Chapter 6

Continuity properties

Having determined which cocycles are compatible with the Cauchy—Schwarz esti-
mates, we now turn to the classification of positive energy representations for the
central extensions that correspond to these cocycles. This will be achieved in Chap-
ter 7, using continuity and extension results developed in the present chapter.

In this chapter, we assume that the flow vps is nowhere vanishing. Further, we
assume that the fibers of & — M are simple Lie algebras. This entails no loss of
generality compared to semisimple fibers, as one can switch to the Lie algebra bundle
& — M in that case by the results in Section 4.2.

In Section 6.1, we use the Cauchy—Schwarz estimate 5.12 to further reduce the
problem to the case where & has compact simple fibers. In Section 6.2, we use the
refined Cauchy—Schwarz estimate of Lemma 5.13 to bound idp(§) in terms of the
Hamilton operator H, the L?-norm |[|§||,, with respect to the measure i of Theo-
rem 5.7, and the L?-norm ||€|| p,, with respect to the product of u with a suitable upper
semi-continuous function B: M — R ™. In Section 6.3, we interpret these estimates as
a continuity property, and use this to define an extension of dp to a space H " (M, R)
of sections that are differentiable in the direction of the orbits, but merely measur-
able in the transversal direction. In Section 6.4, we construct a subspace H al (M, K)
of bounded sections that is closed under the pointwise Lie bracket. Finally, in Sec-
tion 6.5, we show that by extending to H M (M, X) and restricting to H al (M, ), one
obtains a representation of the latter Lie algebra that is compatible with the Hamil-
tonian H. On a subalgebra H 32 (M, &) of sections that are twice differentiable in the
orbit direction, we then show that there is a dense set of uniformly analytic vectors.
In Chapter 7, this will be needed in order to integrate the Lie algebra representation
to the group level.

6.1 Reduction to compact simple structure algebras

As a direct consequence of Lemma 5.12, we see that dp(Ly&) vanishes for all £ € g
with [§, Ly€] = 0 and ||L,&||,, = 0. We use this to show that every positive energy
representation factors through a gauge algebra with compact structure algebra.

Proposition 6.1. For ¢ = I'c(M, &) with vys without zeros, we have
g = Dg +[Dg. Dg].
Considered as subsets of § = R @4 (g Xp R), with w as in Theorem 5.7, we have

R &, g = Dg+ [Dg, Dgl.
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Proof. By a partition of unity argument, it suffices to prove this for g = C°(U, £),
where U = [ x Uy is a good flowbox (cf. Definition 5.1) and

_4
o dt

(cf. Lemma 5.2). If f € C2°(U,¥) and X € ¥, then fX liesin Dg C q if and only if

D§

folx) = /_ £t x)dt

is zero in C2°(Up, R). Fix { € C2°(1,R) with [ ¢(t)dt =0and [ {2(t)dt = 1.
Then,
X =(f =8 f)X +foX with (f =& fo)X € Da.

To show that ¢2 foX € [Dg, Dg], choose y € C°(Up, ¥) such that y|spp(fo) = L,
and choose Y;, Z; € £ such that X = Z:Zl [Y;, Z;]. Since

,
2 lEhYitnZi) = 8 foX
i=1

with {foY;, (xZ; € Dg, we have

X =(f =X+ ) [tfoYi.{xZil € Dg+[Dg. Dgl.  (6.1)

i=1

This holds for the Lie bracket in g as well as for the Lie bracket in §. The relation

/_Z g‘%;dz =0

implies w({foYi, {xZ;) = 0. This shows that ¢ = Dg + [Dg, Dg] in g and also
g € Dg + [Dg, Dg] in g. Since w is not identically zero on Dg x D, the subspace
Dg + [Dg, Dg] of g cannot be proper and thus RC C Dg + [Dg, Dg]. This shows
that

g =RC + g = Dg+ [Dg, Dg]. [

Theorem 6.2 (Reduction to compact structure algebra). Let M; & M be a connected
component such that the (simple) fibers of &|pm; are not compact. Suppose that vy
is non-vanishing on M;. Then, after twisting by a functional y € T'c(M;, K&)' if nec-
essary, every positive energy representation dp of U'e(M, &) vanishes on the ideal
r.(M;, K).

Proof. By a partition of unity argument, it suffices to consider the restriction of dp to
C>(U,¥) for a good flowbox U € M; (cf. Definition 5.1). Every £ € DC*° (U, ¥) is
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a finite sum of elements of the form f'X, with f € C2°(U,R) and X € f. Since ¥ is
noncompact, i vanishes on M; by Theorem 5.7. Since

If'Xlly =0 and [fX; f'Xi] =0,

it follows from Lemma 5.12 that, after twisting by y so as to change w to w,, v, we
have dp(f’X;) = 0. Since dp(DC°(U, £)) = {0}, Proposition 6.1 yields

dp(C(U. %)) = {0}.
Thus, dp(I'c (M;, K)) = {0}, as required. [

This shows that we can restrict attention to bundles & — M with compact simple
fibers. (Note that the result requires a non-zero vector field on M, so this is compat-
ible with the unitary highest weight representations of C*°(S!, su1y ,—;(C)) studied
in [47].) In conjunction with Proposition 6.1, Lemma 5.12 can also be used to prove
the following.

Corollary 6.3. If ¢ = I'c(M, &), where & — M has compact simple fibers, then,
after twisting by x € T'e(M, )" if necessary, every positive energy representation dp
of g vanishes on the ideal

I = (£ € g ullx € MiE(x) # 0}) = 0}
of sections that vanish [1-almost everywhere.

Proof. By a partition of unity argument, we may assume that g = C°(U, ¥), with
U € M a good flowbox (Definition 5.1). Let £ € I, and consider the open subset
O¢ := {x € M;£(x) # 0}, which is the “open support” of £. Since £ is a linear com-
bination of terms fX with smaller or equal open support, we may assume that £ =
SfX for feCP(U,R)and X € £.If fX € Dg,then fX € [, implies || fX|, =0
and hence dp(fX) = 0 by Lemma 5.12. Decompose f X as in equation (6.1),

;
X =(f =X+ [LfoYi.ixZi).
i=1
As O is open and p = dt @ 1o, we have u(O¢) = 0 if and only if wo(p(O¢))
vanishes, where p: U — Uj is the projection on the orbit space. Now (f — ¢2 fo) X
and {foY; are in Dg and vanish outside p~! p(O¢), so that their images under dp
vanish. Indeed, as these are both of the form Lyn with ||Lynl|,, = 0 and [Lyn,n] =0,
this follows from Lemma 5.12. We conclude that dp( fX) = 0, as required. [

6.2 Extending the estimates from Dg to g

To see that dp factors through a linear map on g/1,,, we used the Cauchy—Schwarz
estimate of Lemma 5.12. Using the refined Cauchy—Schwarz estimate of Lemma 5.13,
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we then extend dp to a linear map on m the L?-completion of g/1,, with respect
to the measure .

Note that an extension to the subspace Dg/1,, < m can already be achieved
using the “ordinary” Cauchy—Schwarz estimate of Lemma 5.12. Indeed, for £ € Dg,
one can use (5.11) to show that dp(§) satisfies an operator inequality of the form

+idp(§) < [[llu(e1 + BH) (6.2)

for certain constants o, 8 > 0. With this, one can prove that dp: Dg/I,, — End(#*>°)
is weakly continuous with respect to the L2-topology on Dq/I w»> and that it extends
to the L2-completion Dg/1,,.

In order to extend dp to the full space m however, we will need an analog of
(6.2) that holds not just for £ € Dg, but for all £ € g. This is Proposition 6.16, which
we prove using the refined Cauchy—Schwarz estimate of Lemma 5.13.

