
Chapter 8

The classification for M compact

If the flow M on M has no fixed points, the localization Theorem 7.1 reduces the
classification of projective positive energy representations of the identity component
�c.M;K/0 of the compactly supported gauge group to the situation where the base
manifold is a closed, embedded, flow-invariant submanifold S � M of dimension
one.

The connected components of S are either diffeomorphic to R (for a non-periodic
orbit), or to S1 Š R=Z (for a periodic orbit). Since a gauge group on R is equivari-
antly isomorphic to C1c .R; K/ (with R acting by translation), and a gauge group on
S1 is equivariantly isomorphic to a twisted loop group (with R acting by rotation),
the gauge group on S is a product of twisted loop groups and groups of the form
C1c .R; K/.

In this chapter, we describe the complete classification of positive energy repre-
sentations for twisted loop groups. This leads to a classification of the positive energy
representations of �c.M;K/0 for which the one-dimensional submanifold S is com-
pact. Since this is automatically the case if M is compact, we arrive at a complete
classification in this setting.

8.1 Positive energy representation of twisted loop groups

We now describe the complete classification of projective positive energy representa-
tions for twisted loop groups.

In this section K denotes a 1-connected compact (hence semisimple) Lie group,
ˆ 2 Aut.K/ is an automorphism of finite order ˆN D idK , and ' D L.ˆ/ 2 Aut.k/
is the corresponding automorphism of k. We further assume that the invariant form �

on k is normalized in such a way that

�.i˛_; i˛_/ D 2

for all long roots ˛. We denote the (twisted) loop groups and algebras by Lˆ.K/

and L'.k/ respectively, as in (7.8) and (7.9). The (double) extensions with c D 1 are
denoted by L

]
ˆ.K/ and yLˆ.K/, cf. Remark 7.14.

Definition 8.1. We call a positive energy representation .�;H / of yLˆ.K/

(i) basic if Ut WD �.exp tD/ � �.L]
ˆ.K//

00 for every t 2 R,

(ii) periodic if UT D 1 for some T > 0.

Note that if � is minimal (Definition 3.8), then it is in particular basic.
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Remark 8.2. If .�;H / is periodic with UT D 1, then [79, Lemma 5.1] implies that
the space H1 of smooth vectors is invariant under the operators

pn.v/ WD
1

T

Z T

0

e�2�int=TUtvdt:

These are orthogonal projections onto the eigenvectors ofH D id�.D/ for the eigen-
values �2�n=T , n 2 Z.

Recall from Section 7.3 that with the identification S1 ' R=Z and with ˆN D
idK , we have

D.�/ D
1

T
.� 0 C ŒA; ��/:

It will be convenient to introduce the derivative

d.�/ D
d

dx
�; so that D D

1

T
.dC adA/: (8.1)

Remark 8.3 (Independence of positive energy condition from lift of R-action). From
Proposition 6.32, applied to M D R=Z, it follows that a smooth representation of
L
]
ˆ.K/ is of positive energy with respect to the derivation D if and only if it is of

positive energy with respect to the derivation d. Then, the representation is semi-
bounded in the sense of Definition 6.31. As this holds for D D 1

T
.dC adL/ with any

T > 0 and L 2L'.k/, the positive energy condition does not depend on the choice of
the vector field v on Kˆ DR�ˆ K lifting the vector field vM D 1

T
d
dt

on S1 ŠR=Z.

FromˆN D idK , we immediately derive that 'N D idk . For ygD yL'.k/, we define
the canonical triangular decomposition by

ygC D yg
C

C ˚ yg
0
C ˚ yg

�
C

with
yg˙C WD

X
˙n>0

ygnC;

where

ygnC WD ker
�

dC
2�in

N
1
�

for n 2 Z

(see (A.1) in the appendix). For g D L'.k/, we have the analogous decomposition

gC D gCC ˚ g0C ˚ g�C

with
gCC D yg

C

C and g�C D yg
�
C:

For a smooth unitary representation of yLˆ.K/, we define its minimal energy
subspace with respect to id�.d/ by

E WD .H1/g
�
C for .H1/g

�
C WD

®
 2 H1 W .8x 2 g�C/d�.x/ D 0

¯
: (8.2)
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Lemma 8.4. For every smooth positive energy representation .�;H / of yLˆ.K/, the
subspace E is generating for L

]
ˆ.K/.

