
Chapter 2

Mathematical framework for the efficiency functionals

2.1 Preliminary results and asymptotics

In this section we establish some technical results regarding the efficiency functionals
in (1.5), (1.6), and (1.9). These are the main analytical tools that we will use to prove
the results stated in the introduction.

In Section 2.2 we provide some estimates for the functionals in (1.5) and (1.7).
This is the content of Lemma 2.7, Theorem 2.9, and Corollary 2.11. These results
will be employed in Section 3.2 in order to discuss the environmental scenario where
the prey is in proximity of the forager starting location, and thus to prove Theo-
rems 1.7, 1.8, 1.15, and 1.16. Moreover, we establish the limits of the Dirichlet
functionals in (1.6) and (1.9) as s & 0 as stated in Lemma 2.13. These asymptotics
will be used to prove Theorems 1.6, 1.14, 1.7, and 1.15.

To conclude, in Lemmas 2.15 and 2.16 we show that the Neumann functionals
in (1.3), (1.4), (1.5), (1.7), and (1.8) do not vanish for s & 0, and we provide upper
and lower bounds for their lim inf and lim sup. These results will be used in the proofs
of Theorem 1.8 and 1.16.

To prove these results, it is useful to recall some properties regarding the fractional
heat kernels rsD and rsN . It is well known that for each s 2 .0; 1/ these two kernels can
be written for each .t; x; y/ 2 .0;C1/ �� �� as

rsD.t; x; y/ D
Z C1
0

p�D.l; x; y/�
s
t .l/ d l;

rsN .t; x; y/ D
Z C1
0

p�N .l; x; y/�
s
t .l/ d l;

(2.1)

where p�D and p�N are the classical Dirichlet and Neumann heat kernels in �, while
�st is the density of an s-stable subordinator in .0;C1/ (see, e.g., [10, Definition 4]).
For a proof of this latter fact see for instance [10, Proposition 2] and [11, Proposi-
tion 2].

If s D 1, the kernels r1N and r1D coincide respectively with the classical kernels
p�N and p�D . Furthermore, we also know that the density �st admits the explicit repre-
sentation formula

�st .l/D
1

�

Z C1
0

e�lu�tu
s cos.�s/sin.tus sin.�s// du for all .l; s/2.0;C1/�.0; 1/;

(2.2)
see [23, Proposition 3.1].
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Moreover, we also recall the following fact on the spectral representation of rsD
and rsN . In what follows we denote by ¹�D;kºk and ¹�N;kºk two orthonormal basis of
L2.�/ satisfying´
���D;k D ˇD;k�D;k in �;

�D;k 2 H 1
0 .�/

and

8<:���N;k D ˇN;k�N;k in �;
@�N;k

@�
D 0 on @�;

(2.3)

where 0 < ˇD;1 <ˇD;2 � � � and 0D ˇN;0 <ˇN;1 < � � � are respectively the eigenvalues
of the Laplace operator with homogeneous Dirichlet and homogeneous Neumann
boundary conditions.

Thus, thanks to [10, Theorem 5] and [11, Theorem 5], we can rewrite the Dirichlet
and Neumann kernels rsD and rsN as

rsD.t; x; y/ D
C1X
kD1

�D;k.x/�D;k.y/ exp.�tˇsD;k/;

rsN .t; x; y/ D
C1X
kD0

�N;k.x/�N;k.y/ exp.�tˇsN;k/;
(2.4)

for all s 2 .0; 1� and .t; x; y/ 2 .0;C1/ �� ��.
Now, we establish some results on�st . In what follows we recall a scaling property

for the density �st of the s-stable subordinator. For the convenience of the reader the
statement is proved.

Lemma 2.1. Let l 2 .0;C1/, t 2 .0;C1/ and s 2 .0; 1/. Then, we have that

�st .l/ D
1

t
1
s

�s1

�
l

t
1
s

�
: (2.5)

Proof. Let ˛ WD us cos.�s/, ˇ WD us sin.�s/ and

g.˛; ˇ/ WD e�t˛ sin.tˇ/:

With this notation, we integrate by parts the expression on the right-hand side of (2.2)
and obtain that

�st .l/ D �
1

l�
e�lug.˛; ˇ/

ˇ̌̌C1
0
C 1

�l

Z C1
0

e�lu
d

du
g.˛; ˇ/ du

D 0C 1

�l

Z C1
0

e�lue�t˛stus�1.� cos.�s/ sin.tˇ/C sin.�s/ cos.tˇ// du

D st

�l

Z C1
0

e�lue�tu
s cos.�s/us�1 sin.�s � tus sin.�s// du: (2.6)
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We employ the change of variable v D ut 1s and infer from the last identity that

�st .l/ D
s

�l

Z C1
0

e
� l

t
1
s

v

e�v
s cos.�s/vs�1 sin.�s � vs sin.�s// dv

D 1

t
1
s

st
1
s

�l

Z C1
0

e
� l

t
1
s

v

e�v
s cos.�s/vs�1 sin.�s � vs sin.�s// dv

D 1

t
1
s

�s1

�
l

t
1
s

�
:

Now, we discuss some asymptotic estimates for the density �st .l/ in l . As it is
recalled in [5] by R. Song and proved by Skorohod in [33], one has that

�s1.l/ � 2��.1C s/ sin
��s
2

� 1

l1Cs
for l !C1: (2.7)

Using this estimate and Lemma 2.1 on the time-scaling property of �st one obtains an
interesting asymptotic expansion in the forthcoming Lemma 2.2. As a side comment,
we point out that the asymptotic properties of this type of distributions are relevant to
understand how the tail of �st changes by varying the fractional parameter s, which
in turn provides some important information about the optimization problem that we
analyze in this memoir.

Lemma 2.2. Let s 2 .0; 1/ and t 2 .0;C1/. Then, we have that

�st .t/ � 2��.1C s/ sin
�� s
2

� t

l1Cs
for l !C1: (2.8)

Proof. Thanks to Lemma 2.1, we know that for each s 2 .0; 1/, l 2 .0;C1/ and
t 2 .0;C1/ one has that

�st .l/ D
1

t
1
s

�s1

� l
t
1
s

�
:

Thus, using this identity and the estimate in (2.7) one readily obtains that

�st .l/ �
1

t
1
s

2��.1C s/ sin
��s
2

� t 1Css
l1Cs

D 2��.1C s/ sin
��s
2

� t

l1Cs
;

for l !C1.

The following theorem provides similar estimates to the one given in (2.8) in the
range s 2 .0; 1

2
/. Here, the constants involved are less accurate than the one appearing

in (2.8), but on the other hand we gain some important information. In particular,
while the estimate in (2.8) holds true for l !C1, the ones that we prove below are
true for each l 2 .t 1s ;C1/. This additional information will be used several times.
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Theorem 2.3. Let s 2 .0; 1
2
/ and t 2 .0;C1/. Then, there exists some constant C1 2

.0;C1/, independent of s and l , such that

stC1

�l1Cs
6 �st .l/ for all l 2 .t 1s ;C1/;

�st .l/ 6
st�.1C s/
l1Cs

for all l 2 .0;C1/:
(2.9)

Proof. Thanks to the scaling property proved in Lemma 2.1, it is enough to show the
result for t D 1. Indeed, if for t D 1 the inequalities in (2.9) hold true, then if t > 1
and l > t

1
s , we have in view of (2.5) that

�st .l/ D
1

t
1
s

�s1

�
l

t
1
s

�
>

sC1t

�l1Cs
:

The second inequality in (2.9) is proved similarly. For this reason, we focus our atten-
tion on the case t D 1.

