Chapter 2

Mathematical framework for the efficiency functionals

2.1 Preliminary results and asymptotics

In this section we establish some technical results regarding the efficiency functionals
in (1.5), (1.6), and (1.9). These are the main analytical tools that we will use to prove
the results stated in the introduction.

In Section 2.2 we provide some estimates for the functionals in (1.5) and (1.7).
This is the content of Lemma 2.7, Theorem 2.9, and Corollary 2.11. These results
will be employed in Section 3.2 in order to discuss the environmental scenario where
the prey is in proximity of the forager starting location, and thus to prove Theo-
rems 1.7, 1.8, 1.15, and 1.16. Moreover, we establish the limits of the Dirichlet
functionals in (1.6) and (1.9) as s \ O as stated in Lemma 2.13. These asymptotics
will be used to prove Theorems 1.6, 1.14, 1.7, and 1.15.

To conclude, in Lemmas 2.15 and 2.16 we show that the Neumann functionals
in (1.3), (1.4), (1.5), (1.7), and (1.8) do not vanish for s \ 0, and we provide upper
and lower bounds for their lim inf and lim sup. These results will be used in the proofs
of Theorem 1.8 and 1.16.

To prove these results, it is useful to recall some properties regarding the fractional
heat kernels r}, and ry;. It is well known that for each s € (0, 1) these two kernels can
be written for each (¢, x, y) € (0, +00) X Q x Q as

+o00
r (.. y) = /0 P2 ) dl,
2.1

“+o00
Pt x. y) = /0 P2 x ) dl,

where pg and pls\z, are the classical Dirichlet and Neumann heat kernels in €2, while
wi is the density of an s-stable subordinator in (0, 4-00) (see, e.g., [10, Definition 4]).
For a proof of this latter fact see for instance [10, Proposition 2] and [11, Proposi-
tion 2].

If s = 1, the kernels r}v and rll) coincide respectively with the classical kernels
pl% and pg. Furthermore, we also know that the density ©§ admits the explicit repre-
sentation formula

1 [tee s
wi(l)= — / e~ humtw s gin (tu sin(rs)) du  for all (1, 5) € (0, +00) x (0, 1),
° (2.2)

see [23, Proposition 3.1].
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Moreover, we also recall the following fact on the spectral representation of 77,
and ry,. In what follows we denote by {{p x }x and {{n « }x two orthonormal basis of
L?(Q2) satisfying

and 9
(o € H(S) Bk on 492,

{—Ag‘p,k = Bpkipk ing2, —Abvk = Prrlye in €2, 23

where 0 < Bp,1 <PBp2---and 0= Bn,0 < Bn,1 <---arerespectively the eigenvalues
of the Laplace operator with homogeneous Dirichlet and homogeneous Neumann
boundary conditions.

Thus, thanks to [10, Theorem 5] and [11, Theorem 5], we can rewrite the Dirichlet
and Neumann kernels 77, and r3; as

+o0
rh(6.x.y) =D tpa(X)pi(y) exp(—1B ).

k=1 (2.4)

+o00
(X, y) = Y vk )k (9) exp(—1B ),
k=0

forall s € (0,1] and (¢, x, y) € (0, +00) x 2 x Q.

Now, we establish some results on (5. In what follows we recall a scaling property
for the density u; of the s-stable subordinator. For the convenience of the reader the
statement is proved.

Lemma 2.1. Let! € (0, +00), t € (0, +00) and s € (0, 1). Then, we have that

1 [
pr () = w3 (—1) (2.5)

ts s
Proof. Let o := u® cos(s), B := u® sin(xrs) and
g(a, B) := e sin(1B).

With this notation, we integrate by parts the expression on the right-hand side of (2.2)
and obtain that

1 +o00

w0 = e ) T+ [ e gy du
! I 0 wl Jo du

1 +oo
=0+ s / e e sy~ (— cos(ms) sin(1B) + sin(rrs) cos(18)) du
7T Jo

+o00

st S cog . .
el cos(m)y sl gin(rs — tu® sin(rs)) du. (2.6)

_JTI 0



Preliminary results and asymptotics 23

We employ the change of variable v = uts and infer from the last identity that

+o0 _le s
e t5 eV cos(ns)vs—l

wi(l) = sin(zrs — v° sin(7rs)) dv

st too — Ly

—s —
e t5 eV cos(rrs)vs 1

‘_lb—‘ ilh
al M_o\
NO\

sin(zws — v°¥ sin(7ms)) dv
b

I (—1) u
s s

Now, we discuss some asymptotic estimates for the density p5(/) in /. As it is
recalled in [5] by R. Song and proved by Skorohod in [33], one has that

1
180y ~ 27T (1 + 5) sin(g)llﬂ for | — +o0. .7)

-~
\._.l’—a

Using this estimate and Lemma 2.1 on the time-scaling property of 1§ one obtains an
interesting asymptotic expansion in the forthcoming Lemma 2.2. As a side comment,
we point out that the asymptotic properties of this type of distributions are relevant to
understand how the tail of u§ changes by varying the fractional parameter s, which
in turn provides some important information about the optimization problem that we
analyze in this memoir.

Lemma 2.2. Lets € (0,1) andt € (0, +00). Then, we have that

13(6) ~ 27T(1 + 5) sin(§) lltﬂ forl — +o0. 2.8)

Proof. Thanks to Lemma 2.1, we know that for each s € (0, 1), [ € (0, +00) and

t € (0, 4+00) one has that
1 [
) = = ui(7).
s

s

Thus, using this identity and the estimate in (2.7) one readily obtains that

145
1 LTS\ S

t
=2xT(1 +s) sin(%)m,

for/ — +oo0. n

The following theorem provides similar estimates to the one given in (2.8) in the
range s € (0, %). Here, the constants involved are less accurate than the one appearing
in (2.8), but on the other hand we gain some important information. In particular,
while the estimate in (2.8) holds true for / — +o00, the ones that we prove below are
true for each [ € (¢ 5, ~+00). This additional information will be used several times.
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Theorem 2.3. Lets € (0, %) andt € (0, +00). Then, there exists some constant C €
(0, +00), independent of s and I, such that

tC
;ll+ls < i) foralll € (l%,—|—oo),

tr(1
wi(l) < SI(I—JS) foralll € (0, +00).

(2.9)

Proof. Thanks to the scaling property proved in Lemma 2.1, it is enough to show the
result for t = 1. Indeed, if for # = 1 the inequalities in (2.9) hold true, then if > 1
and [ > t%, we have in view of (2.5) that

1 l sCqt
N EETL N
e (l) = [;MI(Z;) = 1+
The second inequality in (2.9) is proved similarly. For this reason, we focus our atten-
tion on the case t = 1.

