Chapter 3

Proof of the main results

This chapter is devoted to the proofs of the main results discussed in the introduction.
It is divided into two main parts.

In Section 3.1 we prove the results stated in Section 1.2. Namely, we analyze the
environmental scenario where the target location coincides with the forager starting
point.

In Section 3.2 we instead discuss the best search strategy when the prey is in a
small neighborhood of the seeker initial position. In particular, we prove all the results
contained in Sections 1.3 and 1.4.

3.1 Proof of the results in Section 1.2

To prove the results presented in Section 1.2, we consider 2 = (0, a) for some a €
(0, +00). The normalized eigenfunctions of the Laplacian in (0, a) with Dirichlet
datum as defined in (2.3) are

{pi(x) = \/gsin(naﬁ) 3.1)

and the corresponding eigenvalues are

k 2
Bpk = (”—) . (3.2)

a

As a consequence, recalling (2.4), the Dirichlet spectral fractional heat kernel reads

as
+o00 2s
2 k k k
rp(t,x,y) = — Z sin(u) sin(u) exp(—l (n_) ) (3.3)
ai= a a a
This and (1.5) lead to
2 T +oo k k k 2s
CDE’y(s, T)=-— f Z Sin(u) sin(n—x) exp(—t (ﬂ—) ) dt (3.4)
alo = a a a

and accordingly, if s € (%, 1),

2a%71 X 1 wky wkx wk\*
X,y _ 2 : . .
®D (S,T) = 7]{ ﬁsm(T) SIH(T) [1 —eXp(—T(7) )}
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We can also compute explicitly the average distance / g (s, T') and the mean square
displacement :A% (s, T) as a series, as showed in detail in Appendix B.

The normalized eigenfunctions of the Laplacian in (0, @) under Neumann condi-
tions as defined in (2.3) take the form

2
En(x) = ,/—cos(”kx) itk ef1,2,3,...),
a a

Ino(x) = % ifk =0,

and the corresponding eigenvalues are

2
Bni = (”a—k) ifk €{0,1,2,3,...}. (3.6)

Therefore, in view of (2.4), the Neumann spectral fractional heat kernel reads as

s 1 2% wkx wky 7k \ 2
ry(t x,y) = p + EI;COS(T) COS(T) exp(—t(j) )

Hence, by (1.5),

T 2 too T 2s
N (s, T) = = + P Z/o cos(nTkx) cos(naﬂ) exp(—t(ﬂa—k) ) dt (3.7)
k=1

and, as a result, when s € (%, 1),
DN (s, T)

T 2a%71EX% | wkx wky - r nk\* 38
—E+ s kgjﬁcos o cos o exp o . (3.8)

1

Thanks to these preliminary observations, we are now in the position of proving
the results presented in Section 1.2. We begin by showing Proposition 1.1.

We recall that we adopt the subscript * every time that a functional refers to both
the Dirichlet and the Neumann case.

Proof of Proposition 1.1. Letx € Q and T € (0, +00). Then, thanks to Theorem 2.8
we know that if eithern = 2 orn = 1 and s € (0, %] it holds that

Oy (s, T) = +o0. 3.9
Furthermore, from Proposition 2.12 we have that

I7(s,T) € (0,+00) and AL(s,T) € (0, 4+00), (3.10)
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for all s € (0, 1]. Therefore, as a direct consequence of (3.9) and (3.10) we obtain the
desired claim. [ ]

The proof of Proposition 1.2 that we present here below is a consequence of The-
orem 2.8. For the sake of completeness, in Appendix C we also provide an alternative
proof of Proposition 1.2 which employs directly the spectral structure of the efficiency
functionals.

Proof of Proposition 1.2. Let x € Q = (0,a), for some a € (0, +00). Then, thanks to
Theorem 2.8 we have that for each s € (0, %] and T € (0, +00) the statement in (3.9)
holds true. Also, if s € (%, 1], in view of Proposition 2.12 one has that

O¥¥ (s, T) € (0, +00). @3.11)

Furthermore, from Proposition 2.12 we know that for each s € (0, 1] and T € (0, +00)
the statement in (3.10) holds true as well. Therefore, using equation (3.11), in the
notation of Proposition 1.2, we conclude that

1
Ex,j(s,T) € (0,400) foralls e (5 1i|,

forall j € {1,2,3}.

Hence, to complete the proof of Proposition 1.2, it is only left to show the con-
tinuity statement. Thanks to Proposition 2.12 we have that, for each x € Q and
T € (0, +00), the functional ®;"* (-, T') is continuous with respect to s € ( %, 1]. Also,
the continuity with respect to s € (0, 1] of the functionals A% (s, T) and [ (s, T) was
already established in Proposition 2.12.