6.2.1 The local gauge algebra with fibers ¥ = su (2, C)

First, we restrict our attention to the compact structure algebra ¥ = su(2, C). We will
later derive the general case from this example. Let « (a,b) = —tr(ab) be the invariant
bilinear form on £, normalized so that elements x with

Spec(ad x) = {0, £2i} satisfy «(x,x) = 2.

Further, let U’ C U be a good pair of flowboxes in the sense of the following
definition. We write U € V if the closure of U is contained in an open subset of V.

Definition 6.4 (Good pair of flowboxes). Let U’ >~ I’ x Ujand U >~ I x Uy be good
flowboxes in the sense of Definition 5.1, and let U’ € U. We call U’ C U a good pair
of flowboxes if I’ € I and U;j € U.

Remark 6.5. Note that Uy = Uy = {0} is allowed! Unless specified otherwise, we
assume that I’ = (=7’/2,T'/2)and I = (-T/2,T/2) with0 < T’ < T < o0.

Remark 6.6. Recall that M is equipped with a flow-invariant measure (., which takes
the form dt ® o on I x Uyp. To a good pair of flowboxes, we can therefore assign

the number
T wolo)  p(U)
T-T7 T  T(T-T)
which will play a significant role throughout this chapter. If this is not too large, we
think of the flowboxes as “sufficiently quadratic”.

In view of Lemma 5.2, we restrict attention to the case where the Lie algebra is
g =C>( xUp,¥),andv = 0,. Forz € C(U’,C), we define £(z) € g by

E(2) (1 u) = (_28714) Z(’(;“)) (6.3)
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and note that [£, %E] = 0. We also consider the element 1 € g defined by

. it(t) 0
n(t.u) = x(u)( 0 _ir(z)), (6.4)

where t € C(I,R) and y € C¥(Up, R) are such that t(t) = ¢ for t € I’ and
() = 1foru e Uj. It also satisfies

rir =0
o |

Thus, x(u)t(t)=t on U’, hence, in particular, on the support of every ze C>°(U’, C).
On C°(R, C), we define the usual scalar product

(fgdari= [ Fswar
and the Fourier transform
F(k) :=/ f()e ™*ds, k eR.

For z € C°(U, C), we will denote by Z(k, u) the “parallel” Fourier transform, i.e.,
the Fourier transform of ¢ > z (¢, u) evaluated at k.

We can choose t such that ||’/ ||5lt is arbitrarily close to TT_—TT// and we can choose
0 < y < 1sothat ||)(||I%L0 < wo(Up). Thus, ||Xf/||i can be chosen arbitrarily close to
7T_—TT/,/JLO(UO). Therefore, for every ¢ > 0, there exists an n € C°(U, C) as in (6.4)
satisfying

5 TT
I Lvnll;, = ZWILO(UO) +e. (6.5)
For 1 as in (6.4), Lemma 5.13 yields the following estimate.

Proposition 6.7. Letz € C°(U’, C), and let k € R be such that Z(k,u) = 0 for all
u € Uy. Then, we have

1 1
ap(eenl, < 41212 (g — kG ap(Lm)y + kLI )

Proof. Since [£(z),&(z)'] = 0 and [5, '] = 0, we may apply Lemma 5.13. First, we
evaluate the left-hand side of inequality (5.12). Since t(¢) y(u) = ¢ on supp(£(2)),
we have ad, (£(z)) = £(2tiz). Since Ly£(z) = £(2’), we have

e (LyE(2) = £/,

Ask(E(z),Lyn) =0forallz € C°(U’,C), we have

e—s ady _ 1 e—2tis -1 , B
(g wsen. L) ={5(“7) L) =0
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On the right-hand side of inequality (5.12), we have || Ly& (2)|% = 2||z’[|%. We thus
obtain

. 2
lap(e(e'e o0l < 81212 () + stiap(Lany + 1L,

forall s € R and z € C2°(U’, C). Note that w € C°(U’, C) is of the form w =
z'e215! for some z € C2°(U, C) if and only if the parallel Fourier transform o (k, u)
vanishes for k = —2s. Since in that case ||w||i = ||z’||%, the proposition follows. m

We thus obtain a 1-parameter family of inequalities indexed by k € R, the case
k = 0 reducing to the Cauchy—Schwarz estimate because z(0, u) = 0 is equivalent
to £(z) € Dg. The idea of the following proposition is to lift the requirement that
the Fourier transform vanish by showing that every z € C2°(U’, C) can be written,
in a controlled way, as the sum of two functions whose parallel Fourier transform
vanishes for some k € R.

Proposition 6.8. There exist a,b € R such that, for all z € C°(U’, C) for which
U' =1'x U contained in U = I x Uy, we have

(i ap(E()), < @+ b(H)EGI? (6.6)

for constants a and b that depend on the interval lengths T = |I| and T' = |I'| and
on po(Uy), but not on z or .

Proof. Let k be an arbitrary real number not equal to zero, and choose a function
e CX(',C) with E(O) # 0 and E(k) = 0. (Such functions certainly exist. For
instance, one can choose () = o (t)e'** for some « € C(I',R) with E(O) =
a/(—k) = —ik@(—k) # 0.) If we split z into z = zo + zx with

ze(tu) == 2(0,u)(0)'¢(t) and zo:=z — zx,

then Zo(0,u) = 0 and Zj (k, u) = 0. We apply Proposition 6.7 separately to both terms
on the right-hand side of

[(idpE(2N)y | = [{idp(§(zo))w | + [{idp(§(z1)))y |

to obtain

k2 TT/
13Nyl = 2ol )y + 2Dzl )y + 5w
(6.7)
Indeed, the term k (idp(Lyn))y can be assumed non-positive by switching k with —k
and ¢ with ¢ if necessary. The term ||Lvn||i is then estimated by (6.5), and we take
the limit ¢ |, 0.
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Since |2(0,u)|* < T'||z (-, w)|3,, we have [|Z(0, -)|17, < T"||z |7, It follows that
|zx || can be estimated in terms of ||z ||, as

Izklle = 12CL 0o 16O Ellar < VTEO) ™ Earllz -
Similarly, ||zo||, can be estimated in terms of ||z||,, by means of
Izollw = 1zl + Izl

and the above estimate on ||z || .. Substituting this into (6.7), we derive the estimate

. o 2 k2 TT'
(ap(EEN}, = 412131+ 2VTIEO 6l (g + 5 Ui )
(6.8)
Since ||€(z2) ||i = 2||z||?, equation (6.8) is equivalent to (6.6) with the constants
k* TT' A
o= 2 U )0+ 2VTEO ) (69)
b:=2(1 +2vVT'20)"¢llar). (6.10)
This completes the proof. ]

For £(z) of the form (6.3) in a gauge algebra g = C°(U’, ¥) with f = su(2,C),
we can now prove an operator inequality of the form (6.2).

Proposition 6.9. There exist constants a, b € R, depending on T, T’ and j19(Uyp),
such that for all a, B with «® > a and 2af > b, we have

+idp(£(2) < @) (el + BH)  forz € C°(U’,C) (6.11)
as an inequality of unbounded operators on H with domain containing #*°.

Proof. Note that the inequality (6.11) is equivalent to

(V. idp(E(2)VY)? < |E@)7 (¥, (@l + BH)Y)? forall y € H.

As B2(y, Hyr)? > 0, this follows from Proposition 6.8 under the above conditions
on ¢ and 8. [

Remark 6.10. The estimate (6.11) is rather crude for large energies, in the sense that
one expects dp(§) ~ v H,notdp(§) ~ H.

It will be convenient to gain more control over the constants a and b in Proposi-
tion 6.8, and the constants «, B in Proposition 6.9. For this, we need to remove the
dependence on ¢ in (6.9) and (6.10).
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Proposition 6.11. The constants a and b in Proposition 6.8 can be chosen as

P (“"(U"))uzb, (6.12)
T-T' T’
with
) 2
b= 2(1 + ) . (6.13)
V1= (sin(v)/v)2

Here, v > 0 can be chosen at will.