We will first prove the second inequality in (2.9). If s 2 .0; 1
2
/, from (2.2) we

notice that

�s1.l/ 6
sin.�s/
�

Z C1
0

e�lutus du 6
s

�l1Cs
�.1C s/;

which concludes the proof of the second inequality in (2.9).
Now we focus on the proof of the first inequality. To do so, we observe that thanks

to equation (2.6) one has that

�s1.l/ D
s

�l

Z C1
0

e�lue�u
s cos.�s/us�1 sin.�s � us sin.�s// du:

We perform the change of variable lu D � and obtain that

�1s .l/ D
s

�l1Cs

Z C1
0

e��e�
�s

ls
cos.�s/� s�1 sin

�
�s � �

s

ls
sin.�s/

�
d�

DW s

�l1Cs
f .s; l/; (2.10)

where by construction f .s; l/ > 0 for each l 2 .0;C1/ and s 2 .0; 1/.
Now we observe that, for each � > 1 and s 2 .0; 1

2
�,ˇ̌̌̌

e��e�
�s

ls
cos.�s/� s�1 sin

�
�s � �

s

ls
sin.�s/

�ˇ̌̌̌
6 e�� :

Thus, by the dominated convergence theorem we obtain that

lim
s&0

Z C1
1

e��e�
�s

ls
cos.�s/� s�1 sin

�
�s � �

s

ls
sin.�s/

�
d� D 0:
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Also, by using the change of variable � s D lsz we deduce thatZ 1

0

e��e�
�s

ls
cos.�s/� s�1 sin

�
�s � �

s

ls
sin.�s/

�
d�

D ls

s

Z 1
ls

0

e�lz
1
s
e�z cos.�s/ sin.�s � z sin.�s// dz

D ls
Z C1
0

�Œ0; l�s �e
�lz

1
s
e�z cos.�s/ sin.�s � z sin.�s//

s
dz:

If s 2 .0; 1
3
/ we also notice thatˇ̌̌̌
�Œ0; l�s �e

�lz
1
s
e�z cos.�s/ sin.�s � z sin.�s//

s

ˇ̌̌̌
6 �e�

z
2 .1C z/;

and therefore, since l > 1, by the dominated convergence theorem we obtain that

lim
s&0

Z 1

0

e��e�
�s

ls
cos.�s/� s�1 sin

�
�s � �

s

ls
sin.�s/

�
d� D �

Z 1

0

e�z.1 � z/ dz:

Consequently, for each l > 1

lim
s&0

f .s; l/ D �
Z 1

0

e�z.1 � z/ dz D �

e
: (2.11)

We also observe that, if s 2 .0; 1
2
�,ˇ̌̌̌

e��e�
�s

ls
cos.�s/� s�1 sin

�
�s � �

s

ls
sin.�s/

�ˇ̌̌̌
6 e��� s�1;

for all � 2 .0;C1/.
As a consequence, by the dominated convergence theorem we evince that

lim
l!C1

f .s; l/ D sin.�s/�.s/ > 0; (2.12)

for all s 2 .0; 1
2
�.

Besides, by the definition of f .s; l/, we have that f 2 C..0; 1
2
/ � .1;C1// and

f .s; l/ > 0 for all .s; l/ 2
�
0;
1

2

�
� Œ1;C1/: (2.13)

Therefore, using (2.11), (2.12), and (2.13) we deduce that there exists some C1 2
.0;C1/ such that

C1 6 f .s; l/ for all .s; l/ 2
�
0;
1

2

�
� Œ1;C1/:

In light of this observation and equation (2.10) we deduce that

C1s

�l1Cs
6 �s1.l/:
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2.2 Structural results for the efficiency functionals

Now we develop the main technical tools that will be employed in the proofs of the
results contained in Sections 1.2 and 1.3.

In what follows we adopt the subscript � to refer to the fact that the functional
considered can be the one associated with both the Dirichlet and the Neumann case.

We begin by recalling here the following estimates for the classical Dirichlet heat
kernel in relation to the classical heat kernel. Using the weak maximum principle for
the heat equation one can show that

p�D.t; x; y/ 6
1

.4�t/
n
2

exp
�
�jx � yj

2

4t

�
for all .t; x; y/ 2 .0;C1/ �� ��:

(2.14)
On compact subsets of� and for finite time spans, one can prove the following lower
bound for p�D.t; x; y/.

Lemma 2.4 (See [45, Lemma 2.1]). Let��Rn be bounded, smooth and connected.
Then, there exists a constant T� 2 .0;C1/ such that for each K b �, if we define

TK;� WD min
²
T�; min

x2K

d2.x; @�/

2

³
; (2.15)

then there exist two constants c1; c2 2 .0;C1/, depending on K and �, such that

p�D.t;x;y/>
c1

t
n
2

exp
�
�c2jx � yj

2

t

�
for all .t;x;y/2 .0;TK;���K �K: (2.16)

Using the weak maximum principle, it is also possible to compare the Neumann
heat kernel with the Dirichlet one, as better specified in the following result.

Theorem 2.5. Let � � Rn be bounded, smooth and connected and K 0 b �. Then,
for each s 2 .0; 1� we have that

rsD.t; x; y/ 6 rsN .t; x; y/ for all .t; x; y/ 2 .0;C1/ �� ��: (2.17)

Furthermore, if K � K 0 b � is star-shaped with respect to some x0 2 K, there
exist some constantsCK0;�; cK0;� 2 .0;C1/ and "0 2 .0;1/, depending onK 0 and�,
such that

rsN .t; x; y/ 6 CK0;�r
s
D.t; x"; y"/C cK0;� for all .t; x; y/ 2 .0;C1/ �K �K;

(2.18)
for each " 2 .0; "0/, where .x"; y"/ WD ."x C .1 � "/x0; "y C .1 � "/x0/.
Proof. We begin by proving the lower bound in (2.17). To do so, we observe that
thanks to the maximum principle for the heat equation, one has that

p�D.t; x; y/ 6 p�N .t; x; y/ for all .t; x; y/ 2 .0;C1/ �� ��:
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Therefore, using (2.1) and the latter inequality, we obtain that

rsD.t; x; y/ D
Z C1
0

p�D.l; x; y/�
s
t .l/ d l

6
Z C1
0

p�N .l; x; y/�
s
t .l/ d l D rsN .t; x; y/;

for each .t; x; y/ 2 .0;C1/ �� ��. This concludes the proof of (2.17).
Now we show (2.18). Thanks to [9, Theorem 3.2.9], we have that there exists

some constant c� such that

p�N .t; x; y/6c�max
²
1;

1

t
n
2

³
exp

�
�jx � yj

2

6t

�
for all .t; x; y/2.0;C1/����:

(2.19)
Furthermore, if K � K 0 b �, thanks to Lemma 2.4 we obtain that

p�D.t; x; y/ >
c1

t
n
2

exp
�
�c2jx � yj

2

t

�
for all .t; x; y/ 2 .0; TK0;�� �K 0 �K 0;

(2.20)
where TK0;� is introduced in (2.15) and c1; c2 depends on K 0 and �.

Up to a translation we can assume that K is star-shaped with respect to

x0 D 0:

Now we observe that there exists two constants CK0;� 2 .0;C1/ and "0 2 .0; 1/,
such that

CK0;�c1 > c� and c2"
2 6

1

6
for all " 2 .0; "0/:

As a consequence, if for each " 2 .0; "0/ we call

.x"; y"/ D ".x; y/;

then from (2.19) and (2.20) we obtain that

CK0;�p
�
D.t; x"; y"/ � p�N .t; x; y/

> CK0;�
c1

t
n
2

exp
�
�c2jx" � y"j

2

t

�
� c�
t
n
2

exp
�
�jx � yj

2

6t

�
D c�

t
n
2

�
CK0;�

c1

c�
exp

�
�"2c2 jx � yj

2

t

�
� exp

�
�jx � yj

2

6t

��
>
c�

t
n
2

exp
�
�jx � yj

2

6t

��
exp

�
�
�
"2c2 � 1

6

� jx � yj2
t

�
� 1

�
> 0; (2.21)

for each .t; x; y/ 2 .0; TK0;�� �K �K.
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Thus, using equation (2.1) and the relation in (2.21) we obtain that

rsN .t; x; y/ D
Z C1
0

p�N .l; x; y/�
s
t .l/ d l

D
Z TK0;�

0

p�N .l; x; y/�
s
t .l/ d l C

Z C1
TK0;�

p�N .l; x; y/�
s
t .l/ d l

6 CK0;�

Z TK0;�

0

p�D.l; x"; y"/�
s
t .l/ d l

C c�
Z C1
TK0;�

max
²
1;

1

l
n
2

³
exp

�
�jx � yj

2

6l

�
�st .l/ d l

6 CK0;�

Z C1
0

p�D.l; x"; y"/�
s
t .l/ d l C cK0;�

D CK0;�rsD.t; x"; y"/C cK0;�;

for each .t; x; y/ 2 .0;C1/ �K �K, where we defined

cK0;� WD max
x;y2K0

max
l2ŒTK;�;C1/

c� max
²
1;

1

l
n
2

³
exp

�
�jx � yj

2

6l

�
:

As a useful consequence of Theorem 2.5, we obtain that it is possible to compare
the Neumann functional ˆN with the Dirichlet one ˆD . The result goes as follows.