As a consequence, recalling (3.10) we conclude that the functionals in (1.6) are
continuous in § € (%, 1] for x = y. ]

Now we prove Theorem 1.3. Here we establish that

s ==
2
is the best search strategy in (%, 1] when the forager initial point coincide with the
target location.

Proof of Theorem 1.3. We point out that, in order to prove Theorem 1.3, it suffices to
establish (1.10). Indeed, once (1.10) is proved, we already know from Proposition 1.2
that &4 j (s, T) € (0, +o00) for all s € (%, 1] and j € {1, 2, 3} and accordingly the
supremum over § € (%, 1) of & « is attained at s = 1/2.

Furthermore, thanks to (C.1) it is enough to show (1.10) for a := 1. To prove it,
we observe that all the denominators in (1.6) satisfy (3.10). Consequently, the claim
in (1.10) is equivalent to
lin} Oy (s, T) = +o0. (3.12)
s\

N3
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Thus, from now on we focus on the proof of the claims in (3.12). We establish the
claim for the Dirichlet case, since the Neumann one follows from the Dirichlet one
and (2.22).

For this, we recall (C.4) and we see that there exist Ko, N = 1 such that, for
every N €N,

=4

1 &0
< (N +3tKo)>’

X,X
qDD (S, T) Z 7-[25
14

We now pick L > 0, to be taken as large as we wish in what follows, such that el eN,
and we choose N := ¢2L + 1. In this way, we find that

exp(2L) £o 1 exp(2L) £o
(. 1) Y NiakE e X Gk
b - 2s 2s 7 2s 2s
T L=exp(L)+1 (N t 3€K0) T L=exp(L)+1 (4£K0)

e L exp(L+j) 1

0

- (47TK0)ZS Z Z {25
j=1 L=exp(L+j—1)+1

exp(L+J) 1

L
> 8—0 - -
~ (4w Kg)2s Z Z exp(2s(L + j))

Jj=1 L=exp(L+j—1)+1

_eole—1) XL:exp(L—i-j —1)

 (47Kp)?s = exp(2s(L + j))

. gole — 1) XL: 1
T (4nKo)?s exp((2s — DL + 1) = exp((2s = 1)j)

_ gole —1) exp(l —2s)(1 —exp((1 —2s)L))
" (4mKo)2sexp((2s — 1)L + 1) x 1 —exp(1 —2s)
gole — 1) (exp((2s —1)L) —1)

- (4meKp)?s exp(2(2s — 1)L) Tz exp(l — 2s)

In particular, we can choose L € [ﬁ, 2s2_—1] such that eZ € N and deduce from the
above estimate that
gole —1)? 1
X .
(4meKo)2se* 1 —exp(l —2s)

O5 (5, T) =

Sending now s % we see that

lim 57" (s, T) = 400,
s\%

proving the claim in (3.12) for the Dirichlet case, as desired. |
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Finally, we prove Theorem 1.4. In this result, we discuss the impact of some
geometrical properties of the domain, such as the size of it, on the monotonicity of
the efficiency functionals in (1.5) with respect to the fractional exponent.

Proof of Theorem 1.4. We prove the monotonicity properties of ®,. To this end, in
the Dirichlet case, when a € (0, rr] the first eigenvalue of the Laplacian is less than or
equal to 1, thanks to (3.2); hence, we capitalize on [10, Theorem 7] and we conclude
that, for all 59 € (0, 1) and 51 € (s, 1), we have that, for every x € (0, a),

rp (. x,x) > rp (£, x,x). (3.13)

Similarly, in the Neumann case, when a € (0, ] the first nontrivial eigenvalue
of the Laplacian is less than or equal to 1, due to (3.6). This allows us to use [11,
Theorem 7] and obtain that, for all sg € (0, 1), 51 € (59, 1) and x € (0, a),

ra(t,x,x) > ry(t.x, x). (3.14)

Now, from (1.5), (3.13), and (3.14) it follows that, for all s¢ € (0, 1), s1 € (5o, 1)
and x € (0,a),
O (50, T) > PF* (51, T). (3.15)

From (3.15) we obtain the desired monotonicity property when a € (0, ], as
stated in formula (1.11) of Theorem 1.4.

