
Chapter 7

The localization theorem

In this section, we use the continuity and analyticity results from Chapter 6 to prove
a localization theorem. Our main result reduces the classification of positive energy
representations of the identity component �c.M;K/0 to the case where the base
manifold M is one-dimensional. We start in the setting of a fixed point free R-action
on the manifold M , and extend this to more general Lie group actions in Section 7.5.

7.1 Statement and discussion of the theorem

Theorem 7.1 (Localization theorem). Let � WK !M be a Lie group bundle whose
fibers are 1-connected semisimple. Let 
K WR! Aut.K/ be a homomorphism that
defines a smooth action on K , and induces a fixed-point free flow 
M on M . Then,
for every projective positive energy representation

N�W�c.M;K/0 ! PU.H /

of the connected gauge group �c.M;K/0, there exists a one-dimensional, closed,
embedded, flow-invariant submanifold S � M such that N� factors through a pro-
jective positive energy representation N�S of the connected Lie group �c.S;K/. The
diagram

�c.M;K/0

rS

��

N�
// PU.H /

�c.S;K/

N�S
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commutes, where rS W�c.M;K/0 ! �c.S;K/ is the restriction homomorphism.

Remark 7.2. It is convenient to define �c.;;K/ WD ¹1º, so that the above theorem
holds for the trivial representation with S D ;.

Remark 7.3 (Localization for the simply connected cover). In fact, we will prove a
slightly stronger result: every projective positive energy representation

N�W z�c.M;K/0 ! PU.H /

of the simply connected cover of �c.M;K/0 factors through zrS WD rS ı q� , where
q� W z�c.M;K/0 ! �c.M;K/ is the covering map and

rS W�c.M;K/0 ! �c.S;K/
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the restriction. This strengthening of Theorem 7.1 is needed in Part II, where we
handle localization for gauge groups on manifolds with boundary.

Note that M is not required to be compact or connected, and that the fibers of
K ! M are not required to be compact. The result for noncompact M is a major
feature, which we will use extensively later on (see Chapter 9 and Part II). Allowing
noncompact fibers, however, is not a big step. Indeed, noncompact simple fibers result
in trivial representations by Theorem 6.2, so we already know that the theorem holds
with S D ; in that case. Before proceeding with the proof in Section 7.2, we show
that the assumption of 1-connectedness of the fibers is not essential.

Remark 7.4 (Non-simply connected fibers). Suppose that the typical fibers of the
bundle K ! M are connected, but not necessarily simply connected. Let Ki be the
typical fiber over the connected component Mi of M , and let zKi be its 1-connected
universal cover. The kernel �1.Ki / of the covering map zKi � Ki is a finite, central
subgroup, yielding a central extension

�1.Ki / ,! zKi � Ki : (7.1)

The natural inclusion Aut.Ki / ,!Aut. zKi /, obtained by the canonical lift of automor-
phisms, yields a Lie group bundle zKi !Mi with fiber zKi over eachMi , and hence a
Lie group bundle zK!M overM . It comes with a natural bundle map zK!K over
the identity of M , which restricts to the universal covering map on every fiber. The
kernel Z � zK of this map is a bundle of discrete, abelian groups, whose fibers over
Mi are isomorphic to �1.Ki /. Analogous to (7.1), we thus obtain an exact sequence
of Lie group bundles

Z ,! zK �K:

The 1-parameter group 
K WR!Aut.K/ lifts to 
 zK WR!Aut. zK/with the same
infinitesimal generator v2�.M;a.K// (cf. Remark 4.8). As every smooth section � 2
�c.M;K/0 lifts to a section of zK because the natural map �c.M; zK/! �c.M;K/

is a covering morphism of Lie groups, the projection zK !K yields a surjective Lie
group homomorphism, and hence an exact sequence

�c.M;Z/ ,! �c.M; zK/! �c.M;K/: (7.2)

Since the fibers of Z are discrete, the group �c.Mi ;Zi / of compactly supported sec-
tions of Zi ! Mi is trivial if Mi is noncompact. If Mi is compact, �c.Mi ;Zi / can
be identified with �1.Ki /�1.Mi /, the fixed point subgroup of �1.Ki / under the mon-
odromy action �1.Mi /! Aut.�1.Ki //. We thus obtain an isomorphism