We will first prove the second inequality in (2.9). If s € (0, %), from (2.2) we
notice that

i +o00
() < smeyrS) /0 e Mtu du < ]TIA;HF(I +5),

which concludes the proof of the second inequality in (2.9).
Now we focus on the proof of the first inequality. To do so, we observe that thanks
to equation (2.6) one has that

+o00
N S coc
uil) = _l/ el cosm) s gin(;rs — u® sin(rs)) du.
Tk Jo

We perform the change of variable /u = 6 and obtain that

1 ] = S oo —0 _97;" cos(ns)gs—l : 6° . do
ps () = m/o e e ’n sin{ 7s — ¢ sin(7rs)
s
= mf(svl), (2.10)

where by construction f(s,/) > 0 for each/ € (0, +00) and s € (0, 1).
Now we observe that, foreach 8 = 1 and s € (0, %],

-0
<e .

s gs
¢ 0 T cos(rs) gs—1 sin(ns % sin(ns))

Thus, by the dominated convergence theorem we obtain that

400 s 9
lim e e 15895~ gin( s — — sin(rrs) | d6 = 0.
sN\O J1 IS
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Also, by using the change of variable 8° = [°z we deduce that

1 95 05
/ e 0w cos(ms)gs—1 sin(ns - — sin(ns)) do

0 ls
5 7 12k
= — e717% ¢770() gin(mrs — z sin(rs)) dz
S Jo
Foo 1 sin(mrs — z sin(s
— ls/ X[O,l_s]e_lZé e—zcos(rrs) ( ( )) dz.
s

Ifs € (0, %) we also notice that

1zt o2 cos(rs) sin(zrs — z sin(7s))
s

X[o,1—s1€

‘ < ne_%(l + 2),
and therefore, since [ = 1, by the dominated convergence theorem we obtain that

1 1
s Gs
lim / e 0o cos(ms) gs—1 sin(ns - — sin(yts)) do = JT/ e *(1—-z)dz.
sN\O Jo IS 0

Consequently, for each / = 1
! b4
limf(s,l)zn/ e *(1—z)dz = —. (2.11)
SN0 0 e
We also observe that, if s € (0, %],

g 6% 1 o —0 5—
o0 o~ T cos(ms) gs lsm(ﬂs—l—ssm(ns)) <e 9951,

forall 6 € (0, +00).
As a consequence, by the dominated convergence theorem we evince that

. hT f(s,1) =sin(mws)(s) > 0, (2.12)

for all s € (0, %]
Besides, by the definition of f(s, /), we have that f € C((0, %) x (1, 400)) and

f(s,1) >0 forall(s,]) € (O, %:| x [1, +00). (2.13)

Therefore, using (2.11), (2.12), and (2.13) we deduce that there exists some C; €
(0, +00) such that

1
Cy < f(s,1) forall (s,]) € (0, E) x [1, +00).
In light of this observation and equation (2.10) we deduce that

Cis
Tlﬂ SHO) .
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2.2 Structural results for the efficiency functionals

Now we develop the main technical tools that will be employed in the proofs of the
results contained in Sections 1.2 and 1.3.
In what follows we adopt the subscript * to refer to the fact that the functional
considered can be the one associated with both the Dirichlet and the Neumann case.
We begin by recalling here the following estimates for the classical Dirichlet heat
kernel in relation to the classical heat kernel. Using the weak maximum principle for
the heat equation one can show that

_ 2
pg(t,x,y) < = exp(—u) forall (¢, x,y) € (0, 400) x Q2 x Q.

1
(4mt)2 4t
(2.14)

On compact subsets of 2 and for finite time spans, one can prove the following lower
bound for pg (t,x,y).

Lemma 2.4 (See [45, Lemma 2.1]). Let Q C R" be bounded, smooth and connected.
Then, there exists a constant Tq € (0, +00) such that for each K € L, if we define

dz(x,asz)}

Tk.q := min{Tg, min , (2.15)

x€K
then there exist two constants c1, ¢z € (0, +00), depending on K and 2, such that

02|X—)’|2

- ) Sforall (t,x,y) € (0,Tk,q] x K x K. (2.16)

Q ‘1
pp(t,x,y) = t—geXp(—
Using the weak maximum principle, it is also possible to compare the Neumann

heat kernel with the Dirichlet one, as better specified in the following result.

Theorem 2.5. Let Q C R” be bounded, smooth and connected and K' @ 2. Then,
foreach s € (0, 1] we have that

rp(t.x,y) <ry(t.x,y) forall (t,x,y) € (0,+00) x 2 x Q. (2.17)

Furthermore, if K € K' € S is star-shaped with respect to some xo € K, there
exist some constants Cx' q,ckx’ o € (0,400) and gg € (0, 1), depending on K" and R,
such that

ry(t.x,y) < Cxrorp(t,xe, ye) + cxro  forall (t,x,y) € (0, +00) x K x K,
(2.18)
for each e € (0, g9), where (x¢, o) := (ex + (1 — &)xg, &y + (1 — &)xp).

Proof. We begin by proving the lower bound in (2.17). To do so, we observe that
thanks to the maximum principle for the heat equation, one has that

pg(t,x,y) < pls\z,(t,x,y) for all (¢, x,y) € (0, 400) x Q2 x Q.
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Therefore, using (2.1) and the latter inequality, we obtain that
+o00 Q
hxn = [ pBlxidl
0

+o00
< /0 PR D) dl = ry(t.x. ).

for each (¢, x, y) € (0, 400) x Q x . This concludes the proof of (2.17).
Now we show (2.18). Thanks to [9, Theorem 3.2.9], we have that there exists
some constant cg such that

1 I )
pl%(t,x,y)ScQ max{l, —n} exp(—u) for all (¢, x,y) € (0, +00)xQ2xQ.
t2

6t
(2.19)
Furthermore, if K € K’ @ €2, thanks to Lemma 2.4 we obtain that

_c2|x P

C1
PRt x,y) = - eXp(
12 t

) forall (z,x,y) € (0, Tx'.] x K' x K,

(2.20)
where T’ g is introduced in (2.15) and ¢y, ¢, depends on K’ and .
Up to a translation we can assume that K is star-shaped with respect to

X0=0.

Now we observe that there exists two constants Cx' o € (0, +00) and g¢ € (0, 1),
such that

Cxoc1 = cq and cr6? < é for all € € (0, &9).
As a consequence, if for each € € (0, g9) we call
(Xe. ye) = (x. y),
then from (2.19) and (2.20) we obtain that

Crrapa(t,xe, ye) — pR(t,x, )

2 2
C Co|Xg — C X —
ZCK’,Qt% exp(— 2 sl Vel )_ S,;exp(—l vl )

cQ (C c1 ( > |x—y|2) ( |x—y|2))
t2 cQ t 6t

co |x — y|? 5 1\ |x —y?

12 exp( 61 )(exp( (8 2 6 t

=0, (2.21)

for each (¢, x,y) € (0, Tk, @] X K x K.
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Thus, using equation (2.1) and the relation in (2.21) we obtain that

400
Pt x.y) = /0 P20 x. ) dl

TK’,Q o 400 o
- [0 PR s di + / PR x () dl

Txr @

Tk o
< Cro /O Pl xe v (1) d1

+o00 1 _ yl2
+CQ/ max{l, —n}exp(—|x il )Mi(l)dl
Tk’ o 2 )

+o0
< CK’,SZ/ P, xe, yo)uS() dl + cxr 0
0

== CK’,Q”%(t’xsa yé‘) + CK’,Q!

for each (¢, x, y) € (0,400) x K x K, where we defined

1 x =y
CK’,Q ‘= max max comaxq 1, — rexp| — . ]
x,yeK’ 1€[Tk o ,+00) 12 6l

As a useful consequence of Theorem 2.5, we obtain that it is possible to compare
the Neumann functional @ with the Dirichlet one ®p. The result goes as follows.

