
Chapter 9

The classification for M noncompact

Even in the noncompact case, the techniques developed so far open up a number of
new perspectives. The localization Theorem 7.1 allows us to restrict attention to a
1-dimensional invariant submanifold S �M . If M is noncompact, then S can have
infinitely many connected components Sj , each of which is diffeomorphic to either
R or S1. We consider these two cases separately.

In Section 9.1 we consider the case where S consists of infinitely many lines. In
order to arrive at a (partial) classification, we impose the additional condition that the
positive energy representation . N�;H / admits a cyclic ground state vector� 2H that
is unique up to scalar. In Theorem 9.11 we show that these vacuum representations are
classified up to unitary equivalence by a central charge cj 2 N0 for every connected
component Sj ' R. The proof proceeds by reducing to the (important) special case
M D R, where the classification is essentially due to Tanimoto [102].

In Section 9.2 we consider the case where S consists of infinitely many circles.
Here we impose the much less restrictive condition that H is a ground state repre-
sentation. This means that H is generated by the space of ground states, but we do
not require these ground states to be unique. We show that this condition is auto-
matically satisfied if the periods (9.6) of the R-action are uniformly bounded. In
Theorem 9.16 we classify this type of representations in terms of C �-algebraic data,
using techniques similar to those used in [50] for norm-continuous representations.
The possibility of an infinite-dimensional space of ground states gives rise to inter-
esting phenomena, such as factor representations of type II and III.

Finally, in Section 9.3, we briefly explore a simple situation where the R-action
has a fixed point. The main thing we wish to point out is that the lift of the R-action
at the fixed point has a qualitative influence on the type of representation theory that
one encounters. In Part II of this series we develop the necessary tools to resolve the
positive energy representation theory in more detail.

9.1 Infinitely many lines

In contrast to the case of (twisted) loop groups, the classification of projective positive
energy representations ofC1c .R;K/, forK a compact 1-connected simple Lie group,
is an open problem—closely related to the classification problem for representations
of loop group nets (cf. [103, 111] and Remark 9.4).

A large class of examples can be obtained by restricting projective positive energy
representations of the loop group G WD L.K/ to Gcs WD C

1
c .R; K/, where the lat-
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ter is considered as a subgroup by identifying the circle with the real projective line
P1.R/ D R [ ¹1º. The restriction of an irreducible projective positive energy rep-
resentation of L.K/ remains irreducible, essentially by [103, Corollary IV.1.3.3]. In
Section 9.1.1 we show that the restriction remains of positive energy as well. This is
not a priori clear, since the positive energy is defined in terms of rotations of the circle
for G and in terms of translations on the real line for Gcs.

It is not true that all projective unitary positive energy representations ofGcs arise
by restriction in this way, and the classification remains an open problem. We can,
however, classify the projective positive energy representations under the additional
assumption that they admit a cyclic ground state vector which is unique up to scalar.
These vacuum representations were classified by Tanimoto for the Lie algebra of
k-valued Schwartz functions [102], and in Section 9.1.2 we use Theorem 6.30 to
push these results to the compactly supported setting.

Finally, in Section 9.1.3, we classify the vacuum state representations for a non-
compact manifold M with a free R-action. The proof proceeds by identifying the
restricted gauge group �c.S;K/ with the weak productY0

j
C1c .Sj ; K/;

where j labels the connected components Sj ' R. We then use the results from
Appendix D, where we show that the classification of vacuum representations for a
weak product of Lie groups reduces to the same problem for each of its factors.

9.1.1 Restriction from L.K/ to C1c .R; K/

By identifying the circle S1 with the real projective line P1.R/ D R [ ¹1º, we can
consider Gcs WD C

1
c .R; K/ as a subgroup of the loop group G WD L.K/.

Note that the natural R-action by translations on Gcs does not agree with the R-
action by rigid rotations on G. In terms of the real projective line, the rotation action
of R=Z is given by the fractional linear maps

Rt .x/ D
cos�t � x C sin�t
� sin�t � x C cos�t

; x 2 R [ ¹1º; Œt � 2 R=Z;

whereas the translation action of is given by Tt .x/ D x C t .

Proposition 9.1 (Restriction of positive energy representations). Let .�;H / be an
irreducible positive energy representation of L].K/ with respect to the R-action by
rotations. Then, the restriction of � to C1c .R; K/

] is an irreducible positive energy
with respect to the R-action by translations.

We first prove that the restriction remains irreducible, and then continue with the
positive energy condition.
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Proof of irreducibility. Let G� WD ¹� 2 G W �.1/ D 1º be the subgroup of based
loops. Since �.G]�/00 D C1 by1 [103, Corollary IV.1.3.3], it suffices to show that
�.G

]
cs/ is dense in �.G]�/ for the strong operator topology. By [79, Appendix A],

the representation of G] extends to a smooth representation of the Banach–Lie group
H 1.S1; K/ of H 1-loops, whose Lie algebra is the space H 1.S1; k/ of H 1-functions
�W S1 ! k. Since these are the absolutely continuous functions whose derivatives
are L2, the derivative � 7! � 0 maps the subspace H 1

� .S
1; k/ of H 1-functions that

vanish in the base point homeomorphically to

L2�.S
1; k/ D

²
� 2 L2.S1; k/ W

Z
S1
�.t/dt D 0

³
:

In this space the subspace ¹�0 W � 2 C1c .R; k/º is easily seen to be dense. Since G]� is
connected, this implies that �.G]cs/ is dense in �.G]�/.