�c.M;Z/ '
Y0

i2I
�1.Ki /

�1.Mi / (7.3)

of discrete groups where
Q0
i2I �1.Ki /

�1.Mi / denotes the weak direct product of the
finite abelian groups �1.Ki /�1.Mi / (all tuples with finitely many non-zero entries),
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running over all i for which the connected component Mi is compact. In particu-
lar, it follows from (7.2) and (7.3) that projective positive energy representations of
�c.M;K/0 correspond to projective positive energy representations of �c.M; zK/0
that are trivial on

ZŒM� WD �c.M;Z/ \ �c.M; zK/0:

Note that the embedding S ,! M yields a “diagonal” morphism ZŒM� ! ZŒS�.
The term “diagonal” is justified by the special case where K is a trivial bundle over
a compact, connected manifold M . Then, the embedded 1-dimensional submanifold
; ¤ S � M is the disjoint union of N circles, and ZŒM� ' �1.K/ can literally be
identified with the diagonal subgroup of ZŒS� ' �1.K/N .

Combining Theorem 7.1 with Remark 7.4, we obtain a localization theorem for
bundles whose fibers are not necessarily simply connected.

Corollary 7.5 (Localization theorem for non-simply connected fibers). Suppose that
the fibers of K ! M are connected, but not necessarily simply connected. Then, N�
arises by factorization from a projective positive energy representation of �c.S; zK/

that is trivial on the image of ZŒM� in ZŒS�.

Remark 7.6 (Abelian groups). In the localization Theorem 7.1 we have assumed that
the fiber Lie groupK is semisimple. We now explain why this is crucial and that there
is no localization for abelian target groups, so that the localization theorem does not
extend to bundles with general compact fiber Lie algebras. To this end, letK D .k;C/
be a finite-dimensional real vector space and fix a positive definite scalar product �
on k. Further, let M be a smooth manifold and consider the Lie group G WD g WD

C1c .M; k/, which can be identified with the group of compactly supported sections
of the trivial bundle K DM �K. We also fix a smooth flow 
M WR! Diff.M/, its
generator vM 2 V.M/, and a 
M -invariant positive Radon measure � on M . Then

�g.�; �/ WD

Z
M

�.�; �/d�

defines a positive semidefinite scalar product on g, invariant under the R-action on g

given by
˛t� WD � ı 
M .t/;

whose infinitesimal generator is D� D LvM � . Then

!.�; �/ WD �g.D�; �/ D

Z
M

�.LvM �; �/d�

is an R-invariant skew-symmetric form on the abelian Lie algebra g, hence a Lie
algebra 2-cocycle. Combining in [85, Theorems 3.2 and 5.9], it now follows that all
these cocycles are obtained from projective positive energy representations of the
groups G Ì˛ R. This shows that, for abelian fibers, no restrictions on the measure �
exist.
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Example 7.7. We consider the Lie algebra g D C1.Td ; k/, k compact simple and
˛t .�/ D � ı 
t , where


t .z1; : : : ; zd / D
�
e2�it�1z1; : : : ; e

2�it�d�1zd�1; e
2�itzd

�
:

This means that vM is the invariant vector field on the Lie group Td Š Rd=Zd with
exponential function

exp.x1; : : : ; xd / D
�
e2�ix1 ; : : : ; e2�ixd

�
whose value in 1 is given by x D .�1; : : : ; �d�1; 1/. This action has a closed orbit if
and only if the one-parameter group A WD exp.Rx/ is closed, which is equivalent to
�j 2 Q for all j .

If this condition is satisfied, then A Š T and the ˛-orbits are the A-cosets in the
group Td . This situation is also studied by Torresani in [105]. If this condition is not
satisfied, then the localization theorem implies that there are no non-trivial projective
positive energy representations.

Remark 7.8. The localization theorem also yields partial information for flows with
fixed points, and for manifolds with boundary.

(a) If the vector field vM has zeros, then

M� WD
®
x 2M W vM .x/ 6D 0

¯
is an open flow-invariant submanifold of M and the localization theorem applies to
the bundle KjM� . In this context, this theorem does not provide a complete reduc-
tion to the one-dimensional case for two reasons. One is that the representations of
�c.M

�;K/ do not uniquely determine those of �c.M;K/ and the other reason is that
the 1-dimensional submanifold S ofM� need not be closed inM , so that the extend-
ability of the representation of �c.M�;K/ to the Lie algebra �c.M;K/ provides
“boundary conditions at infinity” for the corresponding representations of �c.S;K/.
We will further explore these boundary conditions in future work.

