Chapter 5

Cocycles for positive energy representations

Having classified all the possible 2-cocycles on $\Gamma_c(M, \mathcal{R}) \rtimes \mathbb{R}$, we now address the restrictions that are imposed on these cocycles by the Cauchy–Schwarz estimates from Section [3.4.](#page--1-0)

In Section [5.1](#page-0-0) we derive a local normal form of the cocycle ω in a flow box around a point $m \in M$, where $\mathbf{v}_M \in \mathcal{V}(M)$ does not vanish. In Section [5.2,](#page-4-0) we use this to derive a global normal form for ω , provided that v_M is nowhere vanishing. It turns out that ω is characterized by a *measure* μ on the covering space \hat{M} . In Section [5.3,](#page-6-0) we plug this information back into the Cauchy–Schwarz estimate. This yields the basic estimates needed for the continuity results in Chapter [6.](#page--1-1)

The setting of this chapter is as follows. As before, $\pi: \mathcal{K} \to M$ is a bundle of Lie groups with semisimple fibers, and $\mathcal{R} \to M$ is the corresponding bundle of Lie algebras. We consider positive energy representations of \hat{G} , where $G = \Gamma_c(M, \mathcal{K})$ is the compactly supported gauge group with Lie algebra $\mathfrak{g} = \Gamma_c(M,\mathfrak{K})$. In fact, we will work mainly at the Lie algebra level, so our results continue to hold for the slightly more general case that $G = \tilde{\Gamma}_c(M,\mathcal{K})_0$ is the simply connected cover of the identity component. Using Section [4.2,](#page--1-2) we identify $q = \Gamma_c(M, \mathcal{R})$ with $q = \Gamma_c(\hat{M}, \hat{\mathcal{R}})$, where $\hat{\mathcal{R}} \to \hat{M}$ is a Lie algebra bundle with simple fibers over a covering space \hat{M} of M. We assume that the 1-parameter group of automorphisms is of geometric type in the sense of Definition [4.6.](#page--1-3) The analogs of the generators $v_M \in V(M)$ and $v \in \Gamma(M, \alpha(\mathbb{R}))$ for $\hat{\hat{\mathcal{K}}}$ are denoted by $\pi_*\hat{\mathbf{v}} \in \mathcal{V}(\hat{M})$ and $\hat{\mathbf{v}} \in \Gamma(\hat{M}, \mathfrak{a}(\hat{\hat{\mathcal{K}}}))$.

5.1 Local gauge algebras

The following simple lemma will be used extensively throughout the rest of the memoir. It gives a normal form for the pair $(\Gamma_c(M,\mathcal{R}), v)$ in the neighborhood of a point $m \in M$ where the vector field v_M does not vanish.

Definition 5.1 (Good flowbox). A *good flowbox* is a **v**-equivariant, local trivialization $(I \times U_0) \times K \to \mathcal{K}$ of $\mathcal K$ over an open neighborhood $U \subseteq M$ that is equivariantly diffeomorphic to $I \times U_0$. Here $I \subseteq \mathbb{R}$ is a bounded open interval, and $U_0 \subseteq \mathbb{R}^{n-1}$ is open. Note that for $n = 1$, we may take $U_0 = \{0\}$.

In particular, we have coordinates $t := x_0$ for I and $\vec{x} := (x_1, \ldots, x_{n-1})$ for U_0 such that $\mathbf{v}_M \in \mathcal{V}(U)$ corresponds to $\partial_t \in \mathcal{V}(I \times U_0)$.