To prove the positive energy condition for the restriction, we need to compare the
generator d0 of rigid rotations with the generator d1 of translations. In sl.2;R/, these
are given by

d0 D
1

2

�
0 1

�1 0

�
; d1 D

�
0 1

0 0

�
: (9.1)

The fact that d0 and d1 generate the same Ad-invariant closed convex cone in the Lie
algebra sl.2;R/ leads to the following characterization (cf. [59, Section 1.3]).

Lemma 9.2. For a unitary representation .�;H / of fSL.2;R/, the generator id�.d0/
is bounded from below if and only if id�.d1/ is bounded from below. Moreover, if this
is the case, then id�.d0/ � 0 and id�.d1/ � 0.

In particular, an fSL.2;R/-representation is of positive energy for d0 if and only if
it is of positive energy for d1. To prove that the restriction from L.K/] to C1c .R;K/
is of positive energy with respect to d1, it therefore suffices to extend the action
by rigid rotations to an action of fSL.2;R/. This is done using the Segal–Sugawara
construction.

Proof of positive energy. Recall from [32, Section 7] and [33] that every irreducible
projective positive energy representation . N��;H�/ of L.K/ with lowest weight �
extends to a projective representation of the semidirect product

L.K/ Ì DiffC.S1/;

where DiffC.S1/ acts on L.K/ by ˛'.�/ WD � ı '�1. The cocycle

!.�; �/ D
c

2�

Z
S1
�.� 0.t/; �.t//dt (9.2)

1Alternatively, one can use [102, Theorem 6.4], which uses [7, Corollary 1.2.3].
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is easily seen to be invariant under the action of DiffC.S1/, but it is much harder
to verify the covariance of the representations N��. In [32, Section 7.2], the repre-
sentation of the Virasoro algebra obtained from the Segal–Sugawara construction is
integrated to a group representation. Since this respects the semidirect product struc-
ture of L.K/ Ì DiffC.S1/, it follows in particular that

N�� ı ' Š N�� for every ' 2 DiffC.S1/: (9.3)

By Schur’s Lemma and the irreducibility of N��, the projective representation N�P

of DiffC.S1/ on H� is uniquely determined by the intertwining property

N�P .'/ N��.�/ N�
P .'/�1 D N�.˛'�/ for � 2 L.K/; ' 2 DiffC.S1/:

Since DiffC.S1/ contains the group of rigid rotations with respect to which N�� is a
positive energy representation, the Hamiltonian H D id�P .d0/ associated to d0 is
bounded below. Since �P is a positive energy representation of the Virasoro group,
it restricts to a positive energy representation of its subgroup fSL.2;R/, the simply
connected cover of the group PSL.2;R/� DiffC.S1/ of fractional linear transforma-
tions of S1 Š P1.R/. By Lemma 9.2, the generator id�P .d1/ then has non-negative
spectrum.

Remark 9.3. Since the cocycle (9.2) is invariant under the action of DiffC.S1/, twist-
ing N��with ' 2 DiffC.S1/ leads to an irreducible projective unitary representation
N�� ı ' with the same central charge c. By Proposition 8.6, there are only finitely many
types of such representations satisfying the positive energy condition. If we knew a
priori that this twist preserves the positive energy condition (which is presently not
the case), then we could bypass the integration procedure in [32], and construct the
projective representation of DiffC.S1/ as follows.

By the Epstein–Hermann–Thurston theorem, Diff.M/0 is a simple group for
every compact connected smooth manifold M (see [18]). In particular, DiffC.S1/
is a simple group. Since it has no normal subgroup of finite index, it acts trivially
on any finite set. This implies that N�� ı ' Š N�� for every ' 2 DiffC.S1/. The uni-
taries that implement this equivalence constitute a projective unitary representation
of DiffC.S1/.

Remark 9.4. The class of positive energy representations is by no means exhausted
by the representations of Proposition 9.1. We briefly sketch the construction of a class
of type III1 factor representations, following [19, 112].

Recall from [32, Section 7.2] that an irreducible positive energy vacuum represen-
tation � of G] D L].K/ gives rise to a vacuum representation �P of DiffC.S1/]. If
we lift the R-action by translations along the 2-fold covering qWS1!R[ ¹1ºŠ S1,
we obtain a flow on S1 with exactly two fixed points. Its generator v is obtained from
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the vector field d0 generating rigid rotations by multiplication with a non-negative
function. This implies that the operator id�P .v/ is bounded from below.

Let I � S1 be one of the two connected components of q�1.R/ and identify

Gcs D C
1
c .R; K/

with C1c .I; K/. Then, the restriction of � to G]cs is a factor representation of type
III1. Combining this with the one-parameter group generated by the vector field v,
we obtain a projective positive energy representation of G]cs Ì R with respect to the
translation action on R ([112, Proposition 3.2]). We refer to [17, 112] for further
details (see also the Remark after [103, Theorem IV.2.2.1]).

More generally, we may consider smooth vector fields v 2 V.S1/ which are
non-negative multiples f d0, f � 0, of the generator d0 of rigid rotations. For vac-
uum representations of L.K/ Ì DiffC.S1/, the corresponding selfadjoint operator
id�P .v/ is bounded from below (cf. [19]). If I � S1 is an open interval on which v
has no zeros but for which v vanishes in the boundary @I , then we obtain an embed-
ding

C1c .R; k/ ÌR Š C1c .I; k/ ÌR ,! L.k/ ÌRv

that integrates to the group level, where we obtain a projective positive energy repre-
sentation of C1c .R; K/.

