Appendix D

Vacuum representations

In this appendix, we show that vacuum representations of weak products of topological groups arise as products of vacuum representations.

D.1 Weak products and R-actions

The *weak product* of a sequence $(G_n)_{n\in\mathbb{N}}$ of topological groups is defined as

$$
G:=\prod_{n\in\mathbb{N}}' G_n=\bigcup_{N=1}^{\infty} G^N, \quad G^N=G_1\times\cdots\times G_N,
$$

where the group structure is inherited from the product group $\prod_{n\in\mathbb{N}} G_n$. However, we will need a topology that is finer than the product topology. We equip G with the *box topology*, for which a basis of e-neighborhoods consists of the sets $G \cap \prod_{n=1}^{\infty} U_n$, where $U_n \subseteq G_n$ is an e-neighborhood in G_n . By [\[27,](#page--1-0) Lemma 4.4], this turns G into a topological group, and G is the direct limit in the category of topological groups of the increasing sequence of subgroups G^N , endowed with the product topology.

To study vacuum representations of weak products, consider a sequence of topological groups $(G_n, \mathbb{R}, \alpha_n)_{n \in \mathbb{N}}$ with homomorphisms $\alpha_n : \mathbb{R} \to \text{Aut}(G_n)$ that defines a continuous action of $\mathbb R$ on G_n . The homomorphisms $\alpha_n : \mathbb R \to \text{Aut}(G_n)$ combine to a homomorphism $\alpha: \mathbb{R} \to \text{Aut}(G)$ by

$$
\alpha_t(g_1,\ldots,g_N,e,\ldots):=(\alpha_{1,t}(g_1),\ldots,\alpha_{N,t}(g_N),e,\ldots),
$$

where $Aut(G)$ denotes the group of topological automorphisms.

Proposition D.1. *The above map* α *is a continuous action of* \mathbb{R} *on* G *.*

Proof. To see this, we first note that all orbit maps are continuous because the subgroups G^N carry the product topology. Since all automorphisms α_t are continuous by [\[27,](#page--1-0) Lemma 4.4], it suffices to verify continuity of the action in all pairs $(0, g) \in$ $\mathbb{R} \times G^N$. So we have to find for every sequence $(U_n)_{n \in \mathbb{N}}$ of e-neighborhoods in G_n an $\varepsilon > 0$ and a sequence of e-neighborhoods $V_n \subseteq G_n$ such that

$$
\alpha_{n,t}(g_nV_n) \subseteq g_nU_n \quad \text{for } |t| < \varepsilon, n \in \mathbb{N}.
$$

As $[-1, 1] \subseteq \mathbb{R}$ is compact, we find for every $n \in \mathbb{N}$ an identity neighborhood $V_n \subseteq$ $W_n \subseteq G_n$ such that $W_n W_n \subseteq U_n$ and $\alpha_{n,t}(V_n) \subseteq W_n$ for $|t| \leq 1$. For $n \leq N$ we now choose $\varepsilon > 0$ in such a way that $\alpha_{n,t}(g_n) \in g_n W_n$ holds for $|t| \leq \varepsilon$. Then

$$
\alpha_{n,t}(g_n V_n) = \alpha_{n,t}(g_n) \alpha_{n,t}(V_n) \subseteq g_n W_n W_n \subseteq g_n U_n
$$

holds for $|t| < \varepsilon$ and $n \le N$. For $n > N$, we have $g_n = e$ and

$$
\alpha_{n,t}(g_n V_n) = \alpha_{n,t}(V_n) \subseteq W_n \subseteq U_n \quad \text{for } |t| \leq \varepsilon.
$$

Therefore, α defines a continuous action on the weak direct product G.

If, in addition, the groups G_n are Lie groups, then the box topology on G is compatible with a Lie group structure on G ([\[27,](#page--1-0) Remark 4.3]).

Lemma D.2. *If all groups* G_n *are locally exponential, then* α *defines a smooth action on* G*.*

Proof. By [\[27,](#page--1-0) Remark 4.3], the group G is locally exponential as well. Therefore, it suffices to show that the R-action on the Lie algebra $g \cong \bigoplus_{n \in \mathbb{N}} g_n$ (the locally convex direct sum), is smooth. Let $D_n \in \text{der}(\mathfrak{g}_n)$ denote the infinitesimal generator of the smooth actions α^n on \mathfrak{g}_n . Then

$$
\alpha(t, x) = (e^{tD_n} x_n)_{n \in \mathbb{N}} = e^{tD} x \text{ for } D(x_n) = (D_n x_n)
$$

and the tangent map of α is given by

$$
d\alpha(t, x)(s, y) = sD(\alpha(t, x)) + \alpha(t, y).
$$

As $D: \mathfrak{g} \to \mathfrak{g}$ is a continuous linear operator, we inductively obtain from the continuity of α (Proposition [D.1\)](#page-0-0) that α is C^k for each $k \in \mathbb{N}$, and hence that α is smooth. \blacksquare

The weak products encountered in this memoir are mostly of the following form.