Remark 6.12. It will be convenient to choose v = 7. Then, b attains its minimal
value b = 18, and a = 1872 TT Mo(Uo)

Proof. In (6.9) and (6.10), we need to minimize the expression /7" ||Z ©0) 1)l
over all teCx(, C) with C(k) =0 and ((0) # 0, where k € R* is arbitrary. Since
é‘(k) (e'*? ¢) 4, and Z(O) (1, ¢) 4y, this amounts to maximizing

I(1, §)a
IllaeEllae

Since F is continuous on L2(1’) \ {0}, and C>°(1’, C) is dense in L*(1"), F({max)
is maximal on the projection {p,x of 1 on the orthogonal complement of the function
ekt ¢ L2(I'). This is essentially a two-dimensional problem in the space spanned by

F©) = (VTIEO) ¢llar) ™" =

— - 1 ikt
ey = ﬁl and e; = ﬁe ,
with KT/
(eo,e0) = {er.ex) =1 and (eq,ex) = % (6.14)
It follows that {nax = €0 — (e, €o)ek, and F(Cmax) = /1 — |{eo, ex}|?. Using (6.14),
we find
sin(kT7/2)\>
Flnx) =4/1-|———— ) . 6.15
o) \/ (Mi752) 615
Equations (6.12) and (6.13) are now obtained from (6.9) and (6.10) with k = 2v/ T’
by substituting the maximal value (6.15) for F(¢) = (v/T'||£(0)71¢]|4,) . [

6.2.2 The local gauge algebra with compact simple fibers

We now extend Proposition 6.8 to the case where ¥ is an arbitrary compact simple
Lie algebra. With /' x Uj and I x Up a good pair of flowboxes (cf. Definition 6.4),
we consider gy := CX (1" x Uy, ) and gy := C°(I x Uy, ¥) as subalgebras of the
Lie algebra g = I'c (M, K).
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Lemma 6.13. Let dp be a positive energy representation of g, and let n > 0. Then,

we have
+idp(§) < |Ellu (KL +nH) forall§ € gur. (6.16)
where K(n) is a constant independent of &. More precisely,
T po(Uo)
K(n) = 9dy /1,3 \/Zd , 6.17
() max( ¥/n, 37 b (6.17)

where dy is the dimension of £.

Proof. Using the root decomposition of f¢ with respect to the complexification t¢
of a maximal abelian subalgebra t C ¥, one obtains a basis (X1, ..., Xg,) of ¥ with
k(Xi, Xj) = 28;j, where —« is the Killing form of ¥ and such that every X; is con-
tained in some su (2, C)-triple in ¥ [42, Proposition 6.45]. Every £ € gy~ can then be
writtenas § = ) ; f; X; for fi € C(Uj x I',R). Since every X; is contained in an
su(2, C)-triple, we can apply Proposition 6.9 to f; X; € gy with z = f;. We obtain

Fidp(fXi) < | fXillu(al + BH),

and thus

dy
+idp(§) = (Z ||in||u)(Oll + BH).

i=1

As the different terms f; X; are orthogonal, we have Zfil | fi Xillu < ~/dell€]l,0, and
we obtain

+idp(§) < [Ellu(Vdeal + VdpH). (6.18)
By Proposition 6.9, we are allowed to choose any o and B with @? > a and 208 > b.
Following Remark 6.12, we take a = 18721 (j10(Uy)/ T") and b = 18. The inequality
(6.18) therefore holds for any value of > 0 if we set

_ T po(Uo)
(x—max(9/,3,37t\/2T_T/ T ) (6.19)

Inequality (6.16) now follows from (6.18) with B = n/+/dy and K() = /dpr. m

Proposition 6.14. Forall £ € gy and t > 0, the spectrum of t H £ i dp(§) is bounded
below. More precisely,

T po(Uo)
T-T T

— max (9dF IE1%/2. 37 1€ 1,0 \/201? ) < inf (Spec(tH £ idp(§))).

(6.20)

Proof. If ||£]|,, = 0, then dp(§) = 0 by Corollary 6.3. In that case, (6.20) simply
follows from the fact that H has non-negative spectrum. If ||£||,, # 0, we apply
Lemma 6.13 with n = ¢ /|| & 4. ]
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6.2.3 Global estimates and the bounding function

We need to derive suitable estimates of the type (6.16) globally, on the full Lie algebra
I'c (M, &) rather than merely on C2°(U, ¥). In this section, we show how to do this
for compact as well as noncompact manifolds M, under the assumption that vy is
nowhere vanishing.

For compact manifolds, we will derive an estimate of the form (6.16), albeit with
a larger constant K (7). In the noncompact case, however, the expression ||£]|,, K ()
in (6.16) will have to be replaced by |||, ., where B;: M — R™ is a suitable upper
semi-continuous function on M that is invariant under the flow, and ||£]/,,, is the
L?-norm of £ € T'.(M, &) with respect to the measure B,

1605, = (€. 8)Bens (M) Bop = /MK(?E, ) Be(m)dpu(m). (6.21)

In this setting, we will prove that
+idp(§) < [|§llB.pd + €|l forall§ € T'e(M, K).

Note that, since v,y is nowhere vanishing on M, every m € M is contained in a
good pair of flow boxes in the sense of Definition 6.4.

Definition 6.15. For m € M, define b(m) as the infimum of the set of numbers

% “O}EJ"), ranging over all good pairs of flowboxes U’ € U containing m.

Proposition 6.16. The function b: M — R is invariant under the flow (Yars)reRr.
Further, it is upper semi-continuous, hence, in particular, measurable.

Proof. The invariance under the flow follows from the fact that U’ C U is a good
pair of flow boxes around m if and only if yar;(U’) C yar+(U) is a good pair of flow
boxes around yz,, (m). For the upper semi-continuity, note that for every ¢ > 0, there
is a good pair of flowboxes U’ C U around m such that

T po(Uo)
T-T T

< b(m) + .

For every m’ in the open neighborhood U’ of m, we thus have b(m’) < b(m) +¢c. m

Theorem 6.17. Let dp be a positive energy representation of g, and let € > 0. Then,
we have

+idp(§) < |llB.pd + el H  forevery§ € Te(M, ). (6.22)
Here, B;: M — R™ is the upper semi-continuous function defined by
Be(m) := max (81dZ(dp + 1)*/e, 187 dy(du + 1)*b(m)), (6.23)

with b(m) as in Definition 6.15. It is invariant under the flow (Yat)eR.
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Proof. Let d be a Riemannian metric on M for which M is complete, so that closed
bounded subsets of M are compact by the Hopf—Rinow theorem. Let V' C M be the
compact support of £ € I'.(M, K). Since b is upper semi-continuous, the functions
Bn: M — R defined by

Bu(m) := sup{b(m’);d(m,m’') < 1/n}

constitute a decreasing sequence converging pointwise to b as n — co. We now show
that the functions B, are upper semi-continuous. To see this, note that, for every
mo € M and every ¢ > 0, there exists an n € N with b(m) < b(mg) + /2 for m
in the closed ball W, /n(mo) with radius 2/n around m,. Since this ball is compact,
it contains finitely many m; such that it is covered by open neighborhoods O; of m;
such that b(m) < b(m;) + ¢/2 for all m € O;. If d(m, mg) < %, then Wy,,(m) C
U; Oi, so that B, (m) < B,(mo) + €. In particular, f, is measurable, and bounded on
the compact set V.

For every n € N, choose a cover of V' by finitely many open balls W;, (m;) of
radius r; < 1/n around m;, with the property that W, (m;) € U’ € U for a good pair
U’ € U of flow boxes with %%UO) < b(m;) + 1/n. Since b(m;) < B, (m) for
allm € Wy, (m;), it follows that

T po(Uo)
T-T' T

< Bn(m)+1/n forallm € W, (m;). (6.24)

By the Brouwer—Lebesgue paving principle [44, Theorem V1], there exists a finite
subcover (W;);es with the property that every point m € V is contained in at most
dy + 1 sets.

