
Chapter 6

Continuity properties

Having determined which cocycles are compatible with the Cauchy–Schwarz esti-
mates, we now turn to the classification of positive energy representations for the
central extensions that correspond to these cocycles. This will be achieved in Chap-
ter 7, using continuity and extension results developed in the present chapter.

In this chapter, we assume that the flow vM is nowhere vanishing. Further, we
assume that the fibers of K ! M are simple Lie algebras. This entails no loss of
generality compared to semisimple fibers, as one can switch to the Lie algebra bundle
yK! yM in that case by the results in Section 4.2.

In Section 6.1, we use the Cauchy–Schwarz estimate 5.12 to further reduce the
problem to the case where K has compact simple fibers. In Section 6.2, we use the
refined Cauchy–Schwarz estimate of Lemma 5.13 to bound id�.�/ in terms of the
Hamilton operator H , the L2-norm k�k� with respect to the measure � of Theo-
rem 5.7, and theL2-norm k�kB� with respect to the product of�with a suitable upper
semi-continuous functionBWM !RC. In Section 6.3, we interpret these estimates as
a continuity property, and use this to define an extension of d� to a spaceH 1

B�.M;K/

of sections that are differentiable in the direction of the orbits, but merely measur-
able in the transversal direction. In Section 6.4, we construct a subspace H 1

@
.M;K/

of bounded sections that is closed under the pointwise Lie bracket. Finally, in Sec-
tion 6.5, we show that by extending to H 1

B�.M;K/ and restricting to H 1
@
.M;K/, one

obtains a representation of the latter Lie algebra that is compatible with the Hamil-
tonian H . On a subalgebra H 2

@
.M;K/ of sections that are twice differentiable in the

orbit direction, we then show that there is a dense set of uniformly analytic vectors.
In Chapter 7, this will be needed in order to integrate the Lie algebra representation
to the group level.

6.1 Reduction to compact simple structure algebras

As a direct consequence of Lemma 5.12, we see that d�.Lv�/ vanishes for all � 2 g

with Œ�; Lv�� D 0 and kLv�k� D 0. We use this to show that every positive energy
representation factors through a gauge algebra with compact structure algebra.

Proposition 6.1. For g D �c.M;K/ with vM without zeros, we have

g D DgC ŒDg;Dg�:

Considered as subsets of yg D R˚! .g ÌD R/, with ! as in Theorem 5.7, we have

R˚! g D DgC ŒDg;Dg�:
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Proof. By a partition of unity argument, it suffices to prove this for g D C1c .U; k/,
where U D I � U0 is a good flowbox (cf. Definition 5.1) and

D� D
d

dt
�

(cf. Lemma 5.2). If f 2 C1c .U; k/ and X 2 k, then fX lies in Dg � g if and only if

f0.x/ WD

Z 1
�1

f .t; x/dt

is zero in C1c .U0;R/. Fix � 2 C1c .I;R/ with
R1
�1

�.t/dt D 0 and
R1
�1

�2.t/dt D 1.
Then,

fX D .f � �2f0/X C �
2f0X with .f � �2f0/X 2 Dg:

To show that �2f0X 2 ŒDg; Dg�, choose � 2 C1c .U0; k/ such that �jsupp.f0/ D 1,
and choose Yi ; Zi 2 k such that X D

Pr
iD1ŒYi ; Zi �. Since

rX
iD1

Œ�f0Yi ; ��Zi � D �
2f0X

with �f0Yi ; ��Zi 2 Dg, we have

fX D .f � �2f0/X C

rX
iD1

Œ�f0Yi ; ��Zi � 2 DgC ŒDg;Dg�: (6.1)

This holds for the Lie bracket in g as well as for the Lie bracket in yg. The relationZ 1
�1

�
d

dt
�dt D 0

implies !.�f0Yi ; ��Zi / D 0. This shows that g D Dg C ŒDg; Dg� in g and also
g � DgC ŒDg;Dg� in yg. Since ! is not identically zero onDg �Dg, the subspace
DgC ŒDg;Dg� of yg cannot be proper and thus RC � DgC ŒDg;Dg�. This shows
that

yg D RC C g D DgC ŒDg;Dg�:

Theorem 6.2 (Reduction to compact structure algebra). LetMi �M be a connected
component such that the (simple) fibers of KjMi are not compact. Suppose that vM
is non-vanishing on Mi . Then, after twisting by a functional � 2 �c.Mi ;K/

0 if nec-
essary, every positive energy representation d� of �c.M;K/ vanishes on the ideal
�c.Mi ;K/.

Proof. By a partition of unity argument, it suffices to consider the restriction of d� to
C1c .U; k/ for a good flowbox U �Mi (cf. Definition 5.1). Every � 2 DC1c .U; k/ is
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a finite sum of elements of the form f 0X , with f 2 C1c .U;R/ and X 2 k. Since k is
noncompact, � vanishes on Mi by Theorem 5.7. Since

kf 0Xk� D 0 and ŒfXi ; f
0Xi � D 0;

it follows from Lemma 5.12 that, after twisting by � so as to change ! to !�;r , we
have d�.f 0Xi / D 0. Since d�.DC1c .U; k// D ¹0º, Proposition 6.1 yields

d�.C1c .U; k// D ¹0º:

Thus, d�.�c.Mi ;K// D ¹0º, as required.

This shows that we can restrict attention to bundles K!M with compact simple
fibers. (Note that the result requires a non-zero vector field on M , so this is compat-
ible with the unitary highest weight representations of C1.S1; su1;n�1.C// studied
in [47].) In conjunction with Proposition 6.1, Lemma 5.12 can also be used to prove
the following.

Corollary 6.3. If g D �c.M;K/, where K! M has compact simple fibers, then,
after twisting by � 2 �c.M;K/0 if necessary, every positive energy representation d�
of yg vanishes on the ideal

I� WD
®
� 2 gI�.¹x 2M I �.x/ ¤ 0º/ D 0

¯
of sections that vanish �-almost everywhere.

Proof. By a partition of unity argument, we may assume that g D C1c .U; k/, with
U � M a good flowbox (Definition 5.1). Let � 2 I� and consider the open subset
O� WD ¹x 2M I �.x/ ¤ 0º, which is the “open support” of � . Since � is a linear com-
bination of terms fX with smaller or equal open support, we may assume that � D
fX for f 2 C1c .U;R/ and X 2 k. If fX 2Dg, then fX 2 I� implies kfXk� D 0
and hence d�.fX/ D 0 by Lemma 5.12. Decompose fX as in equation (6.1),

fX D .f � �2f0/X C

rX
iD1

Œ�f0Yi ; ��Zi �:

As O� is open and � D dt ˝ �0, we have �.O�/ D 0 if and only if �0.p.O�//
vanishes, where pWU ! U0 is the projection on the orbit space. Now .f � �2f0/X

and �f0Yi are in Dg and vanish outside p�1p.O�/, so that their images under d�
vanish. Indeed, as these are both of the form Lv� with kLv�k� D 0 and ŒLv�; ��D 0,
this follows from Lemma 5.12. We conclude that d�.fX/ D 0, as required.

6.2 Extending the estimates from Dg to g

To see that d� factors through a linear map on g=I�, we used the Cauchy–Schwarz
estimate of Lemma 5.12. Using the refined Cauchy–Schwarz estimate of Lemma 5.13,
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we then extend d� to a linear map on g=I�, the L2-completion of g=I� with respect
to the measure �.

Note that an extension to the subspace Dg=I� � g=I� can already be achieved
using the “ordinary” Cauchy–Schwarz estimate of Lemma 5.12. Indeed, for � 2 Dg,
one can use (5.11) to show that d�.�/ satisfies an operator inequality of the form

˙ id�.�/ � k�k�.˛1C ˇH/ (6.2)

for certain constants ˛;ˇ > 0. With this, one can prove that d�WDg=I�! End.H1/
is weakly continuous with respect to the L2-topology on Dg=I�, and that it extends
to the L2-completion Dg=I�.

In order to extend d� to the full space g=I�, however, we will need an analog of
(6.2) that holds not just for � 2 Dg, but for all � 2 g. This is Proposition 6.16, which
we prove using the refined Cauchy–Schwarz estimate of Lemma 5.13.

6.2.1 The local gauge algebra with fibers k D su.2 ; C/

First, we restrict our attention to the compact structure algebra k D su.2;C/. We will
later derive the general case from this example. Let �.a;b/D�tr.ab/ be the invariant
bilinear form on k, normalized so that elements x with

Spec.ad x/ D ¹0;˙2iº satisfy �.x; x/ D 2:

Further, let U 0 � U be a good pair of flowboxes in the sense of the following
definition. We write U b V if the closure of U is contained in an open subset of V .