Proof. Note that E is defined in terms of �j
L
]
ˆ
.K/

. In view of Corollary 3.9 and the
fact that ˛N D idLˆ.K/, we may therefore assume, without loss of generality, that �
is periodic.

Let H 0 �H denote the smallest closed L
]
ˆ.K/-invariant subspace containing E .

Then, H 0 is U -invariant, and the representation of yLˆ.K/ on .H 0/? is also a positive
energy representation. If .H 0/? 6D ¹0º, then its minimal energy subspace F is non-
zero by Remark 8.2, and since it contains smooth vectors, we obtain a contradiction
to F ?E . Therefore, .H 0/? D ¹0º and the subspace E is L

]
ˆ.K/-generating.

We now abbreviate

G WD Lˆ.K/; yG WD yLˆ.K/ and G] WD L
]
ˆ.K/ (8.3)

and denote the corresponding groups of fixed points by

L D Kˆ; yL WD Fix˛. yG/ Š T �Kˆ �R; L] WD yL \G] Š T � L:

From the discussion in [79, Section 5.2 and Appendix C], it follows that the homo-
geneous space G=L Š yG=yL Š G]=L] carries the structure of a complex Fréchet
manifold on which yG acts analytically, and the tangent space in the base point is
isomorphic to the quotient space ygC=.yg

0
C C gCC/. For any bounded unitary represen-

tation .�L; E/ of yL, we then obtain a holomorphic vector bundle E WD yG �yL E over
yG=yL. We write �hol.G=L;E/ for the space of holomorphic sections of E.

Definition 8.5 (Holomorphically induced representations). A unitary representation
.�;H / of yG is said to be holomorphically induced from .�L; E/ if there exists a
G-equivariant linear injection ‰WH ! �hol.G=L; E/ such that the adjoint of the
evaluation map

ev1yLWH ! E D E1yL

defines an isometry ev�
1yL
WE ,! H . If there exists a unitary representation .�;H /

holomorphically induced from .�L;E/, then it is uniquely determined [77, Definition
3.10]. We then call the representation .�L; E/ of yL (holomorphically) inducible. The
same statements apply to G] and L].

Let tı � k' be maximal abelian, so that

t D RC ˚ tı ˚Rd

is maximal abelian in yL'.k/. We write T ] D T � T ı for the torus group with Lie
algebra t] D RC ˚ tı. Let �C be a positive system for the affine Kac–Moody Lie
algebra yL'.kC/ with respect to the Cartan subalgebra tC such that, for all ˛ 2 �, the
relation ˛.id/ > 0 implies ˛ 2 �C (cf. Appendix A and [38, Chapter X]).
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Proposition 8.6. A bounded representation .�L; E/ of

L] D exp.RC/ � L Š T � L

is holomorphically inducible if and only if

d�L.Œz�; z�/ � 0 for all z 2 gnC; n > 0: (8.4)

In particular, the irreducible, holomorphically inducible representations of L] are
parametrized by the anti-dominant, integral weights � of the form

� D .�.C /; �0; 0/ 2 it
� (8.5)

of the affine Kac–Moody Lie algebra yL'.kC/ with respect to the Cartan subalgebra
tC and the positive system�C. Here the central charge c WD �i�.C / is contained in
N0, and for every central charge c there are only finitely many such representations
with �.C / D ic

Proof. Since the representation �L of the compact group L] is a direct sum of irre-
ducible representations, we may assume that it is a representation with lowest weight
� with respect to the positive system of roots �C0 of .k'C; t

ı
C/.

