 0 and !�;r.�; D�/ D
kLyv�k

2
�.

In the same vein, the refined Cauchy–Schwarz estimate, Lemma 3.12, can be
reformulated as follows.

Lemma 5.13. Under the assumptions of Lemma 5.12, we have�˝
id�.e�s ad�.Lyv�//

˛
 
�

�
e�s ad� � 1

ad�
.Lyv�/; Lyv�

�
�

�2
� 2kLyv�k

2
�

�
hH i C shid�.Lyv�/i C

s2

2
kLyv�k

2
�

�
(5.12)

for all s 2 R, and for all �; � 2 �c. yM; yK/ such that Œ�; Lyv�� D 0 and Œ�; Lyv�� D 0.