Definition 6.4 (Good pair of flowboxes). Let U 0 ' I 0 �U 00 and U ' I �U0 be good
flowboxes in the sense of Definition 5.1, and let U 0 � U . We call U 0 � U a good pair
of flowboxes if I 0 b I and U 00 b U0.

Remark 6.5. Note that U 00 D U0 D ¹0º is allowed! Unless specified otherwise, we
assume that I 0 D .�T 0=2; T 0=2/ and I D .�T=2; T=2/ with 0 < T 0 < T <1.

Remark 6.6. Recall thatM is equipped with a flow-invariant measure�, which takes
the form dt ˝ �0 on I � U0. To a good pair of flowboxes, we can therefore assign
the number

T

T � T 0
�0.U0/

T 0
D

�.U /

T 0.T � T 0/
;

which will play a significant role throughout this chapter. If this is not too large, we
think of the flowboxes as “sufficiently quadratic”.

In view of Lemma 5.2, we restrict attention to the case where the Lie algebra is
g D C1c .I � U0; k/, and v D @t . For z 2 C1c .U

0;C/, we define �.z/ 2 g by

�.z/.t; u/ WD

�
0 z.t; u/

�Nz.t; u/ 0

�
(6.3)
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and note that Œ�; @
@t
�� D 0. We also consider the element � 2 g defined by

�.t; u/ WD �.u/

�
i�.t/ 0

0 �i�.t/

�
; (6.4)

where � 2 C1c .I;R/ and � 2 C1c .U0;R/ are such that �.t/ D t for t 2 I 0 and
�.u/ D 1 for u 2 U 00. It also satisfies�

�;
@

@t
�

�
D 0:

Thus, �.u/�.t/Dt onU 0, hence, in particular, on the support of every z2C1c .U
0;C/.

On C1c .R;C/, we define the usual scalar product

hf; gidt WD

Z 1
�1

f .t/g.t/dt

and the Fourier transform

yf .k/ WD

Z 1
�1

f .t/e�iktdt; k 2 R:

For z 2 C1c .U;C/, we will denote by yz.k; u/ the “parallel” Fourier transform, i.e.,
the Fourier transform of t 7! z.t; u/ evaluated at k.

We can choose � such that k� 0k2
dt

is arbitrarily close to T T 0

T�T 0
, and we can choose

0 � � � 1 so that k�k2�0 � �0.U0/. Thus, k�� 0k2� can be chosen arbitrarily close to
T T 0

T�T 0
�0.U0/. Therefore, for every " > 0, there exists an � 2 C1c .U;C/ as in (6.4)

satisfying

kLv�k
2
� D 2

T T 0

T � T 0
�0.U0/C ": (6.5)

For � as in (6.4), Lemma 5.13 yields the following estimate.

Proposition 6.7. Let z 2 C1c .U
0;C/, and let k 2 R be such that yz.k; u/ D 0 for all

u 2 U 00. Then, we have˝
id�.�.z//

˛2
 
� 4kzk2�

�
hH i �

1

2
khid�.Lv�/i C

1

8
k2kLv�k

2
�

�
:

Proof. Since Œ�.z/; �.z/0� D 0 and Œ�; �0� D 0, we may apply Lemma 5.13. First, we
evaluate the left-hand side of inequality (5.12). Since �.t/�.u/ D t on supp.�.z//,
we have ad�.�.z// D �.2tiz/. Since Lv�.z/ D �.z

0/, we have

e�s ad�.Lv�.z// D �.z
0e�2its/:

As �.�.z/; Lv�/ D 0 for all z 2 C1c .U
0;C/, we have�

e�s ad� � 1
ad�

.Lv�.z//; Lv�

�
�

D

�
�

�
e�2tis � 1

2it
z0
�
; Lv�

�
�

D 0:



Continuity properties 52

On the right-hand side of inequality (5.12), we have kLv�.z/k
2
� D 2kz

0k2�. We thus
obtain ˝

id�.�.z0e�2ist //
˛2
 
� 4kz0k2�

�
hH i C shid�.Lv�/i C

s2

2
kLv�k

2
�

�
for all s 2 R and z 2 C1c .U

0;C/. Note that w 2 C1c .U
0;C/ is of the form w D

z0e�2ist for some z 2 C1c .U;C/ if and only if the parallel Fourier transform yw.k;u/
vanishes for k D �2s. Since in that case kwk2� D kz

0k2�, the proposition follows.

We thus obtain a 1-parameter family of inequalities indexed by k 2 R, the case
k D 0 reducing to the Cauchy–Schwarz estimate because yz.0; u/ D 0 is equivalent
to �.z/ 2 Dg. The idea of the following proposition is to lift the requirement that
the Fourier transform vanish by showing that every z 2 C1c .U

0;C/ can be written,
in a controlled way, as the sum of two functions whose parallel Fourier transform
vanishes for some k 2 R.

Proposition 6.8. There exist a; b 2 R such that, for all z 2 C1c .U
0;C/ for which

U 0 D I 0 � U 00 contained in U D I � U0, we have˝
id�.�.z//

˛2
 
� .aC bhH i /k�.z/k

2
� (6.6)

for constants a and b that depend on the interval lengths T D jI j and T 0 D jI 0j and
on �0.U0/, but not on z or  .

Proof. Let k be an arbitrary real number not equal to zero, and choose a function
� 2 C1c .I

0;C/ with y�.0/ ¤ 0 and y�.k/ D 0. (Such functions certainly exist. For
instance, one can choose �.t/ D ˛0.t/eikt for some ˛ 2 C1c .I

0;R/ with y�.0/ D
y̨0.�k/ D �ik y̨.�k/ 6D 0.) If we split z into z D z0 C zk with

zk.t; u/ WD yz.0; u/y�.0/
�1�.t/ and z0 WD z � zk;

then yz0.0;u/D 0 and yzk.k;u/D 0. We apply Proposition 6.7 separately to both terms
on the right-hand side of

jhid�.�.z//i j � jhid�.�.z0//i j C jhid�.�.zk//i j

to obtain

jhid�.�.z//i j � 2kz0k�
q
hH i C 2kzkk�

r
hH i C

k2

4

T T 0

T � T 0
�0.U0/:

(6.7)
Indeed, the term khid�.Lv�/i can be assumed non-positive by switching k with �k
and � with N� if necessary. The term kLv�k

2
� is then estimated by (6.5), and we take

the limit " # 0.
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Since jyz.0; u/j2 � T 0kz. � ; u/k2
dt

, we have kyz.0; � /k2�0 � T
0kzk2�. It follows that

kzkk� can be estimated in terms of kzk� as

kzkk� D kyz. � ; 0/k�0k
y�.0/�1�kdt �

p
T 0ky�.0/�1�kdtkzk�:

Similarly, kz0k� can be estimated in terms of kzk� by means of

kz0k� � kzk� C kzkk�

and the above estimate on kzkk�. Substituting this into (6.7), we derive the estimate

hid�.�.z//i2 � 4kzk
2
�

�
1C 2

p
T 0ky�.0/�1�kdt

�2�
hH i C

k2

4

T T 0

T � T 0
�0.U0/

�
:

(6.8)
Since k�.z/k2� D 2kzk

2
�, equation (6.8) is equivalent to (6.6) with the constants

a WD 2

�
k2

4

T T 0

T � T 0
�0.U0/

��
1C 2

p
T 0ky�.0/�1�kdt

�2
; (6.9)

b WD 2
�
1C 2

p
T 0ky�.0/�1�kdt

�2
: (6.10)

This completes the proof.

For �.z/ of the form (6.3) in a gauge algebra g D C1c .U
0; k/ with k D su.2;C/,

we can now prove an operator inequality of the form (6.2).

Proposition 6.9. There exist constants a; b 2 R, depending on T , T 0 and �0.U0/,
such that for all ˛; ˇ with ˛2 � a and 2˛ˇ � b, we have

˙ id�.�.z// � k�.z/k�.˛1C ˇH/ for z 2 C1c .U
0;C/ (6.11)

as an inequality of unbounded operators on H with domain containing H1.

Proof. Note that the inequality (6.11) is equivalent to

h ; id�.�.z// i2 � k�.z/k2�h ; .˛1C ˇH/ i2 for all  2 H1:

As ˇ2h ;H i2 � 0, this follows from Proposition 6.8 under the above conditions
on ˛ and ˇ.

Remark 6.10. The estimate (6.11) is rather crude for large energies, in the sense that
one expects d�.�/ �

p
H , not d�.�/ � H .

It will be convenient to gain more control over the constants a and b in Proposi-
tion 6.8, and the constants ˛; ˇ in Proposition 6.9. For this, we need to remove the
dependence on � in (6.9) and (6.10).
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Proposition 6.11. The constants a and b in Proposition 6.8 can be chosen as

a D
T

T � T 0

�
�0.U0/

T 0

�
�2b; (6.12)

with

b D 2

�
1C

2p
1 � .sin.�/=�/2

�2
: (6.13)

Here, � > 0 can be chosen at will.