Lemma 5.2. *For any point* $m \in M$ *with* $v_M(m) \neq 0$ *, there exists a good flowbox* $U \simeq I \times U_0$ containing m. Under the trivialization $U \times \mathfrak{k} \to \mathfrak{K}|_U$, the induced

isomorphism $C_c^{\infty}(U, \mathfrak{k}) \simeq \Gamma_c(U, \mathfrak{K})$ yields an inclusion

$$
I_U: C_c^{\infty}(U, \mathfrak{k}) \rtimes_{\partial_t} \mathbb{R} \hookrightarrow \Gamma_c(M, \mathfrak{K}) \rtimes_D \mathbb{R}.
$$

Proof. Since $v_M(m) \neq 0$, we can find a neighborhood $U \subseteq M$ of m and local coordinates t, x_1, \ldots, x_{n-1} such that the vector field \mathbf{v}_M on U is of the form ∂_t . We may assume that $U \simeq I \times U_0$ where $U_0 \subseteq \mathbb{R}^{n-1}$ corresponds to $t = 0$ and $I \subseteq \mathbb{R}$ corresponds to $\vec{x} = 0$. We choose U_0 sufficiently small for there to exist a trivialization $\Phi: U_0 \times K \to \mathcal{K}|_{U_0}$, which we then extend to a trivialization $U \times K \simeq \mathcal{K}|_U$ over U by $(t, x, k) \mapsto \gamma(-t) \Phi(x, k)$. As $\frac{d}{dt}|_{t=0} \gamma(-t) = \mathbf{v}$, the vector field $\mathbf{v} \in \mathcal{V}(\mathcal{K})$ is horizontal in this trivialization. \blacksquare

We consider $g_U := C_c^{\infty}(U, \mathfrak{k})$ as a subalgebra of $g = \Gamma_c(M, \mathfrak{K})$ and wish to study the restriction $d\rho_U$ of the representation $d\rho$ to the subalgebra

$$
\widehat{\mathfrak{g}}_U := \mathbb{R} \oplus_{\omega} (\mathfrak{g}_U \rtimes_{\partial_t} \mathbb{R}).
$$

Note that the subalgebra $\hat{g}_U \hookrightarrow \hat{g}$ does not correspond to a Lie subgroup of \hat{G} unless U is γ -invariant, so we cannot work at the level of Lie groups.

If $A \in \Omega^1(U, \mathfrak{k})$ is the local connection 1-form corresponding to the Lie connection ∇ , then up to coboundaries, by [\(4.3\)](#page--1-4) and [\(4.4\)](#page--1-5) the restriction ω_U of ω to $g_U \rtimes_{\partial_t} \mathbb{R}$ takes the form

$$
\omega_U(fX, gY) \simeq \lambda_U(\kappa(fX, dg \cdot Y + g[A, Y])) \tag{5.1}
$$

$$
\omega_U(\partial_t, fX) \simeq \lambda_U(\kappa(\partial_t A, fX)),\tag{5.2}
$$

for some $\lambda_U \in \Omega_c^1(U, V(\mathfrak{F}))'$, where $f, g \in C_c^\infty(U, \mathbb{R})$ and $X, Y \in \mathfrak{F}$.

Proposition 5.3. Let $m \in M$ be a point with $\mathbf{v}_M(m) \neq 0$ and let $U \simeq I \times U_0$ be *a good flowbox (cf. Definition* [5.1](#page-0-1)). Let $\iota: U_0 \hookrightarrow M$ *be the corresponding inclusion.* Then, the map $\Omega_c^1(U, V(\mathfrak{k})) \to \Gamma_c(U_0, \iota^*T^*M \otimes V(\mathfrak{k})), \beta \mapsto \overline{\beta}$, defined by the inte*gration*

$$
\overline{\beta}(x_1,\ldots,x_{n-1}):=\int_{-\infty}^{\infty}\beta(t,x_1,\ldots,x_{n-1})dt,
$$

yields a split exact sequence

$$
0 \to L_{\partial_t} \Omega^1_c(U, V(\mathfrak{k})) \hookrightarrow \Omega^1_c(U, V(\mathfrak{k})) \to \Gamma_c(U_0, \iota^* T^* M \otimes V(\mathfrak{k})) \to 0
$$

of locally convex spaces. In particular, $\lambda_U \colon \Omega^1_c(U,V(\mathfrak{k})) \to \mathbb{R}$ factors through a con t *inuous linear map* $\overline{\lambda}_{U_0}: \Gamma_c(U_0, \iota^*T^*M \otimes V(\mathfrak{k})) \to \mathbb{R}$.

