
Chapter 1

Introduction

Our core technical contribution is a geometric structural result (stochastic cluster-
ing) for subsets of finite dimensional normed spaces. It provides new links between
nonlinear questions in metric geometry and volumetric issues in convex geometry.
An unexpected aspect of our statement is that it contradicts an impossibility result
of the well-known work [76] by Charikar, Chekuri, Goel, Guha and Plotkin in the
computer science literature, thus leading to bounds that were previously thought to
be impossible. This is reconciled in Section 1.7, where we explain the source of the
error in [76].

The aforementioned link opens up a vista that allows one to apply the extensive
literature on the linear theory to important and well-studied nonlinear questions. It
also raises new fundamental issues within the linear theory that we will only begin
to address here. So, in order to fully explain both the history and the ideas and
their consequences, we will start with a quick overview of some of our main results
that assumes familiarity with standard concepts in the respective areas. We will then
present a gradual and complete introduction to our work that specifies all of the nec-
essary background.

1.1 Brief highlights of main results

Associate to every separable complete metric space .M; dM/ two bi-Lipschitz invari-
ants e.M/; SEP.M/ 2 .0;1� called, respectively, the Lipschitz extension modulus
of M and the separation modulus of M, that are defined as follows. The Lipschitz
extension modulus of M is the infimum over those L 2 .0;1� such that for every
Banach space Z and every subset C �M, every 1-Lipschitz function f W C! Z can
be extended to a Z-valued L-Lipschitz function that is defined on all of M. The sep-
aration modulus of M is the infimum over those � 2 .0;1� such that for any � > 0

there is a distribution over random partitions1 of M into clusters of diameter at most
� such that for every two points x;y 2M the probability that they belong to different
clusters is at most �dM.x; y/=�.

The question of estimating the Lipschitz extension modulus received great scruti-
ny over the past century; see Section 1.3 for an indication of (a small part of) the

1We are suppressing here measurability issues that are addressed in Section 1.7 and Sec-
tion 3.1.
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extensive knowledge on this topic. The separation modulus was introduced by Bartal
in the mid-1990s and received a lot of attention in the computer science literature
due to its algorithmic applications; see Section 1.7.3 for the history. Its connection to
Lipschitz extension was found by Lee and the author [171, 173], who proved that

e.M/ . SEP.M/:

By a well-known theorem of Johnson, Lindenstrauss and Schechtman [140], every
normed space X satisfies e.X/ D O.dim.X//. Here we obtain a power-type lower
bound on e.X/ in terms of dim.X/.

Theorem 1. There is a universal constant c > 0 such that e.X/ > dim.X/c for every
normed space X.

Theorem 1 improves over the previously best-available bound

e.X/ > ec
p

log dim.X/
I

see Remark 98 for the history of this question. Despite substantial efforts, the asymp-
totic growth rate (as dim.X/!1) of e.X/ was not previously known (even up to
lower order factors) for any sequence of normed spaces.

Theorem 2. For every n 2 N we have2 e.`n1/ �
p
n.

The previously best-known upper bound on e.`n1/ was nothing better than the
aforementioned general O.n/ bound of [140]. Theorem 2 is just one instance of our
asymptotically improved upper bounds on the Lipschitz extension moduli of many
normed spaces of interest; we also get, e.g., the best-known bound when X D `np for
any p > 2. Nevertheless, currently `n1 is essentially3 the only normed space whose
Lipschitz extension modulus is known up to lower order factors (by Theorem 2), and
the same question even for the Euclidean space `n2 remains a well-known longstand-
ing open problem; see Section 1.3 for more on this.

All of the upper bounds on the Lipschitz extension modulus that we obtain herein
use the upper bound on the separation modulus that appears in Theorem 3 below.
This theorem also contains a new lower bound on the separation modulus, which we

2We use the following conventions for asymptotic notation, in addition to the usual
O.�/; o.�/; �.�/ notation. Given a; b > 0, by writing a . b or b & a we mean that a 6 Cb
for some universal constant C > 0, and a� b stands for .a . b/^ .b . a/. If we need to allow
for dependence on parameters, we indicate it by subscripts. For example, in the presence of an
auxiliary parameter q, the notation a .q b means that a 6 C.q/b, where C.q/ > 0may depend
only on q, and similarly for a &q b and a �q b.