Lemma D.3. *Suppose that the smooth manifold* S *has countably many connected components and that* $K \to S$ *is a Lie group bundle. Then, the Lie group* $\Gamma_c(K)$ *is isomorphic to the restricted Lie group product* $\prod_{n\in\mathbb{N}}^{\prime} \Gamma_c(\mathcal{K}|_{S_n})$.

Proof. Since the groups $G = \Gamma_c(K)$ and $G_n = \Gamma_c(K|_{S_n})$ are locally exponential, it suffices to verify that the Lie algebra $q = \Gamma_c(\hat{\mathcal{R}})$ is the locally convex direct sum of the ideals $\mathfrak{g}_n = \Gamma_c(\mathfrak{K}|_{S_n})$. That the summation map

$$
\Phi: \bigoplus_{n\in\mathbb{N}} \Gamma_c(\mathfrak{K}|_{S_n}) \to \mathfrak{g}
$$

is continuous follows from the universal property of the locally convex direct sum. That its inverse Φ^{-1} is also continuous, follows from its continuity on the Fréchet subspaces $\Gamma_D(\mathcal{K})$, where $D \subseteq S$ is compact, because any compact subset intersects at most finitely many connected components.

D.2 Vacuum representations

Let G be a topological group, and let $\alpha:\mathbb{R} \to \text{Aut}(G)$ be a homomorphism that defines a continuous action of $\mathbb R$ on G .

Definition D.4. A triple $(\rho, \mathcal{H}, \Omega)$ is called a *vacuum representation* of (G, \mathbb{R}, α) , if $\rho: G \rtimes_{\alpha} \mathbb{R} \to \mathrm{U}(\mathcal{H})$ is a continuous unitary representation, $\Omega \in \mathcal{H}$ is a G-cyclic unit vector, and the selfadjoint operator H, defined by $U_t := \rho(e, t) = e^{-itH}$ for $t \in \mathbb{R}$, satisfies ker $(H - E_0 1) = \mathbb{C}\Omega$ for $E_0 = \inf(\text{spec}(H)).$

The following is an immediate consequence of [\[8,](#page--1-1) Proposition 5.4].

Proposition D.5. *For a vacuum representation* $(\rho, \mathcal{H}, \Omega)$ *of* (G, \mathbb{R}, α) *, the following assertions hold:*

- (a) $U_{\mathbb{R}} \subseteq \rho(G)^{\prime\prime}$,
- (b) *the representation* $\rho|_G$ *of* G *on* H *is irreducible.*

Proof. (a) The one-parameter group $(U_t^0)_{t \in \mathbb{R}}$ defined by $U_t^0 := e^{itE_0} U_t$ is minimal for the von Neumann algebra $\rho(G)''$ (cf. Definition [3.8\)](#page--1-2) by [\[8,](#page--1-1) Proposition 5.4], hence contained in $\rho(G)''$, and this implies (a).

(b) From (a) it follows that the closed subspace

$$
\mathbb{C}\Omega = \ker(H - E_0 1) \subseteq \mathcal{H}
$$

is invariant under the commutant $\mathcal{M}' := \rho(G)'$ of $\mathcal{M} := \rho(G)''$. As Ω is generating for M, it is separating for M', so that dim ker $(H_0 - E_0 1) = 1$ leads to $\mathcal{M}' = \mathbb{C} 1$. Now the assertion follows from Schur's Lemma.

Let $(G_n, \mathbb{R}, \alpha_n)_{n \in \mathbb{N}}$ be a sequence of topological groups, with for each $n \in \mathbb{N}$ a homomorphism $\alpha_n : \mathbb{R} \to \text{Aut}(G_n)$ that defines a continuous action of \mathbb{R} on G_n . The following theorem identifies the vacuum representations of the weak product (G, \mathbb{R}, α) in terms of vacuum representations of the triples $(G_n, \mathbb{R}, \alpha_n)$.