(b) Similarly, if xM is a manifold with boundary, then both its interiorM D xM n@M
and its boundary @M are invariant under the flow. In Part II of this series of papers,
we apply the localization theorem to M and @M separately, and combine the infor-
mation to obtain classification results for positive energy representations of the gauge
group �. xM;K/. The main challenge here is that although every projective unitary
representation of �. xM;K/ automatically restricts to �c.M;K/, we heavily rely on
the positive energy condition to obtain a representation of �c.@M;K/.

Example 7.9. A typical example of a flow with fixed points is the 2-sphereM D S2,
where


M;t .x; y; z/ D

0@ cos.t/ sin.t/ 0

� sin.t/ cos.t/ 0

0 0 1

1A0@xy
z

1A (7.4)
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is the rotation around the z-axis with unit angular velocity, and P D S2 � k is the
trivial bundle. The lift of the infinitesimal action is then given by

v.x; y; z/ D .y@x � x@y/C A.x; y; z/; (7.5)

where the first part is the horizontal lift of the infinitesimal action corresponding
to (7.4), and the second part is the vertical vector field corresponding to a smooth
function AWS2 ! k.

Then, M� D S2 n ¹.0; 0;˙1/º, and the integral curves on S2 are precisely the
circles of latitude. Therefore, S is either compact and a finite union of circles, or it is
noncompact and an infinite union of circles. More precisely,

S D
®
.x; y; z/ 2 S2 W z 2 J

¯
;

where J � .�1; 1/ is a discrete set that has at most two accumulation points ˙1,
corresponding to the two fixed points of the circle action. We return to this example
in Section 9.3.

7.2 Localization at the Lie algebra level

The remainder of this chapter is devoted to the proof of Theorem 7.1. We start by
proving the statement at the level of Lie algebras. This proceeds through several lem-
mas. In the first one, relying heavily on Theorem 6.30 and Lemma 6.34, we derive
integrality results for the flow-invariant measure � of Section 5.2.2.

Lemma 7.10. Suppose that the fibers of K! M are simple Lie algebras. Consider
a good flow box U ' U0 � I � M around x 2 M in the sense of Definition 5.1, so
that the restriction of the invariant measure � to U ' U0 � I takes the form

�jU D �0 ˝ dt:

Then, for every measurable subset E � U0,

�0.E/ 2
1

2�
N0:

Proof. We may assume without loss of generality that the fibers of K over U are
compact, as �0.E/ would otherwise be zero by Corollary 5.5. Let �E WU0 ! ¹0; 1º
be the indicator function of E. Consider the Lie algebra homomorphism

�E WRC ˚! H
2
@ .I; k/! RC ˚! H

2
@ .U; k/; zC ˚ � 7! zC ˚ �E�

whose continuity follows from Corollary 6.29. If we pull back the representation r of
RC ˚! H 2

@
.U; k/ of Theorem 6.30 along �E , we obtain a projective �-representation
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of the Banach–Lie algebra h WD H 2
@
.I; k/. By Lemma 6.34, its space of analytic vec-

tors is dense in H .
Since h consists of functions I ! k and it contains C1c .I; k/, the fact that z.k/D

¹0º implies that the center of h is trivial. As h is a Banach–Lie algebra, it is in partic-
ular locally exponential, so there exists a 1-connected Lie group H with Lie algebra
h by [71, Theorem IV.3.8] (see [30] for a complete proof).

Now Theorem 2.18 provides a smooth, projective, unitary representation

� WH ! PU.H /:

By Theorem 5.7, the corresponding Lie algebra cocycle is given by

!.�; �/ D �

Z
U

�.�E�;rvM .�E�//d� D �

Z
U0�I

�.�E�; �E�
0/d�0dt

D ��0.E/

Z
I

�.�; �0/dt D �0.E/

Z
I

�.� 0; �/dt:

Theorem 2.13 now implies the existence of a central Lie group extension H ] of H
by T Š R=2�Z with Lie algebra h

]
! D RC ˚! h.

This in turn implies integrality conditions on the values of �0.E/. To see how
these can be obtained, we associate to ! the corresponding left invariant 2-form� on
H with �1 D !. This form defines a period homomorphism

per! W�2.H/! R; Œ�� 7!