Proof. The second statement follows from the first because

$$
\lambda_U(L_{\partial_t} \Omega_c^1(U, V(\mathfrak{k}))) = \{0\}
$$

by Theorem [4.16.](#page--1-6) The kernel of $\beta \mapsto \overline{\beta}$ is precisely $L_{\partial_t} \Omega_c^1(U, V(\mathfrak{k}))$ by the fundamental theorem of calculus. A bump function $\varphi \in C_c^{\infty}(I,\mathbb{R})$ of integral 1 yields the required continuous right inverse $\Gamma_c(U_0, t^*T^*M \otimes V(\mathfrak{k})) \to \Omega_c^1(U, V(\mathfrak{k}))$ for the integration map by sending $\vec{x} \mapsto \beta(\vec{x})$ to $(t, \vec{x}) \mapsto \varphi(t)\beta(x_1, \dots, x_{n-1}).$

For $X = Y$ we obtain with [\(5.1\)](#page-1-0) the relation

$$
\omega(\partial_t f X, f X) = \lambda_U(\partial_t f \cdot d f \cdot \kappa(X, X)).
$$

Unlike [\(5.1\)](#page-1-0), which holds only modulo coboundaries, this equation is exact because $(\partial_t f)X$ and fX commute. Lemma [3.10](#page--1-7) (the Cauchy–Schwarz estimate) then yields

$$
-\lambda_U(\partial_t f \cdot d f \cdot \kappa(X, X)) \ge 0.
$$
\n(5.3)

This allows us to characterize λ_U as follows.

Proposition 5.4. Let $m \in M$ be a point with $\mathbf{v}_M(m) \neq 0$. Then, there exists an *open neighborhood* $U \subseteq M$ *of m such that, for each* $X \in \mathfrak{k}$ *, there exists a unique -invariant positive locally finite regular Borel measure* μ **_{***U***}***x**on**U**such that the* functional $\lambda_{U,X}\in \Omega^1_c(U,\mathbb{R})'$ defined by $\lambda_{U,X}(\beta):=-\lambda_U(\beta\cdot \kappa(X,X))$ takes the form

$$
\lambda_{U,X}(\beta) = \int_U (i_{v_M}\beta) d\mu_{U,X}(m).
$$

Proof. Introduce coordinates $x_0 := t$ and $\vec{x} := (x_1, \dots, x_{n-1})$ on $U \simeq I \times U_0$ as in Definition [5.1.](#page-0-1) Define $\lambda_{U,i} \in C_c^{\infty}(U,\mathbb{R})'$, $i = 0, \ldots, n-1$, by $\lambda_{U,i}(f) := \lambda_{U,X}(f \, dx_i)$ and let $\lambda_i \in C_c^{\infty}(U_0, \mathbb{R})'$ be the corresponding distribution on U_0 (cf. Proposition [5.3\)](#page-1-1), so

$$
\lambda_{U,i}(f) = \lambda_i(\bar{f})
$$

with

$$
\bar{f}(\vec{x}) := \int_I f(t, \vec{x}) dt.
$$

Then,

$$
\lambda_{U,X}(f\,\mathrm{d} g)=\sum_{i=0}^{n-1}\lambda_i(\overline{f\,\partial_i g})\quad\text{for all }f,g\in C_c^\infty(U,\mathbb{R}).
$$

Equation [\(5.3\)](#page-2-0) then yields

$$
\lambda_0(\overline{(\partial_t f)^2}) + \sum_{i=1}^{n-1} \lambda_i(\overline{\partial_t f \partial_i f}) \ge 0.
$$
 (5.4)

