
Chapter 3

Proof of the main results

This chapter is devoted to the proofs of the main results discussed in the introduction.
It is divided into two main parts.

In Section 3.1 we prove the results stated in Section 1.2. Namely, we analyze the
environmental scenario where the target location coincides with the forager starting
point.

In Section 3.2 we instead discuss the best search strategy when the prey is in a
small neighborhood of the seeker initial position. In particular, we prove all the results
contained in Sections 1.3 and 1.4.

3.1 Proof of the results in Section 1.2

To prove the results presented in Section 1.2, we consider � D .0; a/ for some a 2
.0;C1/. The normalized eigenfunctions of the Laplacian in .0; a/ with Dirichlet
datum as defined in (2.3) are
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As a consequence, recalling (2.4), the Dirichlet spectral fractional heat kernel reads
as
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This and (1.5) lead to
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We can also compute explicitly the average distance lyD.s;T / and the mean square
displacement A

y
D.s; T / as a series, as showed in detail in Appendix B.

The normalized eigenfunctions of the Laplacian in .0; a/ under Neumann condi-
tions as defined in (2.3) take the form8̂̂̂<̂
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Therefore, in view of (2.4), the Neumann spectral fractional heat kernel reads as
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Hence, by (1.5),
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and, as a result, when s 2 .1
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; 1/,
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Thanks to these preliminary observations, we are now in the position of proving
the results presented in Section 1.2. We begin by showing Proposition 1.1.

We recall that we adopt the subscript � every time that a functional refers to both
the Dirichlet and the Neumann case.

Proof of Proposition 1.1. Let x 2 � and T 2 .0;C1/. Then, thanks to Theorem 2.8
we know that if either n > 2 or n D 1 and s 2 .0; 1

2
� it holds that

ˆx;x� .s; T / D C1: (3.9)

Furthermore, from Proposition 2.12 we have that

lx� .s; T / 2 .0;C1/ and Ax
�.s; T / 2 .0;C1/; (3.10)
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for all s 2 .0; 1�. Therefore, as a direct consequence of (3.9) and (3.10) we obtain the
desired claim.

The proof of Proposition 1.2 that we present here below is a consequence of The-
orem 2.8. For the sake of completeness, in Appendix C we also provide an alternative
proof of Proposition 1.2 which employs directly the spectral structure of the efficiency
functionals.

Proof of Proposition 1.2. Let x 2�D .0; a/, for some a 2 .0;C1/. Then, thanks to
Theorem 2.8 we have that for each s 2 .0; 1

2
� and T 2 .0;C1/ the statement in (3.9)

holds true. Also, if s 2 .1
2
; 1�, in view of Proposition 2.12 one has that
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Furthermore, from Proposition 2.12 we know that for each s 2 .0;1� and T 2 .0;C1/
the statement in (3.10) holds true as well. Therefore, using equation (3.11), in the
notation of Proposition 1.2, we conclude that
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for all j 2 ¹1; 2; 3º.
Hence, to complete the proof of Proposition 1.2, it is only left to show the con-

tinuity statement. Thanks to Proposition 2.12 we have that, for each x 2 � and
T 2 .0;C1/, the functionalˆx;x� .�; T / is continuous with respect to s 2 .1
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the continuity with respect to s 2 .0; 1� of the functionals Ax
�.s; T / and lx� .s; T / was

already established in Proposition 2.12.
As a consequence, recalling (3.10) we conclude that the functionals in (1.6) are

continuous in s 2 .1
2
; 1� for x D y.

Now we prove Theorem 1.3. Here we establish that
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is the best search strategy in .1
2
; 1� when the forager initial point coincide with the

target location.

Proof of Theorem 1.3. We point out that, in order to prove Theorem 1.3, it suffices to
establish (1.10). Indeed, once (1.10) is proved, we already know from Proposition 1.2
that E�;j .s; T / 2 .0;C1/ for all s 2 .1
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Furthermore, thanks to (C.1) it is enough to show (1.10) for a WD 1. To prove it,
we observe that all the denominators in (1.6) satisfy (3.10). Consequently, the claim
in (1.10) is equivalent to
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Thus, from now on we focus on the proof of the claims in (3.12). We establish the
claim for the Dirichlet case, since the Neumann one follows from the Dirichlet one
and (2.22).