Z
�

�

(cf. [69, Definition 5.8]) and [69, Lemma 5.11] implies that

im.per!/ � 2�Z:

Since the rescaling map


 WC1c .I; k/! C1c ..��; �/; k/; 
.�/.�/ D �

�
T

2�
�

�
from the interval I D .�T=2; T=2/ to the interval .��; �/ is an isomorphism of Lie
algebras, the cocycle

R
I
�.� 0; �/dt on C1c .I; k/ has the same period group as the

cocycle
R �
��
�.� 0; �/d� on C1c ..��; �/; k/. In [70, Lemma V.11], it was shown that

this, in turn, has the same period group as the cocycle
R �
��
�.� 0; �/d� on C1c .S

1; k/.
By [68, Theorem II.5], the period group of 1

2�

R �
��
�.� 0; �/d� is 2�Z, provided that

� is normalized as in (4.2). Combining all this, we conclude that �0.E/ 2 1
2�

Z.

As the measure 2��0 takes integral values, the following proposition shows that
it is automatically discrete.
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Proposition 7.11. Let � be a locally finite, regular Borel measure on a locally com-
pact space †. If � takes values in N0 [ ¹1º, then there exists a locally finite subset
ƒ � † and natural numbers cx D �.¹xº/ such that

� D
X
x2ƒ

cxıx :

Proof. By regularity, � is determined by its values on compact subsets, so it suffices
to assume that † is compact and to show that, in this case, � is a finite sum of Dirac
measures.

Let F be the family of compact subsets of full measure. For F1;F2 2 F , we have

�.F1 n F2/ D �.F2 n F1/ D 0;

so that F1 \ F2 also has full measure. This shows that F is closed under finite inter-
sections. We show that

C WD
\
F 2F

F

has full measure. Let V be an open set containing C . Since the open complements F c

cover the compact set V c , there exist finitely many Fi such that F c1 [ � � � [ F
c
k
� V c ,

and hence F1 \ � � � \ Fk � V . Since F is closed under finite intersections, every
open set V containing C has full measure. By regularity, we conclude that C has full
measure itself.

Pick x 2 C . For any open neighborhood U of x in C , the minimality of C implies
that �.C nU/< �.C /, so that �.U / > 0. LetU be an open neighborhood of x inC for
which �.U / is minimal; here we use that the values of � are contained in N0. For any
smaller open neighborhood V �U of x inC we then have �.V /D �.U / and therefore
�.U n V / D 0. This implies that �.K/ D 0 for any compact subset K � U n ¹xº and
hence that �.U n ¹xº/ D 0 by the regularity of �. Now the minimality of C entails
that C D ¹xº [ .C n U/. Since x 2 C was arbitrary, it follows that C is discrete,
hence finite: C D ¹x1; : : : ; xkº. Accordingly, the restriction of � to a compact subset
is the finite sum

� D

kX
jD1

�.¹xj º/ıxj

of Dirac measures.

Recall from Theorem 4.9 that the bundle K ! M of semisimple Lie algebras
gives rise to a bundle yK! yM of simple Lie algebras with �c.M;K/ ' �c. yM; yK/.
By Remark 4.10, it inherits the 1-parameter group of automorphisms.

Lemma 7.12. If the flow on M has no fixed points, then the support yS of � is a
one-dimensional, flow-invariant, closed embedded submanifold of yMcpt, the part of
yM over which the fibers of yK are compact.
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Proof. Since the flow on M has no fixed points, the vector field vM on M has no
zeros. As the same holds for its lift to yM , every point x 2 yM is contained in a good
flow boxU ŠU0 � I in the sense of Definition 5.1. In any such flow box, the measure
� is of the form �0 ˝ dt , where �0 is a regular measure on U0. From Lemma 7.10
and Proposition 7.11, we conclude that �0 has finite support in U0, so that yS \ U Š
F � I , where F � U0 is a finite subset. This implies that yS is a one-dimensional,
closed embedded submanifold invariant under the flow on yM . The final statement
follows from Theorem 6.2.

Combined with Corollary 6.3, this shows that Theorem 7.1 holds at the level of
Lie algebras.

Lemma 7.13. There exists a 1-dimensional, closed, embedded, flow-invariant sub-
manifold S �M such that the projective positive energy representation d� of the Lie
algebra �c.M;K/ factors through the restriction map rk

S W�c.M;K/! �c.S;K/.