Corollary 2.6. Let Q C R” be bounded, smooth and connected and K' € Q. Then,
foreach s € (0,1] and T € (0, 4+00) it holds that

Cb)gy(s, T) < dfg,’y(s, T) forall(x,y) €€, (2.22)
where

C:=Qx2)\{(p,p) st pe}= {(p,q) EQXQst p# q}. (2.23)

Furthermore, for each K C K' @ Q star-shaped with respect to some xo € K,
s €(0,1)and T € (0, +00), there exists some gy € (0, 1) such that

Oy (5,T) < Cxr @@y (s, T) + cxr@T  forall (x,y) € €N (K x K), (2.24)
for each ¢ € (0, gg), where
(Xe, ye) i= (ex + (I —&)xp, ey + (1 — €)xo)
and Cgr ., cxr.q € (0, +00) are given in Theorem 2.5.

Proof. Inequalities (2.22) and (2.24) are respectively obtained by integrating over the
time ¢ in (0, 7") both sides of (2.17) and (2.18). ]
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In Lemma 2.7 below we establish a lower bound for ®3” (s, T), for x € Q in a
sufficiently small neighborhood of y € €.

This estimate is pivotal to determine the asymptotic behavior of the functionals
in (1.6) when x approaches y, providing some information on the best search strategy
in the environmental scenario addressed in Section 1.3, namely where the forager
starts its search in proximity of the target.

Lemma 2.7. Let Q@ C R” be bounded, smooth and connected. If (y, T) € Q2 x (0, +00)
and s € (0, 1), then there exists some § = 8, 1.0 € (0, +00) such that, for each
x,z € B3(y) satisfying x # z,

Cs,y,Q

(s, T) = m’

(2.25)

for some constant Cs 5, o € (0, +00).

Proof. In virtue of inequality (2.22) it is enough to show the result for ®p.
Let y € Q and let us denote d) := w, where

d(y,0R) := inf lx —yl.

With this notation we set
By := By, (y).
Now, by (2.15) and (2.16) (used here with K := By),

Q C1 C2|X - le
ppt,x,z) = t—ﬂexp T forall (¢, x,z) € (0, T, o] X By x By.
2
(2.26)
We also observe that for each x, z € R” such that x # z, the function
1 calx —z|?
gt) = —nexp(——)
12 t
has a maximum in g ; := znﬁ |x — z|? and it is increasing in (0, &x ;) and decreasing
in (ex,z, +00).
We set )
ls,y,T = min{TBy,Q, Ts}
and we choose § = gs,y,T,Q such that
o\t
N n
Ssy 10 1= min{ (LT) ,dy}. (2.27)
262

It follows that if x, z € Bs(y) with x # z, then ex ; <5y 7 and x,z € B).
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To simplify the notation, we simply write e =¢x .. In this way, by (2.1) and (2.26),
if x,z € Bz(y) and x # z we have that

&% (5,T) = e (] Shdld
p (5,T)= A pp L, x,z)uy () t

> [ f PR x, 21y dl i

[ [ sl o

> / /u,(l)dldt
g2 (2.28)

n __
where we set C 1= ¢122e7".

Now we substitute 1t} in (2.28) with the expression in (2.2) and obtain that

+o0
@gz (S, T) = / / / —lu —tu’ cos(rms) Sll’l([u Sln(ns)) dudl dt
7T82
+o00o
= - / / / —lu—tu’ cos(s) s1n(tu sin(zrs)) dt dudl
TEZ
=: £. (2.29)

Setting F(¢) := e '*sin(zf), with & := u® cos(rs) and B := u® sin(rs), for each
T € (0, +00) we integrate by parts and see that

T T
[ Fwdr = esinap)|) + 5 [ et cosapyar
0 o 0 o Jo
2 T
= —ie‘T“ sin(TB) — aﬁze—m cos(tﬂ)): — % /0 e~ '¥sin(1p) dt
2 T
- _ée—” sin(T) — %e‘” cos(TB) + % - % /0 F(r)dt.

Therefore, by replacing o and § with their corresponding values, one obtains that

T o
/ F(t)dt = —Me_“‘S cos(T$) gin(Tu® sin(rs))
0

uS
sin(ms 5 one ) sin(zs
— %e—Tu cos(ms) cos(Tu® sin(s)) + IES )

1 s
= —(sin(ms) — e~ T 0os(mS) gin(Tu® sin(rrs) + 7s)). (2.30)
u
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By (2.29), (2.30) and the change of variables (U, L) = (ue, é) one obtains that

+oo -
£ = / / —e0u cos(S) sin(rrs + e5u® sin(rs))) du dl
ne?
+oo -

= s/ / (sm(ns) — U et gin(zrs + U sin(rs))) dU dL
7'[82
C

= . 2.31)

where ¢ does not depend on ¢ and is defined by

too ,—
gs = / / (s1n(ns) — U et sin(zrs + U sin(rs))) dU dL.

Note also that by construction

1 e pe’
- —/ / pE(l) dedl,
&s % 0

which means that g € (0, 4-00), since w3 (/) € (0, +00) foreach s, ¢ and /.
Accordingly, from (2.29) and (2.31),

Crn!
O (s, T) = mé‘s

— n__
2%¢ "cin2"*

n_g s
ey |x —z|PT2s

Cy,Q

> |x _Z|n—2s s
_ Cs,y,ﬂ
- |x — Zln—2s ’

where we have defined

2e"en2 S
Cyo:=mn ——1" and C,,0:=Cyads. (2.32)
s€(0,1) JTCE_S

This gives the desired result. |

As a consequence of Lemma 2.7, we have that if x approaches y, then the func-
tional ®3” (s, T) diverges to infinity as far as n > 2s.

In the following result we make this statement precise. In particular, we show that
divergence holds true as far as n > 2s.
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Theorem 2.8. Let 2 C R” be bounded, smooth and connected and T € (0, +00). If
n=2orn=1ands € (0, %] we have that

" y%i_)m(z 5 DLV (s, T) = +o0, (2.33)
27 (s, T) = +o0, (2.34)

for each z € Q.

Proof. We will prove only the Dirichlet case, since the Neumann one follows easily
from the Dirichlet one and (2.17).

We first focus on the proof of (2.34). Using the identity (2.1), equations (2.15)
and (2.16) together with the formula in (2.2) we deduce that if

. 1
Osx,7 = min{Ty @, T5},

where Ty q is given in (2.15), then for each § € (0, §5.x,7) it holds that
T +o00
5 (s, T) 2/ / PR x. x)ps(l)dl dr
0-‘1-oo
Z/ ppl.x, X)/ Wiy dedl
/ ° /8 W) didl

400 )
== / l_i / / e~ Tu=tu? cos(T) gin (ru® sin(rrs)) du dt d
0 2

+oo 6
/ / / o~ lu—tu® cos(rs) sin(tu® sin(ms)) dt du dl,
7'[8 5
(2.35)

where c; is introduced in (2.16).