For this, we recall (C.4) and we see that there exist K0, N > 1 such that, for
every xN 2 N,
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proving the claim in (3.12) for the Dirichlet case, as desired.
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Finally, we prove Theorem 1.4. In this result, we discuss the impact of some
geometrical properties of the domain, such as the size of it, on the monotonicity of
the efficiency functionals in (1.5) with respect to the fractional exponent.

Proof of Theorem 1.4. We prove the monotonicity properties of ˆ�. To this end, in
the Dirichlet case, when a 2 .0; �� the first eigenvalue of the Laplacian is less than or
equal to 1, thanks to (3.2); hence, we capitalize on [10, Theorem 7] and we conclude
that, for all s0 2 .0; 1/ and s1 2 .s0; 1/, we have that, for every x 2 .0; a/,
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Similarly, in the Neumann case, when a 2 .0; �� the first nontrivial eigenvalue
of the Laplacian is less than or equal to 1, due to (3.6). This allows us to use [11,
Theorem 7] and obtain that, for all s0 2 .0; 1/, s1 2 .s0; 1/ and x 2 .0; a/,
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Now, from (1.5), (3.13), and (3.14) it follows that, for all s0 2 .0; 1/, s1 2 .s0; 1/
and x 2 .0; a/,
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From (3.15) we obtain the desired monotonicity property when a 2 .0; ��, as
stated in formula (1.11) of Theorem 1.4.

Now we deal with the case in which a is sufficiently large and we prove (1.12)
and (1.13). To this end, we start with the Dirichlet case, utilize (3.5) with the nota-
tion ˛ WD a

�
and deduce that, for every T 2 .0;C1/ and x 2 .0; a/,

a

2
@sˆ

x;x
D .s; T / D @

@s

"
˛2s

C1X
kD1

1

k2s
sin2

�
kx

˛

��
1 � exp

�
�T

�
k

˛

�2s��#

D 2˛2s ln˛
C1X
kD1

1

k2s
sin2

�
kx

˛

��
1 � exp

�
�T

�
k

˛

�2s��
� 2˛2s

C1X
kD1

ln k
k2s

sin2
�
kx

˛

��
1 � exp

�
�T

�
k

˛

�2s��
C 2T˛2s

C1X
kD1

1

k2s
sin2

�
kx

˛

�
exp

�
�T

�
k

˛

�2s��
k

˛

�2s
ln
�
k

˛

�
D 2˛2s

C1X
kD1

ln˛ � ln k
k2s

sin2
�
kx

˛

��
1 � exp

�
�T

�
k

˛

�2s��
� 2T˛2s

C1X
kD1

ln˛ � ln k
k2s

sin2
�
kx

˛

�
exp

�
�T

�
k

˛

�2s��
k

˛

�2s



Proof of the main results 58
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This establishes (1.12) in the Dirichlet case and we now focus on the proof

of (1.13) in the Neumann case. In this situation, recalling (3.8),
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This puts us in the same position as in (3.16), but with the sine replaced by the cosine.
Hence, in this case, we only need to detect the analog of (3.17). For this, we observe
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Thus, the same argument as in the Dirichlet case leads to (1.13).
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3.2 Proof of the results in Sections 1.3 and 1.4

In this section we prove the results stated in Section 1.3. Here we discuss the optimal
search strategy when the forager starting position y 2 � is sufficiently close to the
prey location x 2 �, but does not coincide with it.

We recall that we adopt the subscript � every time that we refer to both the Dirich-
let and the Neumann case.

We start this section by showing that all the functionals defined in (1.6) are con-
tinuous with respect to s 2 .0; 1�.
Proof of Proposition 1.5. Let .x;y;T /2���� .0;C1/ be such that x¤ y. Then,
thanks to Proposition 2.12 we have that

ˆx;y� .s; T / 2 .0;C1/;

and also
ly� .s; T / 2 .0;C1/ and Ay

�.s; T / 2 .0;C1/; (3.18)

for each s 2 .0; 1�. These considerations give that E
x;y
j;� .s; T / for all s 2 .0; 1�.