Proof. Combining Lemma 7.12 with Corollary 6.3 and Theorem 6.2, we conclude
that the projective Lie algebra representation d� of �c. yM; yK/ vanishes on the ideal

J yS WD
®
� 2 �c. yM; yK/ W �j yS D 0

¯
:

It follows that the projective positive energy representation of �c.M;K/ vanishes
on JS WD ¹� 2 �c.M;K/ W �jS D 0º, where S � M is the image of yS under the
finite, R-equivariant covering map yM !M . Since yS � yM is a 1-dimensional, closed,
embedded, flow-invariant submanifold, the same holds for S �M . This implies that
the projective representation factors through the restriction map

rk
S W�c.M;K/! �c.S;K/;

which is a quotient map of locally convex spaces.

7.3 Twisted loop groups

Let S be a one-dimensional, embedded, flow-invariant submanifold of M . Then, it
is the disjoint union S D

F
j2J Sj of its connected components Sj , which are either

diffeomorphic to R (for a non-periodic orbit), or to S1 Š R=Z (for a periodic orbit).
Fix j 2 J and let K D Kj denote the fiber of KjSj . If Sj Š R, then the bundle

KjSj is trivial, i.e., equivalent to

Sj �K Š R �K:

This trivialization can be achieved R-equivariantly, using an integral curve in the
corresponding frame bundle Aut.K/! R, a principal bundle with fiber Aut.K/.
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The action of R on K is then simply given by


t .x; k/ D .x C t; k/ for t; x 2 R and k 2 K: (7.6)

If Sj Š S1 is a periodic orbit, then the universal covering map qj W zSj ! Sj can
be identified with the quotient map R! R=Z. If the period of the orbit Sj is T , then
we scale the R-action on S1 D R=Z by 1=T , yielding


S1;t .Œx�/ D Œx C t=T �:

We have seen above that the pullback q�j .KjSj / is equivariantly equivalent to the
trivial bundle R �K on which R acts by translation in the first factor. The action of
the fundamental group �1.Sj /Š Z on R�K is given by bundle automorphisms that
commute with the R-action; there exists an automorphism ˆ 2 Aut.K/ such that

n � .x; k/ D .x C n;ˆ�n.k// for all n 2 Z:

Accordingly, we have an equivariant isomorphism

KjSj Š .R �K/= �;

where
.x; k/ � .x C n;ˆ�n.k//

for all x 2 R; k 2 K and n 2 Z. We write the equivalence classes as Œx; k�, and we
denote the K-bundle over S1 D R=Z obtained in this way by

Kˆ WD .R �K/= �; with Kˆ ! R=Z

given by
Œx; k� 7! Œx� D x C Z:

The R-action is given in these terms by


t .Œx; k�/ D Œx C t=T; k�:

Note that

T .Œx; k�/ D Œx C 1; k� D Œx;ˆ.k/�;

so that ˆ can be interpreted as a holonomy.
Recall that, for two automorphismsˆ;‰ 2Aut.K/, the correspondingK-bundles

Kˆ and K‰ are equivalent if and only if the classes Œˆ� and Œ‰� are conjugate in the
component group �0.Aut.K//, and they are R-equivariantly isomorphic if and only
if ˆ and ‰ are conjugate in Aut.K/. Indeed, any isomorphism �‰;ˆWKˆ ! K‰

inducing the identity on the base is of the form

�‰;ˆ.Œx; k�/ D Œx; �x.k/�;
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where �WR! Aut.K/ is smooth and satisfies

�xC1 D ‰
�1
ı �x ıˆ for all x 2 R: (7.7)

Such a smooth curve � exists if and only if Œˆ� and Œ‰� are conjugate in the finite
group �0.Aut.K//. In particular, the set of equivalence classes of group bundles with
fiberK over S1 corresponds to the set of conjugacy classes in the group �0.Aut.K//,
which is finite for a semisimple compact Lie group K. This follows from the com-
pactness of the group Aut.K/�Aut. zK/ŠAut.k/ as a subgroup of GL.k/ preserving
the scalar product �.

The bundle isomorphism �‰;ˆ is R-equivariant if and only if the function � is
constant. Accordingly, the two bundles Kˆ and K‰ are R-equivariantly isomorphic
if and only if ˆ and ‰ are conjugate in Aut.K/, so that equivariant isomorphism
classes of principal K-bundles over S1 correspond to conjugacy classes in the group
Aut.K/ (cf. [94, Section 4.4] and [20, Section 9]).