Theorem D.6. *For any sequence* $(\rho_n, \mathcal{H}_n, \Omega_n)$ *of vacuum representations of* $(G_n, \mathbb{R},$ α_n) with minimal energy $E_0 = 0$, the infinite tensor product

$$
(\mathcal{H}, \Omega) := \bigotimes_{n=1}^{\infty} (\mathcal{H}_n, \Omega_n)
$$
 (D.1)

carries a continuous vacuum representation of (G, \mathbb{R}, α) *, defined by*

$$
\rho(g_1,\ldots,g_n,e,\ldots):=\rho_1(g_1)\otimes\cdots\otimes\rho_n(g_n)\otimes\mathbf{1}_{n+1}\otimes\cdots.
$$
 (D.2)

Conversely, every vacuum representation of (G, \mathbb{R}, α) *with* $E_0 = 0$ *is equivalent to such a representation.*

Proof. First, we prove that if all $(\rho_n, \mathcal{H}_n, \Omega_n)$ are vacuum representations, then so is their infinite tensor product. Since the Ω_n are unit vectors, the infinite tensor product Hilbert space H is defined. It contains the subspaces

$$
\mathcal{H}^N := \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_N \otimes \Omega_{N+1} \otimes \cdots \cong \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_N,
$$

whose union is dense in H. On \mathcal{H}^N , the representation ρ^N of $G^N \rtimes \mathbb{R}$, defined by

$$
\rho^N((g_1,\ldots,g_N),t):=\rho_1(g_1,t)\otimes\cdots\otimes\rho_N(g_N,t),
$$

is continuous with cyclic vector $\Omega = \otimes_{n=1}^{\infty} \Omega_n$. The representation (ρ, \mathcal{H}) of G now is a direct limit of the representations (ρ^N, \mathcal{H}^N) of the subgroups G^N , hence a continuous unitary representation. Further, the invariance of Ω_n under the one-parameter group $U_t^n := \rho_n(e, t)$ implies that

$$
U_t(v_1 \otimes \cdots \otimes v_N \otimes \Omega_{N+1} \otimes \cdots) := U_t^1 v_1 \otimes \cdots \otimes U_t^N v_N \otimes \Omega_{N+1} \otimes \cdots
$$
 (D.3)

defines a continuous unitary one-parameter group on $\mathcal H$ satisfying

$$
U_t \rho(g) U_t^* = \rho(\alpha_t(g)) \quad \text{for } g \in G, t \in \mathbb{R}.
$$

By $\rho(g, t) := \rho(g)U_t$, we thus obtain a continuous unitary representation of G on H for which Ω is a G-cyclic unit vector fixed by the one-parameter group $(U_t)_{t\in\mathbb{R}}$. Writing

$$
U_t = e^{-itH} \quad \text{and} \quad U_t^n = e^{-itH_n}
$$

for selfadjoint operators $H_n \ge 0$, [\(D.3\)](#page-3-0) implies that $H \ge 0$. To see that ker $H = \mathbb{C}\Omega$, we decompose

$$
\mathcal{H} = \mathcal{H}^N \otimes \mathcal{K}_N \quad \text{for } N \in \mathbb{N}.
$$

Accordingly,

$$
U_t = V_t \otimes W_t \quad \text{with } V_t = U_t^1 \otimes \cdots \otimes U_t^N,
$$

and both one-parameter groups $(V_t)_{t\in\mathbb{R}}$ and $(W_t)_{t\in\mathbb{R}}$ have positive generators H_V and H_W . From [\[8,](#page--1-1) Lemma A.3] we thus infer that

$$
H = (H_V \otimes \mathbf{1}_{\mathcal{K}^N}) + (\mathbf{1}_{\mathcal{H}^N} \otimes H_W)
$$

in the sense of unbounded operators, hence, in particular, that

$$
\mathcal{D}(H) = (\mathcal{D}(H_V) \otimes \mathcal{K}^N) \cap (\mathcal{H}^N \otimes \mathcal{D}(H_W)).
$$

We conclude that, for every $N \in \mathbb{N}$,

$$
\ker H \subseteq \ker H_V \otimes \mathcal{K}^N = \Omega_1 \otimes \cdots \otimes \Omega_N \otimes \mathcal{K}^N,
$$

and this shows that

$$
\ker H \subseteq \bigcap_N \Omega_1 \otimes \cdots \otimes \Omega_N \otimes \mathcal{K}^N = \mathbb{C}\Omega.
$$

Therefore, $(\rho, \mathcal{H}, \Omega)$ is a vacuum representation of (G, \mathbb{R}, α) .