Let ¢; be a partition of unity with respect to (W);es. By Lemma 6.13, applied
ton :=e/(dm + 1), we obtain £idp(g;§) < [l¢;&ll.(K;(m1 + nH), where K ()
is given by (6.17) for a good pair of flowboxes U’ € U containing W;. From (6.17)
and (6.24), we find that

By, (m) := max ((9dg/n)?, 187%dg (Ba(m) + 1/n)) > K;(n)* forallm € W;.

As [loi§llK(m) < lljélB, . we have £idp(p;§) < @iéllB, ,ul + nlle;§llH
forall j € J, and thus

+idp(£) < ( 3 ||so,-suBn,nu)1 - n(Z ||<pjs||u) H.
jeJ jeJ

Since ||(¢;&)(m)|« < [|E(m)||«, and since at most das + 1 of the values ¢; (m) are
non-zero, it follows that

Y ll0iEl < (dy + DIEN. and Y l9iElB, pu < (du + DIENB, 0
jeJ JjeJ
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so that
+idp(§) < (dm + D&, ,ul + nll§ll H). (6.25)

To obtain (6.22) from (6.25), recall that n:=¢/(dps + 1). The second term on the right
is thus (dy +1)n|&l . =¢ll§|| 4, as required. For the first term, note that 8,+1/n
is a bounded, decreasing sequence converging pointwise to b on V. The bounded,
decreasing sequence (dy + 1)? By, (m) thus converges to B(m) in (6.22), where
& = (dp + 1)n. By the dominated convergence theorem, we find that, for n — oo,
the squared norm ((dp + 1)||€]|, ,,)* approaches

/V V2ot + 1 Bugdpu(m) — /V €12 Bedpam) = 13,

Since (6.25) holds for every n € N, the proposition follows. ]
Note that if the function b: M — R 7T of Definition 6.15 is bounded, then so is B;.

If we define K(¢)? := || B¢||0o, then we recover the inequality
+idp(§) < [l (K(e)1 + eH), (6.26)

since || €|, < K(¢)||§]|. This happens, in particular, if M is compact because the
upper semi-continuous function B, is then automatically bounded.

Corollary 6.18. Suppose that M is compact and vpr is nowhere vanishing on M.
Then, for every & > 0, there exists a constant K(g) > 0 such that (6.26) holds for all
£ eT'(M,R).

Another important situation in which B, is bounded is for product manifolds of
the foom M =R x X.

Corollary 6.19. Suppose that M >~ R x X with vy = % Then, the inequality (6.26)
holds for the compactly supported gauge algebra g=T"c (M, K), with constant K (¢) =
9dg(dps + 1)? /¢ depending on M and K only through the dimension.

Proof. For (t,x) € R x X, choose Ué € Uy C X with Uy C ¥ relatively compact,
and x € Ug. For T’ sufficiently large, (¢, x) is contained in the good pair of flowboxes
U =Uyx(=T"/2,T'/2),and U = Uy x (=T/2,T/2) for T = 2T". Since

T o) _

2u0(Up)/ T’
T po(Uo)/

approaches 0 for T’ — oo, it follows that b(z, x) = 0. In particular,
Be(m) = 81d¢ (dy + 1)*/&?

is constant, and the result follows. n



Extending representations to Sobolev spaces 59
6.3 Extending representations to Sobolev spaces

In this section, we extend the map dp to the Hilbert completion L% " (M,RK)of g/1,
with respect to the inner product (6.21) corresponding to B, .

Note that since ||§]|, is dominated by a multiple of ||§||p, ., the inner product
(€. 7). is continuous on L%M(M, K). As the difference between ||£]p,, and [|£] B4
for &, > 0 is a multiple of [|§||,, the space L% (M, R) and its topology are indepen-
dent of . (This is why we omit & from the notation in L% WM, K).)

6.3.1 The completion Léﬂ (M, &) in L%-norm
We use Theorem 6.17 to extend dp from g to L%M (M, g). Define
Te = [|§llB.n1 + el A,

and note that its domain D (I'¢) is contained in the domain O(H ) of H. With this
notation, (6.22) becomes
0 < e +idp(£), (6.27)

as an inequality of unbounded operators on # *°. Further, define
A=1+H withD(A) = D(H). (6.28)

Proposition 6.20. Let 0 < & < 1. There exists a map r from L% " (M, &) to the un-
bounded, skew-symmetric operators on H such that D(r(§)) contains D(H) for
all &€ € L%M(M, K), r(€)| g0 = dp(§) for all & € g, and, for all v € D(H), the
functional

L%, (M.R) — C defined by & — (r(§))y

is continuous. Furthermore, there exists a continuous map
.72
Al LBM(M, K) — B(#)

into the bounded operators such that ||A(§)| < ||€]|B.p, A(§) is skew-hermitian, A(§)
leaves the domain of AY? invariant, and

r(§) = A7) A",
as an equality of unbounded operators on D(H).

Proof. Let &, be a sequence in g/1,, for which [|§ — &,| ., — 0, and hence also
I€ — &nll. — 0. Without loss of generality, we assume that ||§ — &, g, < 5 and
el —&nllp < % for all n, so that

1
Pe—Tg, + 42 4. (6.29)
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Define the sesquilinear forms
BriH® x H® — C. BEW. ) = (. (Tg + A) £ idp(En)) 7).

The forms Bf are positive definite; combining (6.29) with inequality (6.27) applied
to &,, we find

1 1
Br (W) = (¥, (Te = Tg, + ) = (v, Ay) = ||y . (6.30)

By (6.27) and the convergence of &,, we find that B, (¥, ¥) is a Cauchy sequence
for every ¢ € H >,

|BF (V. ¥) — BE (W, v)| = (¥, idp(En — Em)¥)| < (. Tg,—g,, ) — O.

It follows that BT (y, x) := limy—oo B, (¥, x) defines a positive definite, sesquilinear
form H° x H*° — C. Here we use that the estimate (6.30) is independent of n. The
same argument applies to B~ (Y, y) := lim, o B, (¥, x). Note that

1
S AY) < BEW.Y) < (v, Qe + AY) < ce(v, AY) - (63D)

for some cg > 0. The forms B¥ therefore extend uniquely to closed, sesquilinear
forms B*: D(A'/?) x D(AY/?) — C. In turn, the forms B* define a Friedrichs
extension; a closed, possibly unbounded positive operator b= (£): D(H) — H, such
that BE(y, x) = (¥, bE(£)y) forall ¥, y € D(H) (cf. [25, Appendix I.A.2]). Set

r(€) = %(ifr(é) —b7(§)).