Now we deal with the case in which a is sufficiently large and we prove (1.12)
and (1.13). To this end, we start with the Dirichlet case, utilize (3.5) with the nota-
tion o 1= % and deduce that, for every T € (0, +00) and x € (0, a),

20,057, 7) = a%[a“ > e sz(%x) [1 ) exp(_T(g) 2)H
:mzsmazk—; () - (%))
_2a2S+°°1nk . (a)[l—exp(— ( ) )}
il
+2Ta”+f%3m2(%)exp( ()
Zh:a—lnk .2(kax)[1—exp(

ey
_ )
e E ()l (20
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+oo

Ino —Ink k
= 202" Z naan sinz(?x)

e Y ) e

These observations lead to
a

maquz’x(s, T)

_ lnajnz(g)[l _exp(_(%)(l + i)]
e () ee(r(5) )0+ (2) )]

We also observe that, if f(z) :=1— e "(1 4+ t), we have that f'(t) = te™* >0
for all T > 0. Accordingly, we see that 1 —e™*(1 + 7) > f(0) = 0forall T > 0.In
addition, we have that f(r) < 1 for all ¢ > 0. As a result,

() [1-on(r(6) ) () )]

k=2
1 _1 2s 2s
= 2 () (G) )0+ r(2) )]
k2s o o o
keNN(a,+00)
Ink
= Z k23'

keNN(a,+o0)

From these remarks, we arrive at

a . X T T
masq’f{x(& T) = Inasin® (&)[1 —exp(—azs) (1 + @)]
Ink
o Z k2s :

keNN(a,+00)

Now, if T € [va?®, +00) = [vr?Sa?S, +00), then

| _exp(—a%) (1 ; a%) - f(a%) > fr®) = f().

Hence, in this situation,

a

Ink
4or2s k2s

3sP5 (5. T) = Inw sin? (g)f(v) — Z 2

keNN(a,+o0)



Proof of the results in Section 1.2 59

We also recall that

/+°° Int Jr — 14+ @2s—1)In(x —2)
a—2 T (2s — 1)?(a —2)%5~1
and therefore, if « is large enough,
Z lnk 1+ @2s—1)In(x—2) - 2s In(a —2)
(2s —D2(a—2)25"1 T (25 — 1)2(a — 2)2s~1

keNﬂ(a,+oo)
2sIna
< .
25 —1)2(a — 2)2s1

Besides, if x € (va, (1 —v)a) = (var, (1 — v)ar) we have that

)sin<£)| > sin(ex). (3.17)
o

These observations lead to

2s
X,X 2
Wa s®p (8. T) Z sin”(vm) f () = 5 s 2y
2
= Sil’lz(l)n)f(l)) — m > O,

as long as o (whence a) is sufficiently large, possibly in dependence of v.
This establishes (1.12) in the Dirichlet case and we now focus on the proof
of (1.13) in the Neumann case. In this situation, recalling (3.8),

T L X1 kx K\
Ecp)ji]x(s T) = 54_05 s;kmcos (a)[l—exp(—T(a) )i|

and therefore

Jﬁasqﬁ‘v’x(&ﬂ mO‘Z_COS( )[l_eXp( (g)zs)}
Seor(F)[eo(r(5))
(e

This puts us in the same position as in (3.16), but with the sine replaced by the cosine.
Hence, in this case, we only need to detect the analog of (3.17). For this, we observe
that if x € (0, (1_2”)“) U ((sz)”,a) = (0, (1_;)“”) U ((H;)“”,an) we have that

‘COS(E) ’ > COS(%).

Thus, the same argument as in the Dirichlet case leads to (1.13). ]
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3.2 Proof of the results in Sections 1.3 and 1.4

In this section we prove the results stated in Section 1.3. Here we discuss the optimal
search strategy when the forager starting position y € Q is sufficiently close to the
prey location x € €2, but does not coincide with it.

We recall that we adopt the subscript * every time that we refer to both the Dirich-
let and the Neumann case.

We start this section by showing that all the functionals defined in (1.6) are con-
tinuous with respect to s € (0, 1].

Proof of Proposition 1.5. Let (x,y,T) € Q x Q x (0,4+00) be such that x # y. Then,
thanks to Proposition 2.12 we have that

O (5.T) € (0, +00),

and also
17(s,T) € (0,4+00) and AY(s,T) € (0, +00), (3.18)

for each s € (0, 1]. These considerations give that 8;f;y (s,T) forall s € (0,1].

Now, from Proposition 2.12 and (3.18), we deduce that the functionals S;f;y - 7)
are continuous with respect to s € (0, 1]. ]

Now we prove Theorem 1.6. We show that s = 0 is a global minimizer for
&1 p( T) in (0, 1) for each x, y € Q such that x # y and for all T € (0, +00).
Moreover, we discuss the existence of the limit for s ~\, 0 of & p and &3 p.

Proof of Theorem 1.6. Let x,y € Q suchthat x # y and T € (0, +00). Then, thanks
to Lemma 2.13 we have that

lim &7 (s, T) = 0.
s{% 1,p(s:T)

Since @57 (s, T) € (0, +00) for each s € (0, 1], see Proposition 2.12, we estab-
lish (1.14). We point out that the existence of the limits in (1.15) was already obtained
in Lemma 2.13.