Now, in light of (2.30) and (2.35), and using the change of variables (L, U) =
(8L, ud), we find that

D57 (s, T)

+oo p8S
/ / / —lu tu® cos(ws) sm(lu sin(rs)) dt du dl
783

+o0 1
= / / —(sm(ns) — o7 cos(TS) gin(85u® sin(wrs) + s)) du dl
TO2

\V

+oo
B 8 —s / / T7s (s1n(71s) e~ U” s in(U* sin(rrs)+7s)) dU dL
JT02

. 2.36
7-[82 -9 (2.36)
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We also observe that &5 does not depend on § and by construction

1 5 8
g = —/ / Wy ddl,
8 Jo Jo

which means that §; € (0, +00), since uj(l) € (0, 4o0) for each s € (0,1), t €
(0, +00) and I € (0, +00).
Therefore, recalling (2.36) we deduce that

®%*(s,T) = lim —— % = +00,
p (1) 5N\0 715

if eithern = 2orn = 1ands € (0, %)
Hence, to complete the proof of (2.34), it is left to consider the case n = 1 and
s = % When s = % equation (2.2) boils down to

1

1 +o0 1
ui() = ;/ e M sin(tu?) du. (2.37)
0

Therefore, using the latter identity, (2.15) and (2.16) we obtain that there exists Ty o €
(0, +00) such that if § € (0, Ty @), then

1 T p+oo 1
55T =/ / P2 x, x)pn? () dl dt
2 0 0
§ T .
// PR x, x)u2 () dtdl
0 0
8
of |,
0 0
8 T +o0 1
6—1/ / —e M sin(tu?) du dt dl
T Jo Jo Jo 12
SIus

_ [/ml (1 — cos(Tud)) - dudl,

uz

\V

WV

1 1
—ui () drdl
12

/ —le_l“ sin(tu%) ditdudl
12

where ¢; € (0, +00) has been introduced in (2.16).
Furthermore, by making the change of variable /u = a in the / variable we deduce

that
q%,x (l, T) C_l /+oo /8u e—la
2 T Jo 0 az
+o0 péu ,—a 1
C—I/ [ ¢ —(1 —cos(Tu%))—da du
g % 0 az u

=:1. (2.38)

\V

WV
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We also observe that for each u > 81 one has that

1 ,—a Su ,—a
1
O<c:=/eldaS/ eldasF(—).
0 a2 0 a2 2

Moreover, defining

" 1 T
k::min{keNs.t.k;——-}- 1}’
4 2782

we find that (75 + 2%’;)2 > %, and thus we deduce from (2.38) that

cep [T°1 —cos(Tu%) J

T 1 u
8

I=
CCl Z /(3n+2nk)2
( +2n’k)2 u

+o00o

:ZCCIZ]n %‘*‘2”
T . 5 +27

k=k
=:11.

\V

Therefore, using Taylor’s expansion we infer that there exists some K € N with K >
k such that

1 1
—+0( ) +o00. (2.39)

This concludes the proof of (2.34).

Now we prove (2.33). If n > 2s, equation (2.33) is a direct consequence of
inequality (2.25). Therefore, to conclude the proof of (2.33) it is left to show the
casen = land s = % In order to achieve this, we observe that if V, € Q is some
neighborhood of x in €2, then there exists some k¢ € N such that for each k = kj it
holds that (xg, yx) € Vi X V.

Thus, if we define e := |xx — yk|?, in view of (2.15) and (2.16), and recall-
ing (2.37), we obtain that, if k = ko,

1
¢gk’yk(§,T)
T p+oo o 1
:/ /O pp L xe, yips (D) dl dt
0

+oo T Q 1
= / / PR e yiwi (D dr dl

Ty, .2 oo
—/ // —ex —%)e_l”sin(tu%)dudtdl
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1 (Tvee poo 1 — cos(Tuz
= —/ / c—}exp(—cﬁk)e_l”( COSI( u2) dudl
T Jo o [z

l uf
too i 1 — cos(Tu?
20—1/ / —lexp<—c28k>e_l”( Cosl( ) gl du. (2.40)
S R A ! uz

where Ty, o € (0, +00) and ¢y, c2 € (0, +00) are given respectively in (2.15) and
(2.16).
Now we choose j, j(ex) € N such that

e s T2 )
:= min sit.j = — S——
J J 12 2\ Ty o 4

T 3
J () ::max{jeNs.t.js T _Z}
2me}

Note that if & is chosen small enough, then j < j(gg).
With this choices one has that

277 \? 2 3 27 S|
LT IS and (2T L FEDN L (2.41)
2T T Ty, o 2T T £k

Therefore, with this latter notation we obtain from (2.40) that

J(ex) 3w 2miy2 2
O KVk l )= & Z /(ZT ) fu iexp(_czgk)e—luidl "
D 2’ T — (%_’_2%)2 % l% l %
J=J
c1 J(ex) (%_’_2%)2 2

— Z /lu exp(—cauer)e 2 dl du

o 27) 2
7 > +7)

WV

=
=i

cre™? ) GF+F

= — exp(—cauey) du.
4 27/y2 U
+57)

- JFF
=i T

Now, we deduce from (2.41) that since u < (g—’; + %(8"))2, then ug, < 1, and thus
from the latter computations we obtain that

—c> Jj(ex) (3l+2Lj)2
@2‘)"’”(1,7") > &1¢ /2T -y

2 we? oy (F+20)2 U
—cr JCK) 3
2¢1e7¢2 =+ 2
_ 200 NN m( 2f ) (2.42)
e . 55 +27m

j=J
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As we observed in (2.39), one has that
+o00 3r
>r +2n
> E ) — e
=1 % + 27

With reference to that, from (2.42) and the latter observation we obtain that

—er J(EK) 3z
1 2cie7¢2 5 +27
lim @Yk (-, T) > lim “ Y 1n(2,f—)
2 k—>+o0 TeE : 55 +2m
J

k—>+o0

—cr TOO 3

2 2 s+ 27

= 0162 E 11’1(—24c )
e 5 +27m

= +o00.
This completes the proof of (2.33). ]

In the following result we give some upper bounds for the functional ®3 (s, T').
These estimates, together with the lower bound in (2.25), will turn out to be pivotal
in order to determine the most rewarding search strategy in a regime where the initial
position of the forager is close to the one of the prey, and thus prove Theorems 1.7
and 1.8.

In the Dirichlet framework, the behavior of the functional ®7” (s, T') for x ap-
proaching y could be deduced from the already known estimates on the Green func-
tion Gg (x, y) of the Dirichlet spectral fractional Laplacian, see [34, Theorem 5.4].

Indeed, the Green function is given by

+o00
G2(x. ) :=/0 rS (%, y) di,

for x # y, and therefore
¢ (5. T) < GH(x.y),

foreach (x,y,T) € Q x 2 x (0, +00) with x # y and s € (0, 1).

Nevertheless, for our optimization purposes we need upper bounds where the
dependence of the constants on the fractional exponent s € (0, 1) is known. In this
sense, the inequalities provided in the following result are more suitable in this con-
text than the ones available in the literature for Gg.

Before stating and proving the theorem, we fix the following notation. For each
n € N and s € (0, 1) we define the set

Ay i= (O,l—l—%—s)ﬂ[%—s,l—l—%—s). (2.43)
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Theorem 2.9. Ler Q C R” be bounded, smooth and connected. Moreover, let K E
Q be star-shaped with respect to some xo € K. Then, for each s € (0,1) and T €
(0, +00), there exists some Cx k.1, € (0, 400) such that if n = 3, then

Cik,T.Q

x’y
CI)* (S, T) < |x _ y|n—2s

forall (x,y) e €N (K x K), (2.44)
where € is given in (2.23).