Since b™ (§) and b~ (§) are selfadjoint, 7 (§) is skew-symmetric. If £ € g, then

(Y.r&)x) = (¥.dp(§)y) forallyr, y € H,

so r(§) is an extension of dp(§).
Define

A(E):D(AY?) > D(AY?), () = A7V r () A7 V2,

Then, for v, y € D(A'/?), we have A=1/2y, A=1/2y € D(H). Therefore,

1 — —
W20 1) = —AEV. 2) = (BT = B)(A™ 2y a7 2. (632)
By (6.31) and Cauchy—Schwarz, we have

1BE(W. 0| < cell A2y 142 4,
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so [{(¥, A(&) x)| < cellv |l x|l by (6.32). Therefore, A(§) extends to a hermitian oper-
ator on . As such, the operator norm ||A(§)| is the supremum of |{y, A(§)y)| over
all ¥ in the unit sphere of #. For Y € AY2#>, (6.27) yields

(W AW = lim (A2, dp(E)AT2Y)] < (v, A7 2TeA™2y).
We claim that
ATV AT < |E|lgoy forO<e < 1. (6.33)

In fact, since I's and A commute, this is equivalent to I'e < A||&|| p,., which in turn is
equivalent to
1€NB.n + ellllnH < [l + H)

and this to || €|, < ||| B, ., Which, for & < 1, follows from the estimate
B > 81d3(dy + 1)*/e* > 1.
With (6.33), we find
[ AEY)] < 6Bl fory e A2,

To prove that || A(£)|| < |||, . it therefore suffices to show that A1/2F> is dense
in . First, we show that A#* is dense in J. Since exp(itA) = e'* exp(itH) leaves
the space #*° of smooth vectors invariant, the restriction Ag of A to H is essen-
tially selfadjoint [95, Section VIIL.4]. Suppose that ¢y L. AgH *°. Then, € D(Agy) =
D(A), and A5y = Ay = 0. Since A is injective, Yy = 0 and AH > is dense in H.
Applying the contraction A~1/2, we find that AY/2#° is dense in A~Y/2H. Since
A7Y230 = D(A'?) is dense in H, we conclude that A/2H > is dense in K, as
required. |

For s € R, denote by #; the Hilbert space completion of D (A*) with respect to
the inner product
(V. x)s = (A%, A ).
Denote the corresponding norm by ||V ||s = || A* ||, and denote the norm of a con-
tinuous operator A: s — H; by | A||s.s. As

r§) = AV2@A?

with [|A(§)]] < ||€]|B, - the operator r(§): D(A) — H extends to a bounded operator
r(f): %1/2 d %_1/2, with

@V ll-1/2 = €l Ber ¥ ll1/2- (6.34)

‘We thus have
lr /2,12 < 1€lBope-
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6.3.2 The completion in Sobolev norm

Note that convergence of &, to § in L% (M, &) only implies weak operator conver-
gence of r(&,) to r(§), as operators on the pre-Hilbert space £ (H ). In this section,
we define a subspace Hp M (M, &) of L%M(M , &) where convergence to ¢ implies
strong convergence to r(§).

Definition 6.21 (Parallel Sobolov spaces). For k > 0, the parallel Sobolev norm qy,
is defined by

k
qc(®) ==Y _ [Ella. where |l := [ D"&| Bop-

n=0

The parallel Sobolev space H g " (M,R) C L% (M, &) is the Banach completion of
a/1,, with respect to the norm g.

Proposition 6.22. Let r be as in Proposition 6.20. If§ € H 5 9 (M, R), then r (&) maps
D(H*Y) into D(H¥). For k = 1, we have

[H.r(§)] =ir(D§) (6.35)

as an equality of unbounded operators on D(H?). Furthermore, if § € ng (M, ),
then r (§) extends to a continuous operator Hj11/2 — Hi—1/2 with

k (k
I ler/z < Z(j ) 151 i s1/2- (6.36)

Jj=0

Finally, forall§ € H é " (M, R), the skew-symmetric operator r (§) is essentially skew-
adjoint.
Proof. We prove that for & € HgM(M, R), r(£) maps D(H**) into D(H*). We
proceed by induction on k. Since H g p (M,R) = L% » (M, ), the case k = 0 follows
from Proposition 6.20. Suppose that the statement holds for all £ € H }; (M, R). For
Ee Hgljl(M, R) and ¢ € D(H*+?), we show that r(§)y € D(H¥H). Since H¥+!
is selfadjoint, it suffices to show that y — (r(&)y, H k+14) is a continuous, linear
functional on #°° with respect to the subspace topology induced by the inclusion
in J.

Let &, € g/I, be a sequence such that §, — £ and D§, — D£ in L%M(M, K).
Since Hr(&,) = r(§,)H +ir(DE,) on H*°, we have

(r@y. H " g) = — lim (Y. r (G H ' )
= — lim (Hy.r(&)H x) + lim (y.ir(DE)H )
(r@HY +ir(DE)y, H ). (6.37)
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As ¥ € D(H¥*2), both Hy and ¥ are in D(HFH1). Since £ € Hg:[l(M, R), we
have &, D& € ng(M’ R), so that r(§)Hy + ir(DE)y € D(HF) by the induction
hypothesis. From (6.37), we thus find that

(r@y, H* ' y) = (H*(r @) Hy + ir(DEWY), x).

which is manifestly continuous in the variable y. We conclude that r(£) maps the
domain D(H**+2) to D(H**1). Moreover, for k = 0, we find that

Hr(§) —rH —ir(D§)

vanishes on D (H?).
The inequality (6.36) is proven in a similar fashion. Assume by induction that
(6.36) holds for all £ € H§M(M, K) and ¢ € Hyy1/2, the case k = 0 being (6.34).

We recall that ||| = ||[A°Y || with A = 1 4+ H (see (6.28)). For £ € H},f:l(M, K)
and ¥ € Hy3/2, weuse Ar(§)y = r(§)AY +ir(DE)y to see that

Ir )V k172 = 1ArE) Y llk—172 = IrE)AY k=172 + Ir (DE)llx—1/2-

By the induction hypothesis with [|AY|x—j+1/2 = [[¥ [l (k+1)—j+1/2 (for the first
term) and || D£||; =||&||j+1 (for the second), we find that [|7 (§) ¥/ ||k +1/2 is bounded by

k

k
k k
S :( .)||s||j||w||(k+l>_,-+1/2 I j( .)||s||,-+1||w||k_,-+1/2.
j=o~/ j=o~/

Since (k) + ( k )= (kﬂ), we have

J Jj—1 J
k+1
k+1
1@V ez < Z( j )||s||,~||w||k+1_,-+l/z,
Jj=0

as required.

Finally, if £ € Hp, (M, ), then &, DE € Ly (M, K). By (6.34), the operators
r(§)and [A,r(§)] =ir(DE&) from D(H) to K extend continuously to bounded oper-
ators J#/, — H_1,,. It then follows from a result of Nelson [87, Proposition 2] that
r (&) is essentially skew-adjoint. ]

IF we estimate €1} < ge(€) and [¥llk 4172 < ¥ 4172 in (6.36), we find that
r(§): Hy1/2 — Hi—12 satisfies

&)V lk-1/2 < 2k(]k(§)||¢||k+1/2,

so the linear map H{;M(M, K) X Hi 4172 = Hi—1)2 defined by (§, V) > r(§)y is
jointly continuous. For k = 1, we find from (6.36) the slightly stronger estimate

@l < Ir@©vliz < q @437 y]. (6.38)
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In particular, convergence of &, to § in Hy (M, &) implies strong convergence of
r(€n) to r(§) on D(A*?),

6.4 Sobolev-Lie algebras

Having established that the positive energy representation dp extends to a contin-
uous map r on H gu(M , &), we would like to determine whether r gives rise to a
Lie algebra representation. Since the spaces H 5 " (M, &) do not inherit the Lie alge-
bra structure from g//,,, we introduce two spaces of bounded Sobolev sections of
& — M, both equipped with the pointwise Lie bracket.

For an open subset N € M, we define the Lie algebra H If (N, &) of bounded
parallel Sobolev sections, and a certain subalgebra H g‘ (N, &) of sections that vanish
to order k at the boundary of the 1-point compactification of N. As before, the under-
lying measure is the restriction to N of the flow-invariant measure B, on M. For
convenience of notation, we will denote this measure by v = B, L.