Besides, making use of the maximum principle for the heat equation, we see that

Fp(z,w)>0 forallz,w e Q, (3.19)

and so the right-hand sides of the expressions in (2.60) and (2.61) are nonnegative.
Also, using (D.6) and (3.19) we deduce that the limits in (2.60) and (2.61) are also
positive and finite. ]

We prove now Theorems 1.7 and 1.8. We recall that this result states that if the
forager starting position is close enough to the target location, then the optimal search
strategy for the functionals in equation (1.6) is in a small neighborhood of s = 0.
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Proof of Theorems 1.7 and 1.8. Let (y,T) €2 x (0, +00). We recall the limit in (2.59)
and we observe that

sup €7 (s.T) = 675D 7. 7)  withs), - e (0.1, (3.20)
s€(0,1) 7 7

foreach x € Q \ {y}.
Also, From Lemma 2.15 and equation (2.25), we evince that if 5o € (0, %) there

exists some B = B,y 1.0 € (0, SA) such that, if x € Bg(y) \ {y}, then

lim sup 8] }\y,(s T) < (so, T),
SN0

forall j € {1,2, 3}, where § is provided in (2.27).
Thus, we deduce that there exists some /3 ﬁy 1, such thatif x € B3 ( W\ {y},
then
sup E5(5.T) = €73 6Y) 1. T) withs¥) 1 € (0,11, (3.21)
s€(0,1)
forall j € {1,2,3}.
Let us first study the case n < 2. We recall that thanks to Lemma 2.7, for each
so € (0, 2) we have the existence of some § = SSO,y,T’Q, given in (2.27), such that,
for each x € B3(y) \ {y}, one has that

CS(),y,Q
|x — y|r=2s0”

OV (50, T) = (3.22)
where Cy,,, q is provided in (2.32). Also, for each s € (0,1) and p € A, ¢, where
Ap s is given in (2.43), thanks to (2.45) we have the existence of some constant
Cs11,B5(»),7,0 such that

Co . B;().T.2

XY (s, T) < ,
(s, T) X P

(3.23)
for each x € B3(y) \ {»}.

Consequently, from the last two inequalities we obtain that if 59 € (0, %), 51 €
(80, 1) and u € A, 5, , then

€1 (0. T) _ @37 (50.T) _ Crsoyon.Bs0) .12
= xy g (3.24)
€171, T) (51, T) |x — y|r=2s0=21
forall x € Bz(y) \ {y}, where we set
Cso,y.2
Cs.s50.y.u.B5(»).T.Q '= w0 (3.25)

Ciu.B;().T.Q
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As a result, for each ¢ € (0, 1), by choosing sg := £,51 € (g,1) and u ;= (n —¢)/2
in (3.24), and recalhng also (3.20) and (3.21), we 1nfer the existence of some §) =
5(1) .0 €O, 8) such that for each x € Bga)(y) \ {y} it holds that

sup Sicf (s,7) = Sicf (Sif))c,y,T’ T) with s* xyT € 0, ).
s€(0,1)
This concludes the proof of (1.16) and (1.18) with j = 1.
Let us now prove (1.17) for the functional &, p. To this end, let d,
and By := By, (y). Then, thanks to equation (D.5) in Lemma D.4 we have that there
exists a constant ¢g, o such that for each x € B), \ {y} it holds that

— 4(.9Q) 39)

Fp(x,y) - CB, . 1
JolE—yIFpE. y)dE ~ [q 6 — y|Fp(€.y)dE |x — y|*

Therefore, using (3.23) and the estimates in (3.26), if s € (0, 1), x € B;(y) \ {y} and
W 1s given as in (2.43), we obtain that

€37(0,T) = (3.26)

€p0.7) _ Fp(x,y) 12(s. T)
Ex5(s.T)  [olé—y|Fp(E y)d§ @37 (s. T)
T($)lp(s.T) CB,.Q 1

> . 327
Jo lE = yIFp(5,y)dé Cp,y,By).10 |x — y["=2

Now, using (2.68) and the limit
lim s[(s) =1,
S{l’(l) sT'(s)
we obtain that
F(s)ly (s,7) _
SN0 Jg & — yIFp (€ y)dE
Thanks to this observation and Proposition 2.12, we can define the positive constant
f U(s)lp (s, T) CB,.Q
se(0,1) Jo lE=YIFp(€ ) dé Cp B, 1.2

Then, we obtain from (3.27) that for each x € By \ {y},s € (0,1) and u as in (2.43)
it holds that

—e (T +1).

> 0.