Furthermore, ifn <2, s € (0,1) and p € A, 5 there exists some Cy .k, T,Q €
(0, +00) such that

Co K, T,

Oy (s,T) <
* (S ) |x—y|2M

forall (x,y) € €N (K x K). (2.45)

where A, s is defined (2.43).

Proof. We will first show the result for the Dirichlet case. To this aim, we recall the
following identity

+o00 1 +o00
/ rp(t,x,y)dt = —/ pg(t,x,y)l‘s_1 dt forall (x,y) € €, (2.46)
0 I'(s) Jo

see for instance [34, equation (2.4)]. For the convenience of the reader we give a proof
of it in the appendix, see Proposition A.1.

We first prove (2.44). If ((x, y),T) € € x (0, +00), thanks to the identity in (2.46)
we have that

T +oo
@g’y(S1 T):/ rls)(t,x,y)dt S/ r]”_v)(t,x,y)dt
0 0
1 +o00 Q .
= tox, y) T de.
Using inequality (2.14) and the change of variable ¢ = X221 27 ® e obtain that
+oo  s—1 _yl2
DRV (s, T) < L / ! - exp(——'x il )dt
L(s)Jo  (4nr)2 4t
- +o00
= j : : / a3 '™ da
72l (s) 1x = 1" Jo

475 T(5—5)
= . 2.47
730(s) |x — y|n=2s 247)

Thus, by defining the constant

s "
Cp := sup = F(— —s),
se,) w20 (s) \2

we conclude the proof of (2.44) for the Dirichlet case.
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Now, we prove (2.45). To this end, we observe that there exists some constant
c3 € (0, 400), depending on €2, such that for all y € [0, 1) it holds that

L)
pg(t,x,y)s exp(—'x yl) for all (z,x,y) € (0,400) x 2 x Q, (2.48)

5ty 6t

see for instance [9, Theorem 4.6.9].
Accordingly, using the identity given in equation (2.46) and the inequality in
(2.48), we deduce that

T
®3y@,T>=l/ rS (%, y) di
0

+o00
s[ r(t,x, ) di
0

1 +o00 Q .
= — ppt, x, y)e* " dt
r@xﬂ P

C3 +Oo;exp _M d[
L(s) Jo  ¢3tr—stl 6t

e +o0 (69)%+y—s—1 0 16
TTO S =y
_ Cs,y,n,Q 1

L(s) |x—y|r=26=r)

/N

(2.49)

where we applied the change of variable § = % and we defined

n n
Csyng = 0367+”_S_1F(5 +vy—5),

forally € (s —%,1) N[0, 1).
Now, we observe that if we define pu := 5 +y —s,then u € (0,1 4+ 5 —5) N
[5 —s.1+4 5 —5), and inequality (2.49) becomes

r C
QLY (5, T) < —> 6! (u )2 < 2k (2.50)
L'(s) |x =y fx =y
where we defined c
Cp,, := sup —36“_1F(;L).

se0.1) L' (8)

This concludes the proof of (2.45) for the Dirichlet case.

Employing the result in Corollary 2.6 we prove now (2.44) and (2.45) for the
Neumann case. Let K € €2 and, up to a translation, let us assume that it is star-shaped
with respect to

X0 = 0.
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Then, if T € (0, +00), n = 3 and s € (0, 1), using equations (2.47) and (2.24)
with K’ = K we obtain the existence of some ck.q, Ck,q € (0, +00) and g9 € (0, 1),
depending on K and €2, such that

CDEZS_n

X,y XesVe _
CDN (s, 7) < CK,QCDD (5.T) +cxeT < Cka |x — y|n—2s

+ck. T,

forall ¢ € (0,&9) and (x,y) € €N (K x K).
Consequently, if in the last equation we choose &1 € (0, &¢) such that

1

d12<s_n n—2s

g1 < inf | CxCp )
s€(0,1) CK,QT

which depends on K, Q and 7', we obtain that for all (x,y) € € N (K x K) and
s € (0, 1) it holds that
Ckr0
‘x’y 9 bl
Oy D s T
with
Ckr:=2 sup Cné‘%s_nCK’Q.
s€(0,1)

Analogously, if n <2, s € (0,1) and i € A, 5, then one deduces from (2.50)

and (2.24) that

CD,MS_ZM

DY (s, T) < Cx @75, T) + el < Cko o Texel

|x =yl
forall ¢ € (0,&9) and (x,y) € €N (K x K).

As aresult, if we choose some €, € (0, g¢) satisfying
dgt

K
CK,QT’

2/
82 < CK,QCD,M

which depends on p, K, Q2 and 7', we obtain that for all (x,y) € K and s € (0, 1) it
holds that

C.k 1.0
DYV (s, T) < === =,
lx — y|*#
where we set
. —2p
CM’K’T,Q = ZCK’QC Q& - n

Remark 2.10. We note that for the Dirichlet case we obtained that the constants in
equation (2.44) and (2.45) can be chosen independently of K and T'. In particular, we
have proved that if n > 3, then

475 T'(5—5)

LY (s, T) < —

T i =y
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forall (x,y) € €. If n <2and u € A, s, Where A, s is given in (2.43), then

61 1es  T'(w)
L(s) |x—y|#’

D57 (s, T) < (2.52)

for all (x, y) € €.

We now turn our attention to the functional ®'**?2 defined in (1.7). For this, it is
convenient, for every bounded and measurable sets 21, 2, C R” and each s € (0, 1),

to define
FE22(g) :=/
Qi xQ, X —

1

NG dx dy. (2.53)

As a direct consequence of Lemma 2.7 and Theorem 2.9 we obtain the following
upper and lower bounds for d>§3‘ 22 These bounds will play a crucial role in proving

Theorems 1.15 and 1.16.

Corollary 2.11. Let Q C R” be bounded, smooth and connected, K € Q be star-
shaped with respect to some xog € K and gy € (0, 1) be given as in Corollary 2.6.
Then, for each s € (0,1) and T € (0, +0o0), if n = 3, we have that

Ci.k,T.Q

e |FQI’QZ(S) forall 21,9, C K,
1 2

P25, T) <
where F1:52 jg given in (2.53).
Furthermore, ifn < 2,5 € (0,1) and u € Ap 5, Wwhere A, s is given in (2.43), one
has that

~ C -2

Moreover, for all s € (0, 1] we have that

Cs,y,ﬂ

lianF ) (2:39)

L R2(5, T) =

with Cy,,, o defined in (2.32).

The following result is devoted to the proof of the continuity of the functionals
®,, I, and 4, with respect to the space, time and fractional variables. Also, we show
that if n < 2s, then the limit in (2.33) is finite, and similarly ®2%(s, T) < +oo for
each z € Q.

Proposition 2.12. Let 2 C R” be open, bounded, smooth and connected. Then,
&7 (s, T) € (0, ~+00) forall (s, (x,y),T) € (0,1] X € x (0, +00) and 37 (s, T)e
C((0,1] x € x (0, 400)), where € is given in (2.23).