9.1.2 Vacuum representations of C1c .R; K/

Although the classification of projective positive energy representations . N�;H / of
C1c .R; K/ is an open problem in general, it can be resolved under the additional
assumption that H admits a unique, cyclic ground state.

Definition 9.5. Let .�;H / be a positive energy representation of yG.

(a) A ground state vector is a vector � 2 D.H/ � H such that H� D E0�
for E0 WD inf.spec.H//. We denote the space of ground state vectors by E .

(b) A ground state representation is a positive energy representation .�;H / that
is generated by its space of ground states, in the sense that the linear span of
�. yG/E is dense in H .

(c) A vacuum representation is a ground state representation where the ground
state is unique up to scalar, E D C�.

At the Lie algebra level, we obtain analogous definitions if we replace the require-
ment that �. yG/E is dense in H by the requirement that

U.g/� D U.g]/�

is dense in H . Although the translation between these two concepts requires some
caution, the two notions turn out to be compatible for positive energy representations.
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Proposition 9.6. Let .�;H / be a positive energy representation of yG with ground
state vector �. Then, U.g]/� is dense in H if and only if � is cyclic under �.G]/.

Proof. For a closed interval I � R, let

GI WD
®
� 2 G D C1c .R; K/ W �.R n I / D ¹eº

¯
denote the Fréchet–Lie subgroup of maps supported by I . We claim that the Lie group
G
]
I is BCH, i.e., it is locally exponential and its Lie algebra g

]
I is BCH, which means

that the Baker–Campbell–Hausdorff series defines an analytic local multiplication
on a 0-neighborhood of g ([30, Theorem 15.7.1]). For GI this follows from [30,
Example 7.1.4 (c)] because the BCH property is inherited from the target group K.
Further [30, Theorem 15.4.19] implies that the centrally extended Lie algebra g

]
I is

also locally exponential and the proof of this theorem shows that the analyticity of
the local multiplication is inherited by the central extension.

Lemma 6.34 implies that � is an analytic vector for each element in g
]
I , so that

[76, Proposition 4.10] further entails that � is an analytic vector for G]I . Hence, the
closure of U.g

]
I /� is G]I -invariant. As the interval I was arbitrary, the closure of

U.g]/� is invariant under G], hence also under2 yG, because � is an H -eigenvector.
This shows that U.g]/� is dense in H if and only if � is cyclic under �.G]/.

The vacuum representations for the Lie algebra g�D�.R;k/ of k-valued Schwartz
functions have been classified by Yoh Tanimoto.

Theorem 9.7 (Tanimoto’s classification theorem; [102, Corollary 5.8]). Let .�;H1/
be a vacuum representation of yg� with respect to the R-action by translations. Sup-
pose that for all ;�2H1, the functional � 7! h ;�.�/�i is a tempered distribution.
Then, .�;H1/ is characterized up to unitary equivalence by its central charge c 2
N0.

Using the continuity results from Chapter 6, we show that Tanimoto’s classifica-
tion theorem remains true for the smaller Lie algebra gcs WD C

1
c .R; k/ of compactly

supported smooth k-valued functions. This is an important improvement because the
relevant Lie algebra for the classification of ground states of loop group nets is not
�.R; k/, but C1c .R; k/ (cf. [102, Section 6]).

As usual, we denote

ygcs WD
�
RC ˚! gcs

�
ÌRD and yg� WD

�
RC ˚! g�

�
ÌRD;

2For the concept of an analytic map to make sense, we need the group to be analytic. Since
the R-action on G need not be analytic, the semidirect product G Ì˛ R is in general not an
analytic Lie group. In particular, yG need not be an analytic Lie group.
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whereD acts by infinitesimal translations. Since the inclusion of �.R; k/ inH 1
@
.R; k/

is continuous, the following is an immediate consequence of Theorem 6.30.

Proposition 9.8. Let .�;H / be a positive energy representation of the group

yGcs WD .C
1
c .R; K/ ÌR/]:

Then, the derived representation d� of ygcs extends uniquely to a positive energy rep-
resentation r of yg� such that, for all  ; � 2 H1, the functional � 7! h ; r.�/�i is a
tempered distribution.

Combined with Theorem 9.7, this immediately yields the classification of vacuum
representations in the compactly supported setting.

Theorem 9.9 (Vacuum representations ofC1c .R;K/). LetK be a 1-connected, com-
pact, simple Lie group and Gcs D C

1
c .R;K/. Then, a vacuum representation .�;H /

of yGcs is characterized up to unitary equivalence by its central charge c 2 N0.

Proof. By Proposition 9.6, the derived representation d� of ygcs is a vacuum repre-
sentation which by Proposition 9.8 extends to a continuous representation of the Lie
algebra yg� . By [102, Corollary 5.8], the latter is determined up to isomorphism by its
central charge c 2 N0. Since Gcs is connected (Lemma 7.16), the representation � of
yGcs is uniquely determined by its derived Lie algebra representation (Theorem 2.13),
and the result follows.