First, we show that $\lambda_0(h^2) \ge 0$ for any h in $C_c^{\infty}(U_0, \mathbb{R})$. Note that every element *B* of $C_c^{\infty}(I,\mathbb{R})$ satisfies

$$
\int_I B\partial_t B dt = 0.
$$

We choose $B \neq 0$, normalize it by

$$
\int_I (\partial_t B)^2 dt = 1
$$

and define

$$
f(t,\vec{x}) := B(t)h(\vec{x}).
$$

We then have

$$
\overline{(\partial_t f)^2} = h^2 \quad \text{and} \quad \overline{\partial_t f \partial_i f} = h \partial_i h \int_I B \partial_t B dt = 0 \quad \text{for } i \ge 1.
$$

Therefore, [\(5.4\)](#page-2-1) yields $\lambda_0(h^2) \ge 0$ as required.

Since λ_0 extends^{[1](#page-3-0)} to a positive linear functional on $C_c(U_0,\mathbb{R})$, Riesz' representation theorem [\[96,](#page--1-8) Theorems 2.14 and 2.18] yields a unique locally finite regular Borel measure μ_0 on U_0 such that $\lambda_0(f) = \int_{U_0} f d\mu_0(x)$. This implies

$$
\lambda_{U,0}(f) = \int_U f(u) d\mu_{U,X}(u),
$$

with $\mu_{U,X}$ the product of μ_0 with the Lebesgue measure on I.

To finish the proof, we now prove that $\lambda_i = 0$ for $i > 0$. It suffices to show that $\lambda_i(h^2) = 0$ for all $h \in C_c^\infty(U_0, \mathbb{R})$. Choose $B_C, B_S \in C_c^\infty(I, \mathbb{R})$ so that

$$
\int_I B_S(t)B'_C(t)dt=1,
$$

choose $C, S \in C_c^\infty(U_0, \mathbb{R})$ so that

$$
C(x) = \cos\left(\sum_{i=1}^{n} k_i x^i\right) \text{ and } S(x) = \sin\left(\sum_{i=1}^{n} k_i x^i\right)
$$

for $x \in \text{supp}(h)$, $k_i \in \mathbb{Z}$, and set

$$
f(t, \vec{x}) := h(\vec{x}) \big(B_C(t) C(\vec{x}) + B_S(t) S(\vec{x}) \big).
$$

Then, with

$$
E := \int_I (|B'_C(t)| + |B'_S(t)|)^2 dt,
$$

we have

$$
0 \leq \overline{(\partial_t f)^2} = h^2(\vec{x}) \int_I \left(B_C'(t) C(\vec{x}) + B_S'(t) S(\vec{x}) \right)^2 dt \leq Eh^2(x).
$$

¹For every compact $S \subseteq U_0$, there exists a $\varphi \in C_c^{\infty}(U_0, \mathbb{R})$ with $\varphi|_S > 1$. With $L_S =$ $\lambda_0(\varphi^2)$, it then follows from the inequality $\lambda_0(\|f\|_{\infty}\varphi^2 \pm f) \ge 0$ that $|\lambda_0(f)| \le L_s \|f\|_{\infty}$ for all f with support in S .

Making repeated use of

$$
\int_I F(t, \vec{x}) \partial_t F(t, \vec{x}) dt = 0 \text{ and } \int_I B'_C B_S + B'_S B_C dt = 0,
$$

we find, for $i = 1, \ldots, n - 1$,

$$
\overline{\partial_t f \partial_i f} = k_i h^2.
$$

Equation [\(5.4\)](#page-2-1) then yields

$$
\lambda_0\big(\overline{(\partial_t f)^2}\big) + \sum_{i=1}^{n-1} k_i \lambda_i(h^2) \ge 0 \quad \text{for all } k_i \in \mathbb{Z},
$$
 (5.5)

where the function f depends on the k_i . As $\lambda_0(\overline{(\partial_t f)^2}) \leq E \lambda_0(h^2)$, the non-negative term $\lambda_0((\partial_t f)^2)$ is bounded by a number that does not depend on k_i . It therefore follows from inequality [\(5.5\)](#page-4-1) that $\lambda_i(h^2) = 0$ for all $i > 0$, as was to be proven.