Also, ifn = 1, then ®37 (s, T) € C((3.1] x Q x Q x (0, +00)).
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Moreover, for each T € (0, +00) there exists some M € (0, +00) such that
I5(s, T), AN (s, T) € (0, M) for all (s, y) € (0,1] x Q and [{ (s, T), 4%(s,T) €
C((0,1] x 2 x (0, +00)).

Furthermore, there exists some M € (0, +00) such that l}; (s, 7), A% (s,T) €
(0, M) for all

(s,,T) € (0,1] x 2 x (0, +00).

Proof. The positivity of the functionals follows from (1.3), (1.4) and the fact that
ri(t,x,y) is strictly positive for all (¢, x, y) € (0, +00) x 2 x €2, see for instance [10,
Corollary 1] and [11, Corollary 1].

Now we establish the continuity statement. Thanks to equation (2.4) we have that

+o00

P X, y) = Y Gk ()i () exp(—2B5 1)

k=0

and each term of the series is continuous in (s, 7, x, y) € (0, 1] x (0, +00) x Q x .
Furthermore, thanks to [11, Proposition 6 and Lemma 6], we have the existence
of some M € N such that for each ¢ € (0, 1] and § € (0, +00) it holds that

+o0
D 18k ()a k() exp(—183 ) [l co(@x@x (e, 1)x(6,00))
k=0

M
< Z 18, () ke (V) €xp(—1 B3 1) | cO(@x 2 (6,1)x (8, 400))
k=0

+o00
2
+C2 000 O BT exp(—5B5 1)
k=M

< 400,

where Cyx m,2,0 and a(mg) are positive constants given in Proposition A.1.
Consequently, 7} (¢, x, y) is continuous for all

(s,t,x,y) € (0,1] x (0, +00) x 2 x Q.

Suppose now that (&, y) € €, and that {(sx, Tk, yx)}x C (0, 1] x (0, +00) x
satisfies
(ks Tie, yie) = (5, T, y) € (0,1] x (0, +-00) x Q.

Then, since (¢, £, y) is continuous for all (s, y) € (0, 1] x 2, we have that
rE L E v .10 (1) = T € 9) X, (1),

for almost every ¢ € (0, +00).
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Moreover, if T := supien Ik, then using equations (2.1), (2.14), and (2.19) we
obtain that

+o00
AT (O (1€, yi) < Xf(t)/o PR E youF (D dl

+o0 _ 2
< Xf(t)/o Csi em(—%)uf"(l)dl

+o0
<M. [ uraa
— 1 (OM.. 256

where we defined

M, := sup supCyy exp(—w).
1€(0,400) keN 41

The last function in (2.56) is in L!((0, +00)), and thus by the dominated convergence
theorem we obtain that QD‘:i’y (s, T) is continuous for all (s, y, T) € (0, 1] x (2 \ {&}) x
(0, +00), and since it is symmetric with respect to the space variables, we deduce the
continuity for all (s, (§,),T) € (0,1] x € x (0, +00).

If n = 1 the eigenfunctions , x’s are uniformly bounded in L°°(£2) and the eigen-
values B, ;s are proportional to k2, for each k > 1. More precisely, there exist two
positive constants Cx, ¢« > 0 such that

C*k2 < ,B*,k < C*kz,

for each k > 1, see for instance [29].
Therefore, we have that

+o0

P %, y) = Y Gk ()i () exp(—1B5 ;)

k=0

+o00
< 1k lF ooy exP(—1B5 1)
k=0
+o00

< M? Z exp(—tcsk?)
k=0

= fas(1), (2.57)
where ||{ k|| Loo(@) < My for some M, € (0, +-00) and we adopted the convention

{p,0 = 0= Bp.o.
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Thus, if 5, s € (%, 1], then we can choose also (£, y) € Q x 2, and thanks to (2.57)
we have that

Dt €, yi) < x7(t) inf fi, (),
AT (O (.8, yi) XT()klng,s;\()

and the right-hand side is L' (0, +00).
Repeating the above reasoning, if » = 1, we obtain that

O}V (s,T) € C((%, 1] x 2 x Q x (0, +00)).

Now, we observe that

T
R = [ [ -y agar
0o Ja
T
— [le=s1 [ reeyara
Q 0
- /Q & = yI®%7 (5. 7). (2.58)
Using this identity, the continuity of ®, and the estimates in Theorem 2.9, we con-
clude using the dominated convergence theorem. The proof of the continuity of

A% (s, T) is analogous
Also, if n = 3, from (2.58) and (2.51) we have that

Cn n—1
6.7 < 15 [ 1e=yt e,

for some suitable C,, which proves that / l); is uniformly bounded in (0, 1] x  x
(0, +00) if n = 3.

The proof of the uniform boundedness in the case n < 2 is done similarly replac-
ing (2.51) in the above equation with (2.52).

Finally, using [11, (28)] we obtain that

T
liv(s,T):/o /Q|s—y|riv<r,s,y>dédz

T
<da [ [ e ndsa
0o Ja
=dqT.
The proof of the boundedness of ., is analogous. |

In the following two lemmas we establish the limits as s \( 0 of the Dirichlet
efficiency functionals given in (1.6) and (1.9).
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We will show that ®p, Ip, Ap, 50, iD, and J(D all go to O linearly in s. More-
over, we will also determine the value of the limit for &, p, &3 p, éz, D, and 53, D SO
that we will be able to extend them by continuity in [0, 1].

This asymptotic analysis is a fundamental tool in order to establish Theorems 1.6
and 1.14 and the claims in (1.17) and (1.24).

Lemma 2.13. Let Q2 C R” be bounded, smooth and connected, and let € be as
in (2.23). Then, for all ((x,y),T) € € x (0, +00), it holds that

Sli\gl}) STI’V) (s,T7) =0, (2.59)
F
Kﬁgﬁ“ﬂvzjgw—ﬁgigwdé 20
F
Kﬁﬁg@ﬂvzjgw—ﬁgféyMé @ob
where we have defined
Fp(x,y):= /()+de[ forall (x,y) e €. (2.62)

Proof. Equation (2.59) is a direct consequence of (2.51) and (2.52), since I'(s) —
~+oo for s N\ 0.
Now we focus on the proof of (2.60). For this, we claim that

. QEy(s’ T) -T
lg‘n =~ =0—-e " (T+1)Fp(x,y) forall ((x,y),T) €€ x(0,4+00).
SN0 N
(2.63)

Thanks to (2.9) and (2.14), if s € (0, %) we have that

1 o t lx — y2\T'(1 + 5)

- [, x, D) < - — . 2.64

~[pB U x m()] (4ﬂl)2€XP( 1 TTs (2.64)

This bound together with (2.1), (D.1) and the dominated convergence theorem yields

© ry(t,x,y)
lim 22000
SN0 S

for all (¢, (x, y)) € (0, +00) x €. Therefore, if s € (0, %), from (2.1) and (2.64) we

obtain that

te™ Fp(x, y), (2.65)

ri(t,x,y) </+°° tT(1+s) exp(_|x—y|2)dl
0

s (4)z]3+stH1 41
Cot
T =yt

= fry(0), (2.66)
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where we defined

Co:= sup m
se(0,) T2

45T(1 +S)I‘<E +s)
— '3 .