Now, from Proposition 2.12 and (3.18), we deduce that the functionals E
x;y
j;� .�; T /

are continuous with respect to s 2 .0; 1�.
Now we prove Theorem 1.6. We show that s D 0 is a global minimizer for

E
x;y
1;D.�; T / in .0; 1/ for each x; y 2 � such that x ¤ y and for all T 2 .0;C1/.

Moreover, we discuss the existence of the limit for s & 0 of E2;D and E3;D .

Proof of Theorem 1.6. Let x; y 2� such that x ¤ y and T 2 .0;C1/. Then, thanks
to Lemma 2.13 we have that

lim
s&0

E
x;y
1;D.s; T / D 0:

Since ˆx;yD .s; T / 2 .0;C1/ for each s 2 .0; 1�, see Proposition 2.12, we estab-
lish (1.14). We point out that the existence of the limits in (1.15) was already obtained
in Lemma 2.13.

Besides, making use of the maximum principle for the heat equation, we see that

FD.z; w/ > 0 for all z; w 2 �; (3.19)

and so the right-hand sides of the expressions in (2.60) and (2.61) are nonnegative.
Also, using (D.6) and (3.19) we deduce that the limits in (2.60) and (2.61) are also
positive and finite.

We prove now Theorems 1.7 and 1.8. We recall that this result states that if the
forager starting position is close enough to the target location, then the optimal search
strategy for the functionals in equation (1.6) is in a small neighborhood of s D 0.
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Proof of Theorems 1.7 and 1.8. Let .y;T /2��.0;C1/. We recall the limit in (2.59)
and we observe that
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for each x 2 Byı.y/ n ¹yº, one has that
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Consequently, from the last two inequalities we obtain that if s0 2 .0; 12 /, s1 2
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Proof of the main results 62

As a result, for each " 2 .0; 1/, by choosing s0 WD "
4

, s1 2 ."; 1/ and � WD .n � "/=2
in (3.24), and recalling also (3.20) and (3.21), we infer the existence of some ı.1/ D
ı
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This concludes the proof of (1.16) and (1.18) with j D 1.
Let us now prove (1.17) for the functional E2;D . To this end, let dy WD d.y;@�/

2

and By WD Bdy .y/. Then, thanks to equation (D.5) in Lemma D.4 we have that there
exists a constant QcBy ;� such that for each x 2 By n ¹yº it holds that
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j� � yjFD.�; y/ d�

QcBy ;�
CD;�;Byı.y/;T;�

1

jx � yjn�2� : (3.27)

Now, using (2.68) and the limit

lim
s&0

s�.s/ D 1;

we obtain that

lim
s&0

�.s/l
y
D.s; T /R

�
j� � yjFD.�; y/ d�

D 1 � e�T .T C 1/:

Thanks to this observation and Proposition 2.12, we can define the positive constant

C�;y;Byı.y/;T;�
WD inf

s2.0;1/

�.s/l
y
D.s; T /R

�
j� � yjFD.�; y/ d�

QcBy ;�
CD;�;Byı.y/;T;�

> 0:

Then, we obtain from (3.27) that for each x 2 By n ¹yº, s 2 .0; 1/ and � as in (2.43)
it holds that

E
x;y
2;D.0; T /

E
x;y
2;D.s; T /

>
C�;y;Byı.y/;T;�

jx � yjn�2� : (3.28)

Therefore, for each " 2 .0; 1/ by taking s 2 ."; 1/ and choosing � WD .n � "/=2
in (3.28), we deduce that there exists some ı.2/ D ı

.2/
";y;T;� such that for each x 2

Bı.2/.y/ n ¹yº it holds that

E
x;y
2;D.0; T / > sup

s2.";1/

E
x;y
2;D.s; T /:
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The proof of (1.17) for E3;D is analogous to the one for E2;D and therefore it will be
omitted. This last step concludes the proof of Theorem 1.7 for n 6 2.

