
Appendix D

Vacuum representations

In this appendix, we show that vacuum representations of weak products of topolog-
ical groups arise as products of vacuum representations.

D.1 Weak products and R-actions

The weak product of a sequence .Gn/n2N of topological groups is defined as

G WD
Y0

n2N
Gn D

1[
ND1

GN ; GN D G1 � � � � �GN ;

where the group structure is inherited from the product group
Q
n2NGn. However, we

will need a topology that is finer than the product topology. We equip G with the box
topology, for which a basis of e-neighborhoods consists of the sets G \

Q1
nD1 Un,

where Un � Gn is an e-neighborhood in Gn. By [27, Lemma 4.4], this turns G into
a topological group, and G is the direct limit in the category of topological groups of
the increasing sequence of subgroups GN , endowed with the product topology.

To study vacuum representations of weak products, consider a sequence of topo-
logical groups .Gn;R; ˛n/n2N with homomorphisms ˛nWR! Aut.Gn/ that defines
a continuous action of R on Gn. The homomorphisms ˛nWR! Aut.Gn/ combine to
a homomorphism ˛WR! Aut.G/ by

˛t .g1; : : : ; gN ; e; : : :/ WD .˛1;t .g1/; : : : ; ˛N;t .gN /; e; : : :/;

where Aut.G/ denotes the group of topological automorphisms.

Proposition D.1. The above map ˛ is a continuous action of R on G.

Proof. To see this, we first note that all orbit maps are continuous because the sub-
groups GN carry the product topology. Since all automorphisms ˛t are continuous
by [27, Lemma 4.4], it suffices to verify continuity of the action in all pairs .0; g/ 2
R � GN . So we have to find for every sequence .Un/n2N of e-neighborhoods in Gn
an " > 0 and a sequence of e-neighborhoods Vn � Gn such that

˛n;t .gnVn/ � gnUn for jt j < "; n 2 N:

As Œ�1; 1� � R is compact, we find for every n 2 N an identity neighborhood Vn �
Wn � Gn such that WnWn � Un and ˛n;t .Vn/ � Wn for jt j � 1. For n � N we now
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choose " > 0 in such a way that ˛n;t .gn/ 2 gnWn holds for jt j � ". Then

˛n;t .gnVn/ D ˛n;t .gn/˛n;t .Vn/ � gnWnWn � gnUn

holds for jt j < " and n � N . For n > N , we have gn D e and

˛n;t .gnVn/ D ˛n;t .Vn/ � Wn � Un for jt j � ":

Therefore, ˛ defines a continuous action on the weak direct product G.

If, in addition, the groups Gn are Lie groups, then the box topology on G is
compatible with a Lie group structure on G ([27, Remark 4.3]).

Lemma D.2. If all groupsGn are locally exponential, then ˛ defines a smooth action
on G.

Proof. By [27, Remark 4.3], the group G is locally exponential as well. Therefore,
it suffices to show that the R-action on the Lie algebra g Š

L
n2N gn (the locally

convex direct sum), is smooth. Let Dn 2 der.gn/ denote the infinitesimal generator
of the smooth actions ˛n on gn. Then

˛.t; x/ D .etDnxn/n2N D e
tDx for D.xn/ D .Dnxn/

and the tangent map of ˛ is given by

d˛.t; x/.s; y/ D sD.˛.t; x//C ˛.t; y/:

AsDWg! g is a continuous linear operator, we inductively obtain from the continuity
of ˛ (Proposition D.1) that ˛ is C k for each k 2 N, and hence that ˛ is smooth.

The weak products encountered in this memoir are mostly of the following form.

Lemma D.3. Suppose that the smooth manifold S has countably many connected
components and that K ! S is a Lie group bundle. Then, the Lie group �c.K/ is
isomorphic to the restricted Lie group product

Q0
n2N �c.KjSn/.