Now we assume, conversely, that $(\rho, \mathcal{H}, \Omega)$ is a vacuum representation of the triple (G, \mathbb{R}, α) . Then, the subspace

$$
\mathcal{H}^N := \overline{\operatorname{span}\rho(G^N)\Omega}
$$

carries a vacuum representation of $(G^N, \mathbb{R}, \alpha^N)$. In particular, this representation is irreducible by Proposition [D.5.](#page-2-0) The group G is a topological product

$$
G = G^N \times G^{>N}, \quad \text{where } G^{>N} := \prod_{n>N}^{\prime} G_n,
$$

and the representation ρ is irreducible by Proposition [D.5.](#page-2-0) Since its restriction to G^N carries an irreducible subrepresentation, the restriction to G^N is factorial of type I, hence of the form

$$
\rho|_{G^N}=\rho^N\otimes 1
$$

with respect to some factorization $\mathcal{H} = \mathcal{H}^N \otimes \mathcal{K}^N$. Starting with $N = 1$ and proceeding inductively, we see that

$$
\rho^N \cong \rho_1 \otimes \cdots \otimes \rho_N
$$

for vacuum representations $(\rho_n, \mathcal{H}_n, \Omega_n)$ of $(G_n, \mathbb{R}, \alpha_n)$. In particular, we obtain factorizations

$$
\Omega = \Omega^N \otimes \widetilde{\Omega}_N = \Omega_1 \otimes \cdots \otimes \Omega_N \otimes \widetilde{\Omega}_N,
$$

so that we may identify \mathcal{H}^N with the subspace

$$
\mathcal{H}^N\otimes \tilde{\Omega}_N\subseteq \mathcal{H}.
$$

As Ω is G-cyclic, the union of these G^N -invariant subspaces is dense in \mathcal{H} . This implies that the vacuum representation (ρ , \mathcal{H} , Ω) is equivalent to the infinite tensor product $\otimes_{n\in\mathbb{N}}(\rho_n,\mathcal{H}_n,\Omega_n)$ of the ground state representations $(\rho_n,\mathcal{H}_n,\Omega_n)$. This completes the proof.

The following allows us to reduce the classification of smooth vacuum representations to the local case, under the assumption that the ground state is smooth.

Proposition D.7. *Suppose that the* G_n *are Lie groups and that the* \mathbb{R} *-actions on* G_n *are smooth. Then, the vacuum representation* $(\rho, \mathcal{H}, \Omega)$ *is smooth with smooth vector* Ω *if and only if the vacuum representations* $(\rho_n, \mathcal{H}_n, \Omega_n)$ *are smooth with smooth vector* Ω_n *.*

Proof. If $(\rho, \mathcal{H}, \Omega)$ is a smooth representation with $\Omega \in \mathcal{H}^{\infty}$, then Ω will be a smooth vector for every $(\mathcal{H}_n, \rho_n, \Omega)$ as well. Since Ω is cyclic in \mathcal{H}_n , the latter will be a smooth representation.

Suppose, conversely, that the vacuum representations $(\rho_n, \mathcal{H}_n, \Omega_n)$ are smooth, and that $\Omega_n \in \mathcal{H}_n^{\infty}$ for all $n \in \mathbb{N}$. From Theorem [D.6,](#page-2-1) we know that the tensor product representation (ρ , \mathcal{H} , Ω) is continuous and cyclic. To show that the vacuum representation $(\rho, \mathcal{H}, \Omega) = \bigotimes_{n=1}^{\infty} (\rho_n, \mathcal{H}_n, \Omega_n)$ is smooth with smooth vector $\Omega \in \mathcal{H}^{\infty}$, it suffices by [\[74,](#page--1-3) Theorem 7.2] to show that $\varphi(g) := \langle \Omega, \rho(g) \Omega \rangle$ is a smooth function from G to \mathbb{C} .

Note that φ is the infinite product $\prod_{n=1}^{\infty} \varphi_n(g_n)$ of the smooth, positive definite functions $\varphi_n: G_n \to \mathbb{C}$ defined by $\varphi_n(g) := \langle \Omega_n, \rho_n(g) \Omega_n \rangle$. To see that $\varphi: G \to \mathbb{C}$ is smooth, note that it can be decomposed into the smooth maps

$$
G = \prod'_{n \in \mathbb{N}} G_n \xrightarrow{\Phi_1} 1 + \prod'_{n \in \mathbb{N}} \mathbb{C} \xrightarrow{\Phi_2} 1 + \ell^1(\mathbb{N}) \xrightarrow{\Phi_3} \mathbb{C},
$$

where $\mathbf{1} = (1)_{n \in \mathbb{N}}$ and

$$
\Phi_1((g_n)) = (\varphi_n(g_n)), \quad \Phi_2((z_n)) = (z_n), \quad \Phi_3((z_n)) = \prod_{n \in \mathbb{N}} z_n.
$$

Here, the smoothness of Φ_1 follows from the compatibility with the box manifold structure, Φ_2 is continuous affine, and Φ_3 is holomorphic. It follows that

$$
\varphi = \Phi_3 \circ \Phi_2 \circ \Phi_1
$$

is smooth, and hence that $(\rho, \mathcal{H}, \Omega)$ is a smooth vacuum representation with smooth vector Ω .