Now we show (1.18) when n 6 2 for E2;N . To do so, thanks to Proposition 2.12
and (2.89) we can define the positive constant

zCy;T;� WD inf
s02.0;1/
s12.0;1/

l
y
N .s1; T /

l
y
N .s0; T /

> 0:

Then, if s0 2 .0; 12 /, s1 2 .s0; 1/ and � 2 An;s1 , thanks to equations (3.22) and (3.23)
we have that

E
x;y
2;N .s0; T /

E
x;y
2;N .s1; T /

D ˆ
x;y
N .s0; T /

ˆ
x;y
N .s1; T /

l
y
N .s1; T /

l
y
N .s0; T /

>
zC�;s0;y;K;T;�
jx � yjn�2s0�2� ; (3.29)

for all x 2 Byı.y/ n ¹yº, where we defined

zC�;s0;y;K;T;� WD CN;s0;y;�;Byı.y/;T;� zCy;T;�: (3.30)

Therefore, for each " 2 .0; 1/, by choosing s0 WD "
4

, s1 2 ."; 1/ and � WD .n � "/=2
in (3.29), and recalling (3.21), we deduce the existence of some

ı.2/ D ı.2/";y;T;� 2 .0; y̌/

such that for each x 2 Bı.2/.y/ n ¹yº it holds that

sup
s2.0;1/

E
x;y
2;N .s; T / D E

x;y
2;N .s

.2/
x;y;T ; T / with s.2/x;y;T 2 .0; "/:

This concludes the proof of (1.18) for E2;N . The proof of (1.18) for E3;N is analogous
to the one for E2;N .

It is left to prove Theorems 1.7 and 1.8 when n > 3.
If n> 3, we just have to replace the inequality (3.23) with the one in (2.44). Thus,

repeating the above procedure with this change, the inequalities in (3.24) and (3.29)
become

E
x;y
� .s0; T /

E
x;y
� .s1; T /

>
C�;s0;y;Byı.y/;T;�

jx � yj2.s1�s0/ ; (3.31)

for all s0 2 .0; 12 /, s1 2 .s0; 1/ and x 2 Byı.y/ n ¹yº, where we denoted by E� any of
the functionals E1;D , E1;N and E2;N .

The constant C�;s0;y;Byı.y/;T;� is obtained substituting the constant C�;�;Byı.y/;T;�
with C�;Byı.y/;T;� in (3.25) for E1;D and E1;N , and in (3.30) for E2;N .

Analogously, equation (3.28) becomes

E
x;y
2;D.0; T /

E
x;y
2;D.s1; T /

>
C
.1/

y;Byı.y/;T;�

jx � yj2s1 (3.32)
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for all s 2 .0; 1/ and x 2 Byı.y/ n ¹yº, where we defined

C
.1/

y;Byı.y/;T;�
WD inf

s2.0;1/

�.s/l
y
D.s; T /R

�
j� � yjFD.�; y/ d�

QcBy ;�
CD;Byı.y/;T;�

:

Therefore, for each " 2 .0; 1/, by choosing s0 WD "
2

in (3.31) and s1 2 ."; 1/
in (3.31) and (3.32), we obtain (1.16), (1.17) for E2;D and (1.18) for both E1;N and
E2;N when n > 3.

The proof of (1.17) and (1.18) respectively for E3;D and E3;N are analogous to
the one of E2;D and E2;N when n > 3 and are therefore omitted.

Now, we prove Corollary 1.12. Namely, we establish in the one-dimensional
framework, and under suitable geometric assumptions on the domain, that if the tar-
get location x 2 � is close enough to the forager starting position y 2 �, then there
exists a local maximizer for the functionals E

x;y
1;D and E

x;y
1;N in a neighborhood of the

local Brownian strategy s D 1.

Proof of Corollary 1.12. We will only prove (1.19), since the proof of (1.20) is anal-
ogous. For this, let � 2 .0; 1

2
/. Then, thanks to Theorem 1.4, we have that there

exists some a� 2 .�;C1/ such that, for all a 2 .a� ;C1/, T 2 Œ�a2s;C1/ and
y 2 .�a; �.1 � a//, it holds that

ˆ
y;y
D .s0; T / < ˆ

y;y
D .s1; T /; (3.33)

for all s0 2 .1C�2 ; 1� and s1 2 .s0; 1�.
Now, for any " 2 .1C�

2
; 1/ we define the positive quantity

zı D zı";�;y;T WD ˆy;yD .1; T / �ˆy;yD .1 � "; T /:

