
Appendix D

Some technical results

In this chapter we collect some technical results which have been used throughout the
memoir.

Proposition D.1. Let .l; t/ 2 .0;C1/ � .0;C1/. Then,
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Proof. Thanks to (2.2), we have that
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where we have used the fact that for each s 2 .0; 1
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/ it holds thatˇ̌̌̌
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in order to apply the dominated convergence theorem in (D.2).

Proposition D.2. Let��Rn be bounded, smooth and connected. Then, ifE;F ��
and xE \ xF D ¿, there exists some constant CE;F 2 .0;C1/, depending only on E
and F , such that for all .s; T / 2 .0; 1/ � .0;C1/ it holds that
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Proof. Thanks to the hypothesis xE \ xF D ¿, we can define the positive constant
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Then, by the definition of ˆN and the upper bound in (2.19), we obtain that
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This establishes the desired result.

Lemma D.3. Let � � Rn be bounded and f; g 2 C.x�/ be strictly positive in a
compact set K b �. Then,
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Proof. We set
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We give some lower and upper bounds for the function FD.x; y/ defined in equa-
tion (2.62). This result is applied several times, when proving Theorem 1.7.

Lemma D.4. Let��Rn be bounded, smooth and connected. Then, for eachK b�

there exists some constant QcK;� 2 .0;C1/ such that

FD.x; y/ >
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jx � yjn for all .x; y/ 2 C \ .K �K/; (D.5)

where C has been defined in (2.23).
Furthermore, it holds that
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for some Cn 2 .0;C1/.
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Proof. We first prove (D.5). Thanks to equations (2.15) and (2.16) we observe that
there exists two constants c1; c2 and some TK;� 2 .0;C1/ depending on � and K,
such that
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Therefore, thanks to equation (2.62) we deduce that for each .x; y/ 2 C \ .K �K/
it holds that

FD.x; y/ D
Z C1
0

p�D.l; x; y/

l
d l

>
Z TK;�

0

c1

l
n
2C1

exp
�
� c2jx � yj

2

l

�
dl

D c1c
�n2
2

jx � yjn
Z C1
c2jx�yj

2

TK;�

a
n
2�1e�a da

>
QcK;�
jx � yjn ;

where, by calling as usual dK the diameter of K, we defined
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This concludes the proof of (D.5).
We now show (D.6). By equation (2.14) and the change of variable � D jx�yj2

4l

we obtain that

FD.x; y/ D
Z C1
0

p�D.l; x; y/

l
d l

6
1

.4�/
n
2

Z C1
0

1

l
n
2C1

exp
�
� jx � yj

2

4l

�
dl

6
1

�
n
2 jx � yjn

Z C1
0

�
n
2�1e�� d�

D �.n
2
/

�
n
2

1

jx � yjn :

Therefore, (D.6) is proved with Cn WD �.n2 /
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