The necessity of (8.4) follows from [79, Proposition 5.6]. To show that � is anti-
dominant for . yL'.kC/; tC; �

C/, we need that �..˛; n/_/ � 0 for .˛; n/ 2 �C. We
distinguish the cases n > 0 and n D 0. If n > 0, we use (A.2) in Appendix A, to see
that (8.4) implies �..˛; n/_/ � 0 for 0 6D ˛ 2 �0, the root system of .k'C; t

ı
C/. For

n D 0, the assertion follows from �.ˇ_/ � 0 for ˇ 2 �C0 .
Next, we prove the integrality of �. For ˛ 6D 0, the relation

exp.2�i.˛; n/_/ D 1 (8.6)

in T ] follows from the fact that

k.˛; n/ WD spanR

®
x˝ en � x

�
˝ e�n; i.x˝ enC x

�
˝ e�n/; i.˛; n/

_
¯
Š su.2;C/:

Since � corresponds to a character of T ], the relation (8.6) implies that

exp.2�i�..˛; n/_// D 1;

so that �..˛; n/_/ 2 Z. We conclude that � is anti-dominant integral.
We now argue that every integral, anti-dominant weight � as in (8.5) specifies a

holomorphically inducible representation .�L; E�/ of L]. In fact, the unitarity of the
corresponding lowest weight module L.�;��C/ of the affine Kac–Moody algebra
yL'.kC/ ([54, Theorem 11.7]) can be used as in the proof of [79, Theorem 5.10] to

see with [79, Theorem C.6] that .�L; E�/ is holomorphically inducible.
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The following theorem is well-known for untwisted loop groups L.K/, but we
did not find an appropriate statement in the literature for the twisted case. It requires
some refined methods based on holomorphic induction which we draw from [79].

Theorem 8.7. If K is 1-connected and .�;H / is a positive energy representation of
yLˆ.K/, then its restriction to L

]
ˆ.K/ is a finite direct sum of factor representations

of type I , hence, in particular, a direct sum of irreducible representations.

Proof. Since the assertion only refers to the restriction �j
L
]
ˆ
.K/

, we may assume,
without loss of generality, that � D �0 is minimal (Definition 3.8 and Theorem 3.7).
Then, ˛N D idLˆ.K/ implies that � is periodic and that every subrepresentation is
generated by the fixed points of

Ut D �.1; t / D e�itH :

In view of Remark 8.2, the space H1 of smooth vectors for yG D yLˆ.K/ (see
(8.3)) is invariant under the projections pnWH ! Hn onto the eigenspaces of H D
id�.D/. Since � D �0 is minimal, we have Hn D ¹0º for n < 0 and H0 is gener-
ating. Now H0 \H1 is contained in E , the closure of .H1/g

�
C from (8.2). As the

intersection H0 \H1 is dense in H0, we have H0 � E .
Recall that

yL D Fix˛. yG/ Š L �R Š T �Kˆ �R:

As Kˆ is compact and UN D 1 follows from 'N D idk , �.yL/ is a compact sub-
group of U.H /. Hence, the yL-invariant subspace H0 � E is a direct sum of finite-
dimensional subrepresentations. In particular, it decomposes into isotypic compo-
nents Ej WD Ej ˝Mj , j 2 J , where Mj Š B.Ej ;H0/

yL is the multiplicity space of
the (finite-dimensional) irreducible representation .�Lj ; Ej /. It also follows that the
representation of yL on each Ej is semisimple in the algebraic sense and that the irre-
ducible subrepresentations are of the formEj ˝ , 2Mj . As a consequence, every
yL-invariant subspace of Ej is of the form Ej ˝M0j for a linear subspace M0j �Mj .

The dense subspace .H1/g
�
C of E is invariant under the projections onto the

isotypic components because they are given by integration over a compact group1.
This implies that Ej \ .H

1/g
�
C is dense in Ej . In view of the preceding discussion,

we thus obtain
Ej \ .H

1/g
�
C Š Ej ˝M1j

for a dense linear subspace M1j � Mj . In view of Lemma 8.4, we now have to
show that, for every  2 M1j , the subspace Ej ˝  � E generates an irreducible
subrepresentation of

G] D L
]
ˆ.K/:

1This follows by differentiation under the integral sign, see [30, Proposition 1.3.23].
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For the untwisted case, i.e., ˆ D idK , this follows from [68, Proposition VII.1].
For the twisted case we have to invoke the machinery of holomorphic induction
described in Definition 8.5. For the following argument, observe that L

]
ˆ.K/ is con-

nected by Lemma 7.16. On the finite-dimensional subspaceE WDEj ˝ � .H1/g
�
C ,

the representation of yL is bounded. Hence, [79, Theorem C.3] implies that the yG-
subrepresentation .�0;H 0/ of .�;H / generated by E is holomorphically induced
from the yL-representation .�L; E/. In view of [79, Theorem C.2], the irreducibility
of .�L; E/ implies the irreducibility of .�0;H 0/.