Also, thanks to the continuity ofˆx;yD .s; T / with respect to .s; x; y/ 2 .1
2
; 1�����

stated in Proposition 2.12, we can define ı";�y;T;� 2 .0;C1/, such that

jˆx;yD .s; T / �ˆy;yD .s; T /j 6
zı
4

for all s 2
�
1C �
2

; 1

�
:

Thus, using the monotonicity of ˆy;yD in (3.33), we obtain that, for each x 2 � and
s0 2 .1C�2 ; 1 � "/,

ˆ
x;y
D .1; T / �ˆx;yD .s0; T / D ˆx;yD .1; T / �ˆy;yD .1; T /Cˆy;yD .1; T /

�ˆy;yD .s0; T /Cˆy;yD .s0; T / �ˆx;yD .s0; T /

> ˆ
x;y
D .1; T / �ˆy;yD .1; T /C zı
Cˆy;yD .s0; T / �ˆx;yD .s0; T /

> �
zı
4
C zı �

zı
4
D
zı
2
:
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From this, we infer that

sup
s2. 1C�2 ;1/

E
x;y
1;D.s; T / D E

x;y
1;D.s

�
x;y;T ; T / with s�x;y;T 2 .1 � "; 1�;

which proves (1.19).

We now prove Proposition 1.13 and establish the continuity with respect to the
fractional exponent of the set functionals in (1.9).

Proof of Proposition 1.13. Since the proof for the Dirichlet and Neumann case are
analogous, we focus on the Dirichlet framework.

We already established in Proposition 2.12 that for all y 2� and s 2 .0;1/ one has
that (3.18) holds, and also the functionals in (1.3) and (1.4) are uniformly bounded in
.0; 1� ��.

Therefore, by definition we obtain that, for all �2 � �,

Ql�2D .s; T / 2 .0;C1/ and zA�2
D .s; T / 2 .0;C1/; (3.34)

for all s 2 .0; 1� and T 2 .0;C1/.
Besides, thanks to Proposition 2.12 we know that lyD.�; T / and A

y
D.�; T / are

continuous in .0; 1�. Thus, by the dominated convergence theorem we obtain that
Ql�2D .�; T / and zA�2

D .�; T / are continuous in .0; 1�.
Now, we observe that

ẑ�1;�2
D .s; T / D 1

j�1jj�2j
Z T

0

Z
�1��2

rsD.t; x; y/ dx dy dt:

Therefore, thanks to [10, Theorem 6] we obtain that

ẑ�1;�2
D .s; T / 2 .0;C1/: (3.35)

Also, rsD.t; x; y/ is continuous for s 2 .0; 1� for all .t; x; y/ 2 .0;C1/ � � � �,
see, e.g., [10, Theorem 5]. Thanks to [11, Proposition 6 and Lemma 6], we have that,
for each t 2 .0;C1/ and " 2 .0; 1/, the kernel rsD.t; x; y/ is uniformly bounded in
.s; x; y/ 2 ."; 1� � � � �. Thus, as a consequence of the dominated convergence
theorem we obtain that

f .s; t/ WD
Z
�1��2

rsD.t; x; y/ dx dy

is continuous in s 2 .0; 1�.
Additionally, in view of [10, Theorem 6], we see that

jf .s; t/j 6 j�2j for all .s; t/ 2 .0; 1/ � .0;C1/;
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and therefore by the dominated convergence theorem we obtain the continuity of
ẑ�1;�2
D for s 2 .0; 1�.

Finally, the continuity of the functionals in (1.9) with respect to s 2 .0; 1� follows
from (3.34) and the fact that ẑ�1;�2D .�; T / 2 C..0; 1�/ and Ql�2D .�; T /; zA�2

D .�; T / 2
C..0; 1�/.

Now we prove Theorem 1.14. In this result we show that s D 0 is a minimizer
for the functional zE�1;�21;D , where �1 and �2 are disjoint and smooth. Also, we show

that zE�1;�22;D and zE�1;�23;D admit a positive and finite limit for s & 0.

Proof of Theorem 1.14. Let T 2 .0;C1/ and �1; �2 b � be disjoint and smooth.
Then, thanks to Lemma 2.14, we obtain that

lim
s&0

zE�1;�21;D .s; T / D 0:

Furthermore, thanks to (3.35), we see that E
�1;�2
1;D .s; T / 2 .0;C1/ for all s 2 .0; 1�.