Remark 6.12. It will be convenient to choose � D � . Then, b attains its minimal
value b D 18, and a D 18�2 T

T�T 0
�0.U0/
T 0

.

Proof. In (6.9) and (6.10), we need to minimize the expression
p
T 0ky�.0/�1�kdt

over all � 2 C1c .I
0;C/ with y�.k/D 0 and y�.0/¤ 0, where k 2 R� is arbitrary. Since

y�.k/ D heikt ; �idt and y�.0/ D h1; �idt , this amounts to maximizing

F.�/ WD
�p
T 0ky�.0/�1�kdt

��1
D
jh1; �idt j

k1kdtk�kdt
:

Since F is continuous on L2.I 0/ n ¹0º, and C1c .I
0;C/ is dense in L2.I 0/, F.�max/

is maximal on the projection �max of 1 on the orthogonal complement of the function
eikt 2 L2.I 0/. This is essentially a two-dimensional problem in the space spanned by

e0 WD
1
p
T 0
1 and ek WD

1
p
T 0
eikt ;

with

he0; e0i D hek; eki D 1 and he0; eki D
sin.kT 0=2/
kT 0=2

: (6.14)

It follows that �max D e0 � hek; e0iek , and F.�max/D
p
1 � jhe0; ekij2. Using (6.14),

we find

F.�max/ D

s
1 �

�
sin.kT 0=2/
kT 0=2

�2
: (6.15)

Equations (6.12) and (6.13) are now obtained from (6.9) and (6.10) with k D 2�=T 0

by substituting the maximal value (6.15) for F.�/ D .
p
T 0ky�.0/�1�kdt /

�1.

6.2.2 The local gauge algebra with compact simple fibers

We now extend Proposition 6.8 to the case where k is an arbitrary compact simple
Lie algebra. With I 0 � U 00 and I � U0 a good pair of flowboxes (cf. Definition 6.4),
we consider gU 0 WD C

1
c .I

0 �U 00; k/ and gU WD C
1
c .I �U0; k/ as subalgebras of the

Lie algebra g D �c.M;K/.
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Lemma 6.13. Let d� be a positive energy representation of yg, and let � > 0. Then,
we have

˙ id�.�/ � k�k�
�
K.�/1C �H

�
for all � 2 gU 0 ; (6.16)

where K.�/ is a constant independent of � . More precisely,

K.�/ D max
�
9dk=�; 3�

r
2dk

T

T � T 0
�0.U0/

T 0

�
; (6.17)

where dk is the dimension of k.

Proof. Using the root decomposition of kC with respect to the complexification tC

of a maximal abelian subalgebra t � k, one obtains a basis .X1; : : : ; Xdk
/ of k with

�.Xi ; Xj / D 2ıij , where �� is the Killing form of k and such that every Xj is con-
tained in some su.2;C/-triple in k [42, Proposition 6.45]. Every � 2 gU 0 can then be
written as � D

P
i fiXi for fi 2 C1c .U

0
0 � I

0;R/. Since every Xi is contained in an
su.2;C/-triple, we can apply Proposition 6.9 to fiXi 2 gU 0 with z D fi . We obtain

˙id�.fXi / � kfXik�.˛1C ˇH/;

and thus

˙id�.�/ �
� dkX
iD1

kfXik�

�
.˛1C ˇH/:

As the different terms fiXi are orthogonal, we have
Pdk

iD1 kfiXik� �
p
dkk�k�, and

we obtain
˙ id�.�/ � k�k�

�p
dk˛1C

p
dkˇH

�
: (6.18)

By Proposition 6.9, we are allowed to choose any ˛ and ˇ with ˛2 � a and 2˛ˇ � b.
Following Remark 6.12, we take aD 18�2�.�0.U0/=T 0/ and bD 18. The inequality
(6.18) therefore holds for any value of ˇ > 0 if we set

˛ D max
�
9=ˇ; 3�

r
2

T

T � T 0
�0.U0/

T 0

�
: (6.19)

Inequality (6.16) now follows from (6.18) with ˇ D �=
p
dk and K.�/ D

p
dk˛.

Proposition 6.14. For all � 2 gU 0 and t > 0, the spectrum of tH ˙ id�.�/ is bounded
below. More precisely,

�max

 
9dkk�k

2
�=t; 3�k�k�

r
2dk

T

T � T 0
�0.U0/

T 0

!
� inf

�
Spec.tH ˙ id�.�//

�
:

(6.20)

Proof. If k�k� D 0, then d�.�/ D 0 by Corollary 6.3. In that case, (6.20) simply
follows from the fact that H has non-negative spectrum. If k�k� ¤ 0, we apply
Lemma 6.13 with � D t=k�k�.
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6.2.3 Global estimates and the bounding function

We need to derive suitable estimates of the type (6.16) globally, on the full Lie algebra
�c.M;K/ rather than merely on C1c .U; k/. In this section, we show how to do this
for compact as well as noncompact manifolds M , under the assumption that vM is
nowhere vanishing.

For compact manifolds, we will derive an estimate of the form (6.16), albeit with
a larger constant K.�/. In the noncompact case, however, the expression k�k�K.�/
in (6.16) will have to be replaced by k�kB"�, where B"WM ! RC is a suitable upper
semi-continuous function on M that is invariant under the flow, and k�kB"� is the
L2-norm of � 2 �c.M;K/ with respect to the measure B"�,

k�k2B"� D h�; �iB"�; h�; �iB"� D

Z
M

�.�; �/B".m/d�.m/: (6.21)

In this setting, we will prove that

˙id�.�/ � k�kB"�1C "k�k�H for all � 2 �c.M;K/:

Note that, since vM is nowhere vanishing on M , every m 2 M is contained in a
good pair of flow boxes in the sense of Definition 6.4.

Definition 6.15. For m 2 M , define b.m/ as the infimum of the set of numbers
T

T�T 0
�0.U0/
T 0

, ranging over all good pairs of flowboxes U 0 b U containing m.

Proposition 6.16. The function bWM ! RC is invariant under the flow .M;t /t2R.
Further, it is upper semi-continuous, hence, in particular, measurable.

Proof. The invariance under the flow follows from the fact that U 0 � U is a good
pair of flow boxes aroundm if and only if M;t .U 0/ � M;t .U / is a good pair of flow
boxes around M;t .m/. For the upper semi-continuity, note that for every " > 0, there
is a good pair of flowboxes U 0 � U around m such that

T

T � T 0
�0.U0/

T 0
< b.m/C ":

For everym0 in the open neighborhood U 0 ofm, we thus have b.m0/ � b.m/C ".

Theorem 6.17. Let d� be a positive energy representation of yg, and let " > 0. Then,
we have

˙ id�.�/ � k�kB"�1C "k�k�H for every � 2 �c.M;K/: (6.22)

Here, B"WM ! RC is the upper semi-continuous function defined by

B".m/ WD max
�
81d2k .dM C 1/

4="2; 18�2dk.dM C 1/
2b.m/

�
; (6.23)

with b.m/ as in Definition 6.15. It is invariant under the flow .M;t /t2R.
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Proof. Let d be a Riemannian metric on M for which M is complete, so that closed
bounded subsets of M are compact by the Hopf–Rinow theorem. Let V �M be the
compact support of � 2 �c.M;K/. Since b is upper semi-continuous, the functions
ˇnWM ! RC defined by

ˇn.m/ WD sup¹b.m0/I d.m;m0/ � 1=nº

constitute a decreasing sequence converging pointwise to b as n!1. We now show
that the functions ˇn are upper semi-continuous. To see this, note that, for every
m0 2M and every " > 0, there exists an n 2 N with b.m/ < b.m0/ C "=2 for m
in the closed ball xW2=n.m0/ with radius 2=n around m0. Since this ball is compact,
it contains finitely many mi such that it is covered by open neighborhoods Oi of mi
such that b.m/ � b.mi /C "=2 for all m 2 Oi . If d.m; m0/ < 1

n
, then W1=n.m/ �S

i Oi , so that ˇn.m/ < ˇn.m0/C ". In particular, ˇn is measurable, and bounded on
the compact set V .

For every n 2 N, choose a cover of V by finitely many open balls Wri .mi / of
radius ri � 1=n aroundmi , with the property thatWri .mi /� U

0 b U for a good pair
U 0 b U of flow boxes with T

T�T 0
�0.U0/
T
� b.mi /C 1=n. Since b.mi / � ˇn.m/ for

all m 2 Wri .mi /, it follows that

T

T � T 0
�0.U0/

T
� ˇn.m/C 1=n for all m 2 Wri .mi /: (6.24)

By the Brouwer–Lebesgue paving principle [44, Theorem V1], there exists a finite
subcover .Wj /j2J with the property that every point m 2 V is contained in at most
dM C 1 sets.