Cuy.B;(»).1.Q =

(0, 7) Cu,y,Bg(y),T,sz
(s, Ty~ -y
Therefore, for each ¢ € (0, 1) by taking s € (e, 1) and choosing u := (n —¢)/2

in (3.28), we deduce that there exists some §@ = 82’2;] ¢ such that for each x €
Bs (y) \ {y} it holds that

(3.28)

8;%(0, T)>= sup SJ%(S,T).
’ s€(e,1) ’
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The proof of (1.17) for €3 p is analogous to the one for &, p and therefore it will be
omitted. This last step concludes the proof of Theorem 1.7 forn < 2.

Now we show (1.18) when n < 2 for &, n. To do so, thanks to Proposition 2.12
and (2.89) we can define the positive constant

-~ . f l]J\/I(SlaT)

0. 12 (s0.T)
s0€(0, 50,
sieon) N0

Then, if s¢ € (0, %), 51 € (S0, 1) and pu € A4, , thanks to equations (3.22) and (3.23)
we have that

Esn(s0.T) @ (0. T) InG1.T) _ Cusonkire

= > , 3.29
851)\)/ (51.T) N7 (s1.T) I3 (s0.T) ~ |x — y|r2s072u 629

forall x € Bg(y) \ {y}, where we defined
éu,so,y,K,T,Q = CN,s(),y,u,BsA(y),T,Qay,T,Q- (330)

Therefore, for each ¢ € (0, 1), by choosing s¢ := %, st €(g,)and u:=(n—e¢)/2

in (3.29), and recalling (3.21), we deduce the existence of some

82 =50 1o € (0.P)

such that for each x € Bg)(y) \ {y} it holds that

sup &% (s, T) = &x (s)(fi’T, T) with s)(c%)y,T € (0,¢).
s€(0,1)
This concludes the proof of (1.18) for &, n. The proof of (1.18) for &3 y is analogous
to the one for & .
It is left to prove Theorems 1.7 and 1.8 when n > 3.
If n > 3, we just have to replace the inequality (3.23) with the one in (2.44). Thus,
repeating the above procedure with this change, the inequalities in (3.24) and (3.29)

become Xy
€57 (50, T) _ CrusonBz0).1.0

giﬁy(sl’ T) - |X _ y|2(s1—s0) ’

for all s¢ € (0, %), s1 € (50, 1) and x € B3(y) \ {y}, where we denoted by &4 any of
the functionals &1 p, &1,y and &, v .

The constant Cy 5, B;(»), T, 1s obtained substituting the constant Cy. ,,, B.(y).7.2
with C*,Bg(y),r,g in (3.25) for &;,p and &1y, and in (3.30) for &, y.

Analogously, equation (3.28) becomes

(3.31)

, )
€55(0,7) N C) B.).T.2
EpG1.T) ~ |x =y

(3.32)
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forall s € (0,1) and x € B3(y) \ {y}, where we defined

c® — inf T (s)lp (s, T) By.Q .
V-BsO-TR T seo,1) [q € — y|Fp(§.y) dé§ Cp.B;(»).1.2

Therefore, for each ¢ € (0, 1), by choosing s¢ := % in (3.31) and 57 € (&, 1)
in (3.31) and (3.32), we obtain (1.16), (1.17) for &;,p and (1.18) for both &; x and
&>, ny whenn = 3.

The proof of (1.17) and (1.18) respectively for &; p and &3 x are analogous to
the one of &, p and &, x when n > 3 and are therefore omitted. [ ]

Now, we prove Corollary 1.12. Namely, we establish in the one-dimensional
framework, and under suitable geometric assumptions on the domain, that if the tar-
get location x € €2 is close enough to the forager starting position y € €2, then there
exists a local maximizer for the functionals £}, and &}, in a neighborhood of the
local Brownian strategy s = 1. ,

Proof of Corollary 1.12. We will only prove (1.19), since the proof of (1.20) is anal-
ogous. For this, let v € (0, %). Then, thanks to Theorem 1.4, we have that there
exists some a, € (, +00) such that, for all a € (a,, +00), T € [va®*, +o0) and
y € (va,v(l — a)), it holds that

D77 (s0.T) < @5V (s1.T), (3.33)

for all so € (132, 1] and 51 € (so. 1].

Now, for any ¢ € (%, 1) we define the positive quantity

g: ey, T *= q)g,y(], T)— @é’y(l —¢,T).

Also, thanks to the continuity of @77 (s, T) with respect to (s, x, y) € (%, 1IxQ2xQ
stated in Proposition 2.12, we can define & ,,. 7, € (0, +00), such that

1
forall s € ( —;V,l:|.