This latter observation together with the above limit lead to (1.21).
Now we prove (1.22). The existence of the limits in (1.22) was already established

in Lemma 2.14. Using the fact that�1 and�2 are disjoint and smooth, together with
the inequality in (D.6) and also (3.19), we evince that

zFD.�1; �2/ 2 .0;C1/;
Z
���2

j� � yjFD.�; y/ d� dy 2 .0;C1/

and Z
���2

j� � yj2FD.�; y/ d� dy 2 .0;C1/;

where FD and zFD are given respectively in (2.62) and (2.72). Therefore, from (2.70),
(2.71), and these considerations we conclude the proof of (1.22).

Now we focus our attention on Theorems 1.15 and 1.16. To prove these results,
it is useful to state and prove the following proposition regarding a monotonicity
property with respect to s and a scaling property for the functional F�1;�2 introduced
in (2.53). In what follows we denote by dB the diameter of B for each bounded
set B � Rn.

Proposition 3.1. LetK � Rn be a compact set and�1;�2 � K be measurable sets
such that �1 \�2 D ¿. Then, if dK 6 1, we have that

d

ds
F�1;�2.s/ 6 0 for all s 2 .0; 1/: (3.36)

Moreover, for each r 2 .0;C1/ and y 2 Rn, it holds that

F ry�1;ry�2.s/ D rnC2sF�1;�2.s/: (3.37)
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Proof. We observe that, thanks to the dominated convergence theorem,

d

ds
F�1;�2.s/ D 2

Z
�1��2

ln jx � yj
jx � yjn�2s dx dy:

Hence, if dK 6 1, then
d

ds
F�1;�2.s/ 6 0;

which proves (3.36).
Now we show the scaling property in (3.37). Let r 2 .0;C1/ and, up to a trans-

lation, assume that y D 0. Then, applying the change of variable

.x; y/ D .rX; rY /

we obtain that

F r�1;r�2.s/ D
Z
r�1�r�2

1

jx � yjn�2s dx dy

D
Z
�1��2

r2n

rn�2sjX � Y jn�2s dX dY

D rnC2sF�1;�2.s/;
which completes the proof.

With this preliminary work, we can now prove Theorems 1.15 and 1.16. We recall
that the aim of this result is to show that if �1; �2 � � are disjoint, smooth and
close enough, then the best search strategy for the set efficiency functionals provided
in (1.9) is in a small neighborhood of s D 0.

Proof of Theorems 1.15 and 1.16. Let .y; T / 2 � � .0;C1/. If �1; �2 � � are
smooth and disjoint, then thanks to Theorem 1.14 we have that

sup
s2.0;1/

zE�1;�21;D .s; T / D zE�1;�21;D .s
.1/
�1;�2;T

; T / with s.1/�1;�2;T 2 .0; 1�: (3.38)

Moreover, If P and zP are given as in (2.93), we observe that

inf
�2��

P.�2/ 2 .0;C1/ and inf
�2��

zP .�2/ 2 .0;C1/:

Now, using (2.55) we have that, for s0 2 .0; 12 / and r 2 .0; yı/, where yı D yıs0;y;T;�
has been given in (2.27), then

ẑ�1;�2
N .s0; T / >

Cs0;y;�

.2r/n�2s0
;

for all �1; �2 � Br.y/, where Cs0;y;� is given (2.32).
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Consequently, using also (2.90), (2.91), and (2.92), we deduce that there exists
some ˇ D ˇy;T;� 2 .0; 1/ such that if�1;�2 � Bˇ .y/ are smooth and disjoint, then

sup
s2.0;1/

zE�1;�2j;N .s; T / D zE�1;�2j;N .s
.j /
�1;�2;T

; T / with s.j /�1;�2;T 2 .0; 1�; (3.39)

for all j 2 ¹1; 2; 3º.
We will first prove the results for n 6 2.
We recall that, by Corollary 2.11, if s1 2 .0; 1/ and � 2 An;s1 , where An;s1 is

given in (2.43), then

ẑ�1;�2
� .s1; T / 6

C�;�;Byı.y/;T;�

j�1jj�2j F�1;�2
�n � 2�

2

�
; (3.40)

for all �1; �2 b Byı.y/, where C�;�;Byı.y/;T;� is introduced in Theorem 2.9.
Also, in light of (2.55) we deduce that if s0 2 .0; 12 / and �1; �2 b Byı.y/, then

