
Appendix A

Green function for the Dirichlet spectral fractional
Laplacian

Here, we give a proof of a well-known identity for the Green function GsD.x; y/ of
the Dirichlet spectral fractional Laplacian. The Green function is given by

GsD.x; y/ D
1

�.s/

Z C1
0

p�D.t; x; y/t
s�1dt;

see also [1]. Before we state the following result, let us recall the notation

C D ®.x; y/ 2 � �� s.t. x ¤ y¯:
Proposition A.1. Let � � Rn be bounded, smooth and connected. Then, for each
.x; y/ 2 C it holds thatZ C1

0

rsD.t; x; y/dt D
1

�.s/

Z C1
0

p�D.t; x; y/t
s�1dt: (A.1)

Proof. Given x; y 2 C , we let

	.x; y/ WD
Z C1
0

rsD.t; x; y/dt;

J.x; y/ WD 1

�.s/

Z C1
0

p�D.t; x; y/t
s�1dt:

Now, let ¹�kºk be an orthonormal basis of L2.�/ made of eigenfunctions of the
Laplacian with Dirichlet boundary conditions, ordered such that if �k’s are the cor-
responding eigenvalues, then 0 < �1 6 �2 6 � � � (see, for instance, [18]). In view
of [10, Theorem 5] we know that

rsD.t; x; y/ D
C1X
kD1

�k.x/�k.y/ exp.�t�sk/

for each .t; x; y/ 2 .0;C1/ � � � �. In order to prove (A.1), we first show that
	.x; y/ and J.x; y/ are both continuous in C . Thanks to Theorem 2.8 we know thatZ T

0

rsD.t; x; y/dy < C1
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for each T 2 .0;C1/, s 2 .0; 1� and x ¤ y. Moreover, thanks to [11, Proposition 6]
we observe that for each t > T and s 2 .0; 1� it holds that

rsD.t; x; y/ D exp.�t�s1/
C1X
kD1

�k.x/�k.y/ exp.�t .�sk � �s1//

6 cm0;�;0 exp.�t�s1/
C1X
kD1

�
2˛.m0/

k
exp.�T .�sk � �s1//

6 CT;s;� exp.�t�s1/; (A.2)

where the last inequality is a consequence of [11, Lemma 7], and CT;s;� > 0 is a
constant depending on T > 0, s 2 .0; 1� and �. The constants ˛.m0/ and cm0;�;0
have been explicitly defined in [11, Proposition 6]. Therefore, if we call

gsD.t; x; y/ WD
´
rsD.t; x; y/ for all .t; x; y/ 2 .0; T � � C ;

CT;s;� exp.�t�s1/ for all .t; x; y/ 2 .T;C1/ � C ;

we obtain that
gsD.t; x; y/ 2 L1.0;C1/

for each .x; y/ 2 C , and also

rsD.t; x; y/ 6 gsD.t; x; y/

for each .t; x; y/ 2 .0;C1/ �� �� and s 2 .0; 1�. Therefore, thanks to the con-
tinuity of the kernel rsD discussed in [10, Lemma 2], we conclude by the dominated
convergence theorem that 	.�; �/ is continuous in C .

Furthermore, thanks to the inequalities in (2.14) and (A.2) we have that if we
define

fD.t; x; y/ D

8̂<̂
:

1

.4�t/
n
2

exp
�
� jx � yj

2

4t

�
for all .t; x; y/ 2 .0; T � � C ;

CT;1;� exp.�t�1/ for all .t; x; y/ 2 .T;C1/ � C ;

then we get that
fD.t; x; y/t

s�1 2 L1.0;C1/
for each .x; y/ 2 C , and also

p�D.t; x; y/t
s�1 6 fD.t; x; y/t

s�1

for each .t;x;y/2 .0;C1/�C . Thanks to the continuity of p�D (see for instance [10,
Lemma 2]) and the last observations we can apply the dominated convergence theo-
rem and conclude that J.�; �/ 2 C.C/.
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Now, let f 2 C1c .�/ such that f > 0. Then, for each x 2 � we computeZ
�

	.x; y/f .y/dy D
Z
�

Z C1
0

rsD.t; x; y/f .y/dt dy

D
Z C1
0

Z
�

rsD.t; x; y/f .y/dy dt

D
Z C1
0

C1X
kD1

fk�k.x/ exp.�t�sk/dt

D
C1X
kD1

fk�k.x/

�s
k

: (A.3)

In the above computation, we denoted

fk WD
Z
�

f .y/�k.y/dy;

and the identity between the first and the second line, as well as between the second
and the third, are due to [11, Lemma 6]; in addition, the estimates on the coefficients
fk given in [11, Proposition 7].

Similarly, we also observe thatZ
�

J.x; y/f .y/dy D 1

�.s/

Z
�

Z C1
0

p�D.t; x; y/t
s�1f .y/dt dy

D 1

�.s/

Z C1
0

t s�1
Z
�

p�D.t; x; y/f .y/dy dt

D 1

�.s/

Z C1
0

C1X
kD1

fk�k.x/ exp.�t�k/t s�1 dt

D 1

�.s/

C1X
kD1

fk�k.x/

Z C1
0

exp.�t�k/t s�1 dt

D 1

�.s/

C1X
kD1

fk�k.x/
�.s/

�s
k

D
C1X
kD1

fk�k.x/

�s
k

: (A.4)

Therefore, from equations (A.3) and (A.4) we deduce that for each x 2 � and f 2
C1c .�/ such that f > 0 it holdsZ

�

.	.x; y/ � J.x; y//f .y/dy D 0:

Thanks to this latter identity and the fact that J; 	 2 C.C/ we conclude the proof
of (A.1).