Thus, using the monotonicity of CI%’y in (3.33), we obtain that, for each x € Q and

so € (1;]},1—8),

|<I>£’y(s, T)— CI>ly)’y(s, 7| <

| o9

QL (1,T) — @57 (50, T) = 57 (1, T) — %7 (1, T) + @57 (1, T)
— 057 (50, T) + D37 (50, T) — D17 (50, T)
> d%Y(1,T)— oY (1,T) + 8
+ @27 (50, T) — @57 (50, T)
§

~ 3§
>-245-2<
17T°7 %

N | o9
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From this, we infer that

sup &1 (s,T) = &7 p (s
se(32,1)

;,y’T, T) with s;y,T e(l1—eg1],

which proves (1.19). ]

We now prove Proposition 1.13 and establish the continuity with respect to the
fractional exponent of the set functionals in (1.9).

Proof of Proposition 1.13. Since the proof for the Dirichlet and Neumann case are
analogous, we focus on the Dirichlet framework.

We already established in Proposition 2.12 that for all y € 2 and s € (0, 1) one has
that (3.18) holds, and also the functionals in (1.3) and (1.4) are uniformly bounded in
(0,1] x Q.

Therefore, by definition we obtain that, for all 2, C €2,

[22(s,T) € (0,+00) and Ap2(s,T) € (0, +00), (3.34)

foralls € (0,1] and T € (0, +00).

Besides, thanks to Proposition 2.12 we know that [} (-, T) and A} (-, T) are
continuous in (0, 1]. Thus, by the dominated convergence theorem we obtain that
lgz(-, T) and Agz (+, T) are continuous in (0, 1].

Now, we observe that

- 1 T
@gl’gz(s, T) = Q—/ / rp(t,x,y)dxdydt.
121[|122] Jo Ja,xa,

Therefore, thanks to [10, Theorem 6] we obtain that
d12(5 T) € (0, +00). (3.35)

Also, r}(t, x, y) is continuous for s € (0, 1] for all (7, x, y) € (0, +00) x 2 x Q,
see, e.g., [ 10, Theorem 5]. Thanks to [11, Proposition 6 and Lemma 6], we have that,
for each t € (0, +00) and ¢ € (0, 1), the kernel 7}, (¢, x, y) is uniformly bounded in
(s,x,y) € (g, 1] x 2 x Q. Thus, as a consequence of the dominated convergence
theorem we obtain that

f(s, 1) := / rp(t,x,y)dxdy
Q]XQZ

is continuous in s € (0, 1].
Additionally, in view of [10, Theorem 6], we see that

| f(s,1)] <[] forall (s,1) € (0,1) x (0, +00),
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and therefore by the dominated convergence theorem we obtain the continuity of
5331’92 for s € (0,1].

Finally, the continuity of the functionals in (1.9) with respect to s € (0, 1] follows
from (3.34) and the fact that ®%"2(., T) € C((0, 1)) and [22(-, T), AR2(-, T) €
C((0, 1. ]

Now we prove Theorem 1.14. In this result we show that s = 0 is a minimizer

for the functional glg }3’92, where €21 and €2, are disjoint and smooth. Also, we show

that gf 592 and g;z 10,522 admit a positive and finite limit for s N\ 0.

Proof of Theorem 1.14. Let T € (0, +00) and 21, 2, € 2 be disjoint and smooth.
Then, thanks to Lemma 2.14, we obtain that

lim §%1:52 (5. T) = 0.
sl\g(l) .o & T)

Furthermore, thanks to (3.35), we see that 819‘592(& T) € (0, +00) forall s € (0, 1].
This latter observation together with the abox;e limit lead to (1.21).

Now we prove (1.22). The existence of the limits in (1.22) was already established
in Lemma 2.14. Using the fact that 2; and €2, are disjoint and smooth, together with
the inequality in (D.6) and also (3.19), we evince that

Fo(@1.25) € (0, +00), fm & — y|Fp(E,y) dEdy € (0, +00)

and

/ & — yPFo(E.y) dEdy € (0. +00),
QxQo>

where Fp and F p are given respectively in (2.62) and (2.72). Therefore, from (2.70),
(2.71), and these considerations we conclude the proof of (1.22). ]

Now we focus our attention on Theorems 1.15 and 1.16. To prove these results,
it is useful to state and prove the following proposition regarding a monotonicity
property with respect to s and a scaling property for the functional F 12 introduced
in (2.53). In what follows we denote by dp the diameter of B for each bounded
set B C R”.