In Section 9.1.1, we saw that the restriction of an irreducible positive energy rep-
resentation of L].K/ (with respect to rotations) yields an irreducible positive energy
representation of C1c .R; K/

] (with respect to translations). We now show that the
unique vacuum representation of C1c .R; K/

] with central charge c arises by restric-
tion of the irreducible positive energy representation of L].K/ with lowest weight

� D .ic; 0; 0/:

Proposition 9.10. The irreducible lowest weight representation of L].K/ with low-
est weight � restricts to a vacuum representation of C1c .R; K/

] if and only if the
restriction �0 of � to it is zero.

Proof. Recall from Section 9.1.1 that every irreducible projective positive energy rep-
resentation of L.K/ ÌRd0 with lowest weight � extends to L.K/ Ì DiffC.S1/. By
Lemma 9.2, this induces a unitary representation offSL.2;R/ � DiffC.S1/];

which is of positive energy not only with respect to d0 2 sl.2;R/, but also with
respect to d1 2 sl.2;R/ (cf. (9.1)).
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Recall from Remark 8.9 that the space E0 of ground states for id�.d0/ is an
irreducible unitaryK-representation. Its lowest weight �0 is the restriction of � to it.
By the formula in [32, Theorem 3.5 (iii)], the minimal eigenvalue of H0 D id�.d0/
is a positive multiple of the Casimir eigenvalue for K on E0. In particular, it vanishes
if and only if �0 D 0, which is the case if and only if dim E0 D 1,

inf Spec.H0/ D 0” �0 D 0” dim E0 D 1: (9.4)

By a result of Mautner and Moore [63, 66],

ker.d�.d0// D ker.d�.d1// (9.5)

coincides with the subspace of vectors that are fixed under fSL.2;R/ (See Appendix E
for a simplified direct proof.). If �0 D 0, the ground state forH1 WD id�.d1/ is there-
fore unique up to a scalar.

Conversely, suppose that the space E1 of ground states forH1 is non-trivial. Since
the adjoint orbit through d1 contains RCd1, the spectrum of H1 D id�.d1/ is scale
invariant. Any ground state H1� D E� then has E D 0, and will satisfy H0� D 0
by (9.5). Since H0 is non-negative, it has minimal eigenvalue zero, the space E0 of
ground states for id�.d0/ is one-dimensional. We conclude that �0 D 0, and that
E1 � E0 is one-dimensional as well.

9.1.3 Vacuum representations for noncompact manifolds

Let K!M be a bundle of 1-connected simple compact Lie groups over a 2nd count-
able manifold M , equipped with a smooth R-action by automorphisms.

Theorem 9.11. If the action of R on M is free, then up to unitary equivalence, there
is a bijective correspondence between the following.

(a) Smooth projective unitary representations N�W�c.M;K/0 ! PU.H / extend-
ing to a vacuum representation of �c.M;K/

]
0 Ì˛ R with smooth ground state

vector �.

(b) Closed, embedded, 1-dimensional flow-invariant submanifolds S , together
with a non-zero central charge cj 2N for every connected component Sj'R
of S .

Under this correspondence we have

.H ; �/ D
O
j2J

.Hj ; �j / and �.g/ D
O
j2J

�j .gjSj /;

where .�j ;Hj ;�j / is the restriction to C1c .R;K/' �c.Sj ;K/ of the lowest weight
representation of L].K/ with lowest weight � D .cj ; 0; 0/ and J is the countable set
of connected components of S .
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Proof. By the localization Theorem 7.1, every projective positive energy representa-
tion N� factors through �c.S;K/ for a closed, embedded, 1-dimensional submanifold
S �M . It follows that � factors through �c.S;K/]. SinceM is 2nd countable, S has
at most countably many connected components Sj , j 2 J , and the freeness of the
action implies that each of these is R-equivariantly isomorphic to R. By Lemma D.3,
the Lie group �c.S;K/ is isomorphic to the weak product

G WD
Y0

j2J
Gj ; with Gj D �c.Sj ;K/:

The cocycle  Wg� g! R on g WD L.G/D
L
j2J gj vanishes on gi � gj for i ¤ j .

Since every Gj is connected, this implies that

G] Š

�Y0

j2J
G
]
j

��
N;

where N �
Q0
j2J Tj is the kernel of the smooth character

�W
Y0

j2J
Tj ! T ; .zj /j2J 7!

Y
j2J

zj :

The vacuum representations of G] therefore correspond to vacuum representations
of the weak product

Q0
j2J G

]
j such that the central subgroup

Q0
j2J Tj acts by �. We

may assume, without loss of generality, that the ground state energy is zero,H�D 0.
By Theorem D.6, every vacuum representation .�;H ; �/ of the weak productQ0

j2J G
]
j is a product of vacuum representations .�j ;Hj ; �j / of G]j , and by Propo-

sition D.7, � is smooth with smooth ground state vector � if and only if all the �i are
smooth with smooth ground state �j .

Since �j is irreducible by Proposition D.5, its restriction to the central subgroup
Tj � G

]
j is a character �j WTj ! T . The product � D

N
j2J �j acts by � on the

center
Q0
j2J Tj if and only if �j .z/ D z1 for all j 2 J .

Using the free R-action to identify KjSj with R�K, we obtain an R-equivariant
isomorphism between Gj D �c.Sj ;K/ and C1c .R; K/ (cf. Section 7.3). By Theo-
rem 9.9, the vacuum representations ofG]j are characterized up to unitary equivalence
by their central charge cj 2 N0, and by Proposition 9.10, .�j ;Hj ; �j / is unitar-
ily equivalent to the restriction to C1c .R; K/ of the lowest weight representation of
L].K/ with � D .cj ; 0; 0/. If cj D 0, then the corresponding representation is trivial,
so we can omit both Sj and cj from the description.