6.4.1 The Lie algebra L i(N, &) of bounded L2-sections
Let N be an open subset of M, and let £ be a measurable section of & — N. Then,

[l = V(§.6)

is a measurable function on N. We define ||£||oo to be the essential supremum of
I€]lx with respect to v, and we define L°°(N, &) to be the Lie algebra of equivalence
classes of essentially bounded, measurable sections of & — N. This is a Banach-Lie
algebra with respect to the norm ||€||~, and the Lie bracket coming from the point-
wise bracket of sections. We define Li(N , &) to be the space of equivalence classes
of sections which are both essentially bounded and square integrable with respect to
v. Since both LZ(N, &) and L*(N, &) are complete, it follows that L(N, &) is a
Banach space with respect to the norm ||£]ly + [|€]loo-
Let cg be a constant such that

X YTlle < cell XIellY [l (6.39)

forall X,Y e £. Then, we find

& nllly = cell§lloolinllv. (6.40)
I nllloo < cell§lloolInlloo- (6.41)
It follows that the Lie bracket |-, -]: LIZJ (N,R) x Li(N, &) — L*(N, K) takes values
in L7(N, &) and is continuous with respect to the norm po(§) = [I€]ly + [|€]|co-

In particular, Li(N , &) is a Banach-Lie algebra, and the inclusion LIZ) (N, R) —
L (N, K) is a continuous homomorphism of Banach—Lie algebras. If N C N’, then
LZ(N, K) is a subalgebra of L2(N’, &) in the natural fashion.



Sobolev-Lie algebras 65

6.4.2 The “parallel” Sobolev-Lie algebras H bk (N, &)

Recall from Definition 4.6 that a one-parameter group (y;);er of automorphisms of
K — M gives rise to a one-parameter group (&¢)ser of automorphisms of

g = FC(M7§)

In the same way, we obtain a one-parameter group of automorphisms of Li(M , K).

Indeed, since the Killing form is invariant under automorphisms, ||, (§)||x =
Il © Yare, so that, in particular, ||;(§)]lec = ||§]lco- Further, since the measure
v = B, u is invariant under the flow a7, (Theorem 5.7), we find || (§) ||, = ||€]|v.

Since o is a one-parameter group of unitary transformations of the Hilbert space
L2(M, R), it is generated by a skew-adjoint operator D. We define H!(N, &) to
be the intersection of its domain with L2(N, &), and we define Hb1 (N, &) to be
the space of all £ € H!(N, &), where both ||£]« and || D£|| are finite. In other
words, H bl (N, &) is the space of equivalence classes of essentially bounded, square
integrable sections & of & — N such that the L?-limit

D) = L lim }(a,@) )

exists, and || D ()]l oo is finite.

Proposition 6.23. The space H bl (N, K) is a Lie subalgebra of LIZ) (N, K), and the
generator D: Hb1 (N, ) — Li(N, K) satisfies

D([g. n)) = [D(&),n] + [£, D()]  forall £, € Hy(N,K). (6.42)

Proof. Let§,n € H)(N,R), and denote by L2-lim the limit with respect to the norm
€|l First, we show that [, 5] is in the domain of D:

D)) = L im Lol ) — 1)
= L2l DE ()] + L7l | e (©) — ) = D&

+ L2 Jime, @) — )] = [DE, 1] + [€, Dl

In the last step, we used the inequality (6.40) three times. Since || D& oo is bounded
and L2-lim,_q o; () = 1, it follows from (6.40) that the first term is given by

L2- lim[DE.a ()] = [DE 1]

Similarly, since ||£ || is bounded and L2-lim; o %((x, (n) —n) = D(n), the third term
equals [€, D(n)]. To see that the second term is zero, note that || (1) oo = |7/l 0o- It
then follows from (6.40) and the fact that L2-lim;_ %(a,(é) —&)—D(§) =0.
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This shows not only that [, 1] is in the domain of D, but also that (6.42) holds.
By (6.41), it follows that || D([&, n]) [leo < ce (D€ loollnlloo + I§lloc | D7lloo) is finite,
so that [§, 7] € H) (N, &). n

This allows us to define parallel Sobolev-Lie algebras of order k € N. We set
H)(N,&) := L7(N, &),
and define Hb1 (N, &) as above. For k > 2, we define Hé‘ (N,R) as
Hf7Y(N, &) N D™Y(HFH(N, R)).
In other words, £ is in Hé‘(N, K) if both £ and D¢ are in Hé‘_l(N, K).

Proposition 6.24. The space H lﬂ‘ (N, K) is a Lie subalgebra of H l’f_l (N, K).

Proof. The proof is by induction on k, where k = 1 is Proposition 6.23. If £, €
Hlf(N, K),then &, D(§),n, D(n) € Hli‘_l(N, K). Since Hlf_l(N, K) is a Lie algebra,
it follows that D([, n]) = [D(§),n] + [, D(n)] is in Hlf_l(N, K). Thus, [&, 1] €
H é‘ (N, &), as required. [

On H é‘ (N, &), we define for every n € {0, ..., k} the derived norms

I€lln.c0 := [1D"élloc and [[§]ln := [ D",

The parallel C k_norm qc« and the parallel Sobolev norm gy, are defined by

k k
Ger €)== ltllnoo and g =Y [£]a. (6.43)

n=0 n=0

respectively. We equip H¥ (N, &) with the topology derived from the combined norm
P Yy quip i1,

k
pe(®) =D Il

n=0

Note that for § € Hy (N, §), we have pg_1 (§) < p (€), butalso px_1(D(§)) < pi(§).
It follows that both the inclusion ¢: H[f THN, ) — Hlf (N, K) and the derivative
D: Hé‘“(N, K) —> Hlf(N, &) are continuous.

Proposition 6.25. Foreveryk >0, H l]f (N, &) is a Banach—Lie algebra with respect
to the norm py. The Lie bracket is separately continuous with respect to the Sobolev
norm q.

n.oo + [[§lln- (6.44)

Proof. By the derivation property and (6.39), we have

1D & D e < ct Z(’;)||Df5||x||z>"—f'n||x.

Jj=0
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Since [[§, n]ll» = [ID"([& 7))y and [[[§, ]

& 7l < cﬁg(j)ns
oo < cfi(”.)ns

j=o ™

n,00 = [|D" ([, n]) oo, it follows that

J»,00 ||77||n—js

IT&. n]

J,00 ||77||n—j,oo-

Taking n = k and estimating the binomial coefficients by 2%, it follows that

ar (&, 1) < 2K ceqer (E)qr (1), (6.45)
qer ([ m) < 2% erqer (B)ger (n). (6.46)

This shows that the Lie bracket is continuous for the norm py, and separately contin-
uous for the Sobolev norm gy

To show that Hl]f(N, K) is complete, we note that HZ?(N, K) = LZ(N, K) is a
Banach space, and proceed by induction on k. Let &, € H,f (N, &) be a sequence

with pr(§x — &m) — 0. Then, pr—1(§n —&m) — O and pg_1(D(§x) — D(§m)) — O,
so by induction, there exist £, & € H é‘_l(N, K) with

Pi-1(E—§)—0 and pr_1(E — D(&)) — 0.

Since D: H! (M, &) — L*(M, &) is the generator of a strongly continuous 1-parame-
ter group of unitary operators, Stone’s theorem implies that it is selfadjoint, and
hence, in particular, closed. It follows that & lies in the domain of D, and D(§) = E
lies in Hf~'(N, &). Thus, £ € Hf (N, K), and

Pi(§ = &) = pi—1(§ = &) + pr—1(D(§) — D(§n)) — 0. "

We denote by Hp°(N, &) the Fréchet-Lie algebra arising from the inverse limit
of the Banach-Lie algebras H lﬂ‘ (N, &) with respect to the natural inclusions

:HEYY(N,R) < HE(N,R).

The derivative D: Hy°(N, &) — Hp°(N, K) is a continuous derivation, giving rise
to the Fréchet-Lie algebra Hy°(N, &) x RD.

6.4.3 Boundary conditions and the Lie algebras H ak (N, &)

Let H) (N, K) be the closure of I'c (N, &) in H}(N, &) with respect to the parallel
Sobolev norm ¢1(§) = [I§lv + 1€ ]l1,0-

Proposition 6.26. The space H 31 (N, K) is a closed Lie subalgebra of H bl (N, K). In
particular, it is a Banach—Lie algebra with respect to the subspace topology, induced
by the norm p1(§) of (6.44).
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Proof. Since Hal (N, &) is by definition closed with respect to the Sobolev norm
q1(§), it is a fortiori closed with respect to the larger norm p;(§) that defines the
Banach space topology on H. bl (N,R).As H 31 (N, &) is a closed subspace of a Banach
space, it is a Banach space itself.