Corollary 2.6. Let � � Rn be bounded, smooth and connected and K 0 b �. Then,
for each s 2 .0; 1� and T 2 .0;C1/ it holds that

ˆ
x;y
D .s; T / 6 ˆ

x;y
N .s; T / for all .x; y/ 2 C ; (2.22)

where

C WD .� ��/ n ¹.p; p/ s.t. p 2 �º D ®.p; q/ 2 � �� s.t. p ¤ q¯: (2.23)

Furthermore, for each K � K 0 b � star-shaped with respect to some x0 2 K,
s 2 .0; 1/ and T 2 .0;C1/, there exists some "0 2 .0; 1/ such that

ˆ
x;y
N .s; T / 6 CK0;�ˆ

x";y"
D .s; T /C cK0;�T for all .x; y/ 2 C \ .K �K/; (2.24)

for each " 2 .0; "0/, where

.x"; y"/ WD ."x C .1 � "/x0; "y C .1 � "/x0/

and CK0;�; cK0;� 2 .0;C1/ are given in Theorem 2.5.

Proof. Inequalities (2.22) and (2.24) are respectively obtained by integrating over the
time t in .0; T / both sides of (2.17) and (2.18).
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In Lemma 2.7 below we establish a lower bound for ˆx;y� .s; T /, for x 2 � in a
sufficiently small neighborhood of y 2 �.

This estimate is pivotal to determine the asymptotic behavior of the functionals
in (1.6) when x approaches y, providing some information on the best search strategy
in the environmental scenario addressed in Section 1.3, namely where the forager
starts its search in proximity of the target.

Lemma 2.7. Let��Rn be bounded, smooth and connected. If .y;T /2��.0;C1/
and s 2 .0; 1/, then there exists some yı D yıs;y;T;� 2 .0;C1/ such that, for each
x; z 2 Byı.y/ satisfying x ¤ z,

ˆx;z� .s; T / >
Cs;y;�

jx � zjn�2s ; (2.25)

for some constant Cs;y;� 2 .0;C1/.
Proof. In virtue of inequality (2.22) it is enough to show the result for ˆD .

Let y 2 � and let us denote dy WD d.y;@�/
2

, where

d.y; @�/ WD inf
x2@�

jx � yj:

With this notation we set
By WD Bdy .y/:

Now, by (2.15) and (2.16) (used here with K WD By),

p�D.t; x; z/ >
c1

t
n
2

exp
�
�c2jx � zj

2

t

�
for all .t; x; z/ 2 .0; TBy ;�� � By � By :

(2.26)
We also observe that for each x; z 2 Rn such that x ¤ z, the function

g.t/ WD c1

t
n
2

exp
�
�c2jx � zj

2

t

�
has a maximum in "x;z WD 2c2

n
jx � zj2 and it is increasing in .0; "x;z/ and decreasing

in ."x;z;C1/.
We set

ls;y;T WD min¹TBy ;�; T
1
s º

and we choose yı D yıs;y;T;� such that

yıs;y;T;� WD min
²�
nls;y;T

2c2

� 1
2

; dy

³
: (2.27)

It follows that if x; z 2 Byı.y/ with x ¤ z, then "x;z 6 ls;y;T and x; z 2 By .
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To simplify the notation, we simply write "D"x;z . In this way, by (2.1) and (2.26),
if x; z 2 Byı.y/ and x ¤ z we have that

ˆ
x;z
D .s; T / D

Z T

0

Z C1
0

p�D.l; x; z/�
s
t .l/ d l dt

>
Z "s

0

Z "

"
2

p�D.l; x; z/�
s
t .l/ d l dt

>
Z "s

0

Z "

"
2

c1

l
n
2

exp
�
�c2jx � zj

2

l

�
�st .l/ d l dt

>
C

"
n
2

Z "s

0

Z "

"
2

�st .l/ d l dt;
(2.28)

where we set C WD c12n2 e�n.
Now we substitute �st in (2.28) with the expression in (2.2) and obtain that

ˆ
x;z
D .s; T / >

C

�"
n
2

Z "s

0

Z "

"
2

Z C1
0

e�lu�tu
s cos.�s/ sin.tus sin.�s// du dl dt

D C

�"
n
2

Z "

"
2

Z C1
0

Z "s

0

e�lu�tu
s cos.�s/ sin.tus sin.�s// dt du dl

DW L: (2.29)

Setting F.t/ WD e�t˛ sin.tˇ/, with ˛ WD us cos.�s/ and ˇ WD us sin.�s/, for each
T 2 .0;C1/ we integrate by parts and see thatZ T

0

F.t/ dt D � 1
˛
e�t˛ sin.tˇ/

ˇ̌̌T
0
C ˇ

˛

Z T

0

e�t˛ cos.tˇ/ dt

D � 1
˛
e�T˛ sin.Tˇ/ � ˇ

˛2
e�t˛ cos.tˇ/

ˇ̌̌T
0
� ˇ

2

˛2

Z T

0

e�t˛ sin.tˇ/ dt

D � 1
˛
e�T˛ sin.Tˇ/ � ˇ

˛2
e�T˛ cos.Tˇ/C ˇ

˛2
� ˇ

2

˛2

Z T

0

F.t/ dt:

Therefore, by replacing ˛ and ˇ with their corresponding values, one obtains thatZ T

0

F.t/ dt D �cos.�s/
us

e�Tu
s cos.�s/ sin.T us sin.�s//

� sin.�s/
us

e�Tu
s cos.�s/ cos.T us sin.�s//C sin.�s/

us

D 1

us
.sin.�s/ � e�Tus cos.�s/ sin.T us sin.�s/C �s//: (2.30)
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By (2.29), (2.30) and the change of variables .U;L/ D .u"; l
"
/ one obtains that

L D C

�"
n
2

Z "

"
2

Z C1
0

e�lu

us
.sin.�s/ � e�"sus cos.�s/ sin.�s C "sus sin.�s/// du dl

D C

�"
n
2�s

Z 1

1
2

Z C1
0

e�LU

U s
.sin.�s/ � e�U s cos.�s/ sin.�s C U s sin.�s/// dU dL

DW C

�"
n
2�s

Js; (2.31)

where Js does not depend on " and is defined by

Js WD
Z 1

1
2

Z C1
0

e�LU

U s
.sin.�s/ � e�U s cos.�s/ sin.�s C U s sin.�s/// dU dL:

Note also that by construction

Js D 1

"s

Z "

"
2

Z "s

0

�st .l/ dt d l;

which means that Js 2 .0;C1/, since �st .l/ 2 .0;C1/ for each s, t and l .
Accordingly, from (2.29) and (2.31),

ˆ
x;z
D .s; T / >

C��1

"n�2s
Js

D 2se�nc1n
n
2�s

�c
n
2�s

2 jx � zjn�2s
Js

>
Cy;�

jx � zjn�2s Js

D Cs;y;�

jx � zjn�2s ;

where we have defined

Cy;� WD min
s2.0;1/

2se�nc1n
n
2�s

�c
n
2�s

2

and Cs;y;� WD Cy;�Js: (2.32)

This gives the desired result.

As a consequence of Lemma 2.7, we have that if x approaches y, then the func-
tional ˆx;y� .s; T / diverges to infinity as far as n > 2s.

In the following result we make this statement precise. In particular, we show that
divergence holds true as far as n > 2s.



Mathematical framework for the efficiency functionals 32

Theorem 2.8. Let � � Rn be bounded, smooth and connected and T 2 .0;C1/. If
n > 2 or n D 1 and s 2 .0; 1

2
� we have that

lim
.x;y/!.z;z/

ˆx;y� .s; T / D C1; (2.33)

ˆz;z� .s; T / D C1; (2.34)

for each z 2 �.

Proof. We will prove only the Dirichlet case, since the Neumann one follows easily
from the Dirichlet one and (2.17).

We first focus on the proof of (2.34). Using the identity (2.1), equations (2.15)
and (2.16) together with the formula in (2.2) we deduce that if

ıs;x;T WD min¹Tx;�; T 1
s º;

where Tx;� is given in (2.15), then for each ı 2 .0; ıs;x;T / it holds that

ˆ
x;x
D .s; T / D

Z T

0

Z C1
0

p�D.l; x; x/�
s
t .l/ d l dt

D
Z C1
0

p�D.l; x; x/

Z T

0

�st .l/ dt d l

>
Z ı

0

c1

l
n
2

Z ıs

0

�st .l/ dt d l

D 1

�

Z ı

0

c1

l
n
2

Z ıs

0

Z C1
0

e�lu�tu
s cos.�s/ sin.tus sin.�s// du dt d l

>
c1

�ı
n
2

Z ı

0

Z C1
0

Z ıs

0

e�lu�tu
s cos.�s/ sin.tus sin.�s// dt du dl;

(2.35)

where c1 is introduced in (2.16).
Now, in light of (2.30) and (2.35), and using the change of variables .L; U / D

. l
ı
; uı/, we find that

ˆ
x;x
D .s; T /

>
c1

�ı
n
2

Z ı

0

Z C1
0

Z ıs

0

e�lu�tu
s cos.�s/ sin.tus sin.�s// dt du dl

D c1

�ı
n
2

Z ı

0

Z C1
0

e�lu
1

us
.sin.�s/ � e�ısus cos.�s/ sin.ısus sin.�s/C �s// du dl

D c1

�ı
n
2�s

Z 1

0

Z C1
0

e�LU
1

U s
.sin.�s/�e�U s cos.�s/ sin.U s sin.�s/C�s// dU dL

DW c1

�ı
n
2�s

Gs: (2.36)
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We also observe that Gs does not depend on ı and by construction

Gs D 1

ıs

Z ı

0

Z ıs

0

�st .l/ dt d l;

which means that Gs 2 .0;C1/, since �st .l/ 2 .0;C1/ for each s 2 .0; 1/, t 2
.0;C1/ and l 2 .0;C1/.