Now, clearly we have that
fry € LY((0. 7)), (2.67)

and thus from (2.65), (2.66), and (2.67) we can apply the dominated convergence
theorem to obtain that

lim 2270 1) _

T
te " Fp(x,y)dt
lim . /(; e 'Fp(x,y)

=1—e (T +1)Fp(x,y).

This concludes the proof of (2.63).
Note that using (2.51), (2.52), and (2.63), we obtain that

12(s, T 1
m D(s )=lim—

T
—ylrp(t. &, y)déd
sN\NO S S\OS/O /QE Ylrp(t.§, y)dédt

. 57 (5,T)
= hm/ & — y|-2—"""d¢
Q N

s\
(- T(T 1))/ & ylFpEy)dE (268)
Q

by means of the dominated convergence theorem. Finally, from (2.63) and (2.68) we
deduce that

o5 (s, T) ) fOT ry(t,x,y)dt S

m —————— = l1m -

SNO Ip(s.T) s\ [T [ (& — y|rs (1,6, y)dEdt S
Fp(x,y)

= T —yFpE y)dE’

which concludes the proof of (2.60).
It is left to show (2.61). To do so, we observe that applying the same reasoning
we used to show (2.68), one can easily prove that

Ap (s, T
tim 22 7)

lim S22 (1= T+ 1) [ 6= yPFoy) de

forall (y,T) € Q x (0, 4+00). From this identity and (2.63) it is immediate to deduce
(2.61). ]

The following result can be considered as the set functional version of Lemma
2.13.
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Lemma 2.14. Let 2 be bounded, smooth and connected and 21,2, C 2 be smooth
and disjoint. Then, for all T € (0, +00), it holds that

lim 82152 (5. T) = 0, 2.69
m & p (s, ) (2.69)
~ Q| Fp (2.2

limgfb’m(s,T)z |22 Fp(21,22) , 2.70)
sNO- Jaoxa lE=YIFp (. y)dEdy

I Q| Fp (1, Q2)

lim 92L52(5, T) = | , 2.71)
sNo P Jauxa |E — YPFp(E. y) dE dy

where .
Fp(Q1, Q) = Fp(x,y)dxdy, (2.72)

121]|22] Jo,xa,

and Fp is given in equation (2.62).
Proof. We begin by proving (2.69). We have that

Q1,2 X
O 12 (s, T 1 OV (s, T
5% T) 36

s Q1192 Jo,xa,

dy.

Thanks to equations (2.51) and (2.52), if s € (0, %), there exists some constant Ch,
depending on 7 such that

¢y’ (.T) _ Gy 1 G ey 273)
s sD(s) lx — y|r=2s yprooeTw '

<

x —
where C3 depends only on Q. If 1, Q5 are smooth and disjoint, then g € L' (Q; x
€25). Therefore, under these assumptions we can apply the dominated convergence
theorem, which together with (2.63) yields to

~Q1,Q
lim —CDDI “6.T) =

(1= T(T 4+ 1) Fp (1, Q2). (2.74)
SN0 S

Also, thanks to Lemma D.4 and the hypotheses on Q1, 2, we have that Fp (21, 25)
is finite. From this observation and (2.74) one readily deduces (2.69).
Now, we show (2.70). To do so, we claim that

. I[22(s,T) _ (- T(T+

1))/ —y|F déd 2.75
S\0 s 192, 2,0 & —y|Fp(§, y)dédy, 2.75)

forall T € (0, +00). As a matter of fact

122(5,T) _ 1 13(s, T) i
s . |S22| Q> § .
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Hence, from (2.73) and the definition of / g (s, T) we infer the existence of some
C4 € (0, 400) such that
y
Ip(s,T) <
s

45

forall s € (0, %). Therefore, by the dominated convergence theorem we can conclude
the proof of (2.75). The limit in equation (2.70) follows easily from (2.74) and (2.75).
Following the same procedure adopted to prove (2.75), one obtains that

. A (s.T) _ (1—e T(T + 1))

= — YIPFp(€, y)dEdy, (276
) s 192, szQ|é yI"Fp(§.,y)dEdy ( )

for all T € (0, +00). Thereby, the limit in equation (2.71) follows easily from (2.74)
and (2.76). ]

In the following lemma we study the asymptotic behavior of the Neumann func-
tional CIDf\,’y (s, T) for s N\ 0. In particular, we observe that the limit substantially
differs from the one of @Z’y , which was indeed vanishing, see Lemma 2.13. With
this result we establish also that the lim inf and lim sup of ®3” (s, T) for s \ 0 are
controlled by some quantities that do not depend on x, y € €2. This feature will let us
prove that if the forager starting position and target location are close enough, then
the most rewarding search strategy for the Neumann functionals in equation (1.6) is
nots = 0.

Lemma 2.15. Let Q C R" be bounded, smooth and connected. Then, there exist
hy, hy € C([0, +00)) such that for each T € (0, +00) it holds that

hl;T) < lmi‘lnfé?x (s, T) < 11m\fup Sic (s,T) < hz;T), 2.77)
I(T) X,y hZ(T)
WM(J’) 11m mf82 v T) < llm\il),lpg (s, T) < —M(y)hl(T)’ (2.78)
LC) < liminf é?x Y v (8, T) < limsup 8; (s.7) < ﬂ (2.79)
ha(T)M(y) s\ sN\O M (y)h\(T)’

for all (x,y) € €, where we set
M) = [5-ylds aad Fi)i= [ 5-yPds 80

Proof. Let (x, y) € €. Notice that if # € (0, +00) we can write

PR(x,y) = |Q| +Zzwk(x)§zvk(y)exp( £ Bk
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where {nx’s and By x’s are given in (2.3). Now, thanks to [11, Proposition 6 and
Lemma 7], together with Weyl’s law on the asymptotic behavior of the eigenvalues
B i’s (see for instance [29]), we have that

+o00
Jim 3 ()i () exp(—t Bi) = 0.
k=1

from which we deduce that
1
li L, x,y) = —.
Jm Py (dey) = o)

Therefore, there exists some g € (1, +00) such that

1
m < pls\z,(t,x,y) forall ¢ € [tg, +00).

Thus, using (2.1), we have that if 1 ; = max{¢o, Ts }, we can apply Theorem 2.3 and
obtain that

T p+oo
<I>}$y(s,T)=/O/O P x, y)uS(l)dl dt

1 T p+oo
2—2|Q|// pS(l)ydl dr

+o00
= dldt
2JTIQI/ / 11“
(o r t

Z R
27‘[|Q| 0 tf,s

G T2
 Am|Ql
Therefore, if T € (1, 400) from the above inequality we obtain
C
lim sup @3 (5, T) = hm inf O3 (5, T) = ——T, (2.81)
SN0 47T|Q|
while if T' € (0, 1] we have that
Ci
limsup ®%7 (s, T) = liminf &% (s, T) = T2. (2.82)
~ob N (. 7) > liminf @y~ (5. T) 4r|Q

Hence, we have just proved the left-hand side inequality in (2.77) with

Cl 2 .
T2 T € (0.1].
e ! ©.1]

() =17 2.83)
T T el .
] T elA400)




Structural results for the efficiency functionals 49

Now we show the right-hand side inequality of (2.77). Using (2.19), we obtain that

.y B T +o0 o s
%Y (s.T) = PR x. i) dl

/[_f ( ;lyP) s(l)dldt+[ /+°°CWIU)d1d[
//_22 ( gly|2)ﬂi(l)dldt+cQT.