It remains to show that H 31 (N, &) is closed under the Lie bracket. For every
£ e Hb1 (N, K), the linear operator adg: Hb1 (N, R) —> Hb1 (N, &) is continuous with
respect to the norm g1 (§), as

q1(adg () < 2ceqc1(§)g1(n)

by (6.45). If § € I'c(N, K), then ad(§) maps I'¢(N, &) to I'c(N, K). As adg is con-
tinuous for the norm ¢y, it also maps H, (N, K) to Hj (N, K). It follows that, for all
ne Ha1 (N, &), ady; maps I'. (N, K) to Ha1 (N, &). By continuity with respect to g1,
it therefore maps H, (N, K) to Hj (N, &), and we conclude that H, (N, &) is closed
under the Lie bracket. ]

For k > 2, we define Hak (N, &) as the space of all £ € H,f (N, &) such that both
£ and D(§) liein Hf (N, R).

Proposition 6.27. The space H é‘ (N, K) is a closed Lie subalgebra of H é‘ (N,K). In
particular, it is a Banach—Lie algebra with respect to the subspace topology, induced
by the norm py(§€) of (6.44).

Proof. We proceed by induction on &, the case k = 1 being Proposition 6.26. Recall
that both the inclusion ¢: H llf (N,&) —> H lﬂ‘ ~1(N, &) and the derivative

D:Hf(N,R) — HF'(N, &)
are continuous. Since
HY(N, &) = T (HY YN, Q) n DTV HE1 (N, R))

is the intersection of two closed subspaces, it is a closed subspace of H If (N, K) itself.
To show that it is closed under the Lie bracket, suppose that £, n € H 5‘ (N, K), so that
&, n,DE Dne Hg‘_l(N, K). As Hak_l(N, K) is a Lie algebra, it follows that [&, 7]
and D([&, n]) = [D(§), n] + [€, D(n)] are both in H;‘_I(N, K). From this, one sees
that also [€, ] € Hak(N, K). [

Note that the 2-cocycle w(§, ) = (D&, n),, on g is continuous for the Sobolev
norm ¢1 (£) and hence extends uniquely to H ak (N, K). This defines a continuous cen-
tral extension of H g‘ (N, R),

RC @, Hf (N, R).
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Define the Fréchet-Lie algebra Hy°(N, K) as the inverse limit of the Banach-Lie
algebras H ak (N, &) under the natural inclusions H ak (N,R) > H g_l(N, K). Since
D:H$°(N,&) — H3°(N, &) is a continuous derivation, we obtain the double exten-
sion of Fréchet-Lie algebras

(RC @, H$°(N,R)) x RD.

6.4.4 Intervals and blocks

Suppose that N >~ ¥ x I, where I C R is an open, not necessarily finite interval with
the Lebesgue measure dt, and X is a (dps — 1)-dimensional manifold with locally
finite measure vg. The bundle K|y ~ N x ¥ is trivial, and the translation by ¢’ sends
(x,1) to (x,t —t’) wherever it is defined. In this cartesian product situation, it will be
useful to separate the variables in X from those in /.

Define a bilinear map

T:L7(Z,R) x Li(1,8) — L2(N,%), T(f.&)(x,t) = f(x)E().

Itis continuous since || /&[ly = [/ lvolI€llar and [[ f € lloo = 1./ oo lI& lloo-

Proposition 6.28. The product T(f,&) = f§& defines a continuous bilinear map
T:L2(Z,R) x HF(1,¥) — Hf(N,¥).

Proof. Since || f&|lv = || f llvo l§ ||l a» and since time translation acts only on &, it fol-
lows that f& € D (D) if and only if £ € D (D), and D(f &) = fD(&). From this, one
derives that T maps L3 (X, R) x H,f(], £) to H,f(N, ), with || f€lln = |/ llvoElln
and | /€ llnco = |  loo& ln,co-

Suppose that £ € H 31 (I,¥), so that there exists a sequence &, € C°(/,¥) with
€ —&nllar — Oand | D(§) — D(&n)|la: — O. For every f € le)(E, R), it is possible
to find a sequence f, € C°(X,R) with || f — f4|lv, = 0. Then

11§ = faknllv < IIf = fullwollEllar + I fallv 1§ = Enllar = O.

Similarly, one finds that || D(f§) — D(fuén)llv = [ /D) — faD(En)ll — 0. It fol-
lows that T maps L7(X,R) x H, (I,£) to H} (N, ). From D(f§) = fD(£), one
then finds that it maps L2(E,R) x H¥(1,¥) to H¥(N.¥). "

In Lemma 7.10, we will need the above result in the following form.

Corollary 6.29. Let E C X be a subset of finite measure, and let y g be the corre-
sponding indicator function. Then, the map Lg: H(.;‘ (I,¥) > H 5‘ (N, 8) defined by
tg(&)(x,t) = y(x)E(t) is a continuous Lie algebra homomorphism.
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6.5 The continuous extension theorem

It follows from Proposition 6.20 that the Lie algebra representation dp extends from
g=I.(M,K)to L% " (M, &). In the following theorem, we show that this extension
yields a Lie algebra representation of RC &, H al (M, &), which is compatible with
the derivation D: Hal (M, ) — Li (M, ).

Theorem 6.30 (Continuous extension). Let p be a positive energy representation of
G with derived representation dp, and let N C M be an open subset.

(a) There exists a linear map r from LZ(N, K) to the unbounded, skew-sym-
metric operators on K with domain D(H) such that r (§)Y coincides with
dp(&)Y forall ¢ € T.(N,K) and € H>.

(b) This defines a representation of the Banach—Lie algebra RC &, H 81 (N, R)
by essentially skew-adjoint operators. For £, n € H 31 (N, &), the operators
r(£&) and r(n) map D(H?) to D(H). On D(H?), we have the commutator
relation

[r).rm] =r(& 1) +ioE N1, (6.47)
where w(&,n) = (D&, n) .
(c) IfE e Hal(N, K), then D& € LZ(N, K) and
[do(D), r(§)] = r(DE).

In particular, we obtain a positive energy representation of the Fréchet—Lie
algebra (RC &, H3°(N,K)) x RD.

Proof. The derived representation dp is defined on the Lie algebra
g = (RC Pw g) x RD.

By Proposition 6.20, we obtain an extension r of dp to L% " (M, &), hence, in partic-
ular, to Li(N , &). From Proposition 6.22, we see that r (£) is essentially skew-adjoint
for £ in the smaller space Héu (M,R) C L%M (M, &), and that [dp(D), r(§)] = r (&)
forall§ € Hy (M, ), hence, in particular, for £ € Hj (N, &) € Hg, (M,K).

By Cauchy—Schwarz and the inequality (6.38), we have

(r@ v rm ) < 1432 11432 xllg1 (€)g1 (1) (6.48)

forall v, y € D(H?) and £, € HII;M(M, g), where A := 14 H and ¢ is the par-
allel Sobolev norm of (6.43). Further, by Proposition 6.22, the products r(§)r(n) and
r(n)r(§) are well defined on D (H?). Since

(. [r ). rmlx) = =(rEv.rmx) + rmy.rE)x).
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it follows that the bilinear form

Hg, (M, &) x Hg, (M.&) — C, (&, n) = (V. [r€). r(m]x)

is continuous with respect to the parallel Sobolev norm ¢; . In particular, its restriction
to
Hy(N.R) € Hp, (M. R)

is continuous with respect to g .
Similarly, using Cauchy—Schwarz and (6.38), we find for &, 7 € H 31 (N, R) that

| (@& D) < x4y llgr (16, ).