5.2 Infinitesimally free R-actions

In Section [4.2,](#page--1-2) we saw that $\Gamma_c(M,\mathfrak{K})$ is isomorphic to the gauge algebra $\Gamma_c(\hat{M},\hat{\mathfrak{K}})$, where $\hat{\mathcal{R}} \to \hat{M}$ is a Lie algebra bundle with *simple* fibers over a cover $\hat{M} \to M$. The decomposition $\hat{M} = \bigsqcup_{i=1}^{r} \widehat{M_i}$ in connected components therefore gives rise to a direct sum decomposition

$$
\Gamma_c(M,\mathfrak{K}) = \bigoplus_{i=1}^r \Gamma_c(\hat{M}_i, \hat{\mathfrak{K}}),\tag{5.6}
$$

where $\hat{\mathcal{R}} \to \hat{M}_i$ is a Lie algebra bundle with simple fibers isomorphic to \hat{r}_i .

5.2.1 Reduction to compact simple structure algebras

If v_M is non-vanishing, then we can restrict attention to the terms in [\(5.6\)](#page-4-2) where f_i is a compact simple Lie algebra.

Corollary 5.5. Suppose that \mathfrak{k}_i is not compact, and let $m \in \hat{M}_i$ be a point such that $\pi_* \hat{v}_m \neq 0$. Let $U \subseteq \hat{M}_i$ be as in Proposition [5.4](#page-2-2) and let $\lambda_U \in \Omega_c^1(U, V(\mathfrak{k}_i))'$ be as in (5.1) and (5.2) . Then, $\lambda_{\underline{U}}$: $\Omega_c^1(U, V(\hat{\mathfrak{k}})) \to \mathbb{R}$ is zero. Consequently, ω_U is cohomol*ogous to zero on* $\Gamma_c(U, \hat{\hat{\mathcal{R}}})$.

Proof. It suffices to show that $\mu_{U,X} = 0$ for all $X \in \mathfrak{F}_i$. If $X, Y \in \mathfrak{F}_i$ with $\kappa(X, X) =$ $-\kappa(Y, Y)$, then $\mu_{U,X} = -\mu_{U,Y}$ implies $\mu_{U,X} = \mu_{U,Y} = 0$. If \mathfrak{k}_i is a complex Lie algebra, i.e., $V(\mathfrak{F}_i) \simeq \mathbb{C}$ (cf. Section [4.3.1\)](#page--1-9), then the previous argument with $Y = iX$ yields $\mu_{U,X} = 0$ for all $X \in \mathfrak{F}_i$. If $V(\mathfrak{F}_i) \simeq \mathbb{R}$, then \mathfrak{F}_i is noncompact if and only if $\{\kappa(X, X); X \in \mathfrak{F}_i\} = \mathbb{R}$. Therefore, the same reasoning applies.

Corollary 5.6. If ρ is a positive energy representation of \hat{G} and \mathbf{v}_M has no zeros, *then* ω is cohomologous to a cocycle that vanishes on the subalgebras $\Gamma_c(\hat{M}_i, \hat{\hat{\mathbf{x}}})$, where f_i is noncompact.

Proof. By Theorem [4.16](#page--1-6) applied to $\Gamma_c(\hat{M}, \hat{\mathcal{R}})$, the class $[\omega] \in H^2(\mathfrak{g} \rtimes_D \mathbb{R}, \mathbb{R})$ is uniquely determined by a V-valued current $\lambda: \Omega_c(\hat{M}, V) \to \mathbb{R}$. Since v_M is everywhere non-zero, the same holds for $\pi_*\hat{v}$. If \hat{r}_i is noncompact, by Corollary [5.5,](#page-4-3) \hat{M}_i can be covered with open sets U_{ij} such that λ vanishes on $\Omega_c(U_{ij}, V)$. As every element of $\Omega_c(\hat{M}_i, V)$ can be written as a finite sum of elements of $\Omega_c(U_{ij}, V)$, the current λ vanishes on $\Omega_c(\hat{M}_i, V)$.