We have seen in the proof of Proposition 8.6 that the holomorphically inducible
irreducible representations �L of yL are parametrized by a set of anti-dominant integral
weights of an affine Kac–Moody algebra yL .kC/ with a fixed central charge. This
implies the finiteness of the possible types.

The following corollary can be used to deal with gauge groups if the structure
group K is not 1-connected. It covers in particular the case K D Aut.k/ that arises
from structure groups of Lie algebra bundles K! S1.

Corollary 8.8 (Non-connected fibers). If K is a compact Lie group with simple Lie
algebra and .�;H / a positive energy representation of yLˆ.K/, then its restriction to
L
]
ˆ.K/ is a finite direct sum of factor representations of type I , hence, in particular,

a direct sum of irreducible representations.

Proof. Since K is compact with simple Lie algebra, the groups �0.K/ and �1.K/
are finite. Therefore, the exact sequence

1! �1.K/= im.�1.ˆ/ � id/ ,! �0.Lˆ.K//� �0.K/
ˆ
! 1

from [84, Remark 2.6 (a)] implies that �0.Lˆ.K// is finite. The identity component
Lˆ.K/0 is isomorphic to Lˆ. zK0/, where zK0 is the simply connected covering of the
identity component K0 of K. Now the assertion follows by combining Theorem 8.7
with Theorem C.1.

Remark 8.9 (Explicit aspects of the Borchers–Arveson theorem).
(a) Let .�;H / be a positive energy representation of yLˆ.K/ for which the restric-

tion �] to L
]
ˆ.K/ is isotypic. Then, the proof of Theorem 8.7 shows that �] is

holomorphically induced from .�L; E/, where E Š E ˝M and .�L; E/ is an irre-
ducible representation of L], and hence of Kˆ.

That the representation is basic, UR � �.G
]/00, is equivalent to UR commut-

ing with the commutant �.G]/0. Since the restriction to E yields an isomorphism
�.G]/0 ! �L.L]/0 D �L.L/0 ([79, Theorem C.2]) and E is invariant under UR, the
inclusion UR � .�.G

]/0/0 is equivalent to

URjE � .�
L.L/0/0 D B.E/˝ 1:
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Since yLD T �Kˆ �R, whereKˆ is considered as a subgroup of constant sections,
we have URjE � �.yL/

0. The representation is therefore basic if and only if URjE is
contained in

�.yL/0 \ �L.L/00 D C1;

that is, if and only if U acts on E by a character.
(b) We construct an example which is not basic, but which is factorial on G].

Let .�;H / be an irreducible positive energy representation of yG D yLˆ.K/. For any
non-trivial character �WR! T , the representation �˚ .y�˝ �/ with y�.g; t/ WD �.t/
is factorial on G], but not on yG.

8.2 The classification theorem for compact base manifolds

Let M be a manifold on which the flow M has no fixed points, and let K be a com-
pact, connected, simple Lie group. We now obtain a full classification of the projective
positive energy representations of �c.M;K/0 in the case where M is compact, by
combining the localization Theorem 7.1 with the results on twisted loop groups from
Section 8.1.

8.2.1 One-dimensional manifolds with compact components

By Theorem 7.1 and Corollary 7.5, every projective positive energy representation
of �c.M;K/0 factors through the gauge group �c.S; zK/ of a 1-dimensional, R-
equivariantly closed embedded submanifold S � M . If S is compact, then it is the
disjoint union of finitely many circles Sj on which R acts with period Tj .