ẑ�1;�2
� .s0; T / >

Cs0;y;�

j�1jj�2jF
�1;�2.s0/: (3.41)

Now, we define

ı0 WD min
²
yı; 1
2

³
;

and we consider �1; �2 � Bı0.y/ smooth and such that

�1 \�2 D ¿:

Thus, from (1.9), (3.36), (3.37), (3.40), and (3.41) we deduce that if r 2 .0; 1/, s0 2
.0; 1

2
/, s1 2 .s0; 1/ and � 2 .0; n

2
� s0/ \ An;s1 , where An;s1 is given as in (2.43), it

holds that

zEry�1;ry�21;� .s0; T /

zEry�1;ry�21;� .s1; T /
D
ẑ ry�1;ry�2
� .s0; T /

ẑ ry�1;ry�2
� .s1; T /

> C
.1/

s0;�;�;Byı.y/;y;T;�

F ry�1;ry�2.s0/

F ry�1;ry�2.n�2�
2
/

> C
.1/

s0;�;�;Byı.y/;y;T;�

rnC2s0F�1;�2.s0/

r2n�2�F�1;�2.n�2�
2
/

>
C
.1/

s0;�;�;Byı.y/;y;T;�

rn�2s0�2�
; (3.42)

where we defined
C
.1/

s0;�;�;Byı.y/;y;T;�
WD Cs0;y;�

C�;�;Byı.y/;T;�
:

We recall that in writing ry�1 and ry�2 we adopted the notation in (1.23).
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As a result, for all " 2 .0; 1/, by choosing for instance s0 WD "
4

and � WD .n� "/=2
in (3.42), and using also (3.38) and (3.39), we infer that there exists some r .1/ D
r
.1/
";y;T;� such that if �1; �2 b Br.1/ı0.y/ are smooth and satisfy

�1 \�2 D ¿;

then

sup
s2.0;1/

zE�1;�21;� .s; T / D zE�1;�21;� .s
.1/
�;�1;�2;T

; T / with s.1/
�;�1;�2;T

2 .0; "/:

We now focus on the proof of (1.24) for zE2;D . Let K b � and assume that
�1; �2 � K. Then, thanks to equations (2.70) and (D.5) we have that

zE�1;�22;D .0; T / >
QcK;�R

���2
j� � yjFD.�; y/ d� dy

F�1;�2.0/

j�1j ;

where FD and QcK;� are given respectively in (2.62) and (D.7). Then, in light of (2.54)
and (3.40), if s 2 .0; 1/ and � 2 An;s \ .0; 1/, where An;s is given in (2.43), we have
that, for each r 2 .0; 1/,
zEry�1;ry�22;D .0; T /

zEry�1;ry�22;D .s; T /

D jry�2j zFD.ry�1; ry�2/R
��ry�2

j� � yjFD.�; y/ d� dy
Qlry�2D .s; T /

ẑ ry�1;ry�2
D .s; T /

>
jry�2j QcK;��.s/R

��ry�2
j� � yjFD.�; y/ d� dy

Qlry�2D .s; T /

CD;�;K;T;�

F ry�1;ry�2.0/

F ry�1;ry�2.n�2�
2
/
; (3.43)

where CD;�;K;T;� was introduced in Theorem 2.9.
Now, we observe that thanks to the limit in equation (2.75) one has that

lim
s&0

Qlry�2D .s; T /�.s/

D lim
s&0

Qlry�2D .s; T /

s
�.s/s

D .1 � e�T .T C 1//
jry�2j

Z
��ry�2

j� � yjFD.�; y/ d� dy: (3.44)

Let us set the notation

C�;K;T;ry�2;� WD inf
s2.0;1/

jry�2j QcK;��.s/R
��ry�2

j� � yjFD.�; y/ d� dy
Qlry�2D .s; T /

CD;�;K;T;�
:
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In view of (3.44), we see that if such infimum is attained at s D 0, then it does not
depend on ry�2.