5.2.2 Reduction of currents to measures

Let $\rho: \hat{G} \to U(\mathcal{H})$ be a positive energy representation, where $G = \tilde{\Gamma}_c(M, \mathcal{K})_0$ is the simply connected Lie group with Lie algebra $g = \Gamma_c(M, \mathcal{R})$, which covers the identity component of the compactly supported gauge group. This gives rise to a Lie algebra cocycle ω on $\alpha \rtimes_D \mathbb{R}$. Using the results of Section [4.2,](#page--1-2) we identify the gauge Lie algebra $q = \Gamma_c(M, \hat{X})$ with $q = \Gamma_c(M, \hat{\hat{X}})$, where $\hat{\hat{X}} \to \hat{M}$ is a Lie algebra bundle with simple fibers. The cocycle ω can then be represented by a *measure* on \hat{M} .

Theorem 5.7. *Suppose that* v_M *has no zeros, and that* ω *is a 2-cocycle on* $g \rtimes_D$ $\mathbb R$ *induced by a positive energy representation* $\rho: \hat{G} \to U(\mathcal{H})$ *. Then, there exists a positive, regular, locally finite Borel measure* μ *on* \hat{M} *invariant under the flow* $\gamma_{\hat{M}}$ *on* \hat{M} *induced by* $\gamma_{\mathcal{K}}$ *, such that* ω *is cohomologous to the 2-cocycle* $\omega_{\mu,\nabla}$ *, given by*

$$
\omega_{\mu,\nabla}(\xi,\eta) = -\int_{\widehat{M}} \kappa(\xi,\nabla_{\widehat{v_M}} \eta) d\mu(m),\tag{5.7}
$$

$$
\omega_{\mu,\nabla}(D,\xi) = -\int_{\widehat{M}} \kappa(i_{\widehat{v_M}}(L_{\widehat{v}}\nabla),\xi) d\mu(m) \quad \text{for } \xi, \eta \in \Gamma_c(\widehat{M},\widehat{\mathcal{R}}). \tag{5.8}
$$

The support of μ *is contained in the union of the connected components* \hat{M}_i *where the fibers of* $\hat{\mathcal{R}}$ *are compact simple Lie algebras. In* [\(5.7\)](#page-5-0) *and* [\(5.8\)](#page-5-1)*, we identify* κ *with the positive definite invariant bilinear form normalized as in* [\(4.2\)](#page--1-10)*.*

Proof. As v_M is nowhere zero, we can cover \hat{M} by good flowboxes $U \subseteq \hat{M}$ in the sense of Definition [5.1.](#page-0-1) In the corresponding local trivialization $\Gamma_c(U, \hat{\mathbf{x}}) \simeq$ $C_c^{\infty}(U, \mathfrak{k})$ (cf. Lemma [5.2\)](#page-0-2), we may assume that \mathfrak{k} is compact by Corollary [5.5.](#page-4-3) We normalize κ as in [\(4.2\)](#page--1-10) and define μ_U as $\mu_{U,X}$ for any $X \in \mathfrak{k}$ with $\kappa(X, X) = 1$. If U and U' are two such open sets, then the measures μ_U and $\mu_{U'}$ from Proposition [5.4](#page-2-2)

coincide on the intersection $U \cap U'$, as both measures are uniquely determined by the cocycle ω . The measures μ_U thus splice together to form a positive regular locally finite Borel measure on \hat{M} . Equations [\(5.7\)](#page-5-0) and [\(5.8\)](#page-5-1) then follow immediately from [\(4.3\)](#page--1-4), [\(4.4\)](#page--1-5) in Section [4.3.3,](#page--1-11) and [\(5.1\)](#page-1-0), [\(5.2\)](#page-1-2).