In this section we assume that S is a (not necessarily finite) union of circles. The
restricted gauge group G WD �c.S; zK/ is then a restricted direct product of twisted
loop groups L

ĵ
. zKj /, where zKj is the 1-connected cover of the structure group Kj

of KjSj . On the Lie algebra level, we have a direct sum of Lie algebras

g Š
M
j2J

L'j .kj /:

As in (8.1), the infinitesimal generator D of the R-action acts on � 2 g by

D.�/ D
M
j2J

1

Tj
.dj �j C ŒAj ; �j �/;

where Aj 2 L'j .k/ is determined by the R-action according to (7.10).
Let .d�;H / be a positive energy representation of g] D RC ˚! g with cocycle

!.�; �/ D
X
j2J

cj

2�

Z 1

0

�.� 0j ; �j /dt with cj 2 N0:
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For each j , d� restricts to a positive energy representation of the centrally extended
twisted loop algebra L

]
'j .kj / with central charge cj . By Proposition 8.6 and Re-

mark 8.3 (cf. [94, Chapter 9] for the untwisted case), the irreducible positive energy
representations of L

]
'j .kj / with central charge cj are precisely the irreducible unitary

lowest weight representations .d��;H�/ with integral anti-dominant weight � satis-
fying �.C / D icj . Since there are finitely many of these, the representation can be
written as a finite sum

H D
M
�

H
j

�
˝M

j

�
(8.7)

where the sum runs over the integral anti-dominant weights of L
]
'j .kj / with central

charge cj (cf. (8.5)) and L
]
'j .kj / acts trivially on the multiplicity space M

j

�
(Theo-

rem 8.7).
Now suppose that .�;H / is a positive energy factor representation of G]. Then,

the restriction to a normal subgroup

Gj WD L
ĵ
. zK/

decomposes discretely with finitely many isotypes (Theorem 8.7). For a subsetF �J ,
we denote the corresponding normal subgroup of G by

GF WD
M
j2F

L
ĵ
. zKj /:

Since Gj commutes with GJn¹j º, the factoriality of � on G] implies that the restric-
tion of � to G]j is factorial as well. Hence, there is only one summand in (8.7), and
we have

H D H
j

�
˝H 0

for some multiplicity space H 0. Although a priori we only have a single operator H
for all components Sj , we now obtain an operator d�.dj / satisfying

Œd�.dj /; d�.�i /� D ıijd�.� 0j /

from the minimal implementation2 in Corollary 3.9.
Since

H 0 WD H �
i

Tj
d�.dj C Aj /

commutes with yL'j .k/, we obtain a positive energy representation on H 0 with Hamil-
tonian H 0, but now for the group G]

Jn¹j º
. Continuing this way, we obtain for each

2One could also use the Segal–Sugawara construction ([55, Section 3] and [32]), but this
leads to a non-zero minimal eigenvalue; see Section 9.1.1 for more details.
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j 2 J an integral anti-dominant weight �j of central charge cj , and for each finite
subset F � J a tensor product decomposition

� D �F ˝ �
0
F ; H D HF ˝H 0F with HF WD

O
j2F

H�j (8.8)

into positive energy representations for the gauge groups G]F and G]
JnF

.

8.2.2 Compact base manifolds

For gauge groups over a compact base manifold M , we thus obtain the following
classification result. It contains in particular Torresani’s classification for linear flows
on a torus; see [105] and [3, Section 5.4].

Theorem 8.10. Let M be a compact manifold with a fixed point free R-action M ,
and let K!M be a bundle of Lie groups with compact, simple, connected fibers. Let
N�W�.M;K/0 ÌR! PU.H / be a minimal projective positive energy representation
with respect to a lift  of the R-action to K . Then, there exist finitely many R-orbits
Sj �M , j 2 J , with central charge cj 2 N0 such that N� arises by factorization from
an isotypic positive energy representation �S of

yG D G] ÌR;

where
G WD �.S; zK/ '

Y
j2J

L
ĵ
. zKj /:

If �S is irreducible, then
H D

O
j2J

H�j

is a tensor product of lowest weight representations .��j ;H�j / of the corresponding
affine Kac–Moody group yL

ĵ
. zKj /, where �j is an integral anti-dominant weight of

central charge cj . On the level of the Lie algebra

yg D RC �!