Therefore, recalling (2.36) we deduce that

ˆ
x;x
D .s; T / > lim

ı&0

c1

�ı
n
2�s

Gs D C1;

if either n > 2 or n D 1 and s 2 .0; 1
2
/.

Hence, to complete the proof of (2.34), it is left to consider the case n D 1 and
s D 1

2
. When s D 1

2
equation (2.2) boils down to

�
1
2
t .l/ D

1

�

Z C1
0

e�lu sin.tu
1
2 / du: (2.37)

Therefore, using the latter identity, (2.15) and (2.16) we obtain that there exists Tx;� 2
.0;C1/ such that if ı 2 .0; Tx;�/, then

ˆ
x;x
D

�
1

2
; T

�
D
Z T

0

Z C1
0

p�D.l; x; x/�
1
2
t .l/ d l dt

>
Z ı

0

Z T

0

p�D.l; x; x/�
1
2
t .l/ dt d l

> c1

Z ı

0

Z T

0

1

l
1
2

�
1
2
t .l/ dt d l

D c1

�

Z ı

0

Z T

0

Z C1
0

1

l
1
2

e�lu sin.tu
1
2 / du dt d l

D c1

�

Z ı

0

Z C1
0

Z T

0

1

l
1
2

e�lu sin.tu
1
2 / dt du dl

D c1

�

Z ı

0

Z C1
0

1

l
1
2

e�lu.1 � cos.T u
1
2 //

1

u
1
2

dudl;

where c1 2 .0;C1/ has been introduced in (2.16).
Furthermore, by making the change of variable luD a in the l variable we deduce

that

ˆ
x;x
D

�
1

2
; T

�
>
c1

�

Z C1
0

Z ıu

0

e�a

a
1
2

.1 � cos.T u
1
2 //

1

u
da du

>
c1

�

Z C1
1
ı

Z ıu

0

e�a

a
1
2

.1 � cos.T u
1
2 //

1

u
da du

DW 	: (2.38)
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We also observe that for each u > 1
ı

one has that

0 < c WD
Z 1

0

e�a

a
1
2

da 6
Z ıu

0

e�a

a
1
2

da 6 �

�
1

2

�
:

Moreover, defining

Qk WD min
²
k 2 N s.t. k > �1

4
C T

2�ı
1
2

³
;

we find that . �
2T
C 2� Qk

T
/2 > 1

ı
, and thus we deduce from (2.38) that

	 >
cc1

�

Z C1
1
ı

1 � cos.T u
1
2 /

u
du

>
cc1

�

C1X
kDQk

Z . 3�2T C
2�k
T /2

. �2T C
2�k
T /2

du

u

D 2cc1

�

C1X
kDQk

ln
� 3�
2k
C 2�

�
2k
C 2�

�
DW 		:

Therefore, using Taylor’s expansion we infer that there exists some zK 2 N with zK >
Qk such that

		 >
2cc1

�

C1X
kD zK

1

2k
C o

�
1

k2

�
D C1: (2.39)

This concludes the proof of (2.34).
Now we prove (2.33). If n > 2s, equation (2.33) is a direct consequence of

inequality (2.25). Therefore, to conclude the proof of (2.33) it is left to show the
case n D 1 and s D 1

2
. In order to achieve this, we observe that if Vx b � is some

neighborhood of x in �, then there exists some k0 2 N such that for each k > k0 it
holds that .xk; yk/ 2 Vx � Vx .

Thus, if we define "k WD jxk � ykj2, in view of (2.15) and (2.16), and recall-
ing (2.37), we obtain that, if k > k0,

ˆ
xk ;yk
D

�
1

2
; T

�
D
Z T

0

Z C1
0

p�D.l; xk; yk/�
1
2
t .l/ d l dt

D
Z C1
0

Z T

0

p�D.l; xk; yk/�
1
2
t .l/ dt d l

>
1

�

Z TVx;�

0

Z T

0

Z C1
0

c1

l
1
2

exp
�
�c2"k

l

�
e�lu sin.tu

1
2 /du dt d l
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D 1

�

Z TVx;�

0

Z C1
0

c1

l
1
2

exp
�
�c2"k

l

�
e�lu

.1 � cos.T u
1
2 //

u
1
2

dudl

>
c1

�

Z C1
2

TVx;�

Z 2
u

1
u

1

l
1
2

exp
�
�c2"k

l

�
e�lu

.1 � cos.T u
1
2 //

u
1
2

dl du; (2.40)

where TVx ;� 2 .0;C1/ and c1; c2 2 .0;C1/ are given respectively in (2.15) and
(2.16).

Now we choose Qj ; j."k/ 2 N such that

Qj WD min
²
j 2 N s.t. j >

T

2�

�
2

TVx ;�

� 1
2

� 1
4

³
;

j."k/ WD max
²
j 2 N s.t. j 6

T

2�"
1
2

k

� 3
4

³
:

Note that if "k is chosen small enough, then Qj < j."k/.
With this choices one has that�

�

2T
C 2� Qj

T

�2
>

2

TVx ;�
and

�
3�

2T
C 2�j."k/

T

�2
6
1

"k
: (2.41)

Therefore, with this latter notation we obtain from (2.40) that

ˆ
xk ;yk
D

�
1

2
; T

�
>
c1

�

j."k/X
jD Qj

Z . 3�2T C
2�j
T /2

. �2T C
2�j
T /2

Z 2
u

1
u

1

l
1
2

exp
�
�c2"k

l

�
e�lu

1

u
1
2

dl du

>
c1

�

j."k/X
jD Qj

Z . 3�2T C
2�j
T /2

. �2T C
2�j
T /2

Z 2
u

1
u

exp.�c2u"k/e�2 dl du

D c1e
�2

�

j."k/X
jD Qj

Z . 3�2T C
2�j
T /2

. �2T C
2�j
T /2

1

u
exp.�c2u"k/ du:

Now, we deduce from (2.41) that since u 6 . 3�
2T
C 2�j."k/

T
/2, then u"k 6 1, and thus

from the latter computations we obtain that

ˆ
xk ;yk
D

�
1

2
; T

�
>
c1e
�c2

�e2

j."k/X
jD Qj

Z . 3�2T C
2�j
T /2

. �2T C
2�j
T /2

1

u
du

D 2c1e
�c2

�e2

j."k/X
jD Qj

ln
� 3�
2k
C 2�

�
2k
C 2�

�
: (2.42)
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As we observed in (2.39), one has that

C1X
kD1

ln
� 3�
2k
C 2�

�
2k
C 2�

�
D C1:

With reference to that, from (2.42) and the latter observation we obtain that

lim
k!C1

ˆ
xk ;yk
D

�
1

2
; T

�
> lim
k!C1

2c1e
�c2

�e2

j."k/X
jD Qj

ln
� 3�
2k
C 2�

�
2k
C 2�

�

D 2c1e
�c2

�e2

C1X
jD Qj

ln
� 3�
2k
C 2�

�
2k
C 2�

�
D C1:

This completes the proof of (2.33).

In the following result we give some upper bounds for the functional ˆx;y� .s; T /.
These estimates, together with the lower bound in (2.25), will turn out to be pivotal
in order to determine the most rewarding search strategy in a regime where the initial
position of the forager is close to the one of the prey, and thus prove Theorems 1.7
and 1.8.

In the Dirichlet framework, the behavior of the functional ˆx;yD .s; T / for x ap-
proaching y could be deduced from the already known estimates on the Green func-
tion G�D .x; y/ of the Dirichlet spectral fractional Laplacian, see [34, Theorem 5.4].

Indeed, the Green function is given by

G�D .x; y/ WD
Z C1
0

rsD.t; x; y/ dt;

for x ¤ y, and therefore
ˆ
x;y
D .s; T / 6 G�D .x; y/;

for each .x; y; T / 2 � �� � .0;C1/ with x ¤ y and s 2 .0; 1/.
Nevertheless, for our optimization purposes we need upper bounds where the

dependence of the constants on the fractional exponent s 2 .0; 1/ is known. In this
sense, the inequalities provided in the following result are more suitable in this con-
text than the ones available in the literature for G�D .