Remark 5.8. As the cohomology class $[\omega_{\lambda}, \nabla]$ is independent of the choice of the Lie connection, we are free to choose ∇ so that $\hat{\mathbf{v}}$ is horizontal. In that case, we have

$$
i_{\widehat{\mathbf{v}}_{M}}(L_{\widehat{\mathbf{v}}}\nabla) = 0 \quad \text{and} \quad L_{\widehat{\mathbf{v}}}\xi = \nabla_{\pi_{\ast}\widehat{\mathbf{v}}}\xi
$$

(cf. Remark [4.17\)](#page--1-12). Equation [\(5.8\)](#page-5-1) then becomes

$$
\omega_{\mu,\nabla}(D,\xi)=0.
$$

From Examples [4.11](#page--1-6)[-4.14](#page--1-13) in Section [4.2,](#page--1-2) we obtain the following.

Example 5.9. If $\mathbb{R} \to M$ has simple fibers, then $\hat{M} = M$. The class $[\omega_{\mu}, \nabla]$ then corresponds to a measure μ on M. It vanishes on the connected components of M where the fibers of $\mathcal{R} \to M$ are noncompact.

Example 5.10. Suppose that M is connected, and that the typical fiber $\mathbf{f} = \bigoplus_{i=1}^r \mathbf{f}_i$ is the direct sum of r mutually non-isomorphic simple ideals f_i . Then, \widetilde{M} is the disjoint union of r copies of M. The class $[\omega_{\mu}, \nabla]$ is then given by r measures μ_i on M, one for each simple ideal. The same holds if $\mathcal{R} = M \times \mathcal{F}$ is trivial, and the \mathcal{F}_i are not necessarily non-isomorphic.

Example 5.11 (Frame bundles of 4-manifolds). (cf. Examples [4.14\)](#page--1-13). Suppose that M is a Riemannian 4-manifold, and $\mathcal{R} = ad(OF(M))$ is the adjoint bundle of its orthogonal frame bundle. If M is orientable, then $\omega_{\mu} = \omega_{\mu} + \omega_{\mu}$ is the sum of two cocycles with measures μ_L and μ_R on M corresponding to the simple factors $\mathfrak{su}_L(2,\mathbb{C})$ and $\mathfrak{su}_R(2,\mathbb{C})$ of $\mathfrak{so}(4,\mathbb{R})$. If M is not orientable, then ω_μ is described by a single measure μ on the orientable cover $\hat{M} \to M$.

5.3 Cauchy–Schwarz estimates revisited

Using the explicit form of the cocycles determined in Theorem [5.7,](#page-5-2) we revisit the Cauchy–Schwarz estimates of Section [3.4.](#page--1-0) In this section, we assume that $\mathcal{R} \to M$ has semisimple fibers, and that the vector field v_M on M is nowhere vanishing. As before, we identify $\Gamma_c(M, \mathcal{R})$ with $\Gamma_c(M, \hat{\mathcal{R}})$, where $\hat{\mathcal{R}} \to \hat{M}$ has simple fibers.

Define the positive semidefinite symmetric bilinear form on $g = \Gamma_c(\hat{M}, \hat{\mathcal{R}})$ by

$$
\langle \xi, \eta \rangle_{\mu} := \int_{\widehat{M}} \kappa(\xi, \eta) d\mu(m). \tag{5.9}
$$

Using Theorem [5.7](#page-5-2) and Remark [5.8,](#page-6-1) we may replace ω by $\omega_{\mu,\nabla}$ for a Lie connection ∇ on $\hat{\mathcal{R}}$ that makes $\hat{\mathbf{v}}$ horizontal. In that case, we have $i\hat{\psi}_{\mathbf{w}}(L_{\hat{\mathbf{v}}}(\nabla)) = 0$ and $L_{\hat{\mathbf{v}}} \xi =$ $\nabla_{\pi_{*}\hat{\mathbf{v}}\hat{\mathbf{v}}}$ (cf. Remark [4.17\)](#page--1-12). We may thus assume, without loss of generality, that the cocycle associated to a positive energy representation takes the form

$$
\omega(\xi, \eta) = -\langle \xi, L_{\hat{\mathbf{v}}}\eta \rangle_{\mu} = \langle L_{\hat{\mathbf{v}}} \xi, \eta \rangle_{\mu}, \quad \omega(D, \xi) = 0. \tag{5.10}
$$

