Appendix D

Vacuum representations

In this appendix, we show that vacuum representations of weak products of topolog-
ical groups arise as products of vacuum representations.

D.1 Weak products and R-actions

The weak product of a sequence (Gp,),eN of topological groups is defined as
, o0
- _ N N _
G:=[] _Gn _NU GN, GY =G, x---xGy,
=1

where the group structure is inherited from the product group [ [, .y Gn. However, we
will need a topology that is finer than the product topology. We equip G with the box
topology, for which a basis of e-neighborhoods consists of the sets G N ]—[,ozozl Uy,
where U, € G, is an e-neighborhood in G,. By [27, Lemma 4.4], this turns G into
a topological group, and G is the direct limit in the category of topological groups of
the increasing sequence of subgroups G, endowed with the product topology.

To study vacuum representations of weak products, consider a sequence of topo-
logical groups (G, R, &, )nen with homomorphisms «,,: R — Aut(Gy,) that defines
a continuous action of R on G,. The homomorphisms «;,: R — Aut(G,) combine to
a homomorphism o: R — Aut(G) by

ar(g1.....8N-€,...) == (@1:(81).....ans(gNn).e,...),
where Aut(G) denotes the group of topological automorphisms.
Proposition D.1. The above map « is a continuous action of R on G.

Proof. To see this, we first note that all orbit maps are continuous because the sub-
groups GV carry the product topology. Since all automorphisms o, are continuous
by [27, Lemma 4.4], it suffices to verify continuity of the action in all pairs (0, g) €
R x G¥. So we have to find for every sequence (Uy),eN of e-neighborhoods in G,
an ¢ > 0 and a sequence of e-neighborhoods V;,, € G, such that

Oln,t(gnVn) C gnU, for|t| <eneN.

As [—1, 1] € R is compact, we find for every n € N an identity neighborhood V;, C
Wy, € Gy, such that W, W,, € U, and ot (V) € W, for |t| < 1. Forn < N we now
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choose ¢ > 0 in such a way that a, ;(g,) € g, Wy holds for |¢| < e. Then
Ut (&nVn) = otnt(gn)ont (Vi) S gnWnWn C gnUn
holds for |¢| < eandn < N.Forn > N, we have g, = e and
An it (gnVn) =on(Vy) S W, C U, forlt] <e.
Therefore, o defines a continuous action on the weak direct product G. [

If, in addition, the groups G, are Lie groups, then the box topology on G is
compatible with a Lie group structure on G ([27, Remark 4.3]).

Lemma D.2. Ifall groups G, are locally exponential, then o defines a smooth action
on G.

Proof. By [27, Remark 4.3], the group G is locally exponential as well. Therefore,
it suffices to show that the R-action on the Lie algebra g = @, . g» (the locally
convex direct sum), is smooth. Let D,, € der(g,) denote the infinitesimal generator
of the smooth actions «” on g;. Then

a(t,x) = (€Prxp)peny = ePx  for D(x,) = (Dpxy)
and the tangent map of « is given by
da(z, x)(s,y) = sD(a(t, x)) + a(t, y).

As D:q — g is acontinuous linear operator, we inductively obtain from the continuity
of o (Proposition D.1) that o is C k for each k € N, and hence that & is smooth. m

The weak products encountered in this memoir are mostly of the following form.

Lemma D.3. Suppose that the smooth manifold S has countably many connected
components and that X — S is a Lie group bundle. Then, the Lie group T.(K) is
isomorphic to the restricted Lie group product H:zeN I'e(Kls,)-

Proof. Since the groups G = I'c(K) and G, = I'c(K|s,, ) are locally exponential, it
suffices to verify that the Lie algebra g = ' (&) is the locally convex direct sum of
the ideals g, = I'¢(K]|s, ). That the summation map

o PreRls,) —g

neN

is continuous follows from the universal property of the locally convex direct sum.
That its inverse ®~! is also continuous, follows from its continuity on the Fréchet
subspaces ['p (KX), where D € S is compact, because any compact subset intersects
at most finitely many connected components. |
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D.2 Vacuum representations

Let G be a topological group, and let «: R — Aut(G) be a homomorphism that defines
a continuous action of R on G.

Definition D.4. A triple (p, #, 2) is called a vacuum representation of (G, R, ), if
p: G %y R — U(H) is a continuous unitary representation, 2 € J is a G-¢cyclic unit
vector, and the selfadjoint operator H, defined by U; := p(e,t) = e7"*H fort € R,
satisfies ker(H — Egl) = CS for Ey = inf(spec(H)).

The following is an immediate consequence of [8, Proposition 5.4].

Proposition D.5. For a vacuum representation (p, ¥, Q) of (G, R, @), the following
assertions hold:

(@) Ur S p(G)",

(b) the representation p|g of G on K is irreducible.
Proof. (a) The one-parameter group (UZO),GR defined by Ut0 := e!"Eoy, is minimal
for the von Neumann algebra p(G)” (cf. Definition 3.8) by [8, Proposition 5.4], hence

contained in p(G)”, and this implies (a).
(b) From (a) it follows that the closed subspace

CQ =ker(H — Egl) C K

is invariant under the commutant M’ := p(G)’ of M := p(G)". As Q is generating
for M, it is separating for M’, so that dim ker(Hy — Eol) = 1 leads to M’ = C1.
Now the assertion follows from Schur’s Lemma. [ ]

Let (Gn, R, @y)nen be a sequence of topological groups, with for each n € N
a homomorphism «,: R — Aut(G,) that defines a continuous action of R on G,.
The following theorem identifies the vacuum representations of the weak product
(G, R, ) in terms of vacuum representations of the triples (G, R, azy,).