Let 'j be a partition of unity with respect to .Wj /j2J . By Lemma 6.13, applied
to � WD "=.dM C 1/, we obtain˙id�.'j �/ � k'j �k�.Kj .�/1C �H/, where Kj .�/
is given by (6.17) for a good pair of flowboxes U 0 b U containing Wj . From (6.17)
and (6.24), we find that

Bn;�.m/ WD max
�
.9dk=�/

2; 18�2dk.ˇn.m/C 1=n/
�
� Kj .�/

2 for all m 2 Wj :

As k'j �k�K.�/ � k'j �kBn;��, we have ˙id�.'j �/ � k'j �kBn;��1 C �k'j �k�H
for all j 2 J , and thus

˙id�.�/ �
�X
j2J

k'j �kBn;��

�
1C �

�X
j2J

k'j �k�

�
H:

Since k.'j �/.m/k� � k�.m/k� , and since at most dM C 1 of the values 'j .m/ are
non-zero, it follows thatX

j2J

k'j �k� � .dM C 1/k�k� and
X
j2J

k'j �kBn;�� � .dM C 1/k�kBn;��;
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so that
˙ id�.�/ � .dM C 1/.k�kBn;��1C �k�k�H/: (6.25)

To obtain (6.22) from (6.25), recall that �WD"=.dMC1/. The second term on the right
is thus .dMC1/�k�k�D"k�k�, as required. For the first term, note that ˇnC1=n
is a bounded, decreasing sequence converging pointwise to b on V . The bounded,
decreasing sequence .dM C 1/2Bn;�.m/ thus converges to B".m/ in (6.22), where
" D .dM C 1/�. By the dominated convergence theorem, we find that, for n!1,
the squared norm ..dM C 1/k�kBn;�/

2 approachesZ
V

k�k2�.dM C 1/
2Bn;�d�.m/!

Z
V

k�k2�B"d�.m/ D k�k
2
B"�

:

Since (6.25) holds for every n 2 N, the proposition follows.

Note that if the function bWM !RC of Definition 6.15 is bounded, then so is B".
If we define K."/2 WD kB"k1, then we recover the inequality

˙ id�.�/ � k�k�.K."/1C "H/; (6.26)

since k�kB"� � K."/k�k�. This happens, in particular, if M is compact because the
upper semi-continuous function B" is then automatically bounded.

Corollary 6.18. Suppose that M is compact and vM is nowhere vanishing on M .
Then, for every " > 0, there exists a constant K."/ > 0 such that (6.26) holds for all
� 2 �.M;K/.

Another important situation in which B" is bounded is for product manifolds of
the form M D R �†.

Corollary 6.19. Suppose thatM 'R�† with vM D @
@t

. Then, the inequality (6.26)
holds for the compactly supported gauge algebra gD�c.M;K/, with constantK."/D
9dk.dM C 1/

2=" depending on M and K only through the dimension.

Proof. For .t; x/ 2 R � †, choose U 00 b U0 � † with U0 � † relatively compact,
and x 2 U 00. For T 0 sufficiently large, .t; x/ is contained in the good pair of flowboxes
U 0 D U 00 � .�T

0=2; T 0=2/, and U D U0 � .�T=2; T=2/ for T D 2T 0. Since

T

T � T 0
�0.U0/

T 0
D 2�0.U0/=T

0

approaches 0 for T 0 !1, it follows that b.t; x/ D 0. In particular,

B".m/ D 81d
2
k .dM C 1/

4="2

is constant, and the result follows.
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6.3 Extending representations to Sobolev spaces

In this section, we extend the map d� to the Hilbert completion L2B�.M;K/ of g=I�
with respect to the inner product (6.21) corresponding to B"�.

Note that since k�k� is dominated by a multiple of k�kB"�, the inner product
h�; �i� is continuous on L2B�.M;K/. As the difference between k�kB"� and k�kBz"�
for "; z" > 0 is a multiple of k�k�, the space L2B�.M;K/ and its topology are indepen-
dent of ". (This is why we omit " from the notation in L2B�.M;K/.)

6.3.1 The completion L2
B�

.M; K/ in L2-norm

We use Theorem 6.17 to extend d� from g to L2B�.M;g/. Define

�� D k�kB"�1C "k�k�H;

and note that its domain D.��/ is contained in the domain D.H/ of H . With this
notation, (6.22) becomes

0 � �� ˙ id�.�/; (6.27)

as an inequality of unbounded operators on H1. Further, define

A WD 1CH with D.A/ D D.H/: (6.28)

Proposition 6.20. Let 0 < " � 1. There exists a map r from L2B�.M;K/ to the un-
bounded, skew-symmetric operators on H such that D.r.�// contains D.H/ for
all � 2 L2B�.M;K/, r.�/jH1 D d�.�/ for all � 2 g, and, for all  2 D.H/, the
functional

L2B�.M;K/! C defined by � 7! hr.�/i 

is continuous. Furthermore, there exists a continuous map

�WL2B�.M;K/! B.H /

into the bounded operators such that k�.�/k � k�kB"�, �.�/ is skew-hermitian, �.�/
leaves the domain of A1=2 invariant, and

r.�/ D A1=2�.�/A1=2;

as an equality of unbounded operators on D.H/.

Proof. Let �n be a sequence in g=I� for which k� � �nkB"� ! 0, and hence also
k� � �nk� ! 0. Without loss of generality, we assume that k� � �nkB"� �

1
2

and
"k� � �nk� �

1
2

for all n, so that

�� � ��n C A �
1

2
A: (6.29)
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Define the sesquilinear forms

B˙n WH
1
�H1 ! C; B˙n . ; �/ WD

˝
 ; ..�� C A/˙ id�.�n//�

˛
:

The forms B˙n are positive definite; combining (6.29) with inequality (6.27) applied
to �n, we find

B˙n . ;  / � h ; .�� � ��n C A/ i �
1

2
h ;A i �

1

2
k k2: (6.30)

By (6.27) and the convergence of �n, we find that BCn . ;  / is a Cauchy sequence
for every  2 H1,

jBCn . ;  / � B
C
m . ;  /j D jh ; id�.�n � �m/ ij � h ;��n��m i ! 0:

It follows thatBC. ;�/ WD limn!1B
C
n . ;�/ defines a positive definite, sesquilinear

form H1 �H1! C. Here we use that the estimate (6.30) is independent of n. The
same argument applies to B�. ; �/ WD limn!1 B

�
n . ; �/. Note that

1

2
h ;A i � B˙. ;  / � h ; .2�� C A/ i � c�h ;A i (6.31)

for some c� > 0. The forms B˙ therefore extend uniquely to closed, sesquilinear
forms xB˙WD.A1=2/ � D.A1=2/ ! C. In turn, the forms xB˙ define a Friedrichs
extension; a closed, possibly unbounded positive operator b˙.�/WD.H/! H , such
that xB˙. ; �/ D h ; b˙.�/�i for all  ; � 2 D.H/ (cf. [25, Appendix I.A.2]). Set

r.�/ WD
1

2i
.bC.�/ � b�.�//:

Since bC.�/ and b�.�/ are selfadjoint, r.�/ is skew-symmetric. If � 2 g, then

h ; r.�/�i D h ; d�.�/�i for all  ; � 2 H1;

so r.�/ is an extension of d�.�/.
Define

�.�/WD.A1=2/! D.A1=2/; �.�/ WD A�1=2r.�/A�1=2:

Then, for  ; � 2 D.A1=2/, we have A�1=2 ;A�1=2� 2 D.H/. Therefore,

h ; �.�/�i D �h�.�/ ; �i D
1

2i
. xBC � xB�/.A�1=2 ;A�1=2�/: (6.32)

By (6.31) and Cauchy–Schwarz, we have

j xB˙. ; �/j � c�kA
1=2 kkA1=2�k;
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so jh ; �.�/�ij � c�k kk�k by (6.32). Therefore, �.�/ extends to a hermitian oper-
ator on H . As such, the operator norm k�.�/k is the supremum of jh ; �.�/ ij over
all  in the unit sphere of H . For  2 A1=2H1, (6.27) yields

jh ; �.�/ ij D lim
n!1

jhA�1=2 ; d�.�n/A�1=2 ij � h ;A�1=2��A�1=2 i:

We claim that

A�1=2��A
�1=2
� k�kB"� for 0 < " < 1: (6.33)

In fact, since �� and A commute, this is equivalent to �� � Ak�kB�, which in turn is
equivalent to

k�kB"�1C "k�k�H � k�kB"�.1CH/

and this to "k�k� � k�kB"�, which, for " < 1, follows from the estimate

B" � 81d
2
k .dM C 1/

4="2 > 1:

With (6.33), we find

jh ; �.�/ ij � k�kB"�k k
2 for  2 A1=2H1:

To prove that k�.�/k � k�kB"�, it therefore suffices to show that A1=2H1 is dense
in H . First, we show thatAH1 is dense in H . Since exp.i tA/D eit exp.i tH/ leaves
the space H1 of smooth vectors invariant, the restriction A0 of A to H1 is essen-
tially selfadjoint [95, Section VIII.4]. Suppose that ?A0H1. Then, 2D.A�0/D

D.A/, and A�0 D A D 0. Since A is injective,  D 0 and AH1 is dense in H .
Applying the contraction A�1=2, we find that A1=2H1 is dense in A�1=2H . Since
A�1=2H D D.A1=2/ is dense in H , we conclude that A1=2H1 is dense in H , as
required.