�M
j2J

L'j .k/ ÌRD

�
;

the central element acts by d�.C / D i1, and the generator D acts by

d�.D/ D
X
j2J

1

Tj
d��j .dj C Aj /;

where Aj 2 L'j .k/ is specified by the R-action on G.
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Proof. Since M is compact, the R-invariant, embedded, one-dimensional submani-
fold S is a union of finitely many periodic orbits. By Corollary 7.5, the projective
positive energy representation N� of �.S;K/0 thus arises by factorization from a pro-
jective positive energy representation of G D �.S; zK/, which is trivial on the image
Z of the diagonal groupZŒM� inZŒS� (cf. Remark 7.4). It then follows from (8.8) and
the discussion in Section 8.2.1 that every factorial positive energy representation is a
multiple of a product of lowest weight representations as described above. The only
thing left to check is that this representation restricts to a character on the image Z
of ZŒM� in G. Since Z is a subgroup of the central group ZŒS� D

Q
j2J �1.Kj /

ĵ ,
it is in particular contained in the group

Q
j2J .

zKj / ĵ of constant sections, which is
connected by [39, Theorem 12.4.26]. Its Lie algebra

L
j2J k'j is contained in the

radical of the cocycle !. Since L. zKj / ĵ is 1-connected (Lemma 7.16), this implies
thatZ is not only central inG, but also in yG. In particular, every factor representation
restricts to a character on Z.

Remark 8.11 (Semisimple groups). In Theorem 8.10, the restriction to simple fibers
is by no means essential. For Lie group bundles K !M with compact semisimple,
1-connected fibers, the representation still localizes to an embedded 1-dimensional
submanifold S �M by Theorem 7.1. As M is compact, S consists of finitely many
circles Sj . Since the fibers of K ! M are 1-connected, the passage from M to the
finite cover yM (Theorem 4.9) yields not only a Lie algebra bundle yK! yM , but also
a Lie group bundle yK! yM with simple, compact fibers. By the same argument as in
Remark 4.10, the R-action on K !M lifts to yK ! yM . Applying Theorem 8.10 to
yK ! yM , we find that the minimal factorial positive energy representations are again

multiples of the irreducible ones. The latter are now parametrized by embedded cir-
cles ySj;r � yM , together with an integral anti-dominant weight �j;r with central charge
�j;r.C /D icj;r . Here, the circle ySj;r � yM is a finite cover of the circle Sj �M . The
weight �j;r is associated to the Kac–Moody algebra yL

ĵ;r
.kj;r/, where kj;r is a simple

ideal in the semisimple Lie algebra kj , and ĵ;r is the smallest power of the holonomy
around Sj that maps kj;r to itself.

8.3 Extensions to non-connected groups

In this section we discuss several phenomena related to non-connected variants of the
group G. Dealing with non-connected groups is typically more complicated because
they may not have a simply connected covering group, nor do central extensions or
representations of the identity component always extend to the whole group.

This suggests the following classification scheme to deal with projective positive
energy representations of G Ì˛ R if G is not connected.

• Determine which central extensions ofG0 extend to the non-connected groupsG.
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• Determine which of these do this in an R-equivariant fashion. This leads us to
central extensions of the non-connected group G Ì˛ R.

• Determine the irreducible positive energy representations of the non-connected
groups yG in terms of the representations of yG0 (this may be carried out with
Mackey’s method of unitary induction, as in [104]).

The following factorization theorem reduces the classification of the irreducible
representations to the corresponding problem for the identity component G0 and the
group �0.G/ of connected components. It shows in particular that no additional dif-
ficulties arise if K is a 1-connected simple group. We shall use the notation

G ! �0.G/; g 7! Œg�

for the quotient map.