The group �c.R=Z;Kˆ/ is isomorphic to the twisted loop group

Lˆ.K/ WD
®
� 2 C1.R; K/ W .8x 2 R/�.x C 1/ D ˆ�1.�.x//

¯
(7.8)

with Lie algebra

L'.k/ WD
®
� 2 C1.R; k/ W .8x 2 R/ �.x C 1/ D '�1.�.x//

¯
; (7.9)

where ' 2 Aut.k/ is the automorphism of k induced by ˆ. The R-action on L'.k/ is
given by

˛t .�/.x/ D �.x C t=T / and D� D
1

T
� 0:

In some situations it is convenient to use a slightly different normalization for
which ˆ is of finite order, but then the R-action becomes more complicated. If K is
compact, then Aut.K/ is compact as well. In this case, there exists a finite subgroup
F �Aut.K/with Aut.K/DF Aut.K/0 (see [42, Theorem 6.36]) and we may choose
a representative ˆ0 of Œˆ� 2 �0.Aut.K// in such a way that ˆ0 2 F .

If �ˆ;ˆ0 WKˆ0 ! Kˆ is a group bundle isomorphism specified by the smooth
curve �WR! Aut.K/ satisfying

�xC1 D ˆ
�1�xˆ0 for x 2 R

(see (7.7)), then the R-action on �c.R=Z;Kˆ0/ Š Lˆ0.K/ takes the form

z̨t .�/.x/ D �
�1
x �xCt=T �.x C t=T / for � 2 Lˆ0.K/:

On the Lie algebra level we obtain the corresponding derivation given by

zD� D
1

T
.� 0 C ıl.�/�/;
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where

ıl.�/WR! L.Aut.K// D der.k/; ıl.�/x D
d

dt

ˇ̌̌̌
tD0

��1x �tCx

is the left logarithmic derivative of �. Identifying k via the adjoint representation with
der.k/, we obtain a smooth curve AWR! k with ad ıA D ıl.�/ for which

zD� D
1

T
.� 0 C ŒA; ��/: (7.10)

Note that A belongs to the twisted loop algebra L'0.k/; since �xC1 D ˆ�1�xˆ0, we
have

��1xC1�xC1Ct D ˆ
�1
0 .�

�1
x �xCt /ˆ0;

and hence
ıl.�/xC1 D '

�1
0 ıl.�/x'0:

It follows that the curve A satisfies

AxC1 D '
�1
0 Ax;

so that A 2 L'0.k/.

Remark 7.14. We denote by L
]
ˆ.K/c the central T -extension of Lˆ.K/ corre-

sponding to the Lie algebra cocycle

!.�; �/ D
c

2�

Z 1

0

�.� 0; �/dt; c 2 Z

with period group 2�cZ (see the discussion in Section 7.2). If the central charge c
is 1, we omit the subscript and simply write L

]
ˆ.K/. Since the Lie algebra L'.k/ of

Lˆ.K/ is perfect [62, Theorem VI.3] implies that the R-action ˛ on Lˆ.K/ lifts to
a smooth R-action ˛] on L

]
ˆ.K/c , and we obtain a double extension of the form

yLˆ.K/c Š L
]
ˆ.K/c Ì˛] R:

The c-fold cover T � T W z 7! zc extends to a c-fold cover L
]
ˆ.K/�L

]
ˆ.K/c , for

which the following diagram commutes:

T

zc

��

// L
]
ˆ.K/

//

��

Lˆ.K/

id

��

T // L
]
ˆ.K/c

// Lˆ.K/:

Using this covering map, we can identify the representations of Lˆ.K/c with those
representations of Lˆ.K/ for which the roots ¹z 2 T I zc D 1º � T of order c act
trivially.
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7.4 Localization at the group level

To obtain the localization result at the group level, we need the following factorization
lemma.

Lemma 7.15. Let r WG ! H be an open, surjective morphism of locally exponential
Lie groups, and let RWG! U be a continuous homomorphism of topological groups
such that

L.kerR/ WD
®
x 2 g W exp.Rx/ � kerR

¯
� ker L.r/ D L.ker r/:

Then, R factors through a continuous homomorphism xRWG=.ker r/0 ! U and r
induces a covering morphism G=.ker r/0 ! H of Lie groups.