Proposition 3.1. Let K C R” be a compact set and 1, Q2 C K be measurable sets
such that Q1 N Qy = @. Then, if dx < 1, we have that

d
d—FQI’QZ(s) <0 foralls e (0,1). (3.36)
S

Moreover, for each r € (0, +00) and y € R”, it holds that

Frle’ryQZ(S) — rn+2SFQI:QZ(s)' (337)
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Proof. We observe that, thanks to the dominated convergence theorem,

d 1 —
— FOS2(5) = 2/ A=yl i;2| dxdy.
ds QxQ, |X — y|"T2

Hence, if dg < 1, then
iFQ"QZ(s) <0,
ds
which proves (3.36).
Now we show the scaling property in (3.37). Let r € (0, +00) and, up to a trans-

lation, assume that y = 0. Then, applying the change of variable
(x,y)=(rX,rY)
we obtain that

FrQl’rQZ(s):/ ———dxdy
I‘Qergz |X - y|n_2s

’,.2n

= dxdy
/leﬂz rn—25|X _ Y|n—2s

— l"n+ZSFQI’QZ(S),

which completes the proof. |

With this preliminary work, we can now prove Theorems 1.15 and 1.16. We recall
that the aim of this result is to show that if 1, Q5 C Q are disjoint, smooth and
close enough, then the best search strategy for the set efficiency functionals provided
in (1.9) is in a small neighborhood of s = 0.

Proof of Theorems 1.15 and 1.16. Let (y,T) € Q2 x (0, +00). If 1, Q2p C Q are
smooth and disjoint, then thanks to Theorem 1.14 we have that

o021,Q o021,Q .
s(up)é”Lb 2(5,T) = E75% (G g, 7 T) withsy) o 7€ (0.1, (338)
s€(0,1

Moreover, If P and P are given as in (2.93), we observe that
inf  P(25) € (0, d _inf P(Qy) € (0, .
ol (22) € (0,+00) an ol (22) € (0, +00)

~

Now, using (2.55) we have that, for s¢ € (0, %) and r € (0, g), where § = 50,0,T,Q
has been given in (2.27), then

CSoay,Q

=00
Dy (0. T) = Qry-20°

for all 21, Q2 C B, (y), where Cy, o is given (2.32).
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Consequently, using also (2.90), (2.91), and (2.92), we deduce that there exists
some B = By 1o € (0,1) such that if 2, 2, C Bg(y) are smooth and disjoint, then

sup ECN (5. T) = EXy (Y o, 7. 1) withsd) o 7 €01, (3.39)
s€(0,1)
forall j € {1,2,3}.
We will first prove the results for n < 2.
We recall that, by Corollary 2.11, if s; € (0, 1) and u € A, 5,, where A4, 4, is
given in (2.43), then

BP9 (s51, T) <

Ci10,B;(»).T.Q Q1.9 (n - 2/1,) (3.40)

21922 2

for all 21, Q5 € B;(y), where Ci ;i B (),1,0 is introduced in Theorem 2.9.
Also, in light of (2.55) we deduce that if s¢ € (0, %) and 21,2, E Bg(y), then

- Cs v

Y12 (59, T) = 022 182 (5. (3.41)

D2 g g, T
Now, we define
!
8o = m1n{8, E}’
and we consider 1, Q2> C Bs,(y) smooth and such that
Ql N Qz =dJ.

Thus, from (1.9), (3.36), (3.37), (3.40), and (3.41) we deduce that if r € (0, 1), 5o €
(0, %), 51 € (so. 1) and u € (0,5 — s0) N Aps,, Where A, 5, is given as in (2.43), it
holds that

Qq,ryQ ~
ES (50, T) B2 (5,T)

1,%
ELT i) ST (T
) L )
=

50,%,1,B5(y),», T, FryQi.ryQo (n—Z;L)
2

rn+2S0 FQIsQZ (SO)

1
>
- CSO,*>M,B§(y),y,T,Q rzn_zquljgz(%)

(1)

50,%,4,B5(),y,T,Q2

> 8 , (3.42)
rn—2s0—2p,
where we defined
) Cso,y.2

SO;*?M’B:S\(y)’y’T’Q = C* 12 BA(y) T.Q .
M Dy T2

We recall that in writing r,, €21 and r, 2, we adopted the notation in (1.23).



Proof of the results in Sections 1.3 and 1.4 69

As aresult, for all ¢ € (0, 1), by choosing for instance 5o :=  and u := (n —¢)/2
in (3.42), and using also (3.38) and (3.39), we infer that there exists some r =

ra(leQ such that if Q1, 2, € Br(1)50 (y) are smooth and satisfy

QN =y
then

o21,Q o021,2 1
s(l:)pl)é“l,j( 2(5.7) = E7LP (Y g ) withsl'h o 7€ (0.0).
s€(0,

We now focus on the proof of (1.24) for §2’ p. Let K € Q2 and assume that
Q1,82, C K. Then, thanks to equations (2.70) and (D.5) we have that

CK.Q F21:822 ()
foQ2 &€ —y|Fp(§, y)dEdy [$21]
where Fp and Ck q are given respectively in (2.62) and (D.7). Then, in light of (2.54)

and (3.40),if s € (0,1) and u € A, s N (0, 1), where A, ; is given in (2.43), we have
that, for each r € (0, 1),

