
Appendix C

Alternative proof of Proposition 1.2

Here, we showcase an alternative proof of Proposition 1.2. The advantage of this
argument is that it does not make use of the explicit formula (2.2) for the density �st
of an s-stable subordinator. The details go as follows.

Proof of Proposition 1.2. As in the proof of Lemma B.1, we denote by an additional
subscript a the quantities related to the interval .0;a/. In particular, by (3.4) and (3.7),
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(C.1)
From this, (B.5) and (B.6) (and the corresponding scaling properties for the Neumann
case), we deduce that it suffices to establish Proposition 1.2 for a WD 1.

Hence, let x D y 2 � D .0; 1/. We have that
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and, as a result, we obtain that the series in Lemmas B.1 and B.2 converge absolutely
for all s 2 .0; 1/ and T > 0 and uniformly in s in every set of the form .s0; 1/ with
s0 2 .0; 1/.

Consequently, the convergence or divergence of E.s; T / in this case is equivalent
to that ofˆx;xD .s;T / orˆx;xN .s;T /, depending on the boundary conditions considered.
Hence, when s 2 .0; 1=2�, for all M 2 N, we infer from (3.4) that
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(C.2)

and from (3.7) that
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We now want to check the fact that, when s 2 .0;1=2�, the quantities in (C.2) and (C.3)
are divergent as M ! C1. To this end, we need to estimate “how often” in k the
functions sin2.�kx/ and cos2.�kx/ can get close to zero. This concept is formalized
via the following claim.

Claim 1. Given x 2 .0; 1/,
• there exist "0 > 0 and K0 2 N \ Œ1;C1/ such that for every k0 2 N,

• there exists k 2 ¹k0; k0 C 1; : : : ; k0 CK0º such that sin2.�kx/ > "0.

To prove this, up to exchanging x with 1 � x, we can suppose that x 2 .0; 1
2
�. Thus,

we argue by contradiction and we suppose that, for some x 2 .0; 1
2
�, for every " > 0,

as small as we wish, and every K 2 N, as large as we wish, there exists k";K 2 N
such that for all k 2 ¹k";K ; k";K C 1; : : : ; k";K CKº we have that sin2.�kx/ < ".

This means that for all k 2 ¹k";K ; k";K C 1; : : : ; k";K C Kº the angle �kx is
sufficiently close to either 0 or � , modulo multiples of 2� . Hence, for concreteness,
let us suppose that the angle �k";Kx is sufficiently close to 0 modulo multiples of
2� , namely that

j�k";Kx C 2�J j < ı WD arcsin
p
"

for some J 2 N.
Therefore, for every j 2 N,
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We also note that, if j 6 ��2ı
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and ı is sufficiently small, it follows that
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provided that ı is sufficiently small. This is a contradiction and Claim 1 is established.
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Similarly, one can prove the following.

Claim 2. Given x 2 .0; 1/,
• there exist "0 > 0 and K0 2 N \ Œ1;C1/ such that for every k0 2 N,

• there exists k 2 ¹k0; k0 C 1; : : : ; k0 CK0º such that cos2.�kx/ > "0.

We now pick arbitrary integersN , xN 2N withN < xN and takeM WD xN.K0C 2/
in (C.2). Thus, assuming N large enough such that exp.�T .�N/2s/ 6 1

2
and using

Claim 1, we conclude that
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Sending now xN !C1 we conclude that, when s 2 .0; 1=2�,
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Similarly, combining (C.3) and Claim 2, we find that, when s 2 .0; 1=2�,

ˆ
x;x
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This and (C.5) yield that E.s; T / D C1 for all s 2 .0; 1=2�, as claimed in the state-
ment of Proposition 1.2.

We now consider the case s 2 .1=2; 1�. In this situation, it follows from (3.5) that,
for every x, y 2 .0; 1/,
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Similarly, using (3.8), for all s 2 .1=2; 1� and x, y 2 .0; 1/,

ˆ
x;y
N .s; T / < C1:

From this estimate and (C.6) we infer that E.s; T / 2 .0;C1/ for all s 2 .1=2; 1/, as
desired.