Before stating and proving the theorem, we fix the following notation. For each
n 2 N and s 2 .0; 1/ we define the set

An;s WD
�
0; 1C n

2
� s

�
\
hn
2
� s; 1C n

2
� s

�
: (2.43)
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Theorem 2.9. Let � � Rn be bounded, smooth and connected. Moreover, let K b
� be star-shaped with respect to some x0 2 K. Then, for each s 2 .0; 1/ and T 2
.0;C1/, there exists some C�;K;T;� 2 .0;C1/ such that if n > 3, then

ˆx;y� .s; T / 6
C�;K;T;�

jx � yjn�2s for all .x; y/ 2 C \ .K �K/; (2.44)

where C is given in (2.23).
Furthermore, if n 6 2, s 2 .0; 1/ and � 2 An;s there exists some C�;�;K;T;� 2

.0;C1/ such that

ˆx;y� .s; T / 6
C�;�;K;T;�

jx � yj2� for all .x; y/ 2 C \ .K �K/; (2.45)

where An;s is defined (2.43).

Proof. We will first show the result for the Dirichlet case. To this aim, we recall the
following identityZ C1

0

rsD.t; x; y/ dt D
1

�.s/

Z C1
0

p�D.t; x; y/t
s�1 dt for all .x; y/ 2 C ; (2.46)

see for instance [34, equation (2.4)]. For the convenience of the reader we give a proof
of it in the appendix, see Proposition A.1.

We first prove (2.44). If ..x;y/;T /2C � .0;C1/, thanks to the identity in (2.46)
we have that

ˆ
x;y
D .s; T / D

Z T

0

rsD.t; x; y/ dt 6
Z C1
0

rsD.t; x; y/ dt

D 1

�.s/

Z C1
0

p�D.t; x; y/t
s�1 dt:

Using inequality (2.14) and the change of variable a D jx�yj2
4t

we obtain that

ˆ
x;y
D .s; T / 6

1

�.s/

Z C1
0

t s�1

.4�t/
n
2

exp
�
�jx � yj

2

4t

�
dt

D 4�s

�
n
2�.s/

1

jx � yjn�2s
Z C1
0

a
n
2�1�se�a da

D 4�s

�
n
2�.s/

�.n
2
� s/

jx � yjn�2s : (2.47)

Thus, by defining the constant

CD WD sup
s2.0;1/

4�s

�
n
2�.s/

�

�
n

2
� s

�
;

we conclude the proof of (2.44) for the Dirichlet case.
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Now, we prove (2.45). To this end, we observe that there exists some constant
c3 2 .0;C1/, depending on �, such that for all  2 Œ0; 1/ it holds that

p�D.t;x;y/6
c3

t
n
2C

exp
�
�jx � yj

2

6t

�
for all .t;x;y/2 .0;C1/����; (2.48)

see for instance [9, Theorem 4.6.9].
Accordingly, using the identity given in equation (2.46) and the inequality in

(2.48), we deduce that

ˆ
x;y
D .s; T / D

Z T

0

rsD.t; x; y/ dt

6
Z C1
0

rsD.t; x; y/ dt

D 1

�.s/

Z C1
0

p�D.t; x; y/t
s�1 dt

6
c3

�.s/

Z C1
0

1

t
n
2C�sC1

exp
�
�jx � yj

2

6t

�
dt

D c3

�.s/

Z C1
0

.6�/
n
2C�s�1

jx � yjn�2.s�/ e
�� d�

D Cs;;n;�

�.s/

1

jx � yjn�2.s�/ ; (2.49)

where we applied the change of variable � D jx�yj2
4t

and we defined

Cs;;n;� WD c36n2C�s�1�.n
2
C  � s/;

for all  2 .s � n
2
; 1/ \ Œ0; 1/.

Now, we observe that if we define � WD n
2
C  � s, then � 2 .0; 1C n

2
� s/ \

Œn
2
� s; 1C n

2
� s/, and inequality (2.49) becomes

ˆ
x;y
D .s; T / 6

c3

�.s/
6��1

�.�/

jx � yj2� 6
CD;�

jx � yj2� ; (2.50)

where we defined
CD;� WD sup

s2.0;1/

c3

�.s/
6��1�.�/:

This concludes the proof of (2.45) for the Dirichlet case.
Employing the result in Corollary 2.6 we prove now (2.44) and (2.45) for the

Neumann case. LetK b� and, up to a translation, let us assume that it is star-shaped
with respect to

x0 D 0:
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Then, if T 2 .0;C1/, n > 3 and s 2 .0; 1/, using equations (2.47) and (2.24)
withK 0 DK we obtain the existence of some cK;�;CK;� 2 .0;C1/ and "0 2 .0; 1/,
depending on K and �, such that

ˆ
x;y
N .s; T / 6 CK;�ˆ

x";y"
D .s; T /C cK;�T 6 CK;�

CD"
2s�n

jx � yjn�2s C cK;�T;

for all " 2 .0; "0/ and .x; y/ 2 C \ .K �K/.
Consequently, if in the last equation we choose "1 2 .0; "0/ such that

"1 6 inf
s2.0;1/

�
CK;�CD

d2s�nK

cK;�T

� 1
n�2s

;

which depends on K; � and T , we obtain that for all .x; y/ 2 C \ .K � K/ and
s 2 .0; 1/ it holds that

ˆ
x;y
N .s; T / 6

CK;T;�

jx � yjn�2s ;

with
CK;T;� WD 2 sup

s2.0;1/

Cn"
2s�n
1 CK;�:

Analogously, if n 6 2, s 2 .0; 1/ and � 2 An;s , then one deduces from (2.50)
and (2.24) that

ˆ
x;y
N .s; T / 6 CK;�ˆ

x";y"
D .s; T /C cK;�T 6 CK;�

CD;�"
�2�

jx � yj2� C cK;�T;

for all " 2 .0; "0/ and .x; y/ 2 C \ .K �K/.
As a result, if we choose some "2 2 .0; "0/ satisfying

"
2�
2 6 CK;�CD;�

d
�2�
K

cK;�T
;

which depends on �;K;� and T , we obtain that for all .x; y/ 2 K and s 2 .0; 1/ it
holds that

ˆ
x;y
N .s; T / 6

C�;K;T;�

jx � yj2� ;

where we set
C�;K;T;� WD 2CK;�C�;�"�2�2 :

Remark 2.10. We note that for the Dirichlet case we obtained that the constants in
equation (2.44) and (2.45) can be chosen independently ofK and T . In particular, we
have proved that if n > 3, then

ˆ
x;y
D .s; T / 6

4�s

�
n
2

�.n
2
� s/

jx � yjn�2s (2.51)
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for all .x; y/ 2 C . If n 6 2 and � 2 An;s , where An;s is given in (2.43), then

ˆ
x;y
D .s; T / 6

6��1c3

�.s/

�.�/

jx � yj2� ; (2.52)

for all .x; y/ 2 C .

We now turn our attention to the functional ẑ�1;�2� defined in (1.7). For this, it is
convenient, for every bounded and measurable sets�1;�2 � Rn and each s 2 .0; 1/,
to define

F�1;�2.s/ WD
Z
�1��2

1

jx � yjn�2s dx dy: (2.53)

As a direct consequence of Lemma 2.7 and Theorem 2.9 we obtain the following
upper and lower bounds for ẑ�1;�2� . These bounds will play a crucial role in proving
Theorems 1.15 and 1.16.

Corollary 2.11. Let � � Rn be bounded, smooth and connected, K b � be star-
shaped with respect to some x0 2 K and "0 2 .0; 1/ be given as in Corollary 2.6.
Then, for each s 2 .0; 1/ and T 2 .0;C1/, if n > 3, we have that

ẑ�1;�2
� .s; T / 6

C�;K;T;�

j�1jj�2jF
�1;�2.s/ for all �1; �2 � K;

where F�1;�2 is given in (2.53).
Furthermore, if n 6 2, s 2 .0; 1/ and � 2 An;s , where An;s is given in (2.43), one

has that

ẑ�1;�2
� .s; T / 6

C�;�;K;T;�

j�1jj�2j F
�1;�2

�n � 2�
2

�
for all �1; �2 � K: (2.54)

Moreover, for all s 2 .0; 1� we have that

ẑ�1;�2
� .s; T / >

Cs;y;�

j�1jj�2jF
�1;�2.s/; (2.55)

with Cs;y;� defined in (2.32).

The following result is devoted to the proof of the continuity of the functionals
ˆ�, l� and A� with respect to the space, time and fractional variables. Also, we show
that if n < 2s, then the limit in (2.33) is finite, and similarly ˆz;z� .s; T / < C1 for
each z 2 �.

