Appendix D

Some technical results

In this chapter we collect some technical results which have been used throughout the
memoir.

Proposition D.1. Let (I,t) € (0, +00) x (0, +00). Then,
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where we have used the fact that for each s € (0, %) it holds that
o—lu=tus cos(rs) s SIN(U” SIN(TS))
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in order to apply the dominated convergence theorem in (D.2). ]

Proposition D.2. Let 2 C R” be bounded, smooth and connected. Then, if E, F C Q
and E N F = @, there exists some constant Cg g € (0, +00), depending only on E
and F, such that for all (s, T) € (0,1) x (0, +00) it holds that

&y (s,T) < Cg,pT forall (x,y) € E x F. (D.3)

Proof. Thanks to the hypothesis £ N F = @, we can define the positive constant

d = inf |x — y|.
inf |x -y
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Then, by the definition of ® 5 and the upper bound in (2.19), we obtain that
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where we set
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This establishes the desired result. [

Lemma D.3. Ler Q@ C R”" be bounded and f, g € C(Q) be strictly positive in a
compact set K € Q. Then,

o Jo, F()dx

ancK m € (0. +00).

Proof. We set

m :=min f(x) € (0,400) and M = maxg(x) € (0, +00).
xeK xekK

Then,
Jo, FX)dx _m

ancK fQ g(x)dx € (0. +00). .

We give some lower and upper bounds for the function Fp (x, y) defined in equa-
tion (2.62). This result is applied several times, when proving Theorem 1.7.

Lemma D.4. Let Q C R” be bounded, smooth and connected. Then, for each K € Q2
there exists some constant ¢ o € (0, +00) such that

Fp(x.y) > | CK’Q|n forall (x,y) € €N (K x K), (D.5)
X =y
where € has been defined in (2.23).
Furthermore, it holds that
Fp(x,y) < | z B forall (x,y) € €, (D.6)
X =y

for some Cy, € (0, +00).
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Proof. We first prove (D.5). Thanks to equations (2.15) and (2.16) we observe that
there exists two constants ¢y, c2 and some Tk o € (0, 400) depending on 2 and K,
such that
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) for all (z,x,y) € (0,400) x K x K.

Therefore, thanks to equation (2.62) we deduce that for each (x, y) € € N (K x K)
it holds that
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where, by calling as usual dg the diameter of K, we defined
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This concludes the proof of (D.5).

We now show (D.6). By equation (2.14) and the change of variable 8 = %
we obtain that
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Therefore, (D.6) is proved with C,, :=