For s 2 R, denote by Hs the Hilbert space completion of D.As/ with respect to
the inner product

h ; �is D hA
s ;As�i:

Denote the corresponding norm by k ks D kAs k, and denote the norm of a con-
tinuous operator AWHs ! Ht by kAks;t . As

r.�/ D A1=2�.�/A1=2

with k�.�/k � k�kB"�, the operator r.�/WD.A/!H extends to a bounded operator
r.�/WH1=2 ! H�1=2, with

kr.�/ k�1=2 � k�kB"�k k1=2: (6.34)

We thus have
kr.�/k1=2;�1=2 � k�kB"�:
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6.3.2 The completion in Sobolev norm

Note that convergence of �n to � in L2B�.M;K/ only implies weak operator conver-
gence of r.�n/ to r.�/, as operators on the pre-Hilbert space D.H/. In this section,
we define a subspace H 1

B�.M;K/ of L2B�.M;K/ where convergence to � implies
strong convergence to r.�/.

Definition 6.21 (Parallel Sobolov spaces). For k � 0, the parallel Sobolev norm qk
is defined by

qk.�/ WD

kX
nD0

k�kn; where k�kn WD kDn�kB"�:

The parallel Sobolev space H k
B�.M;K/ � L

2
B�.M;K/ is the Banach completion of

g=I� with respect to the norm qk .

Proposition 6.22. Let r be as in Proposition 6.20. If � 2H k
B�.M;K/, then r.�/maps

D.H kC1/ into D.H k/. For k D 1, we have

ŒH; r.�/� D ir.D�/ (6.35)

as an equality of unbounded operators on D.H 2/. Furthermore, if � 2 H k
B�.M;K/,

then r.�/ extends to a continuous operator HkC1=2 ! Hk�1=2 with

kr.�/ kk�1=2 �

kX
jD0

�
k

j

�
k�kj k kk�jC1=2: (6.36)

Finally, for all � 2H 1
B�.M;K/, the skew-symmetric operator r.�/ is essentially skew-

adjoint.

Proof. We prove that for � 2 H k
B�.M;K/, r.�/ maps D.H kC1/ into D.H k/. We

proceed by induction on k. SinceH 0
B�.M;K/D L

2
B�.M;K/, the case k D 0 follows

from Proposition 6.20. Suppose that the statement holds for all � 2 H k
B�.M;K/. For

� 2H kC1
B� .M;K/ and 2D.H kC2/, we show that r.�/ 2D.H kC1/. SinceH kC1

is selfadjoint, it suffices to show that � 7! hr.�/ ; H kC1�i is a continuous, linear
functional on H1 with respect to the subspace topology induced by the inclusion
in H .

Let �n 2 g=I� be a sequence such that �n ! � and D�n ! D� in L2B�.M;K/.
Since Hr.�n/ D r.�n/H C ir.D�n/ on H1, we have

hr.�/ ;H kC1�i D � lim
n!1
h ; r.�n/H

kC1�i

D � lim
n!1
hH ; r.�n/H

k�i C lim
n!1
h ; ir.D�n/H

k�i

D hr.�/H C ir.D�/ ;H k�i: (6.37)
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As  2 D.H kC2/, both H and  are in D.H kC1/. Since � 2 H kC1
B� .M;K/, we

have �;D� 2 H k
B�.M;K/, so that r.�/H C ir.D�/ 2 D.H k/ by the induction

hypothesis. From (6.37), we thus find that

hr.�/ ;H kC1�i D
˝
H k.r.�/H C ir.D�/ /; �

˛
;

which is manifestly continuous in the variable �. We conclude that r.�/ maps the
domain D.H kC2/ to D.H kC1/. Moreover, for k D 0, we find that

Hr.�/ � r.�/H � ir.D�/

vanishes on D.H 2/.
The inequality (6.36) is proven in a similar fashion. Assume by induction that

(6.36) holds for all � 2 H k
B�.M;K/ and  2 HkC1=2, the case k D 0 being (6.34).

We recall that k ks D kAs k with A D 1CH (see (6.28)). For � 2 H kC1
B� .M;K/

and  2 HkC3=2, we use Ar.�/ D r.�/A C ir.D�/ to see that

kr.�/ kkC1=2 D kAr.�/ kk�1=2 � kr.�/A kk�1=2 C kr.D�/kk�1=2:

By the induction hypothesis with kA kk�jC1=2 D k k.kC1/�jC1=2 (for the first
term) and kD�kjDk�kjC1 (for the second), we find that kr.�/ kkC1=2 is bounded by

kX
jD0

�
k

j

�
k�kj k k.kC1/�jC1=2 C

kX
jD0

�
k

j

�
k�kjC1k kk�jC1=2:

Since
�
k
j

�
C
�
k
j�1

�
D
�
kC1
j

�
, we have

kr.�/ kkC1=2 �

kC1X
jD0

�
k C 1

j

�
k�kj k kkC1�jC1=2;

as required.
Finally, if � 2 H 1

B�.M;K/, then �; D� 2 L2B�.M;K/. By (6.34), the operators
r.�/ and ŒA; r.�/�D ir.D�/ from D.H/ to H extend continuously to bounded oper-
ators H1=2 ! H�1=2. It then follows from a result of Nelson [87, Proposition 2] that
r.�/ is essentially skew-adjoint.

If we estimate k�kj � qk.�/ and k kk�jC1=2 � k kkC1=2 in (6.36), we find that
r.�/WHkC1=2 ! Hk�1=2 satisfies

kr.�/ kk�1=2 � 2
kqk.�/k kkC1=2;

so the linear map H k
B�.M;K/ �HkC1=2 ! Hk�1=2 defined by .�;  / 7! r.�/ is

jointly continuous. For k D 1, we find from (6.36) the slightly stronger estimate

kr.�/ k � kr.�/ k1=2 � q1.�/kA
3=2 k: (6.38)
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In particular, convergence of �n to � in H 1
B�.M;K/ implies strong convergence of

r.�n/ to r.�/ on D.A3=2/.

6.4 Sobolev–Lie algebras

Having established that the positive energy representation d� extends to a contin-
uous map r on H k

B�.M;K/, we would like to determine whether r gives rise to a
Lie algebra representation. Since the spaces H k

B�.M;K/ do not inherit the Lie alge-
bra structure from g=I�, we introduce two spaces of bounded Sobolev sections of
K!M , both equipped with the pointwise Lie bracket.

For an open subset N � M , we define the Lie algebra H k
b
.N;K/ of bounded

parallel Sobolev sections, and a certain subalgebra H k
@
.N;K/ of sections that vanish

to order k at the boundary of the 1-point compactification ofN . As before, the under-
lying measure is the restriction to N of the flow-invariant measure B"� on M . For
convenience of notation, we will denote this measure by � D B"�.

6.4.1 The Lie algebra L2
b
.N; K/ of bounded L2-sections

Let N be an open subset of M , and let � be a measurable section of K! N . Then,

k�k� D
p
�.�; �/

is a measurable function on N . We define k�k1 to be the essential supremum of
k�k� with respect to �, and we define L1.N;K/ to be the Lie algebra of equivalence
classes of essentially bounded, measurable sections of K! N . This is a Banach–Lie
algebra with respect to the norm k�k1, and the Lie bracket coming from the point-
wise bracket of sections. We define L2

b
.N;K/ to be the space of equivalence classes

of sections which are both essentially bounded and square integrable with respect to
�. Since both L2.N;K/ and L1.N;K/ are complete, it follows that L2

b
.N;K/ is a

Banach space with respect to the norm k�k� C k�k1.
Let ck be a constant such that

kŒX; Y �k� � ckkXk�kY k� (6.39)

for all X; Y 2 k. Then, we find

kŒ�; ��k� � ckk�k1k�k� ; (6.40)

kŒ�; ��k1 � ckk�k1k�k1: (6.41)

It follows that the Lie bracket Œ � ; � �WL2
b
.N;K/�L2

b
.N;K/!L1.N;K/ takes values

in L2
b
.N;K/ and is continuous with respect to the norm p0.�/ WD k�k� C k�k1.