Proof. In view of [71, Proposition IV.3.4] (see [30] for a complete proof),N WD ker r
is a closed, locally exponential Lie subgroup of G. In particular, its identity compo-
nent N0 is open in N , so that the isomorphism G=N !H of locally exponential Lie
groups leads to a covering morphism G=N0 ! H ([71, Theorem IV.3.5]). For every
x 2 L.N /, we have exp.Rx/ � kerR, so that N0 D hexp L.N /i � kerR. Therefore,
R factors through G=N0.

Lemma 7.16. Let S �M be a closed, 1-dimensional submanifold and suppose that
the fibers of KjS ! S are 1-connected, semisimple Lie groups. Then, �c.S;K/ is
1-connected.

For S Š R=TZ Š S1, it follows in particular that, for a 1-connected Lie group
K and an automorphism ˆ 2 Aut.K/, the twisted loop group.

LT
ˆ.K/ WD

®
� 2 C1.R; K/ W .8t 2 R/ �.t C T / D ˆ�1.�.t//

¯
(7.11)

is 1-connected.

Proof. If S has connected components .Sj /j2J with typical fiber Kj of KjSj , then

�c.S;K/ Š
Y0

j2J
�c.Sj ;K/: (7.12)

(We refer to [26, Proposition 7.3] for a discussion of weak direct products of Lie
groups.)

If Sj ' S1, then �c.Sj ;K/ is isomorphic to the twisted loop group LT
ĵ
.Kj /,

where ĵ is an automorphism of Kj . Since �0.Kj /, �1.Kj / vanish, �2.Kj / van-
ishes as well1. The long exact sequence of homotopy groups corresponding to the

1Since Kj is homotopy equivalent to a maximal compact subgroup, this follows from Car-
tan’s theorem [64, Theorem 3.7].
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Serre fibration ev0WLT
ĵ
.Kj /! Kj thus yields an isomorphism between the homo-

topy groups �0 and �1 of LT
ĵ
.Kj / and LT

ĵ
.Kj /� WD ker.ev0/. Since the inclu-

sion LT
ĵ
.Kj /� ,! LT

ĵ
.Kj /�;ct into the group of continuous, based, twisted loops

is a homotopy equivalence by [84, Corollary 3.4], and since �m.LT
ĵ
.Kj /�;ct/ '

�m.�Kj / ' �mC1.Kj / for m 2 N0 (cf. [84, page 391]), we conclude that LT
ĵ
.Kj /

is 1-connected.
If Sj 'R, then �c.Sj ;K/' C1c .R;Kj / is 1-connected by [70, Theorem A.10].

From [28, Proposition 3.3], we then conclude that the locally exponential Lie group
(7.12) is 1-connected.

With these topological considerations out of the way, we now complete the proof
of the localization theorem.

Proof of Theorem 7.1. In Lemma 7.13, we showed that the projective positive energy
representation d� of �c.M;K/ factors through the restriction map

rk
S W�c.M;K/! �c.S;K/;

so it remains to prove the corresponding factorization on the group level. For this,
apply Lemma 7.15 to the locally exponential Lie groups G D z�c.M;K/0 and H D
�c.S;K/ (which are both 1-connected by Lemma 7.16), and the topological group

U D PU.H /:

The homomorphism r is the homomorphism zrS W z�c.M;K/0 ! �c.S;K/, induced
by the restriction rS W�c.M;K/0! �c.S;K/, and R is the projective representation
N�W z�c.M;K/0 ! PU.H /. We conclude that N� factors through a projective positive
energy representation of the 1-connected Lie group �c.S;K/.

Since every representation of �c.M;K/0 defines by pullback a representation of
its simply connected covering, the assertion also follows for representations of this
group. This concludes the proof of the theorem.

7.5 Localization for equivariant representations

In this section we extend the localization Theorem 7.1 to the equivariant setting,
where the action of R on M is replaced by a smooth action of a Lie group P on M .
The positive energy condition (cf. Section 3.2) then refers not to an R-action, but to
the positive energy cone C � p inside the Lie algebra p of P .

LetM be a manifold, letP be a Lie group acting smoothly onM , and let K!M

be a bundle of 1-connected, semisimple Lie groups that is equipped with a lift of
this action. We denote the P -action on M by 
M WP ! Diff.M/, its lift to K by
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 W P ! Aut.K/, and the corresponding action on the compactly supported gauge
group by ˛WP ! Aut.�c.M;K//. On the infinitesimal level, the action of P on M
gives rise to the action vM Wp! V.M/; p 7! vpM of the Lie algebra p WD L.P /.