Since the Lie bracket on H 81 (N, &) is separately continuous for the norm g; by
Proposition 6.25, it follows that the bilinear form Hy (N,&)x Hy (N,&) — C defined
by
& n e (xrds.av)
is separately continuous with respect to g .
As the cocycle w(&, ) = (D&, ), extends to a bilinear map on Hal (N, &) that
is continuous with respect to g1, the bilinear form

En) = (x. ([r ). rm] = r(E.n) —iwE n)v)

is separately continuous for the g;-topology. Since it vanishes on the dense subset
I(N,K)C H 31 (N, 8), it is identically zero. It follows that

[(r &), rmly =r(&ny +iwE Ny

for all Y € D(H?). The operator 7 ([£,7]) + i w(&, 7)1 with domain containing O (H )
is thus an essentially skew-adjoint extension of the operator [r (), r ()] with domain
D(H?). [

6.5.1 Semibounded representations

The concept of a semibounded representation, introduced in [73,75], is much stronger
than that of a positive energy condition. As results in [81] show, it provides enough
regularity to lead to a sufficient supply of C *-algebraic tools to decompose represen-
tations as direct integrals.

Definition 6.31 (Semibounded representations). A smooth representation (p, #) of
a locally convex Lie group G is called semibounded if the function

spiq = RU{oo}, sp(x) := sup(Spec(idp(x))) (6.49)

is bounded on a neighborhood of some point xo € g. Then, the set W, of all such
points xg is an open Ad(G)-invariant convex cone in g.
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For Lie groups G which are locally exponential or whose Lie algebra g is bar-
relled’, a semibounded representation is bounded if and only if W, = g [73, The-
orem 3.1 and Proposition 3.5]. The positive energy representation r of H 31 (N, &)
fulfills the following semiboundedness condition.

Proposition 6.32. Let § € L% (M. R), and lett > 0. Then
—1&NBw — 9||§||idf(dM + 1)?/t < inf(Spec(ir(tD & §))).

In particular, the spectrum of tH + ir(€) is bounded below for every t > 0, and this
bound is uniform on an open neighborhood of D in L%M (M, &) xRD.

Proof. Using Proposition 6.20, one finds that the map L% " (M, &) — C defined by
> (T £ir(®))y

is continuous for every ¥ € D(H), and every ¢ > 0. It is non-negative on the dense
subspace I'. (M, &) by Theorem 6.17, and hence on all of L% " (M, &) by continuity.
If ||£]|,, = 0, then r(§) = 0, and the proposition holds trivially. If ||£]|,, # O and
£ := 1/]}€ . then

Te = tH + €] 5,1

satisfies 0 < (I's £ ir(§))y, and thus

~NENBllvI? < (Yot H £ir(€). ¥).

Since
IE1Be < 16018y + ONEN ude(dar + 1)% /e,

the result follows by substituting & = /| |§|| .. ]
Corollary 6.33. The positive energy representation dp of the Lie algebra
(]RC Bp Ie(M, S?)) xRD
is semibounded and the cone W, contains the open half space
(RC & T'e(M,R)) —R4D.

Proof. This follows from Proposition 6.32 because dp comes from a group rep-
resentation, the central element C is represented by a constant, and the inclusion
re(M, &) — L%M (M, &) is continuous. ]

IThese are the locally convex spaces for which the Uniform Boundedness Principle holds.
All Fréchet spaces and locally convex direct limits of Fréchet spaces are barrelled, which
includes, in particular, LF spaces of test functions on noncompact manifolds.
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6.5.2 Analytic vectors

A vector ¥ in a Banach space X is called analytic for an unbounded operator A
on X if ¥ € (,en D(A"), and the series Y oo %HA”WH has positive radius of
convergence R4 > 0.

Lemma 6.34. Let&E € H 32 (N, &), and consider H and r (&) as unbounded operators
on K. If ¢ € H is an analytic vector for H, then it is also analytic for r (§). If ¥ has
radius of convergence Ry for H, then the exponential series

X)W = 3 )Y
n=0" "

is absolutely convergent on the ball defined by

1 (2¢p)? (cp + 1)?
p2(&) < —Z—C?log (l—m(l—exp(—TRH))). (6.50)

Proof. We apply [86, Theorem 1] to r(£) and A = 1 + H, considered as unbounded
operators on the Banach space #;,. For § € HII;M(M, R)and ¥ € D(H?) C Hy )2,
the inequality (6.38) yields

7)Y ll12 < ENAY | 1/2. (6.51)

By (6.35), we have ad, gy A = —ir(D§).If § € H82 (N, &), then by definition, both &
and D§ are in Hy (N, &). It follows that also ad'g_l(Dé) € Hj(N.K) forn > 1. By
(6.47) and induction, we find

ad ) (A) = —iad) ) (r(D§)) = —ir(adi™" (D§)) + o(§,adf > (DE)1  (6.52)

as an equality of unbounded operators from D (H?) to #; /2. From (6.40) and (6.45),
we infer that

ladg (DE)IBes = (celllloo)" 1 D&l B (6.53)
q1(adf (D§)) = (2ceqc1(£)"q1(DE). (6.54)

Next we estimate ||ad;’(§)(A)¢ l1/2- Applying (6.52) and noting that

@& ml =D& )yl < [1DEllulnll, and [ DE|lu < [|DE B,y

the second term on the right-hand side of (6.52) satisfies

lox(€, ad; =2 (DENY [l1/2 < (cellElloo)" 2 IDENG, LW l11/2- (6.55)

Applying (6.51) and (6.54) to the first term on the right-hand side of (6.52), we find

Ir(ad = (DENV (1172 < Qeeqcr (€)" q1(DE AV 112 (6.56)
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Combining (6.55) and (6.56) with (6.52), and using that ||/ |12 < [[AV¥||1/2, we find

||ad:'($) (DY ll1y2 < enllAY 12,

with
en = q1(DE) (I DE| By + 2ceqei (§))) 2ceger (€))"2. (6.57)
Since the series -~
v(s) := n gn
= n!

has positive radius of convergence, we may now fix some ¢y > 0 with v(¢z9) < 1 and
assume that 0 < 5,7 < t9. Applying [86, Theorem 1] to #;,, guarantees that for

w(s) = /Os(1 — (1) tdt,

we have

> 2@ e = 3 T g, it = 0

n=0 n=0

asin (651, Since 7€YY | < )"y 2 and [ 4" 172 = 471, this yieds
S lr @yl s 3 STy 659)

n!
n=0

To get an explicit estimate on the radius of convergence, note that all norms of (deriva-
tives of) & occurring in (6.57) are dominated by p,(§) (cf. (6.44)). The estimate
¢n < ab™ with

a:=(1+2¢ce)/(2ce)* and b :=2cepa(§)

yields v(s) < a(e? — 1). Accordingly, v(t9) < 1 is ensured if

bty <1 1+1 1 1 !
o —]=-1lo — .
0 g p g l+a

In particular, s = 1 is allowed if p,(§) < 217? log(1 + %) Substituting this in

N
w(s)z/ (1 —v()) tdt
0
and integrating, we obtain

w(s) < log((1 4+ a)e ™ —a). (6.59)

1
" (I+a)b
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If v is an analytic vector for H, it is analytic for A = 1 + H with the same radius
of convergence Ry . The right-hand side of (6.58) therefore converges absolutely if
c-w(s) < Ry, where ¢ = q1(£). Since q1(§) < p2(§), we find § < ﬁ and hence
m < 2cg/(cp + 1)2. Substituting this in (6.59), we find that ¢ - w(s) < Ry if

1 (cg +1)? 1
bs < —log[1———(1- -——R —log(1— .
S = Og( 1+a( eXp( 2c¢ " =g l+a

Putting s = 1, and substituting @ and b in the above equation, we find that (6.58)
converges if p, (&) satisfies (6.50). [