9.2 Infinitely many circles

We continue with the case where all connected components Sj of S are circles. In
marked contrast with the case of infinitely many lines, the projective positive energy
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representations associated to a single connected component Sj are well understood,
allowing us to classify the projective positive energy representations of �c.S;K/

under the much weaker condition that the Hilbert space H is generated by the space
E of ground states. These are the ground state representations of Definition 9.5.

As before, we assume that K is a 1-connected compact Lie group, which is not
a serious restriction as long as K is connected (cf. Remark 7.4). In Section 9.2.1
we describe the spectral gap condition, an essentially geometric sufficient condition
for all positive energy representations to be generated by the space of ground states.
The main result of this section is Theorem 9.16 in Section 9.2.2, where we describe
the ground state representations in terms of the representation theory of UHF C �-
algebras.

9.2.1 The spectral gap condition

Following the line of reasoning in Chapter 8, we associate to every compact connected
component Sj a “local” Hamiltonian Hj . If these local Hamiltonians have a uniform
spectral gap, we say that .�;H / satisfies the spectral gap condition. We show that this
(essentially geometric) condition guarantees that the positive energy representations
are generated by their space of ground states.

We continue with the notation

G D �c.S;K/ Š
Y0

j2J
L

ĵ
.Kj /;

where
Q0
j2J denotes the weak direct product as in Section D.1. As in Section 7.3, we

identify Sj with R=Z, where the time translation 
S;t acts on Œxj � 2 Sj by


S;t .Œxj �/ D

�
xj C

t

Tj

�
:

The derivation acts on �j 2 L
ĵ
.kj / by

D�j D
1

Tj
.dj �j C ŒAj ; �j �/:

By choosing a suitable parametrization of KjSj , we may assume that Aj is con-
stant (see [79, Proposition 2.14] or [65, Section 5.2]) and lies in the maximal abelian
subalgebra tı of k'j (Theorem B.2). By acting with the 'j -twisted Weyl group W ,
i.e., the Weyl group of the underlying Kac–Moody Lie algebra, we may also assume
that dj C Aj lies in the positive Weyl chamber, i.e., .˛; n/.i.dj C Aj // � 0 for all
positive roots .˛; n/ 2 �C ([65, Section 3] and Appendix A).

In the following .��j ;H�j / denotes the irreducible positive energy representation
of

G
]
j Š L

]

ĵ
.Kj / Š �.Sj ;K/]



Infinitely many circles 115

with lowest weight �j (cf. Section 8.2). Then, the minimal eigenspace V 0j of dj in
H�j is an irreducible Kˆ-representation. Since Aj is anti-dominant, the minimal
eigenspace W 0

j of Hj (which is also finite-dimensional by Kac–Moody theory) con-
tains all weight vectors v� in V 0j with �.Aj /D 0. Note thatW 0

j is 1-dimensional for
generic Aj and increases in dimension as dj C Aj is contained in a smaller face of
the Weyl chamber (or, equivalently, as Aj is contained in a smaller face of the Weyl
alcove), and that W 0

j D V
0
j D V�0

j
if Aj D 0. We denote the orthogonal projection

H�j ! V 0j by Pj , and for a finite subset F � J , we set

PF WD
Y
j2F

Pj :

Let .�;H / be a factorial projective positive energy representation of G]. Recall
from Section 8.2.1 that, for every finite subset F � J , we have a tensor product
decomposition H D HF ˝H 0F . Here

HF D

O
j2F

H�j

is a positive energy representation of G]F with Hamiltonian

HF D
X
j2F

H�j ;

where

H�j D id��j

�
1

Tj
.dj C Aj /

�
�
i

Tj
�j .dj C Aj /1

is the minimal non-negative Hamiltonian on H�j from Section 3.3. The other factor

H 0F is a minimal positive energy representation of G]
JnF

with Hamiltonian H 0, and
we have

H D HF ˝ 1C 1˝H 0:

The ground states for a yG-representation (in the sense of Definition 9.5) can be
characterized in terms of the “local” Hamiltonians as follows.

Lemma 9.12. For a factorial minimal positive energy representation .�;H / of yG, a
vector � 2 D.H/ � H is a ground state vector if and only if H�j� D 0 for every
j 2 J .

Proof. “)”: Suppose first that � is a ground state vector. Then, 0 � H�j � H
implies that H�j� D 0.

“(”: Conversely, suppose that H�j� D 0 holds for all j 2 J . By minimality,
the cyclic subspace generated by � under G] is yG-invariant and the corresponding
representation on this subspace is minimal. We may therefore assume that� is cyclic.
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For every finite subset F � J ,� is fixed by the operators V Ft WD e
�itHF , t 2 R.

These operators satisfy

V Ft �.g/V
F
�t D �.˛t .g// for g 2 G]F ; t 2 R:

For any finite superset F 0 � F we then have

V F
0

t �.g/� D �.˛t .g//� D V
F
t �.g/� for g 2 G]F :

This means that V Ft and V F
0

t coincide on the closed subspace HF generated by
�.G

]
F /�. Since the union of these subspaces is dense in H , we obtain a unitary one-

parameter group .Vt /t2R on H whose restriction to HF coincides with .V Ft /t2R.
This implies that

Vt�.g/V�t D �.˛t .g// for g 2 G]; t 2 R:

Write Vt D e�it
zH for a positive selfadjoint operator zH . Then, our construction

shows that zH coincides with HF D
P
j2F H�j on HF , and thus zH � 0. By mini-

mality of H , we have 0 � H � zH , so that zH� D 0 leads to H� D 0.