91,92(0 T) >

&5 "™ 0.1)
Epp (e, T)
I “ry Q
_ |ry Q22| Fp (ryS21,1,22) ]lr)y 2(s,T)
Jaxrya, 1E = YIFD(E y) dEdy %m0 1)
IryQ22|cg,T (s) ryszz( T) Fryﬂl,ryﬂz(o)

> , (343
Jaxrya, 1§ = YIFpE y)d§dy Cp u k.0 Fry@um@(t21)
where Cp ;,, k, 7,0 Was introduced in Theorem 2.9.
Now, we observe that thanks to the limit in equation (2.75) one has that
lim Iy %2 (s, T)T
Jim 725, T)T(5)
82T
= lim Mr(s)s
SN0 S
(1—eT(T+1))
= |§ = yIFp(§.y)dEdy. (3.44)
|1y Q25| Qxry Q>

Let us set the notation

inf IryQaléx T (s) Iy (s.T)
se(0.1) Jaxr,, 1§ = VIFp(. y)dédy Cp k1o

CukTry:.0 =
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In view of (3.44), we see that if such infimum is attained at s = 0, then it does not
depend on 7y, 2.

If the infimum is attained for some § € (0, 1], then using Proposition 2.12 and
Lemma D.3 with

fO0) = G.T) and g(y) = /Q & — y|Fp (€. y) dE.

we obtain that
Curxra:= inf Cugrra,e>0.

re(0,1)
QCK

As aresult, using equation (3.43) and Proposition 3.1, we deduce that if dx < 1, then

ry 21,1y

Q
82,D 2(0, T) - FryQ],rygz(O) 5 C/L,K,T,Q
gzrygl,ryﬂz(s’T) = LK T,Q Fryﬂl,ryﬂz(%) T

(3.45)

Therefore, for all € € (0,1) and K € 2 that are start-shaped with respect to y € K,

by choosing s € (g, 1) and p := (n — ¢)/2 in (3.45), we deduce the existence of

some r® = ra(21)<TQ such that if 1, Q, C ry(l) K satisfy

QiNQ =0
and are smooth, then

EXL22(0,T) = sup E55%2(s, T).
’ s€(e,1) ’

This concludes the proof of (1.24) for §2, p- The proof of (1.24) for 53, p will be
omitted, being analogous to the one for §2’ D-

We now prove (1.25) for gz,N. To do so, we fix some s¢ € (0, %), and, in light of
Proposition 2.12, we define the positive constant

I¥2(s1,T)

Cso,7,92,,9 =
0,7,822,%2 - =Q .
s1€(s0,1) lNz(SO’ T)

Also, if the above infimum is attained for some § € [sg, 1], using Lemma D.3 with
fO) =13 T) and g(y) =I3(s0. 7).

we set
Cso,1.0 := inf Cg 10,0 > 0.
Qr,eEQ

Thus, making use of equations (3.36), (3.37), (3.40), and (3.41), we deduce that
if Q1,Q2 € Bsy(y), and K D Bs, (), r € (0, 1), so € (0,3), s1 € (50, 1), and
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W € Ans, N (0,5 — 50), we have that

ary21,ryQ2 ~ -
EXn " 50, T) BRI (5, T) T (51,T)
EPv Ty Iy P s0. ) BT, T)

2,N
Fryﬂl,ryﬂz s
S W (50)
,50,Y,K,T,Q Frygl,rygz(%)

rn+2s0 FQ] ,Qo (SO)

_ M
ws80,¥,K,T,Q rzn_zquzl’Qz(n—zzu,)
C(l)
.U«aSO,y,K,T,Q
>
- yn—2s0—2p ’ (3.46)
where we defined
(@) — _ GCsyye
CM,SO,y,K,T,SZ T —CSO,T,Q-

CN.u.B; (). T.2

Therefore, for each ¢ € (0, 1), by choosing for instance s¢ := %, s1 €(g,1)and u :=
(n —&)/2in (3.46), and also thanks to (3.39), we deduce that there exists some r® =

rs(z)?TQ € (0, B) such that, for each @1, Q22 C B,@,(y) smooth and disjoint,

o1, 5821,2 2 . 2
s(up)é’z’}v 2(5.7) = ExN S o, 7. T) withss) o 1€ (0.e).
s€(0,1

This concludes the proof of (1.25) for gz,N- The proof of (1.25) for §3,N is analogous
to the one for gz, ~ just concluded and therefore it will be omitted.

This concludes the proof of Theorems 1.15 and 1.16 for n < 2.

Few changes are in order to show Theorems 1.15 and 1.16 also for n = 3. In par-
ticular, we have to repeat the above arguments by replacing (3.40) with the inequality
in (2.54). The procedure will determine changes only on the constants involved, in
the same fashion of the proof of Theorems 1.7 and 1.8 for n > 3. |