In particular, L2
b
.N;K/ is a Banach–Lie algebra, and the inclusion L2

b
.N;K/ ,!

L1.N;K/ is a continuous homomorphism of Banach–Lie algebras. If N � N 0, then
L2
b
.N;K/ is a subalgebra of L2

b
.N 0;K/ in the natural fashion.
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6.4.2 The “parallel” Sobolev–Lie algebras H k
b

.N; K/

Recall from Definition 4.6 that a one-parameter group .t /t2R of automorphisms of
K!M gives rise to a one-parameter group .˛t /t2R of automorphisms of

g D �c.M;K/:

In the same way, we obtain a one-parameter group of automorphisms of L2
b
.M;K/.

Indeed, since the Killing form is invariant under automorphisms, k˛t .�/k� D
k�k� ı M;t , so that, in particular, k˛t .�/k1 D k�k1. Further, since the measure
� D B"� is invariant under the flow M;t (Theorem 5.7), we find k˛t .�/k� D k�k� .

Since ˛t is a one-parameter group of unitary transformations of the Hilbert space
L2�.M;K/, it is generated by a skew-adjoint operator D. We define H 1

� .N;K/ to
be the intersection of its domain with L2�.N;K/, and we define H 1

b
.N;K/ to be

the space of all � 2 H 1
� .N;K/, where both k�k1 and kD�k1 are finite. In other

words, H 1
b
.N;K/ is the space of equivalence classes of essentially bounded, square

integrable sections � of K! N such that the L2-limit

D.�/ WD L2- lim
t!0

1

t
.˛t .�/ � �/

exists, and kD.�/k1 is finite.

Proposition 6.23. The space H 1
b
.N;K/ is a Lie subalgebra of L2

b
.N;K/, and the

generator DWH 1
b
.N;K/! L2

b
.N;K/ satisfies

D.Œ�; ��/ D ŒD.�/; ��C Œ�;D.�/� for all �; � 2 H 1
b .N;K/: (6.42)

Proof. Let �; � 2H 1
b
.N;K/, and denote by L2-lim the limit with respect to the norm

k�k� . First, we show that Œ�; �� is in the domain of D:

D.Œ�; ��/ D L2- lim
t!0

1

t
.˛t .Œ�; ��/ � Œ�; ��/

D L2- lim
t!0

ŒD�; ˛t .�/�C L
2- lim
t!0

�
1

t
.˛t .�/ � �/ �D.�/; ˛t .�/

�
C L2- lim

t!0
Œ�;
1

t
.˛t .�/ � �/� D ŒD�; ��C Œ�;D��:

In the last step, we used the inequality (6.40) three times. Since kD�k1 is bounded
and L2-limt!0 ˛t .�/ D �, it follows from (6.40) that the first term is given by

L2- lim
t!0

ŒD�; ˛t .�/� D ŒD�; ��:

Similarly, since k�k1 is bounded andL2-limt!0
1
t
.˛t .�/� �/DD.�/, the third term

equals Œ�;D.�/�. To see that the second term is zero, note that k˛t .�/k1 D k�k1. It
then follows from (6.40) and the fact that L2-limt!0

1
t
.˛t .�/ � �/ �D.�/ D 0.
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This shows not only that Œ�; �� is in the domain of D, but also that (6.42) holds.
By (6.41), it follows that kD.Œ�; ��/k1 � ck.kD�k1k�k1Ck�k1kD�k1/ is finite,
so that Œ�; �� 2 H 1

b
.N;K/.

This allows us to define parallel Sobolev–Lie algebras of order k 2 N. We set

H 0
b .N;K/ WD L

2
b.N;K/;

and define H 1
b
.N;K/ as above. For k � 2, we define H k

b
.N;K/ as

H k�1
b .N;K/ \D�1.H k�1

b .N;K//:

In other words, � is in H k
b
.N;K/ if both � and D� are in H k�1

b
.N;K/.

Proposition 6.24. The space H k
b
.N;K/ is a Lie subalgebra of H k�1

b
.N;K/.

Proof. The proof is by induction on k, where k D 1 is Proposition 6.23. If �; � 2
H k
b
.N;K/, then �;D.�/; �;D.�/ 2H k�1

b
.N;K/. SinceH k�1

b
.N;K/ is a Lie algebra,

it follows that D.Œ�; ��/ D ŒD.�/; �� C Œ�; D.�/� is in H k�1
b

.N;K/. Thus, Œ�; �� 2
H k
b
.N;K/, as required.

On H k
b
.N;K/, we define for every n 2 ¹0; : : : ; kº the derived norms

k�kn;1 WD kD
n�k1 and k�kn WD kD

n�k� :

The parallel C k-norm qCk and the parallel Sobolev norm qk are defined by

qCk .�/ WD

kX
nD0

k�kn;1 and qk.�/ WD

kX
nD0

k�kn; (6.43)

respectively. We equipH k
b
.N;K/ with the topology derived from the combined norm

pk.�/ WD

kX
nD0

k�kn;1 C k�kn: (6.44)

Note that for � 2H k
b
.N;�/, we have pk�1.�/�pk.�/, but also pk�1.D.�// � pk.�/.

It follows that both the inclusion �WH kC1
b

.N;K/ ,! H k
b
.N;K/ and the derivative

DWH kC1
b

.N;K/! H k
b
.N;K/ are continuous.

Proposition 6.25. For every k � 0, H k
b
.N;K/ is a Banach–Lie algebra with respect

to the norm pk . The Lie bracket is separately continuous with respect to the Sobolev
norm qk .

Proof. By the derivation property and (6.39), we have

kDn.Œ�; ��/k� � ck

nX
jD0

�
n

j

�
kDj �k�kD

n�j�k� :
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Since kŒ�; ��kn D kDn.Œ�; ��/k� and kŒ�; ��kn;1 D kDn.Œ�; ��/k1, it follows that

kŒ�; ��kn � ck

nX
jD0

�
n

j

�
k�kj;1k�kn�j ;

kŒ�; ��kn;1 � ck

nX
jD0

�
n

j

�
k�kj;1k�kn�j;1:

Taking n D k and estimating the binomial coefficients by 2k , it follows that

qk.Œ�; ��/ � 2
kckqCk .�/qk.�/; (6.45)

qCk .Œ�; ��/ � 2
kckqCk .�/qCk .�/: (6.46)

This shows that the Lie bracket is continuous for the norm pk , and separately contin-
uous for the Sobolev norm qk .

To show that H k
b
.N;K/ is complete, we note that H 0

b
.N;K/ D L2

b
.N;K/ is a

Banach space, and proceed by induction on k. Let �n 2 H k
b
.N;K/ be a sequence

with pk.�n � �m/! 0. Then, pk�1.�n � �m/! 0 and pk�1.D.�n/ �D.�m//! 0,
so by induction, there exist �;„ 2 H k�1

b
.N;K/ with

pk�1.� � �n/! 0 and pk�1.„ �D.�n//! 0:

SinceDWH 1
� .M;K/!L2.M;K/ is the generator of a strongly continuous 1-parame-

ter group of unitary operators, Stone’s theorem implies that it is selfadjoint, and
hence, in particular, closed. It follows that � lies in the domain of D, and D.�/ D „
lies in H k�1

b
.N;K/. Thus, � 2 H k

b
.N;K/, and

pk.� � �n/ � pk�1.� � �n/C pk�1.D.�/ �D.�n//! 0:

We denote by H1
b
.N;K/ the Fréchet–Lie algebra arising from the inverse limit

of the Banach–Lie algebras H k
b
.N;K/ with respect to the natural inclusions

�WH kC1
b

.N;K/ ,! H k
b .N;K/:

The derivative DWH1
b
.N;K/! H1

b
.N;K/ is a continuous derivation, giving rise

to the Fréchet–Lie algebra H1
b
.N;K/ ÌRD.

6.4.3 Boundary conditions and the Lie algebras H k
@

.N; K/

Let H 1
@
.N;K/ be the closure of �c.N;K/ in H 1

b
.N;K/ with respect to the parallel

Sobolev norm q1.�/ D k�k� C k�k1;� .