If the infimum is attained for some Os 2 .0; 1�, then using Proposition 2.12 and
Lemma D.3 with

f .y/ WD lyD.Os; T / and g.y/ D
Z
�

j� � yjFD.�; y/ d�;

we obtain that
C�;K;T;� WD inf

r2.0;1/
�2�K

C�;K;T;ry�2;� > 0:

As a result, using equation (3.43) and Proposition 3.1, we deduce that if dK 6 1, then

zEry�1;ry�22;D .0; T /

zEry�1;ry�22;D .s; T /
> C�;K;T;�

F ry�1;ry�2.0/

F ry�1;ry�2.n�2�
2
/

>
C�;K;T;�

rn�2�
: (3.45)

Therefore, for all " 2 .0; 1/ and K b � that are start-shaped with respect to y 2 K,
by choosing s 2 ."; 1/ and � WD .n � "/=2 in (3.45), we deduce the existence of
some r .2/ D r .2/";K;T;� such that if �1; �2 � r .1/y K satisfy

�1 \�2 D ¿

and are smooth, then

zE�1;�22;D .0; T / > sup
s2.";1/

zE�1;�22;D .s; T /:

This concludes the proof of (1.24) for zE2;D . The proof of (1.24) for zE3;D will be
omitted, being analogous to the one for zE2;D .

We now prove (1.25) for zE2;N . To do so, we fix some s0 2 .0; 12 /, and, in light of
Proposition 2.12, we define the positive constant

Cs0;T;�2;� WD inf
s12.s0;1/

Ql �2N .s1; T /

Ql �2N .s0; T /
:

Also, if the above infimum is attained for some Os 2 Œs0; 1�, using Lemma D.3 with

f .y/ D lyN .Os; T / and g.y/ D lyN .s0; T /;

we set
Cs0;T;� WD inf

�2b�
Cs0;T;�2;� > 0:

Thus, making use of equations (3.36), (3.37), (3.40), and (3.41), we deduce that
if �1; �2 b Bı0.y/, and K � Bı0.y/, r 2 .0; 1/, s0 2 .0; 12 /, s1 2 .s0; 1/, and
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� 2 An;s1 \ .0; n2 � s0/, we have that

zEry�1;ry�22;N .s0; T /

zEry�1;ry�22;N .s1; T /
D
ẑ ry�1;ry�2
N .s0; T /

Qlry�2N .s0; T /

Qlry�2N .s1; T /

ẑ ry�1;ry�2
N .s1; T /

> C
.1/
�;s0;y;K;T;�

F ry�1;ry�2.s0/

F ry�1;ry�2.n�2�
2
/

D C .1/�;s0;y;K;T;�

rnC2s0F�1;�2.s0/

r2n�2�F�1;�2.n�2�
2
/

>
C
.1/
�;s0;y;K;T;�

rn�2s0�2�
; (3.46)

where we defined

C
.1/
�;s0;y;K;T;�

WD Cs0;y;�

CN;�;Byı.y/;T;�
Cs0;T;�:

Therefore, for each " 2 .0; 1/, by choosing for instance s0 WD "
4

, s1 2 ."; 1/ and � WD
.n� "/=2 in (3.46), and also thanks to (3.39), we deduce that there exists some r .2/ D
r
.2/
";y;T;� 2 .0; ˇ/ such that, for each �1; �2 � Br.2/ı0.y/ smooth and disjoint,

sup
s2.0;1/

zE�1;�22;N .s; T / D zE�1;�22;N .s
.2/
�1;�2;T

; T / with s.2/�1;�2;T 2 .0; "/:

This concludes the proof of (1.25) for zE2;N . The proof of (1.25) for zE3;N is analogous
to the one for zE2;N just concluded and therefore it will be omitted.

This concludes the proof of Theorems 1.15 and 1.16 for n 6 2.
Few changes are in order to show Theorems 1.15 and 1.16 also for n > 3. In par-

ticular, we have to repeat the above arguments by replacing (3.40) with the inequality
in (2.54). The procedure will determine changes only on the constants involved, in
the same fashion of the proof of Theorems 1.7 and 1.8 for n > 3.