Proposition 2.12. Let � � Rn be open, bounded, smooth and connected. Then,
ˆ
x;y
� .s; T / 2 .0;C1/ for all .s; .x; y/; T / 2 .0; 1�� C � .0;C1/ andˆx;y� .s; T / 2

C..0; 1� � C � .0;C1//, where C is given in (2.23).
Also, if n D 1, then ˆx;y� .s; T / 2 C..1

2
; 1� �� �� � .0;C1//.
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Moreover, for each T 2 .0;C1/ there exists some M 2 .0;C1/ such that
l
y
N .s; T /, A

y
N .s; T / 2 .0; M/ for all .s; y/ 2 .0; 1� � � and ly� .s; T /, A

y
�.s; T / 2

C..0; 1� �� � .0;C1//.
Furthermore, there exists some M 2 .0;C1/ such that lyD.s; T /, A

y
D.s; T / 2

.0;M/ for all
.s; y; T / 2 .0; 1� �� � .0;C1/:

Proof. The positivity of the functionals follows from (1.3), (1.4) and the fact that
rs�.t; x;y/ is strictly positive for all .t; x;y/ 2 .0;C1/����, see for instance [10,
Corollary 1] and [11, Corollary 1].

Now we establish the continuity statement. Thanks to equation (2.4) we have that

rs�.t; x; y/ D
C1X
kD0

��;k.x/��;k.y/ exp.�tˇs
�;k/;

and each term of the series is continuous in .s; t; x; y/ 2 .0; 1� � .0;C1/ �� ��.
Furthermore, thanks to [11, Proposition 6 and Lemma 6], we have the existence

of some M 2 N such that for each " 2 .0; 1� and ı 2 .0;C1/ it holds that

C1X
kD0

k��;k.x/��;k.y/ exp.�tˇs
�;k/kC0.����.";1/�.ı;C1//

6
MX
kD0

k��;k.x/��;k.y/ exp.�tˇs
�;k/kC0.����.";1/�.ı;C1//

C C 2�;m0;�;0
C1X
kDM

ˇ
2˛.m0/

�;k
exp.�ıˇ"

�;k/

< C1;

where C�;m0;�;0 and ˛.m0/ are positive constants given in Proposition A.1.
Consequently, rs�.t; x; y/ is continuous for all

.s; t; x; y/ 2 .0; 1� � .0;C1/ �� ��:

Suppose now that .�; y/ 2 C , and that ¹.sk; Tk; yk/ºk � .0; 1� � .0;C1/ � �
satisfies

.sk; Tk; yk/! .s; T; y/ 2 .0; 1� � .0;C1/ ��:
Then, since rs�.t; �; y/ is continuous for all .s; y/ 2 .0; 1� ��, we have that

r
sk
� .t; �; yk/�.0;Tk/.t/! rs�.t; �; y/�.0;T /.t/;

for almost every t 2 .0;C1/.
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Moreover, if zT WD supk2N Tk , then using equations (2.1), (2.14), and (2.19) we
obtain that

�Tk .t/r
sk
� .t; �; yk/ 6 � zT .t/

Z C1
0

p�� .l; �; yk/�
sk
t .l/ d l

6 � zT .t/

Z C1
0

C�;l exp
�
�j� � ykj

2

4l

�
�
sk
t .l/ d l

6 � zT .t/M�

Z C1
0

�
sk
t .l/ d l

D � zT .t/M�; (2.56)

where we defined

M� WD sup
l2.0;C1/

sup
k2N

C�;l exp
�
�j� � ykj

2

4l

�
:

The last function in (2.56) is inL1..0;C1//, and thus by the dominated convergence
theorem we obtain thatˆ�;y� .s;T / is continuous for all .s;y;T / 2 .0;1�� .� n ¹�º/�
.0;C1/, and since it is symmetric with respect to the space variables, we deduce the
continuity for all .s; .�; y/; T / 2 .0; 1� � C � .0;C1/.

If nD 1 the eigenfunctions ��;k’s are uniformly bounded inL1.�/ and the eigen-
values ˇ�;k’s are proportional to k2, for each k > 1. More precisely, there exist two
positive constants C�; c� > 0 such that

c�k
2 6 ˇ�;k 6 C�k

2;

for each k > 1, see for instance [29].
Therefore, we have that

rs�.t; x; y/ D
C1X
kD0

��;k.x/��;k.y/ exp.�tˇs
�;k/

6
C1X
kD0

k��;kk2L1.�/ exp.�tˇs
�;k/

6 M 2
�

C1X
kD0

exp.�tcs�k2s/

DW f�;s.t/; (2.57)

where k��;kkL1.�/ 6 M� for some M� 2 .0;C1/ and we adopted the convention

�D;0 D 0 D ˇD;0:
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Thus, if s; sk 2 .12 ;1�, then we can choose also .�;y/2���, and thanks to (2.57)
we have that

�Tk .t/r
sk
� .t; �; yk/ 6 � zT .t/ inf

k2N
f�;sk .t/;

and the right-hand side is L1.0;C1/.
Repeating the above reasoning, if n D 1, we obtain that

ˆx;y� .s; T / 2 C..1
2
; 1� �� �� � .0;C1//:

Now, we observe that

ly� .s; T / D
Z T

0

Z
�

j� � yjrs�.t; �; y/ d� dt

D
Z
�

j� � yj
Z T

0

rs�.t; �; y/ dt d�

D
Z
�

j� � yjˆ�;y� .s; T /: (2.58)

Using this identity, the continuity of ˆ� and the estimates in Theorem 2.9, we con-
clude using the dominated convergence theorem. The proof of the continuity of
A
y
�.s; T / is analogous

Also, if n > 3, from (2.58) and (2.51) we have that

l
y
D.s; T / 6

Cn

�.s/

Z
�

j� � yjn�1 d�;

for some suitable Cn, which proves that lyD is uniformly bounded in .0; 1� � � �
.0;C1/ if n > 3.

The proof of the uniform boundedness in the case n 6 2 is done similarly replac-
ing (2.51) in the above equation with (2.52).

Finally, using [11, (28)] we obtain that

l
y
N .s; T / D

Z T

0

Z
�

j� � yjrsN .t; �; y/ d� dt

6 d�

Z T

0

Z
�

rsN .t; �; y/ d� dt

D d�T:

The proof of the boundedness of A� is analogous.

In the following two lemmas we establish the limits as s & 0 of the Dirichlet
efficiency functionals given in (1.6) and (1.9).
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We will show that ˆD , lD , AD , ẑD , QlD , and zAD all go to 0 linearly in s. More-
over, we will also determine the value of the limit for E2;D , E3;D , zE2;D , and zE3;D so
that we will be able to extend them by continuity in Œ0; 1�.

This asymptotic analysis is a fundamental tool in order to establish Theorems 1.6
and 1.14 and the claims in (1.17) and (1.24).

Lemma 2.13. Let � � Rn be bounded, smooth and connected, and let C be as
in (2.23). Then, for all ..x; y/; T / 2 C � .0;C1/, it holds that

lim
s&0

E
x;y
1;D.s; T / D 0; (2.59)

lim
s&0

E
x;y
2;D.s; T / D

FD.x; y/R
�
j� � yjFD.�; y/ d�

; (2.60)

lim
s&0

E
x;y
3;D.s; T / D

FD.x; y/R
�
j� � yj2FD.�; y/ d�

; (2.61)

where we have defined

FD.x; y/ WD
Z C1
0

p�D.l; x; y/

l
d l for all .x; y/ 2 C : (2.62)

Proof. Equation (2.59) is a direct consequence of (2.51) and (2.52), since �.s/!
C1 for s & 0.