Definition 9.13 (Spectral gap). We say that the family .�j ; Aj ; Tj /j2J satisfies the
spectral gap condition if there exists a positive real number �E such that, for every
j 2 J ,

Spec.H�j / � ¹0º [ Œ�E;1/:

The spectral gap condition is essentially geometric in nature. Recall that for
m 2M , the R-action 
t yields a group automomorphism 
t .m/WKm ! K
M .m/.
The spectral gap condition is automatically satisfied if the period

T .m/ WD inf
®
t > 0I 
M;t .m/ D m; 
t D Id 2 Aut.Km/

¯
(9.6)

is uniformly bounded on M . Indeed, the R-action on �.Sj ;K/ then has period
Tj � supm2M T .m/, so the spectrum of dj C Aj in every minimal unitary positive
energy representation will be contained in .2�i=Tj /Z.

Proposition 9.14 (Spectral gaps yield ground state vectors). Let .�;H / be a facto-
rial minimal positive energy representation of yG such that the corresponding family
.�j ; Aj ; Tj /j2J satisfies the spectral gap condition with some �E > 0. Then, H is
generated under G] by the subspace kerH of ground state vectors.

Proof. The minimality implies that 0 is the infimum of the spectrum ofH , so that the
spectral projection

P WD P.Œ0;�E=2�/

is non-zero. First we show that PH is contained in the kernel of every H�j . In fact,
the operator H �H�j is non-negative. Since the minimal non-zero spectral value of
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H�j is��E, it follows that PH � kerH�j . Lemma 9.12 now shows thatH�D 0.
Therefore, F WD PH coincides with the subspace kerH of ground state vectors.

Next we show that F is generating under G]. Let H1 � H be the closed sub-
space generated by F under G]. Then, we obtain a G]-invariant decomposition
H D H1 ˚H2. Minimality of � now implies that it is also yG-invariant, so that the
Hamiltonian H decomposes accordingly as H D H 1 ˚H 2. Since F \H2 D ¹0º,
we obtain H2 D ¹0º by minimality of H 2 and the first part of the proof. This shows
that H D H1 is generated by F under G].

9.2.2 Classification in terms of UHF C �-algebras

As in [50], where we dealt with norm continuous representations of gauge groups, we
aim at a description of the factor representations of positive energy in terms of C �-
algebras. As semiboundedness is crucial to obtain corresponding C �-algebras ([81]),
we first observe that positive energy representations are semibounded (cf. Defini-
tion 6.31).

Applying Corollary 6.33 withMDS , we immediately obtain the following result.

Theorem 9.15. If all connected components of S are compact, then every projective
positive energy representation .�;H / of

�c.S;K/ Š
Y0

j2J
L

ĵ
.Kj /

is semibounded with the affine hyperplane �c.S;K/] �D contained in the open cone
W�, so that W� is an open half space. In particular, it is a positive energy representa-
tion for all derivations

DA WD D � adA; A 2 �c.S;K/:

Let .�;H / be a factorial minimal positive energy representation of yG and let
.�j ; Aj ; Tj /j2J be as above. Since the projection Pj WH�j ! V 0j onto the minimal
energy space forH�j in H�j is finite-dimensional, Pj is a compact operator. We may
therefore consider the direct limit

B WD
O
j2J

�
K.H�j /; Pj

�
(9.7)

of the C �-algebras

BF WD

O
j2F

�
K.H�j /; Pj

�
; F � J finite;
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where the tensor product of the non-unital algebras K.H�j / is constructed as in [34]
with the inclusions

BF1 ,! BF2 ;

A 7! A˝
O

j2F2nF1

Pj

for finite subsets F1 � F2 of J . We write B ˝
N
j2JnF Pj for the image of B 2 BF

in B and
P1 WD

O
j2J

Pj :

If J is finite, then B Š BJ and the above tensor product is finite. The C �-algebra B

carries a natural one-parameter group of automorphisms .˛B
t /t2R specified by

˛B
t .B/ D e

�itHFBeitHF for t 2 R; B 2 BF ;

which fixes the projection P1.
Since every ground state representation can be written as a direct sum of cyclic

ones, we may assume, without loss of generality, that H has a cyclic ground state
� 2 H . This defines a state of B by

!.B/ WD h�;B�i for B 2 BF

because Pj projects onto the kernel of H�j which contains �. Conversely, if .�;H /

is a representation of the C �-algebra B that is generated by a vector � with

�.P1/� D �;

then we obtain commuting representations of the multiplier algebras B.H�j / of
K.H�j /. In particular, we recover a unitary representation of the restricted productY0

j2J
U.H�j /;

and hence, a unitary representation ofG]. This representation extends canonically to a
minimal positive energy representation of yG, where the HamiltonianH is determined
uniquely by

e�itH�.B/� D �.˛B
t .B//� for B 2 B:

The representations constructed above are now positive energy representations for the
C �-dynamical system .B;R; ˛B/ generated by ground states (cf. [13]).