Now, in view of (2.9) we have that

(2.84)

ca ( Ix—yP sy < Pl 49 =P
R UTT I L I T == e o AT R &
and the function on the right-hand side in the above equation is in L' ((0, T) x (0, 1))

Therefore, using also (2.9) we can apply the dominated convergence theorem and
obtain the limit

T 1 2

) cQ lx —yI7\

1 — — NHdldt =0.
s{l})/o /0 15 eXp( 6l )Ml( )

(2.85)
From this equation and (2.84), we can infer thatif T € (1, +00)
liminf @37 (s, T) < limsup 37 (s, T) < cqT. (2.86)
sN\O0 s\O0

Also, assuming that 7' € (0, 1], from (2.9) we obtain that
too too stF(l + ) cal'(1 +5)

/ / cQ,u,(l)dldt<cQ/ / i dldz=T
Thus, from this latter observation, the limit in (2.85) and equation (2.84) we deduce
that c

lin{‘infd)jcv’y(s, T) < limsup &% (5, T) < —T?
sN\O0

1) < . (2.87)
SN0 2
In light of (2.86) and (2.87), and defining

ho(T) : coT? if T €(0,1], 258)
2T NeqT T e (1, +00), '

we conclude the proof of the right-hand side inequality of (2.77)
Now, we prove (2.78). To do so, we claim that

h(T)YM(y) < 11rn1nfl v (. T) <lim supl (s, T) < ho(T)M(y). (2.89)
SN0
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We recall that
13 (5.T) =/Q|s—y|<b%y(s, T) dt.

with (y, T) € © x (0, +00). Then, using (2.81), (2.82) and Fatou’s lemma we prove
the left-hand side inequality of (2.78).

Now, we focus on the proof of the right-hand side inequality. Let K € €2 be any
compact such that it is star-shaped with respect to y and y € K°, and dx < 1. Then,
in view of (2.44), (2.45) and Proposition D.2 with £ = Q \ K and F = y, we evince
the existence of some u € L!(2) such that

& — y| 057 (s, T) < u(®),

for all £ € Q. Thus, thanks to Fatou’s lemma and (2.86) we obtain the right-hand side
inequality of (2.78). Note that from (2.77) and (2.89) one evinces (2.78).

It is left to show (2.79). Reasoning analogously to the proof of claim (2.89), one
obtains that

1(T)M(y) < hmmfA NG T) < hmsup,Ay (s,7) < hz(T)M(y)
SN0

Making use of this two-sided inequality and (2.77) we conclude the proof of (2.79). =
The following result is the Neumann counterpart of Lemma 2.14.

Lemma 2.16. Let Q C R” be bounded, smooth and connected. Then, for all T €
(0, +00) and 21, R, € Q2 smooth and disjoint, it holds that

h(T
(1) < hmmeQ"Qz(s T) < limsup Sgl’gz(s,T)
T s\0 SN0
ha(T)
< , 2.90
" T (2.90)
h(T Q1.0 Q1.9
—_— hmlnfé’ N (s, T) < limsup &N (s, T
h2(T)P(22) 2 (1) S limee .47 1)
h T
< L, 2.91)
hy(T)P(£22)
h (T
#h,) < hmmeQ" 2(s,T) < limsup SQI’QZ(S,T)
ha(T)P(22)  s™\0 s\
ho(T
< Lﬁ.), (2.92)
hy(T) P (S22)
where hy and hy are given respectively in (2.83) and (2.88), and we set
M - M
P(Q,) = M@y P(Q,) = M@y (2.93)
|22 [€22]

where M and M are defined in (2.80).
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Proof. We begin by proving (2.90). To do so, we notice that by definition we have

(s, T) = % (s, T) dx dy.

1211122] Jo,xa,
From Proposition 2.12 we know that ®” (s, T') = 0. Thus, by Fatou’s lemma, (2.81)
and (2.82) we conclude the proof of the left-hand side inequality of (2.90).

Now, if 2; N Q, = @, thanks to Proposition D.2 with Q; = E and Q, = F, we
easily obtain the right-hand side inequality of (2.90) using Fatou’s lemma.

We assume now that @ N Q, # @. We claim that there exists some z € L' (2 x
§25) such that for all s € (0, ) it holds that

@;ﬁ,’y(s, T)<z(x,y) forall (x,y) € 21 x Q,. (2.94)

We prove claim (2.94). Thanks to the assumption Q1 NQ, # @, theset A := 301 N
025 is nonempty.

Since 21,2, € €2 and A is compact, then we can choose r > 0 and P; € A with
i €{l,..., N} such that

N
ACB:= UB,(P,-)@SZ.

i=1

If forsome i, j € {1,..., N}itholds that B,(P;) N B,(P;) # &, then we can choose
Kij = B,(P;) U B,(P;) in (2.44) and (2.45) and deduce that

c

lx — y|"

DV (s, T) < , (2.95)

for all (x,y) € K;,j x K; ; with i, j such that B,(P;) N B,(P;) # &, where C
depends on B, T, 2. Moreover, we define the constant

Cw := max{Cg, (p,),8,(P,) St- B-(P:) N B.(P;) = @}, (2.96)

where Cg, (p;),B,(P;) is given in (D.4) with E = B, (P;) and F = B,(P;). Therefore,
it x € Q; N B,(P;) and y € 2, N B, (P}), such that B, (P;) N B,(P;) = I, then
by (D.3) and (2.96) we see that

O (s,T) < CnT. (2.97)
Finally, if we set
Ca, .2 = max{Cq, nk",2:\k" Ca\k",22nK"» C2\K",2:\K" }»
thanks to Proposition D.2, we obtain that

oY’ (s, T) < Cq, 0,7 (2.98)
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forall (x, y) € (1 N K') x (Q2\ K')) U (€21 \ K) x (2N K)) U ((21\ K') x
(€22 \ K')).

Thanks to (2.95), (2.97), and (2.98) we conclude the proof of claim (2.94).

By that means, we can apply Fatou’s lemma and using (2.77) we prove the right-
hand side inequality in (2.90).

Now, we focus our attention on the proof of (2.91). In order to do so, we claim
that

hi(T)P(Qs) < 1im\i(§1f1}§’2(s, T) < limsup/y>(s, T) < ha(T)P(Q2).  (2.99)
s sN\O

We observe that :
I = —/ (s, T)dy
1202] Ja,

and, since / 1{, (s, T) = 0, see Proposition 2.12, using Fatou’s lemma and (2.89) we
prove the left-hand side inequality of (2.99).

Furthermore, we discussed in Proposition 2.12 that /3, (s, T') is uniformly bounded
in (s, y) € (0,1) x Q. Thus, we can apply again Fatou’s lemma together with (2.89)
and conclude the proof of the right-hand side inequality of (2.99). The inequalities
in (2.90) and (2.99) yields to (2.91).

It is left to show (2.92). To do so, it is enough to show that

h(T)P(Q,) < lin{‘ inf AN (s, T) < limsup AN (s, T) < ha(T) P(23). (2.100)
sN\O0 sN\0

From this and (2.90) it is easy to deduce (2.92). The proof of (2.100) is analogous to
the one of (2.99), and thus it is omitted. n