Now we focus on the proof of (2.60). For this, we claim that

lim
s&0

ˆ
x;y
D .s; T /

s
D .1 � e�T .T C 1//FD.x; y/ for all ..x; y/; T / 2 C � .0;C1/:

(2.63)
Thanks to (2.9) and (2.14), if s 2 .0; 1

2
/ we have that

1

s

ˇ̌
p�D.l; x; y/�

s
t .l/

ˇ̌
6

t

.4�l/
n
2

exp
�
�jx � yj

2

4l

�
�.1C s/
l1Cs

: (2.64)

This bound together with (2.1), (D.1) and the dominated convergence theorem yields
to

lim
s&0

rsD.t; x; y/

s
D te�tFD.x; y/; (2.65)

for all .t; .x; y// 2 .0;C1/ � C . Therefore, if s 2 .0; 1
2
/, from (2.1) and (2.64) we

obtain that

rsD.t; x; y/

s
6
Z C1
0

t�.1C s/
.4�/

n
2 l

n
2CsC1

exp
�
�jx � yj

2

4l

�
dl

6
C0t

jx � yjnC2s
DW fx;y.t/; (2.66)
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where we defined

C0 WD sup
s2.0; 12 /

4s�.1C s/
�
n
2

�
�n
2
C s

�
:

Now, clearly we have that
fx;y 2 L1..0; T //; (2.67)

and thus from (2.65), (2.66), and (2.67) we can apply the dominated convergence
theorem to obtain that

lim
s&0

ˆ
x;y
D .s; T /

s
D
Z T

0

te�tFD.x; y/ dt

D .1 � e�T .T C 1//FD.x; y/:

This concludes the proof of (2.63).
Note that using (2.51), (2.52), and (2.63), we obtain that

lim
s&0

l
y
D.s; T /

s
D lim
s&0

1

s

Z T

0

Z
�

j� � yjrsD.t; �; y/ d� dt

D lim
s&0

Z
�

j� � yjˆ
�;y
D .s; T /

s
d�

D .1 � e�T .T C 1//
Z
�

j� � yjFD.�; y/ d�; (2.68)

by means of the dominated convergence theorem. Finally, from (2.63) and (2.68) we
deduce that

lim
s&0

ˆ
x;y
D .s; T /

l
y
D.s; T /

D lim
s&0

R T
0
rsD.t; x; y/ dtR T

0

R
�
j� � yjrsD.t; �; y/ d� dt

s

s

D FD.x; y/R
�
j� � yjFD.�; y/ d�

;

which concludes the proof of (2.60).
It is left to show (2.61). To do so, we observe that applying the same reasoning

we used to show (2.68), one can easily prove that

lim
s&0

A
y
D.s; T /

s
D .1 � e�T .T C 1//

Z
�

j� � yj2FD.�; y/ d�;

for all .y; T / 2�� .0;C1/. From this identity and (2.63) it is immediate to deduce
(2.61).

The following result can be considered as the set functional version of Lemma
2.13.
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Lemma 2.14. Let� be bounded, smooth and connected and�1;�2 �� be smooth
and disjoint. Then, for all T 2 .0;C1/, it holds that

lim
s&0

zE�1;�21;D .s; T / D 0; (2.69)

lim
s&0

zE�1;�22;D .s; T / D j�2j zFD.�1; �2/R
�2��

j� � yjFD.�; y/ d� dy
; (2.70)

lim
s&0

zE�1;�23;D .s; T / D j�2j zFD.�1; �2/R
�2��

j� � yj2FD.�; y/ d� dy
; (2.71)

where
zFD.�1; �2/ WD 1

j�1jj�2j
Z
�1��2

FD.x; y/ dx dy; (2.72)

and FD is given in equation (2.62).

Proof. We begin by proving (2.69). We have that

ẑ�1;�2
D .s; T /

s
D 1

j�1jj�2j
Z
�1��2

ˆ
x;y
D .s; T /

s
dx dy:

Thanks to equations (2.51) and (2.52), if s 2 .0; 1
2
/, there exists some constant yCn

depending on n such that

ˆ
x;y
D .s; T /

s
6
yCn

s�.s/

1

jx � yjn�2s 6
C3

jx � yjn DW g.x; y/; (2.73)

where C3 depends only on �. If �1; �2 are smooth and disjoint, then g 2 L1.�1 �
�2/. Therefore, under these assumptions we can apply the dominated convergence
theorem, which together with (2.63) yields to

lim
s&0

ẑ�1;�2
D .s; T /

s
D .1 � e�T .T C 1// zFD.�1; �2/: (2.74)

Also, thanks to Lemma D.4 and the hypotheses on�1,�2 we have that zFD.�1;�2/
is finite. From this observation and (2.74) one readily deduces (2.69).

Now, we show (2.70). To do so, we claim that

lim
s&0

Ql�2D .s; T /

s
D .1 � e�T .T C 1//

j�2j
Z
�2��

j� � yjFD.�; y/ d� dy; (2.75)

for all T 2 .0;C1/. As a matter of fact

Ql�2D .s; T /

s
WD 1

j�2j
Z
�2

l
y
D.s; T /

s
dy:
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Hence, from (2.73) and the definition of lyD.s; T / we infer the existence of some
C4 2 .0;C1/ such that

l
y
D.s; T /

s
6 C4;

for all s 2 .0; 1
2
/. Therefore, by the dominated convergence theorem we can conclude

the proof of (2.75). The limit in equation (2.70) follows easily from (2.74) and (2.75).
Following the same procedure adopted to prove (2.75), one obtains that

lim
s&0

zA�2
D .s; T /

s
D .1 � e�T .T C 1//

j�2j
Z
�2��

j� � yj2FD.�; y/ d� dy; (2.76)

for all T 2 .0;C1/. Thereby, the limit in equation (2.71) follows easily from (2.74)
and (2.76).

In the following lemma we study the asymptotic behavior of the Neumann func-
tional ˆx;yN .s; T / for s & 0. In particular, we observe that the limit substantially
differs from the one of ˆx;yD , which was indeed vanishing, see Lemma 2.13. With
this result we establish also that the lim inf and lim sup of ˆx;yN .s; T / for s & 0 are
controlled by some quantities that do not depend on x; y 2 �. This feature will let us
prove that if the forager starting position and target location are close enough, then
the most rewarding search strategy for the Neumann functionals in equation (1.6) is
not s D 0.

Lemma 2.15. Let � � Rn be bounded, smooth and connected. Then, there exist
h1; h2 2 C.Œ0;C1// such that for each T 2 .0;C1/ it holds that

h1.T /

T
6 lim inf

s&0
E
x;y
1;N .s; T / 6 lim sup

s&0

E
x;y
1;N .s; T / 6

h2.T /

T
; (2.77)

h1.T /

h2.T /M.y/
6 lim inf

s&0
E
x;y
2;N .s; T / 6 lim sup

s&0

E
x;y
2;N .s; T / 6

h2.T /

M.y/h1.T /
; (2.78)

h1.T /

h2.T / zM.y/
6 lim inf

s&0
E
x;y
3;N .s; T / 6 lim sup

s&0

E
x;y
3;N .s; T / 6

h2.T /

zM.y/h1.T /
; (2.79)

for all .x; y/ 2 C , where we set

M.y/ WD
Z
�

j� � yj d� and zM.y/ WD
Z
�

j� � yj2 d�: (2.80)

Proof. Let .x; y/ 2 C . Notice that if t 2 .0;C1/ we can write

p�N .t; x; y/ D
1

j�j C
C1X
kD1

�N;k.x/�N;k.y/ exp.�t ˇN;k/;
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where �N;k’s and ˇN;k’s are given in (2.3). Now, thanks to [11, Proposition 6 and
Lemma 7], together with Weyl’s law on the asymptotic behavior of the eigenvalues
ˇN;k’s (see for instance [29]), we have that

lim
t!C1

C1X
kD1

�N;k.x/�N;k.y/ exp.�t ˇN;k/ D 0;

from which we deduce that

lim
l!C1

p�N .l; x; y/ D
1

j�j :

Therefore, there exists some t0 2 .1;C1/ such that

1

2j�j 6 p�N .t; x; y/ for all t 2 Œt0;C1/:

Thus, using (2.1), we have that if t1;s D max¹t0; T 1
s º, we can apply Theorem 2.3 and

obtain that

ˆ
x;y
N .s; T / D

Z T

0

Z C1
0

p�N .l; x; y/�
s
t .l/ d l dt

>
1

2j�j
Z T

0

Z C1
t1;s

�st .l/ d l dt

>
C1

2�j�j
Z T

0

Z C1
t1;s

s t

l1Cs
dl dt

>
C1

2�j�j
Z T

0

t

t s1;s
dt

D C1

4�j�j
T 2

t s1;s
:

Therefore, if T 2 .1;C1/ from the above inequality we obtain

lim sup
s&0

ˆ
x;y
N .s; T / > lim inf

s&0
ˆ
x;y
N .s; T / >

C1

4�j�jT; (2.81)

while if T 2 .0; 1� we have that

lim sup
s&0

ˆ
x;y
N .s; T / > lim inf

s&0
ˆ
x;y
N .s; T / >

C1

4�j�jT
2: (2.82)

Hence, we have just proved the left-hand side inequality in (2.77) with

h1.T / WD

8̂̂<̂
:̂

C1

4�j�jT
2 if T 2 .0; 1�;

C1

4�j�jT if T 2 .1;C1/:
(2.83)
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Now we show the right-hand side inequality of (2.77). Using (2.19), we obtain that