Proposition 6.26. The space H 1
@
.N;K/ is a closed Lie subalgebra of H 1

b
.N;K/. In

particular, it is a Banach–Lie algebra with respect to the subspace topology, induced
by the norm p1.�/ of (6.44).
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Proof. Since H 1
@
.N;K/ is by definition closed with respect to the Sobolev norm

q1.�/, it is a fortiori closed with respect to the larger norm p1.�/ that defines the
Banach space topology onH 1

b
.N;K/. AsH 1

@
.N;K/ is a closed subspace of a Banach

space, it is a Banach space itself.
It remains to show that H 1

@
.N;K/ is closed under the Lie bracket. For every

� 2 H 1
b
.N;K/, the linear operator ad� WH 1

b
.N;K/! H 1

b
.N;K/ is continuous with

respect to the norm q1.�/, as

q1.ad�.�// � 2ckqC1.�/q1.�/

by (6.45). If � 2 �c.N;K/, then ad.�/ maps �c.N;K/ to �c.N;K/. As ad� is con-
tinuous for the norm q1, it also maps H 1

@
.N;K/ to H 1

@
.N;K/. It follows that, for all

� 2 H 1
@
.N;K/, ad� maps �c.N;K/ to H 1

@
.N;K/. By continuity with respect to q1,

it therefore maps H 1
@
.N;K/ to H 1

@
.N;K/, and we conclude that H 1

@
.N;K/ is closed

under the Lie bracket.

For k � 2, we define H k
@
.N;K/ as the space of all � 2 H k

b
.N;K/ such that both

� and D.�/ lie in H k�1
@

.N;K/.

Proposition 6.27. The space H k
@
.N;K/ is a closed Lie subalgebra of H k

b
.N;K/. In

particular, it is a Banach–Lie algebra with respect to the subspace topology, induced
by the norm pk.�/ of (6.44).

Proof. We proceed by induction on k, the case k D 1 being Proposition 6.26. Recall
that both the inclusion �WH k

b
.N;K/ ,! H k�1

b
.N;K/ and the derivative

DWH k
b .N;K/! H k�1

b .N;K/

are continuous. Since

H k
@ .N;K/ D �

�1.H k�1
@ .N;K// \D�1.H k�1

@ .N;K//

is the intersection of two closed subspaces, it is a closed subspace ofH k
b
.N;K/ itself.

To show that it is closed under the Lie bracket, suppose that �; � 2 H k
@
.N;K/, so that

�; �; D�;D� 2 H k�1
@

.N;K/. As H k�1
@

.N;K/ is a Lie algebra, it follows that Œ�; ��
and D.Œ�; ��/ D ŒD.�/; ��C Œ�; D.�/� are both in H k�1

@
.N;K/. From this, one sees

that also Œ�; �� 2 H k
@
.N;K/.

Note that the 2-cocycle !.�; �/ D hD�; �i� on g is continuous for the Sobolev
norm q1.�/ and hence extends uniquely toH k

@
.N;K/. This defines a continuous cen-

tral extension of H k
@
.N;K/,

RC ˚! H
k
@ .N;K/:
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Define the Fréchet–Lie algebraH1
@
.N;K/ as the inverse limit of the Banach–Lie

algebras H k
@
.N;K/ under the natural inclusions H k

@
.N;K/! H k�1

@
.N;K/. Since

DWH1
@
.N;K/!H1

@
.N;K/ is a continuous derivation, we obtain the double exten-

sion of Fréchet–Lie algebras�
RC ˚! H

1
@ .N;K/

�
ÌRD:

6.4.4 Intervals and blocks

Suppose thatN '†� I , where I �R is an open, not necessarily finite interval with
the Lebesgue measure dt , and † is a .dM � 1/-dimensional manifold with locally
finite measure �0. The bundle KjN ' N � k is trivial, and the translation by t 0 sends
.x; t/ to .x; t � t 0/ wherever it is defined. In this cartesian product situation, it will be
useful to separate the variables in † from those in I .

Define a bilinear map

T WL2b.†;R/ � L
2
b.I; k/! L2b.N; k/; T .f; �/.x; t/ D f .x/�.t/:

It is continuous since kf �k� D kf k�0k�kdt and kf �k1 D kf k1k�k1.

Proposition 6.28. The product T .f; �/ D f � defines a continuous bilinear map

T WL2b.†;R/ �H
k
@ .I; k/! H k

@ .N; k/:

Proof. Since kf �k� D kf k�0k�kdt , and since time translation acts only on � , it fol-
lows that f � 2D.D/ if and only if � 2D.D/, andD.f �/D fD.�/. From this, one
derives that T maps L2

b
.†;R/ �H k

b
.I; k/ to H k

b
.N; k/, with kf �kn D kf k�0k�kn

and kf �kn;1 D kf k1k�kn;1.
Suppose that � 2 H 1

@
.I; k/, so that there exists a sequence �n 2 C1c .I; k/ with

k� � �nkdt ! 0 and kD.�/�D.�n/kdt ! 0. For every f 2 L2
b
.†;R/, it is possible

to find a sequence fn 2 C1c .†;R/ with kf � fnk�0 ! 0. Then

kf � � fn�nk� � kf � fnk�0k�kdt C kfnk�0k� � �nkdt ! 0:

Similarly, one finds that kD.f �/ �D.fn�n/k� D kfD.�/ � fnD.�n/k ! 0. It fol-
lows that T maps L2

b
.†;R/ �H 1

@
.I; k/ to H 1

@
.N; k/. From D.f �/ D fD.�/, one

then finds that it maps L2
b
.†;R/ �H k

@
.I; k/ to H k

@
.N; k/.

In Lemma 7.10, we will need the above result in the following form.

Corollary 6.29. Let E � † be a subset of finite measure, and let �E be the corre-
sponding indicator function. Then, the map �E WH k

@
.I; k/ ! H k

@
.N;K/ defined by

�E .�/.x; t/ D �E .x/�.t/ is a continuous Lie algebra homomorphism.
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6.5 The continuous extension theorem

It follows from Proposition 6.20 that the Lie algebra representation d� extends from
g D �c.M;K/ to L2B�.M;K/. In the following theorem, we show that this extension
yields a Lie algebra representation of RC ˚! H 1

@
.M;K/, which is compatible with

the derivation DWH 1
@
.M;K/! L2

b
.M;K/.

Theorem 6.30 (Continuous extension). Let � be a positive energy representation of
yG with derived representation d�, and let N �M be an open subset.

(a) There exists a linear map r from L2
b
.N;K/ to the unbounded, skew-sym-

metric operators on H with domain D.H/ such that r.�/ coincides with
d�.�/ for all � 2 �c.N;K/ and  2 H1.

(b) This defines a representation of the Banach–Lie algebra RC ˚! H 1
@
.N;K/

by essentially skew-adjoint operators. For �; � 2 H 1
@
.N;K/, the operators

r.�/ and r.�/ map D.H 2/ to D.H/. On D.H 2/, we have the commutator
relation

Œr.�/; r.�/� D r.Œ�; ��/C i!.�; �/1; (6.47)

where !.�; �/ D hD�; �i�.

(c) If � 2 H 1
@
.N;K/, then D� 2 L2

b
.N;K/ and

Œd�.D/; r.�/� D r.D�/:

In particular, we obtain a positive energy representation of the Fréchet–Lie
algebra .RC ˚! H1@ .N;K// ÌRD.

Proof. The derived representation d� is defined on the Lie algebra

yg D
�
RC ˚! g

�
ÌRD:

By Proposition 6.20, we obtain an extension r of d� to L2B�.M;K/, hence, in partic-
ular, to L2

b
.N;K/. From Proposition 6.22, we see that r.�/ is essentially skew-adjoint

for � in the smaller spaceH 1
B�.M;K/ � L

2
B�.M;K/, and that Œd�.D/; r.�/�D r.� 0/

for all � 2 H 1
B�.M;K/, hence, in particular, for � 2 H 1

@
.N;K/ � H 1

B�.M;K/.
By Cauchy–Schwarz and the inequality (6.38), we have

jhr.�/ ; r.�/�ij � kA3=2 kkA3=2�kq1.�/q1.�/ (6.48)

for all  ; � 2 D.H 2/ and �; � 2 H 1
B�.M; g/, where A WD 1CH and q1 is the par-

allel Sobolev norm of (6.43). Further, by Proposition 6.22, the products r.�/r.�/ and
r.�/r.�/ are well defined on D.H 2/. Since

h ; Œr.�/; r.�/��i D �hr.�/ ; r.�/�i C hr.�/ ; r.�/�i;
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it follows that the bilinear form

H 1
B�.M;K/ �H

1
B�.M;K/! C; .�; �/ 7! h ; Œr.�/; r.�/��i

is continuous with respect to the parallel Sobolev norm q1. In particular, its restriction
to

H 1
@ .N;K/ � H

1
B�.M;K/

is continuous with respect to q1.
Similarly, using Cauchy–Schwarz and (6.38), we find for �; � 2 H 1

@
.N;K/ that

jh�; r.Œ�; ��/ ij � k�kkA3=2 kq1.Œ�; ��/:

Since the Lie bracket on H 1
@
.N;K/ is separately continuous for the norm q1 by

Proposition 6.25, it follows that the bilinear formH 1
@
.N;K/�H 1

@
.N;K/!C defined

by
.�; �/ 7! h�; r.Œ�; ��/ i

is separately continuous with respect to q1.
As the cocycle !.�; �/ D hD�; �i� extends to a bilinear map on H 1

@
.N;K/ that

is continuous with respect to q1, the bilinear form

.�; �/ 7!
˝
�;
�
Œr.�/; r.�/� � r.Œ�; ��/ � i!.�; �/

�
 
˛

is separately continuous for the q1-topology. Since it vanishes on the dense subset
�c.N;K/ � H

1
@
.N;K/, it is identically zero. It follows that

Œr.�/; r.�/� D r.Œ�; ��/ C i!.�; �/ 

for all 2D.H 2/. The operator r.Œ�;��/C i!.�;�/1 with domain containing D.H/

is thus an essentially skew-adjoint extension of the operator Œr.�/; r.�/� with domain
D.H 2/.