The Cauchy–Schwarz estimate (Lemma [3.10\)](#page--1-7) can now be reformulated as follows.

Lemma 5.12 (Cauchy–Schwarz Estimate). *Let be a positive energy representation of* \hat{G} , where $G = \tilde{\Gamma}_c(M, \mathcal{K})_0$ is the simply connected gauge group. If the vector field v_M *on* M has no zeros, then, after replacing the linear lift $d\rho$: $q \to \text{End}(\mathcal{H}^{\infty})$ of the *projective representation* $\overline{d\rho}$ *of* g *by* $d\rho + i \chi$ **1** *for some continuous linear functional* $\chi: \mathfrak{g} \to \mathbb{R}$ *, we have*

$$
\langle i \, d\rho(L_{\hat{\mathbf{v}}} \xi) \rangle_{\psi}^2 \le 2 \langle H \rangle_{\psi} \| L_{\hat{\mathbf{v}}} \xi \|_{\mu}^2 \quad \text{for all } \xi \in \mathfrak{g} \text{ with } [L_{\hat{\mathbf{v}}} \xi, \xi] = 0 \tag{5.11}
$$

and every unit vector $\psi \in \mathcal{H}^{\infty}$.

Proof. First we observe that the passage from ω to an equivalent cocycle corresponds to replacing the subspace $g \subseteq \hat{g}$ by the subspace $\chi(\xi)C + \xi, \xi \in g$, where $\chi: g \to \mathbb{R}$ is a continuous linear functional. For the representation $d\rho$ this changes the value of $d\rho(\xi)$ by adding $i\gamma(\xi)$, so that we can achieve a cocycle of the form [\(5.10\)](#page-7-0) by Theorem [5.7.](#page-5-2) Now we apply Lemma [3.10](#page--1-7) with $i_D \omega_{\mu,\nabla} = 0$ and $\omega_{\mu,\nabla}(\xi, D\xi) =$ $||L_{\hat{\mathbf{v}}} \xi||^2_{\mu}$.

In the same vein, the refined Cauchy–Schwarz estimate, Lemma [3.12,](#page--1-14) can be reformulated as follows.

Lemma 5.13. *Under the assumptions of Lemma* [5.12](#page-7-1)*, we have*

$$
\left(\langle i \, d\rho (e^{-s \, \text{ad}_{\eta}} (L_{\hat{\mathbf{v}}} \xi)) \rangle_{\psi} - \left\langle \frac{e^{-s \, \text{ad}_{\eta}} - 1}{\text{ad}_{\eta}} (L_{\hat{\mathbf{v}}} \xi), L_{\hat{\mathbf{v}}} \eta \right\rangle_{\mu} \right)^{2}
$$
\n
$$
\leq 2 \| L_{\hat{\mathbf{v}}} \xi \|_{\mu}^{2} \left(\langle H \rangle_{\psi} + s \langle i \, d\rho (L_{\hat{\mathbf{v}}} \eta) \rangle_{\psi} + \frac{s^{2}}{2} \| L_{\hat{\mathbf{v}}} \eta \|_{\mu}^{2} \right) \tag{5.12}
$$

for all $s \in \mathbb{R}$ *, and for all* $\xi, \eta \in \Gamma_c(\widehat{M}, \widehat{\mathcal{R}})$ *such that* $[\xi, L_{\widehat{V}}\xi] = 0$ *and* $[\eta, L_{\widehat{V}}\eta] = 0$.