From this correspondence, we derive the following noncompact analog of Theo-
rem 8.10.
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Theorem 9.16. Let B be the C �-algebra constructed for .�j ; Aj ; Tj /j2J with a
possibly infinite index set J as above. Then, the above construction yields a one-to-
one correspondence between the following.

(a) Isomorphism classes of minimal factorial positive energy representations of
yG corresponding to the family .�j ; Aj ; Tj /j2J .

(b) Isomorphism classes of factorial representations of B that are generated by
fixed points of the projection P1.

Proof. “(a))(b)”: Let .�;H / be a factorial minimal positive energy representation
of yG corresponding to the family .�j ; Aj ; Tj /j2J . As J is at most countably infinite,
we may assume, without loss of generality, that J D N (the case of finite J is proved
along the same lines) and put Bn WD BFn for Fn D ¹1; : : : ; nº. Then, we inductively
choose factorizations of .�;H / as .�Fn ˝ �

0
Fn
;HFn ˝H 0Fn/ with

HFn D H�1 ˝ � � � ˝H�n ; �Fn Š ��1 ˝ � � � ˝ ��n :

We then obtain a consistent sequence of representations of the C �-algebras Bn on
the subspaces Hn WDHFn ˝ E 0n, where E 0n �H 0Fn is the minimal eigenspace of H 0F
on H 0Fn , by

�nWBn ! B.HFn ˝ E 0n/; �n.B/ WD B ˝ 1 for B 2 Bn:

As the union of the subspaces .Hn/n2N is dense in H , we thus obtain a non-degenerate
representation .�;H / of B satisfying

�Fn.g/�n.B/ D �n.�Fn.g/B/ for g 2 G]Fn ; B 2 Bn; (9.8)

and �.P1/ is the projection onto the minimal eigenspace ofH . Note that (9.8) deter-
mines the representation � uniquely in terms of the representation .�;H / of B.

“(b))(a)”: Suppose, conversely, that .�;H / is a factorial representation of B

generated by the subspace E WD P1H . Then, the union of the closed subspaces

Hn WD �.Bn/�.P1/H

is dense in H . Since the representation of Bn Š K.HFn/ on Hn is non-degenerate,
we obtain consistent factorizations

Hn Š H�1 ˝ � � � ˝H�n ˝ E 0n Š HFn ˝ E 0n with �.B/ D B ˝ 1E0n
; B 2 Bn:

This implies the existence of smooth unitary representations �n of the groups G]Fn on
Hn which are uniquely determined by

�n.g/�.B/�.P1/ D �.�Fn.g/B/�.P1/ for g 2 G]Fn ; B 2 Bn:
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The uniqueness implies that �nC1.g/jHn D �n.g/ for g 2 G]Fn , so that we obtain

a unitary representation of G] D
S
F G

]
F on H which naturally extends to yG D

G] ÌR. Its continuity follows from [27, Lemma 4.4].
For the smoothness we use [114, Theorem 2.9]: The Lie algebra yg is the union of

the subalgebras ygFn , and the representation is smooth on the corresponding subgroup
yGFn . Further, the element D 2

T
n ygFn lies in the interior of the open cones

W�j yGFn
� g

]
Fn
C .0;1/D;

which are open half spaces (Theorem 9.15). To apply Zellner’s theorem, we have to
show that the groups yGFn have the Trotter property, i.e., for any two elements x; y in
the Lie algebra, we have

exp.t.x C y// D lim
n!1

�
exp

�
t

n
x

�
exp

�
t

n
y

��n
in the sense of uniform convergence on compact subsets of R. We first use [80, Theo-
rem 4.11] to see thatGFn ÌR has the Trotter property; as these groups are C 0-regular
([29, Theorem J]) and [80, Theorem 4.15] implies that the central extension yGFn also
has the Trotter property. As any two elements x; y 2 yg are contained in some ygFn ,
the group yG also has the Trotter property. Therefore, [114, Theorem 2.9(a)] implies
that the dense subspace D1.d�.D// of smooth vectors of the Hamiltonian coincides
with D1c .yg/, the set of all vectors � in the common domain of all finite products of
elements in yg, for which all maps

ygn ! H ; .x1; : : : ; xn/ 7! d�.x1/ � � � d�.xn/�

are continuous and n-linear. As the subgroup G] is locally exponential (see [74,
Lemma 4.3]) now implies that � is a smooth vector forG], and since it is also smooth
forH D id�.D/, [74, Theorem 7.2] further entails that it is smooth for yG. This proves
the smoothness of �.

Clearly, the two constructions are mutually inverse, up to unitary equivalence.

Remark 9.17. (a) By Lemma 9.12, the preceding theorem covers all minimal facto-
rial representations for which .�j ; Aj ; Tj /j2J satisfies the spectral gap condition.

(b) The projection P1 2 B defines the hereditary subalgebra A WD P1BP1
onto which

"WB ! A; B 7! P1BP1

defines a conditional expectation, so, in particular, a completely positive map. From
this perspective, the representations specified in Theorem 9.16 are precisely those
obtained by Stinespring dilation from the completely positive maps that have the
form ! D � ı ", where .�;F / is a non-degenerate representation of A.
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For nj WD trPj , we have

A Š
O
j2J

Mnj .C/;

showing that A is a UHF algebra [93]. The representation theory of these algebras
also appears naturally in the context of norm continuous representations of gauge
groups (cf. [50]). If infinitely many of the nj are > 1, this leads to factor represen-
tations of type II and III. So the situation depends on the size of the minimal energy
spaces in H�j . In particular, we obtain factorial representations as infinite tensor
products corresponding to factorial product states on A because they correspond to
product states on B. We refer to [50] for details on the connection between norm-
continuous representations of the restricted product

Q0
j2J Kj of the compact groups

Kj and representations of infinite tensor products of matrix algebras.