ˆ
x;y
N .s; T / D

Z T

0

Z C1
0

p�N .l; x; y/�
s
t .l/ d l

6
Z T

0

Z 1

0

c�

l
n
2

exp
�
�jx � yj

2

6l

�
�st .l/ d l dtC

Z T

0

Z C1
1

c��
s
t .l/ d l dt

6
Z T

0

Z 1

0

c�

l
n
2

exp
�
�jx � yj

2

6l

�
�st .l/ d l dt C c�T: (2.84)

Now, in view of (2.9) we have thatˇ̌̌̌
c�

l
n
2

exp
�
�jx � yj

2

6l

�
�st .l/

ˇ̌̌̌
6
tc��.1C s/
l
n
2C1Cs

exp
�
�jx � yj

2

6l

�
;

and the function on the right-hand side in the above equation is inL1..0;T /� .0; 1//.
Therefore, using also (2.9) we can apply the dominated convergence theorem and

obtain the limit

lim
s&0

Z T

0

Z 1

0

c�

l
n
2

exp
�
�jx � yj

2

6l

�
�st .l/ d l dt D 0: (2.85)

From this equation and (2.84), we can infer that if T 2 .1;C1/

lim inf
s&0

ˆ
x;y
N .s; T / 6 lim sup

s&0

ˆ
x;y
N .s; T / 6 c�T: (2.86)

Also, assuming that T 2 .0; 1�, from (2.9) we obtain thatZ T

0

Z C1
1

c��
s
t .l/ d l dt 6 c�

Z T

0

Z C1
1

st�.1C s/
l1Cs

dl dt D c��.1C s/
2

T 2:

Thus, from this latter observation, the limit in (2.85) and equation (2.84) we deduce
that

lim inf
s&0

ˆ
x;y
N .s; T / 6 lim sup

s&0

ˆ
x;y
N .s; T / 6

c�

2
T 2: (2.87)

In light of (2.86) and (2.87), and defining

h2.T / WD
´
c�T

2 if T 2 .0; 1�;
c�T if T 2 .1;C1/; (2.88)

we conclude the proof of the right-hand side inequality of (2.77).
Now, we prove (2.78). To do so, we claim that

h1.T /M.y/ 6 lim inf
s&0

l
y
N .s; T / 6 lim sup

s&0

l
y
N .s; T / 6 h2.T /M.y/: (2.89)
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We recall that
l
y
N .s; T / D

Z
�

j� � yjˆ�;yN .s; T / d�;

with .y; T / 2 � � .0;C1/. Then, using (2.81), (2.82) and Fatou’s lemma we prove
the left-hand side inequality of (2.78).

Now, we focus on the proof of the right-hand side inequality. Let K b � be any
compact such that it is star-shaped with respect to y and y 2 Ko, and dK 6 1. Then,
in view of (2.44), (2.45) and Proposition D.2 with E D� nK and F D y, we evince
the existence of some u 2 L1.�/ such that

j� � yjˆ�;yN .s; T / 6 u.�/;

for all � 2�. Thus, thanks to Fatou’s lemma and (2.86) we obtain the right-hand side
inequality of (2.78). Note that from (2.77) and (2.89) one evinces (2.78).

It is left to show (2.79). Reasoning analogously to the proof of claim (2.89), one
obtains that

h1.T / zM.y/ 6 lim inf
s&0

A
y
N .s; T / 6 lim sup

s&0

A
y
N .s; T / 6 h2.T / zM.y/:

Making use of this two-sided inequality and (2.77) we conclude the proof of (2.79).

The following result is the Neumann counterpart of Lemma 2.14.

Lemma 2.16. Let � � Rn be bounded, smooth and connected. Then, for all T 2
.0;C1/ and �1; �2 b � smooth and disjoint, it holds that

h1.T /

T
6 lim inf

s&0

zE�1;�21;N .s; T / 6 lim sup
s&0

zE�1;�21;N .s; T /

6
h2.T /

T
; (2.90)

h1.T /

h2.T /P.�2/
6 lim inf

s&0

zE�1;�22;N .s; T / 6 lim sup
s&0

zE�1;�22;N .s; T /

6
h2.T /

h1.T /P.�2/
; (2.91)

h1.T /

h2.T / zP .�2/
6 lim inf

s&0

zE�1;�23;N .s; T / 6 lim sup
s&0

zE�1;�23;N .s; T /

6
h2.T /

h1.T / zP .�2/
; (2.92)

where h1 and h2 are given respectively in (2.83) and (2.88), and we set

P.�2/ WD
kMkL1.�2/
j�2j and zP .�2/ WD

k zMkL1.�2/
j�2j ; (2.93)

where M and zM are defined in (2.80).
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Proof. We begin by proving (2.90). To do so, we notice that by definition we have

ẑ�1;�2
N .s; T / D 1

j�1jj�2j
Z
�1��2

ˆ
x;y
N .s; T / dx dy:

From Proposition 2.12 we know thatˆx;yN .s; T / > 0. Thus, by Fatou’s lemma, (2.81)
and (2.82) we conclude the proof of the left-hand side inequality of (2.90).

Now, if x�1 \ x�2 D ¿, thanks to Proposition D.2 with�1 D E and�2 D F , we
easily obtain the right-hand side inequality of (2.90) using Fatou’s lemma.

We assume now that x�1 \ x�2¤¿. We claim that there exists some z 2L1.�1 �
�2/ such that for all s 2 .0; 1

2
/ it holds that

ˆ
x;y
N .s; T / 6 z.x; y/ for all .x; y/ 2 �1 ��2: (2.94)

We prove claim (2.94). Thanks to the assumption x�1 \ x�2 ¤ ¿, the set A WD @�1 \
@�2 is nonempty.

Since�1;�2 b � and A is compact, then we can choose r > 0 and Pi 2 A with
i 2 ¹1; : : : ; N º such that

A � B WD
N[
iD1

Br.Pi / b �:

If for some i; j 2 ¹1; : : : ;N º it holds that Br.Pi /\Br.Pj /¤¿, then we can choose
Ki;j D Br.Pi / [ Br.Pj / in (2.44) and (2.45) and deduce that

ˆ
x;y
N .s; T / 6

C

jx � yjn ; (2.95)

for all .x; y/ 2 Ki;j � Ki;j with i; j such that Br.Pi / \ Br.Pj / ¤ ¿, where C
depends on B; T;�. Moreover, we define the constant

zCN WD max¹CBr .Pi /;Br .Pj / s.t. Br.Pi / \ Br.Pj / D ¿º; (2.96)

where CBr .Pi /;Br .Pj / is given in (D.4) withE DBr.Pi / and F DBr.Pj /. Therefore,
if x 2 �1 \ Br.Pi / and y 2 �2 \ Br.Pj /, such that Br.Pi / \ Br.Pj / D ¿, then
by (D.3) and (2.96) we see that

ˆ
x;y
N .s; T / 6 zCNT: (2.97)

Finally, if we set

yC�1;�2 WD max¹C�1\K0;�2nK0 ; C�1nK0;�2\K0 ; C�1nK0;�2nK0º;

thanks to Proposition D.2, we obtain that

ˆ
x;y
N .s; T / 6 yC�1;�2T; (2.98)
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for all .x; y/ 2 ..�1 \K 0/� .�2 nK 0//[ ..�1 nK 0/� .�2 \K//[ ..�1 nK 0/�
.�2 nK 0//.

Thanks to (2.95), (2.97), and (2.98) we conclude the proof of claim (2.94).
By that means, we can apply Fatou’s lemma and using (2.77) we prove the right-

hand side inequality in (2.90).
Now, we focus our attention on the proof of (2.91). In order to do so, we claim

that

h1.T /P.�2/ 6 lim inf
s&0

Ql �2N .s; T / 6 lim sup
s&0

Ql �2N .s; T / 6 h2.T /P.�2/: (2.99)

We observe that
Ql �2N WD 1

j�2j
Z
�2

l
y
N .s; T / dy

and, since lyN .s; T / > 0, see Proposition 2.12, using Fatou’s lemma and (2.89) we
prove the left-hand side inequality of (2.99).

Furthermore, we discussed in Proposition 2.12 that lyN .s;T / is uniformly bounded
in .s; y/ 2 .0; 1/ ��. Thus, we can apply again Fatou’s lemma together with (2.89)
and conclude the proof of the right-hand side inequality of (2.99). The inequalities
in (2.90) and (2.99) yields to (2.91).

It is left to show (2.92). To do so, it is enough to show that

h1.T / zP .�2/ 6 lim inf
s&0

zA�2
N .s; T / 6 lim sup

s&0

zA�2
N .s; T / 6 h2.T / zP .�2/: (2.100)

From this and (2.90) it is easy to deduce (2.92). The proof of (2.100) is analogous to
the one of (2.99), and thus it is omitted.