Theorem 8.12 (Factorization theorem for non-connected gauge groups). Suppose
that K is a 1-connected simple compact Lie group, that M is compact and that vM
has no zeros. Then, every positive energy representation .�;H / of G] D �.M;K/]

can be written as �.g/ D �0.g/�.Œg�/, where �0 factors through a 1-dimensional,
closed, R-equivariantly embedded submanifold S �M , and �W�0.G/! U.H / is a
representation that commutes with �0.G]0/ D �.G

]
0/. In particular, every irreducible

positive energy representation of G] is of the form �0 ˝ � where both �0 and � are
irreducible, and, conversely, any such tensor product is irreducible.

Proof. Let .�;H / be a positive energy representation of G]. From Theorem 8.10 we
know that the restriction of � to G]0 factors through an evaluation homomorphism

evWG ! GS WD �.S;K/ Š
Y
j2J

L
ĵ
.K/;

that is, there exists a positive energy representation �1 of G]S such that

�j
G
]
0

D �1 ı ev j
G
]
0

:

Since K is 1-connected, the groups L
ĵ
.K/ are connected and therefore GS is con-

nected. Then, �0 WD �1 ı ev is a positive energy representation of G] that coincides
with � on G]0.

This construction shows in particular that �0.G/ acts trivially on the set of equiv-
alence classes of irreducible positive energy representation of G]0. Indeed, for every
irreducible representation �1 of G]S , the representation �0 extends the representation
�1 ı ev j

G
]
0

to a representation of G] on the same space.

As every positive energy representation ofG] decomposes onG]0 into irreducible
ones (Theorem 8.10), it follows that �.G]/ preserves all the G]0 isotypic subspaces
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Hj Š Fj ˝Mj , j 2 J , and on these the representation of G]0 has the form �j ˝ 1.
Extending �j to a representation z�j ofG], the restriction of � from H to Hj takes the
form z�j ˝ �j , where �j W�0.G]/Š �0.G/!U.Mj / is a unitary representation on the
multiplicity space. Putting everything together, we obtain a factorization � D �0 ˝ �,
where � is a representation of �0.G/ that commutes with �.G]0/.

In view of Schur’s Lemma, our construction shows in particular that the represen-
tation � is irreducible if and only if it is isotypical on G]0, that is, H D F ˝M, and
the representation � of �0.G/ on M is irreducible.

Remark 8.13. (a) IfK is connected but not simply connected and k is a compact sim-
ple Lie algebra, then the classification in [104] shows that not all central extensions of
L.K/0 extend to the whole group L.K/, so that the situation becomes more compli-
cated. Likewise, irreducible projective positive energy representations of L.K/0 do
not in general extend to the whole group L.K/. In [104] one finds a classification of
the irreducible projective positive energy representations of the groups L.K/ for con-
nected simple groupsK. Here the new difficulty is that the group �0.L.K//Š �1.K/
acts non-trivially on the alcove whose intersection with the weight lattice classi-
fies the irreducible projective positive energy representations of the connected group
L.K/0 Š L. zK/ for a fixed central charge.

(b) If we start with a projective representation of the non-connected gauge group
�c.M;K/, we get a representation of the image of �c.M;K/ in �c.S;K/, which
is a restricted direct product of twisted loop groups. It maps �c.M;K/0 onto the
identity component, but additional information is contained in the images of the other
connected components. We then get a projective representation of a Lie group whose
Lie algebra is �c.S;K/ and whose group of connected components is an image of
�0.�c.M;K//. Its action on the Lie algebra does not permute the ideals of the type
L'.k/, so it acts on each twisted loop algebra separately by the adjoint action of some
element of Lˆ.K/. This suggests that one needs a description of those Lie algebra
cocycles ! on �c.M;K/ that actually correspond to central Lie group extensions
of the full group �c.M;K/. Here the obstructions lie in H 3.�0.�c.M;K//; T /.
We refer to [72] for further details on such obstructions and for methods of their
computation.

(c) For a bundle of Lie groups K!M , passing to the simply connected covering
of the structure group K may not always be possible. For this, an obstruction class in
H 3.M;�1.K// has to vanish (see [83]). Since �1.K/ is finite for semisimple compact
groups K, this is a torsion class. So for a discrete central subgroup D � K, every
bundle with structure group K factorizes to a bundle with structure group K=D, but
in general, not all bundles with structure group K=D are of this form.