9.3 A simple example with fixed points

In Part II of this series, we will focus on the type of phenomena one encounters when
the R-action on M is not fixed point free. To give a preview of the problems one
encounters there, we briefly revisit the simple example of the circle action on S2,
lifted to an R-action on the trivial bundle K D S2 �K (cf. Example 7.9). The fixed
points are then the “north pole” n D .0; 0; 1/ and the “south pole” .0; 0;�1/.

Since every projective positive energy representation ofG DC1.S2;K/ restricts
to a projective positive energy representation of the normal subgroup

G� D C1c .S
2
n ¹n; sº; K/;

we can apply the techniques developed so far toG�. The two problems that remain are
then to determine if a representation extends from G� to G, and, if so, to classify the
possible extensions. We will pursue these problems elsewhere, and for the moment
content ourselves with describing the representation theory of G�. Although the Lie
algebra bundle K! S2 is trivial, the R-action (7.5) on K that covers the circle action
on S2 will in general not be trivializable. It turns out that the lift of the circle action at
the fixed points n; s 2 S2 has a qualitative effect on the positive energy representation
theory of G�.

By Theorem 7.1, every projective positive energy representation of G� factors
through a projective positive energy representation of C1c .S;K/, where

S D
®
.x; y; z/ 2 S2 W z 2 J

¯
is a union of circles labeled by a discrete subset J � .�1; 1/ that has at most two
accumulation points ˙1, corresponding to the fixed points n and s. Recall from
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Example 7.9 that the fundamental vector field for the R-action is of the form

v.x; y; z/ D .y@x � x@y/C A.x; y; z/;

with A.x; y; z/ 2 k. For simplicity, consider first the case where A 2 k is independent
of .x; y; z/. If we identify the loop algebras of the various circles in the obvious
manner, then the infinitesimal R-action is represented by the same element dj CAj D
dCA for every circle Sj . It follows that .�j ;Aj ;Tj /D .�j ;A;2�/, so theC �-algebra
AD P1BP1 that governs the ground state representations is essentially determined
by a sequence �j of anti-dominant integral weights for the affine Kac–Moody algebra
yL.k/.

The operators Hj D i��j .d C A/ are readily seen to satisfy the spectral gap
property 9.13. Indeed, the operators i��j .d/ on H�j have a uniform spectral gap
because the R-action on S2 is periodic. Since A 2 k has a uniform spectral gap in all
finite-dimensional lowest weight representations, it also has a uniform spectral gap in
the minimal eigenspaces W 0

j of the operators i��j .d/. The spectral gap for Hj then

follows from the fact that d commutes with A in yL.k/.
By Proposition 9.14, every factorial positive energy representation of yG� is a

ground state representation, so the factorial projective positive energy representations
are completely classified by Theorem 9.16.

(a) If A is an inner point of the Weyl chamber, then the minimal eigenspace of
Hj in an irreducible k-representation is always 1-dimensional, W 0

j D C�j .
In this case every projective irreducible positive energy representation is a
vacuum representation, and it is of the form

.H ; �/ D
O
j2j

.H�j ; �j / (9.9)

by the results in Section D.2. Moreover, every factorial positive energy rep-
resentation of yG� is of type I, i.e., a direct sum of irreducible representations.
This follows from the fact that, if in the construction of Section 9.2 all projec-
tions Pj are of rank 1, then the projection P1 2 B has the property that the
subalgebra P1BP1 is one-dimensional. In particular, P1aP1 D '.a/P1
defines a state of B and every representation .�;H / of B generated by the
range of �.P1/ is a multiple of the GNS representation .�' ;H'/. For unit
vectors �j 2 im.Pj /, (9.7) implies that

.H' ; �'/ Š
O
j2J

.H�j ; �j /;

that the representation �' is faithful, and that �'.B/ Š K.H'/:
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(b) If A lies in at least one face of the Weyl alcove, then the spaceW 0
j of ground

states need not be 1-dimensional. The projective positive energy factor rep-
resentations of g� are then classified by the lowest weights �j , together with
a representation of the UHF C �-algebra

A D
O
j2J

B.W 0
j /:

If W 0
j is of dimension > 1 for infinitely many j , then this is an infinite

tensor product of matrix algebras. By [93] it follows that G� admits factor
representations of type II and III.

IfA.x;y;z/ is not constant andA.n/ andA.s/ are inner points of the Weyl alcove,
then the situation remains qualitatively the same as in (a). Indeed, the holonomy with
respect to A on Sj will approach exp.A.n// or exp.A.s// as zj !˙1, so the spectral
gap condition holds for all but finitely many circles. In this case one finds a tensor
product decomposition analogous to (9.9), where all but finitely terms are vacuum
representations. In particular, the space of ground states is finite-dimensional.

However, if either A.n/ or A.s/ is not an inner point of the Weyl alcove, then
the spectral gap condition need no longer be satisfied. The ground state representa-
tions can still be classified in the manner outlined above, but these can no longer be
expected to exhaust the positive energy representations.