Proof. Since the groups G D �c.K/ and Gn D �c.KjSn/ are locally exponential, it
suffices to verify that the Lie algebra g D �c.K/ is the locally convex direct sum of
the ideals gn D �c.KjSn/. That the summation map

ˆW
M
n2N

�c.KjSn/! g

is continuous follows from the universal property of the locally convex direct sum.
That its inverse ˆ�1 is also continuous, follows from its continuity on the Fréchet
subspaces �D.K/, where D � S is compact, because any compact subset intersects
at most finitely many connected components.
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D.2 Vacuum representations

LetG be a topological group, and let ˛WR!Aut.G/ be a homomorphism that defines
a continuous action of R on G.

Definition D.4. A triple .�;H ; �/ is called a vacuum representation of .G;R; ˛/, if
�WG Ì˛ R! U.H / is a continuous unitary representation,� 2H is a G-cyclic unit
vector, and the selfadjoint operator H , defined by Ut WD �.e; t/ D e�itH for t 2 R,
satisfies ker.H �E01/ D C� for E0 D inf.spec.H//.

The following is an immediate consequence of [8, Proposition 5.4].

Proposition D.5. For a vacuum representation .�;H ;�/ of .G;R; ˛/, the following
assertions hold:

(a) UR � �.G/
00,

(b) the representation �jG of G on H is irreducible.

Proof. (a) The one-parameter group .U 0t /t2R defined by U 0t WD e
itE0Ut is minimal

for the von Neumann algebra �.G/00 (cf. Definition 3.8) by [8, Proposition 5.4], hence
contained in �.G/00, and this implies (a).

(b) From (a) it follows that the closed subspace

C� D ker.H �E01/ � H

is invariant under the commutant M0 WD �.G/0 of M WD �.G/00. As � is generating
for M, it is separating for M0, so that dim ker.H0 � E01/ D 1 leads to M0 D C1.
Now the assertion follows from Schur’s Lemma.

Let .Gn;R; ˛n/n2N be a sequence of topological groups, with for each n 2 N
a homomorphism ˛nWR ! Aut.Gn/ that defines a continuous action of R on Gn.
The following theorem identifies the vacuum representations of the weak product
.G;R; ˛/ in terms of vacuum representations of the triples .Gn;R; ˛n/.

Theorem D.6. For any sequence .�n;Hn;�n/ of vacuum representations of .Gn;R;
˛n/ with minimal energy E0 D 0, the infinite tensor product

.H ; �/ WD

1O
nD1

.Hn; �n/ (D.1)

carries a continuous vacuum representation of .G;R; ˛/, defined by

�.g1; : : : ; gn; e; : : :/ WD �1.g1/˝ � � � ˝ �n.gn/˝ 1nC1 ˝ � � � : (D.2)

Conversely, every vacuum representation of .G;R; ˛/ with E0 D 0 is equivalent to
such a representation.
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Proof. First, we prove that if all .�n;Hn; �n/ are vacuum representations, then so is
their infinite tensor product. Since the �n are unit vectors, the infinite tensor product
Hilbert space H is defined. It contains the subspaces

HN
WD H1 ˝ � � � ˝HN ˝�NC1 ˝ � � � Š H1 ˝ � � � ˝HN ;

whose union is dense in H . On HN , the representation �N of GN ÌR, defined by

�N ..g1; : : : ; gN /; t/ WD �1.g1; t /˝ � � � ˝ �N .gN ; t /;

is continuous with cyclic vector � D ˝1nD1�n. The representation .�;H / of G now
is a direct limit of the representations .�N ;HN / of the subgroups GN , hence a con-
tinuous unitary representation. Further, the invariance of�n under the one-parameter
group U nt WD �n.e; t/ implies that

Ut .v1˝ � � � ˝ vN ˝�NC1˝ � � � / WDU
1
t v1˝ � � � ˝U

N
t vN ˝�NC1˝ � � � (D.3)

defines a continuous unitary one-parameter group on H satisfying

Ut�.g/U
�
t D �.˛t .g// for g 2 G; t 2 R:

By �.g; t/ WD �.g/Ut , we thus obtain a continuous unitary representation of G on H

for which � is a G-cyclic unit vector fixed by the one-parameter group .Ut /t2R.
Writing

Ut D e
�itH and U nt D e

�itHn

for selfadjoint operatorsHn � 0, (D.3) implies thatH � 0. To see that kerH D C�,
we decompose

H D HN
˝KN for N 2 N:

Accordingly,
Ut D Vt ˝Wt with Vt D U 1t ˝ � � � ˝ U

N
t ;

and both one-parameter groups .Vt /t2R and .Wt /t2R have positive generators HV
and HW . From [8, Lemma A.3] we thus infer that

H D .HV ˝ 1KN /C .1HN ˝HW /

in the sense of unbounded operators, hence, in particular, that

D.H/ D .D.HV /˝KN / \ .HN
˝D.HW //:

We conclude that, for every N 2 N,

kerH � kerHV ˝KN
D �1 ˝ � � � ˝�N ˝KN ;
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and this shows that

kerH �
\
N

�1 ˝ � � � ˝�N ˝KN
D C�:

Therefore, .�;H ; �/ is a vacuum representation of .G;R; ˛/.
Now we assume, conversely, that .�;H ; �/ is a vacuum representation of the

triple .G;R; ˛/. Then, the subspace

HN
WD span �.GN /�

carries a vacuum representation of .GN ;R; ˛N /. In particular, this representation is
irreducible by Proposition D.5. The group G is a topological product

G D GN �G>N ; where G>N WD
Y0

n>N
Gn;

and the representation � is irreducible by Proposition D.5. Since its restriction to GN

carries an irreducible subrepresentation, the restriction to GN is factorial of type I,
hence of the form

�jGN D �
N
˝ 1

with respect to some factorization H D HN ˝KN . Starting with N D 1 and pro-
ceeding inductively, we see that

�N Š �1 ˝ � � � ˝ �N

for vacuum representations .�n;Hn;�n/ of .Gn;R; ˛n/. In particular, we obtain fac-
torizations

� D �N ˝ z�N D �1 ˝ � � � ˝�N ˝ z�N ;

so that we may identify HN with the subspace

HN
˝ z�N � H :

As � is G-cyclic, the union of these GN -invariant subspaces is dense in H . This
implies that the vacuum representation .�;H ; �/ is equivalent to the infinite tensor
product ˝n2N.�n;Hn; �n/ of the ground state representations .�n;Hn; �n/. This
completes the proof.

The following allows us to reduce the classification of smooth vacuum represen-
tations to the local case, under the assumption that the ground state is smooth.

Proposition D.7. Suppose that the Gn are Lie groups and that the R-actions on Gn
are smooth. Then, the vacuum representation .�;H ;�/ is smooth with smooth vector
� if and only if the vacuum representations .�n;Hn; �n/ are smooth with smooth
vector �n.
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Proof. If .�;H ;�/ is a smooth representation with�2H1, then�will be a smooth
vector for every .Hn; �n; �/ as well. Since � is cyclic in Hn, the latter will be a
smooth representation.

Suppose, conversely, that the vacuum representations .�n;Hn; �n/ are smooth,
and that�n 2H1n for all n 2N. From Theorem D.6, we know that the tensor product
representation .�;H ;�/ is continuous and cyclic. To show that the vacuum represen-
tation .�;H ; �/ D

N1
nD1.�n;Hn; �n/ is smooth with smooth vector � 2 H1, it

suffices by [74, Theorem 7.2] to show that '.g/ WD h�; �.g/�i is a smooth function
from G to C.

Note that ' is the infinite product
Q1
nD1 'n.gn/ of the smooth, positive definite

functions 'nWGn ! C defined by 'n.g/ WD h�n; �n.g/�ni. To see that 'WG ! C
is smooth, note that it can be decomposed into the smooth maps

G D
Y0

n2N
Gn

ˆ1
��! 1C

Y0

n2N
C

ˆ2
��! 1C `1.N/

ˆ3
��! C;

where 1 D .1/n2N and

ˆ1..gn// D .'n.gn//; ˆ2..zn// D .zn/; ˆ3..zn// D
Y
n2N

zn:

Here, the smoothness of ˆ1 follows from the compatibility with the box manifold
structure, ˆ2 is continuous affine, and ˆ3 is holomorphic. It follows that

' D ˆ3 ıˆ2 ıˆ1

is smooth, and hence that .�;H ; �/ is a smooth vacuum representation with smooth
vector �.