Theorem D.6. For any sequence (pyn, Hn, Q) of vacuum representations of (G, R,
oy ) with minimal energy Eo = 0, the infinite tensor product

o
(#,9) := Q) (Hn, ) (D.1)
n=1
carries a continuous vacuum representation of (G, R, ), defined by

(g1, 8n.e,...) = p1(g1) @+ ® pn(gn) @Ly41 @+ . (D.2)

Conversely, every vacuum representation of (G, R, a) with Ey = 0 is equivalent to
such a representation.
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Proof. First, we prove that if all (p,, #,, 2,) are vacuum representations, then so is
their infinite tensor product. Since the €2,, are unit vectors, the infinite tensor product
Hilbert space # is defined. It contains the subspaces

HN =H R - QHNRAUNI Q= H QR H,
whose union is dense in J¢. On #% | the representation pV of GV x R, defined by

PN (g1, .. gNn)s1) = p1(g1, 1) ® - ® pn(gN 1),

is continuous with cyclic vector Q = ®32,2,. The representation (p, #) of G now
is a direct limit of the representations (o, #) of the subgroups G, hence a con-
tinuous unitary representation. Further, the invariance of €2, under the one-parameter
group U;}' := pp(e, t) implies that

U ® - QuNQ@Qy11 ®)=U @ @UNoy@Qy41 Q-+ (D.3)
defines a continuous unitary one-parameter group on J satisfying
Uip(g)U; = p(as(g)) forg e G,t € R.

By p(g,t) := p(g)U;, we thus obtain a continuous unitary representation of G on J#
for which Q is a G-cyclic unit vector fixed by the one-parameter group (U;);eRr.
Writing

U =e ™ and U= 'Hn

for selfadjoint operators H,, > 0, (D.3) implies that H > 0. To see thatker H = C,
we decompose
H =HN @ Ky forN eN.

Accordingly,
U=V,@W, withV,=U!® ---UY,

and both one-parameter groups (V;);er and (W;);er have positive generators Hy
and Hy . From [8, Lemma A.3] we thus infer that

H=(Hy @ 1x~v) + (1p~v ® Hw)
in the sense of unbounded operators, hence, in particular, that
D(H) = (D(Hy) ® XV)n (¥Y @ D(Hw)).
We conclude that, for every N € N,

kerH Cker Hy @ KV =Q, ® - @ Qn ® XV,
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and this shows that

kengﬂQl®---®QN®JCN=(CQ.
N

Therefore, (p, #, €2) is a vacuum representation of (G, R, «).
Now we assume, conversely, that (p, #, Q) is a vacuum representation of the
triple (G, R, o). Then, the subspace

FHN = span p(GN)Q

carries a vacuum representation of (GN R, aN ). In particular, this representation is
irreducible by Proposition D.5. The group G is a topological product

G=G¥xG™N, whereG™V =[]

n»
n>N

and the representation p is irreducible by Proposition D.5. Since its restriction to GV
carries an irreducible subrepresentation, the restriction to GV is factorial of type I,
hence of the form

plgy =p" ®1

with respect to some factorization # = #V ® K. Starting with N = 1 and pro-
ceeding inductively, we see that

PN =p®®py

for vacuum representations (o, #y,, 2,) of (G,, R, o). In particular, we obtain fac-
torizations
Q=0"RQv =21 ® - ® QN ®Qn,

so that we may identify ¢V with the subspace
HN @Gy C K.

As Q is G-cyclic, the union of these G* -invariant subspaces is dense in J. This
implies that the vacuum representation (p, #, 2) is equivalent to the infinite tensor
product ®,eN (on, Hn, 25,) of the ground state representations (py,, #y, 2,). This
completes the proof. ]

The following allows us to reduce the classification of smooth vacuum represen-
tations to the local case, under the assumption that the ground state is smooth.

Proposition D.7. Suppose that the G,, are Lie groups and that the R-actions on G
are smooth. Then, the vacuum representation (p, ¥, Q) is smooth with smooth vector
Q if and only if the vacuum representations (py, Hn, Q) are smooth with smooth
vector Q.
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Proof. If (p, #,2) is a smooth representation with 2 € F°°, then Q2 will be a smooth
vector for every (H#,, pn, 2) as well. Since 2 is cyclic in #,, the latter will be a
smooth representation.

Suppose, conversely, that the vacuum representations (o, , #y, 2,) are smooth,
and that Q,, € #° for all n € N. From Theorem D.6, we know that the tensor product
representation (p, #, 2) is continuous and cyclic. To show that the vacuum represen-
tation (p, #, 2) = @y (on, Hn, ) is smooth with smooth vector 2 € >, it
suffices by [74, Theorem 7.2] to show that ¢(g) := (2, p(g)$2) is a smooth function
from G to C.

Note that ¢ is the infinite product []r—, ¢x(gx) of the smooth, positive definite
functions ¢,: G, — C defined by ¢,(g) := (R, pn(g)2s). To see that 9: G — C
is smooth, note that it can be decomposed into the smooth maps

. ! (o5 / (053 1 [oFY
G _]_[neNGn —>1+]_[neN<c 1+ (Y(N) = C,
where 1 = (1),en and

D1((gn) = (0n(gn)), P2((zn)) = (zn), P3((zn)) = l_[ Zn.

neN

Here, the smoothness of ®; follows from the compatibility with the box manifold
structure, ®, is continuous affine, and ®3 is holomorphic. It follows that

§0=q)30q)20q)1

is smooth, and hence that (p, #, ) is a smooth vacuum representation with smooth
vector €2. n