6.5.1 Semibounded representations

The concept of a semibounded representation, introduced in [73,75], is much stronger
than that of a positive energy condition. As results in [81] show, it provides enough
regularity to lead to a sufficient supply of C �-algebraic tools to decompose represen-
tations as direct integrals.

Definition 6.31 (Semibounded representations). A smooth representation .�;H / of
a locally convex Lie group G is called semibounded if the function

s�Wg! R [ ¹1º; s�.x/ WD sup.Spec.id�.x/// (6.49)

is bounded on a neighborhood of some point x0 2 g. Then, the set W� of all such
points x0 is an open Ad.G/-invariant convex cone in g.
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For Lie groups G which are locally exponential or whose Lie algebra g is bar-
relled1, a semibounded representation is bounded if and only if W� D g [73, The-
orem 3.1 and Proposition 3.5]. The positive energy representation r of H 1

@
.N;K/

fulfills the following semiboundedness condition.

Proposition 6.32. Let � 2 L2B�.M;K/, and let t > 0. Then

�k�kB1� � 9k�k
2
�dk.dM C 1/

2=t � inf.Spec.ir.tD ˚ �///:

In particular, the spectrum of tH ˙ ir.�/ is bounded below for every t > 0, and this
bound is uniform on an open neighborhood of D in L2B�.M;K/ ÌRD.

Proof. Using Proposition 6.20, one finds that the map L2B�.M;K/! C defined by

� 7! h�� ˙ ir.�/i 

is continuous for every  2 D.H/, and every " > 0. It is non-negative on the dense
subspace �c.M;K/ by Theorem 6.17, and hence on all of L2B�.M;K/ by continuity.
If k�k� D 0, then r.�/ D 0, and the proposition holds trivially. If k�k� ¤ 0 and
" WD t=k�k�, then

�� D tH C k�kB"�1

satisfies 0 � h�� ˙ ir.�/i , and thus

�k�kB"�k k
2
� h ; tH ˙ ir.�/;  i:

Since
k�kB"� � k�kB1� C 9k�k�dk.dM C 1/

2=";

the result follows by substituting " D t=k�k�.

Corollary 6.33. The positive energy representation d� of the Lie algebra�
RC ˚! �c.M;K/

�
ÌRD

is semibounded and the cone W� contains the open half space�
RC ˚! �c.M;K/

�
�RCD:

Proof. This follows from Proposition 6.32 because d� comes from a group rep-
resentation, the central element C is represented by a constant, and the inclusion
�c.M;K/ ,! L2B�.M;K/ is continuous.

1These are the locally convex spaces for which the Uniform Boundedness Principle holds.
All Fréchet spaces and locally convex direct limits of Fréchet spaces are barrelled, which
includes, in particular, LF spaces of test functions on noncompact manifolds.
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6.5.2 Analytic vectors

A vector  in a Banach space X is called analytic for an unbounded operator A
on X if  2

T
n2N D.An/, and the series

P1
nD0

sn

nŠ
kAn k has positive radius of

convergence RA > 0.

Lemma 6.34. Let � 2 H 2
@
.N;K/, and considerH and r.�/ as unbounded operators

on H . If  2H is an analytic vector forH , then it is also analytic for r.�/. If  has
radius of convergence RH for H , then the exponential series

exp.r.�// D
1X
nD0

1

nŠ
r.�/n 

is absolutely convergent on the ball defined by

p2.�/ < �
1

2ck
log

�
1 �

.2ck/
2

.ck C 1/2

�
1 � exp

�
�
.ck C 1/

2

2ck
RH

���
: (6.50)

Proof. We apply [86, Theorem 1] to r.�/ and A D 1CH , considered as unbounded
operators on the Banach space H1=2. For � 2 H 1

B�.M;K/ and  2 D.H 2/ � H1=2,
the inequality (6.38) yields

kr.�/ k1=2 � q1.�/kA k1=2: (6.51)

By (6.35), we have adr.�/A D �ir.D�/. If � 2 H 2
@
.N;K/, then by definition, both �

and D� are in H 1
@
.N;K/. It follows that also adn�1� .D�/ 2 H 1

@
.N;K/ for n � 1. By

(6.47) and induction, we find

adnr.�/.A/ D �iadn�1r.�/.r.D�// D �ir.adn�1� .D�//C !.�; adn�2� .D�//1 (6.52)

as an equality of unbounded operators from D.H 2/ to H1=2. From (6.40) and (6.45),
we infer that

kadn� .D�/kB"� � .ckk�k1/
n
kD�kB"�; (6.53)

q1
�
adn� .D�/

�
� .2ckqC1.�//

nq1.D�/: (6.54)

Next we estimate kadnr.�/.A/ k1=2. Applying (6.52) and noting that

j!.�; �/j D jhD�; �i�j � kD�k�k�k� and kD�k� � kD�kB"�;

the second term on the right-hand side of (6.52) satisfies

k!.�; adn�2� .D�// k1=2 � .ckk�k1/
n�2
kD�k2B"�k k1=2: (6.55)

Applying (6.51) and (6.54) to the first term on the right-hand side of (6.52), we find

kr.adn�1� .D�// k1=2 � .2ckqC1.�//
n�1q1.D�/kA k1=2: (6.56)
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Combining (6.55) and (6.56) with (6.52), and using that k k1=2 � kA k1=2, we find

kadnr.�/.A/ k1=2 � cnkA k1=2;

with
cn D q1.D�/

�
kD�kB"� C .2ckqC1.�//

�
.2ckqC1.�//

n�2: (6.57)

Since the series

�.s/ WD

1X
nD1

cn

nŠ
sn

has positive radius of convergence, we may now fix some t0 > 0 with �.t0/ < 1 and
assume that 0 � s; t � t0. Applying [86, Theorem 1] to H1=2 guarantees that for

$.s/ WD

Z s

0

.1 � �.t//�1dt;

we have
1X
nD0

sn

nŠ
kr.�/n k1=2 �

1X
nD0

.c �$.s//n

nŠ
kAn k1=2; with c WD q1.�/

as in (6.51). Since kr.�/n k � kr.�/n k1=2 and kAn k1=2 � kAnC1 k, this yields

1X
nD0

sn

nŠ
kr.�/n k �

1X
nD0

.c �$.s//n

nŠ
kAnC1 k: (6.58)

To get an explicit estimate on the radius of convergence, note that all norms of (deriva-
tives of) � occurring in (6.57) are dominated by p2.�/ (cf. (6.44)). The estimate
cn � ab

n with

a WD .1C 2ck/=.2ck/
2 and b WD 2ckp2.�/

yields �.s/ � a.ebs � 1/. Accordingly, �.t0/ < 1 is ensured if

bt0 < log
�
1C

1

a

�
D � log

�
1 �

1

1C a

�
:

In particular, s D 1 is allowed if p2.�/ < 1
2ck

log.1C 1
a
/. Substituting this in

$.s/ D

Z s

0

.1 � �.t//�1dt

and integrating, we obtain

$.s/ � �
1

.1C a/b
log..1C a/e�bs � a/: (6.59)
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If  is an analytic vector forH , it is analytic forAD 1CH with the same radius
of convergence RH . The right-hand side of (6.58) therefore converges absolutely if
c �$.s/ < RH , where c D q1.�/. Since q1.�/ � p2.�/, we find c

b
�

1
2ck

, and hence
c

.1Ca/b
� 2ck=.ck C 1/

2. Substituting this in (6.59), we find that c �$.s/ � RH if

bs � � log
�
1 �

1

1C a

�
1 � exp

�
�
.ck C 1/

2

2ck
RH

���
< � log

�
1 �

1

1C a

�
:

Putting s D 1, and substituting a and b in the above equation, we find that (6.58)
converges if p2.�/ satisfies (6.50).