Let . N�;H / be a smooth, projective, positive energy representation of the semidi-
rect product �c.M;K/ Ì˛ P (cf. Definition 3.5), with positive energy cone C � p.

Definition 7.17. The fixed point set † � M of the positive energy cone C � p (a
closed convex invariant cone in p) is defined as

† WD
®
m 2M W .8p 2 C/vpM .m/ D 0

¯
:

Since the positive energy cone C is AdP -invariant, its fixed point set† is a closed,
P -invariant subset of M . In the following we first consider the fixed-point-free sce-
nario † D ;, and return to the general case in [49, Part II].

Definition 7.18. Let N� be a smooth, projective, unitary representation of �c.M;K/.
The support of N�, denoted supp. N�/, is defined as the complement of the union of
all open subsets U � M for which the kernel of N� contains the normal subgroup
�c.U;K/. Similarly, the support of d� is the complement of the union of all open
sets U �M such that the kernel of d� contains �c.U;K/.

Note that the support is a closed subset of M . If the representation N� extends to
the semidirect product �c.M;K/ Ì˛ P , then the support of N� is invariant under the
action ofP onM . This leads to severe restrictions for positive energy representations.

Theorem 7.19 (Equivariant localization theorem). Let . N�;H / be a smooth, projec-
tive, positive energy representation of �c.M;K/0 Ì˛ P , and suppose that C has no
fixed points. Then, there exists a 1-dimensional, P -equivariantly embedded subman-
ifold S �M such that N� factors through the restriction homomorphism

rS W�c.M;K/0 ! �c.S;K/:

Remark 7.20 (Equivariant localization for the simply connected cover). Since the
P -action on �c.M;K/ preserves the identity component �c.M;K/0, it lifts to the
simply connected cover z�c.M;K/0. In this context the same result remains valid:
every smooth, projective, positive energy representation N� of z�c.M;K/ Ì˛ P factors
through the homomorphism zrS W z�c.M;K/0! �c.S;K/ obtained by composing the
restriction rS with the covering map.

Proof. For every p 2 C, let Up � M be the open set of points in M where vpM
is non-vanishing. Applying Lemma 7.13 to the manifold Up , with the gauge group
�c.Up;K/ and the R-action p̨.t/ WD ˛.exp.tp//, one finds an embedded, 1-dimen-
sional submanifold Sp � Up such that the projective Lie algebra representation d�
factors through the restriction map rk

Sp
W �c.Up;K/ ! �c.Sp;K/. The support of
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d�j�c.Up ;K/ is thus contained in Sp . It actually equals Sp because the cocycle on
�c.Up;K/ is given by a measure with support Sp . The sets Sp and Sp0 therefore coin-
cide on Up \ Up0 , so the union S D

S
p2C Sp is a 1-dimensional, closed embedded

submanifold ofM . Here we use that the Up coverM because C has no common fixed
point. Since gSp D SAdg.p/ for every g 2 P , the union S is P -invariant.

Let IS WD ¹� 2 �c.M;K/I �jS D 0º be the vanishing ideal of S in �c.M;K/.
Since any � 2 IS can be written as a finite sum of �p 2 ISp � �c.Up;K/, and since the
restriction of d� to �c.Up;K/ vanishes on ISp , we conclude that d� vanishes on IS .
From Lemma 7.15 and Lemma 7.16, we then find (as in the proof of Theorem 7.1) that
N� factors through the restriction �c.M;K/0! �c.S;K/ and that the corresponding
assertion holds for representations of the covering group z�c.M;K/0.

The building blocks for the positive energy representations therefore come from
actions of P on 1-dimensional manifolds on which C has no fixed point. According
to the classification of hyperplane subalgebras of finite-dimensional Lie algebras [40,
41], an effective action of a connected finite-dimensional Lie group P on a simply
connected one-dimensional manifold is of one of the following 3 types:

• the action of P D R on the line R,

• the action of the affine group P D Aff.R/0 on the real line R,

• the action of P DfSL.2;R/ on the real line R, considered as the simply connected
cover of P1.R/ Š S1.

In the infinite-dimensional context, the action of the simply connected covering group
P DeDiffC.S1/ on R Š zS1 is a natural example.