3The proof of Theorem 2 artificially gives more such spaces, e.g., `n1 ˚ `
n
2

, or `n1 ˚X for
any normed space X with dim.X/ 6

p
n.
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will see shows that in several cases of interest our results are a sharp evaluation of the
asymptotic growth rate of the separation modulus.4

Theorem 3. Let XD .Rn;k � kX/ and YD .Rn;k � kY/ be normed spaces whose unit
balls satisfy BY � BX. Then

vr.X�/
p
n . SEP.X/ .

diamX*.…BY/

voln.BY/
: (1.1)

In the left-hand side of (1.1), vr.X�/ is the volume ratio [293, 294] of the dual
X�, i.e., it is the nth root of the ratio of the volume of BX* and maximal volume of an
ellipsoid that is contained in BX* . In the right-hand side of (1.1), …BY is the projec-
tion body [251] of BY, and diamX*.�/ denotes diameter with respect to the metric on
Rn that is induced by X�. We will recall the definition of a projection body later5 and
it suffices to mention now that the mappingK 7!…K, which is of central importance
in convex geometry (see [47,102,190,282] for an indication of the extensive literature
on this topic), associates to every convex body K � Rn a convex body …K � Rn

that encodes isoperimetric properties of K.
A key contribution of Theorem 3 is the role of the auxiliary normed space Y,

which appears despite the fact that we are interested in the separation modulus of X.
By substituting Y D X into the right-hand side of (1.1) one does get a meaningful
estimate, and in particular the resulting bound is O.n/, i.e., (1.1) implies the bound
of [140]. However, we will see that by introducing a suitable perturbation Y of X, the
second inequality in (1.1) can sometimes be significantly stronger than the special
case Y D X. We will exploit this powerful degree of freedom heavily; its geometric
significance is discussed in Section 1.4.

The previously best-known upper and lower estimates on the separation moduli
of normed spaces are due to [76], where it was proved that

SEP.`n1/ � n and SEP.`n2/ �
p
n:

By bi-Lipschitz invariance, this implies that any n-dimensional normed space X sat-
isfies

n

dBM.`
n
1;X/

. SEP.X/ . dBM
�
`n2;X

�p
n; (1.2)

4Our approach also pertains to subsets of normed spaces, e.g., we will prove that for any
p 2 Œ1;1�, n 2 N and r 2 ¹1; : : : ; nº, the separation modulus of the set of n-by-n matrices of
rank at most r , equipped with the Schatten–von Neumann-p norm, is equal up to lower order
factors to max¹

p
r; r1=pº

p
n, which is new even in the Euclidean (Hilbert–Schmidt) setting

p D 2. However, for the purpose of this initial overview we will restrict attention to bounds for
the entire space X.

5By [187, 188] the mapping that assigns a convex body K � Rn to its projection body
…K is characterized axiomatically as the unique (up to scaling) translation-invariant SLn.R/-
contravariant Minkowski valuation.
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where dBM.�; �/ denotes the Banach–Mazur distance. Both of the bounds in (1.2) can
be inferior to those that follow from Theorem 3. For example, suppose that n D m2

for some m 2 N and consider X D `m1.`m1 /. Then,

dBM.X; `n1/ � dBM.X; `n2/ �
p
n

by the work [163] of Kwapień and Schütt. Therefore, in this case (1.2) becomes the
estimates

p
n.SEP.X/. n, while we will see that (1.1) implies that SEP.X/� n3=4.

The following corollary collects examples of applications of Theorem 3 that we
will deduce herein.

Corollary 4 (Examples of consequences of Theorem 3). The following statements
hold for any n 2 N.

• For any p > 1, the separation modulus of `np satisfies

SEP
�
`np
�
� nmax¹ 12 ;

1
p º: (1.3)

More generally, let .E; k � kE/ be any n-dimensional normed space with a 1-
symmetric basis e1; : : : ; en. Then, SEP.E/ is equal to the following quantity up to
lower order factors:

ke1 C � � � C enkE

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�
:

• For any p > 1, the separation modulus of the Schatten–von Neumann trace class
Snp on Mn.R/ is

SEP
�
Snp
�
D nmax¹1; 12C

1
p ºCo.1/ D dim

�
Snp
�max¹ 12 ;

1
4C

1
2p ºCo.1/: (1.4)

More generally, let .E; k � kE/ be any n-dimensional normed space with a 1-
symmetric basis e1; : : : ; en and denote its unitary ideal by SE D .Mn.R/; k � kSE/.
Then, SEP.SE/ is equal to the following quantity up to lower order factors:

ke1 C � � � C enkE

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�
p
n:

• For any p; q > 1, the separation modulus of the `np.`
n
q/ norm on Mn.R/ is

SEP
�
`np.`

n
q/
�
� nmax¹1; 1pC

1
q ;
1
2C

1
p ;
1
2C

1
q º

D dim
�
`np.`

n
q/
�max¹ 12 ;

1
2pC

1
2q ;

1
4C

1
2p ;

1
4C

1
2q º: (1.5)

• For any p; q > 1, the separation modulus of Mn.R/ equipped with the operator
norm k � k`np!`nq from `np to `nq is equal to the following quantity up to lower order
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factors: 8̂̂̂̂
<̂
ˆ̂̂:
n
3
2�

1
min¹p;qº if p; q > 2;

n
1
2C

1
max¹p;qº if p; q 6 2;

n if p 6 2 6 q;
nmax¹1; 1q�

1
pC

1
2 º if q 6 2 6 p:

• For any p; q > 1, the separation modulus of the projective tensor product `np y̋ `
n
q ,

i.e., the norm on Mn.R/ whose unit ball is the convex hull of the set

¹.xiyj / 2 Mn.R/I .x1; : : : ; xn/ 2 B`np ^ .y1; : : : ; yn/ 2 B`nq º;

is equal to the following quantity up to lower order factors:´
n
3
2 if max¹p; qº > 2;
n
1C 1

max¹p;qº if max¹p; qº 6 2:

All of the results in Corollary 4 are new, except for the range 1 6 p 6 2 of (1.3),
which is due to [76]. The range p 2 .2;1� of (1.3) is SEP.`np/�

p
n, which is incom-

patible with the statement SEP.`np/� n
1�1=p of [76]. We will explain the reason why

the latter assertion of [76] is erroneous in Remark 78.
The wealth of knowledge that is available on the volumetric quantities that appear

in (1.1) leads to new estimates that relate the separation modulus of an n-dimensional
normed space X to classical invariants of X. We will derive several such results herein,
without attempting to be encyclopedic. As a noteworthy example, we will deduce
from the first inequality in (1.1) that if BX is a polytope with �n vertices, then

SEP.X/ &
n

p
log �

: (1.6)

We will also deduce that if T2.X/ denotes the type 2 constant of X (see (1.77) or the
survey [203]), then

SEP.X/ & max
®p

dim.X/; T2.X/2
¯
: (1.7)

We will see that both (1.6) and (1.7) are sharp for the entire range of the relevant
parameters (e.g., in the two extremes, the case X D `n1 corresponds to � D O.1/ and
T2.X/�

p
n in (1.6) and (1.7), respectively, and the case when X isO.1/-isomorphic

to `n2 corresponds to log � � n and T2.X/ D O.1/ in (1.6) and (1.7), respectively).

1.1.1 A conjectural isomorphic reverse isoperimetric phenomenon

The lower bound on SEP.X/ in Theorem 3 is not always sharp. Indeed, consider the
space X D `n1 ˚ `

n
2 for which SEP.X/ � n yet vr.X�/

p
dim.X/ � n3=4. It could be,

however, that the upper bound on SEP.X/ in Theorem 3 is optimal for every X.



6 Introduction

Question 5. Is the separation modulus of any normed space XD .Rn;k � kX/ bounded
above and below by some universal constant multiples of the minimum of the quantity
diamX*.…BY/= voln.BY/ over all those normed spaces Y D .Rn; k � kY/ that satisfy
BY � BX?

See Remark 23 for an explanation why the minimum that is described in Ques-
tion 5 is affine invariant, which is necessary for Question 5 to make sense, since the
separation modulus is a bi-Lipschitz invariant.

For sufficiently symmetric spaces, we expect that the lower bound on SEP.X/ in
Theorem 3 is sharp.

Conjecture 6. Every finite dimensional normed space X with enough symmetries
satisfies

SEP.X/ � vr.X�/
p

dim.X/: (1.8)

The notion of having enough symmetries was introduced in [103]; its definition is
recalled in Section 1.6.2. We prefer to formulate Conjecture 6 using this notion at the
present introductory juncture even though weaker requirements are needed for our
purposes because it is a standard assumption in Banach space theory and it suffices
for all of the most pressing applications that we have in mind.

The upper bound on SEP.X/ in (1.8) implies by [173] that

e.X/ . vr.X�/
p

dim.X/;

which would be a valuable Lipschitz extension theorem due to the fact that estimat-
ing the volume ratio is typically tractable given the variety of tools and extensive
knowledge that are available in the literature. For example, Milman and Pisier [219]
proved (improving by lower-order factors over a major theorem of Bourgain and Mil-
man [49, 50]; see also [217]), that any finite dimensional normed space X satisfies

vr.X/ . C2.X/
�
1C logC2.X/

�
; (1.9)

where C2.X/ is the cotype 2 constant of X (see (1.77) or the survey [203]). Therefore,
if (1.8) holds, then

e.X/ . C2.X/
�
1C logC2.X/

�p
dim.X/; (1.10)

which would be a remarkable generalization of the bound e.`n2/ .
p
n of [173].

We expect that Theorem 3 already implies Conjecture 6, as expressed in the fol-
lowing conjecture which would yield a positive answer to Question 5 for normed
spaces with enough symmetries.

Conjecture 7. If X D .Rn; k � kX/ is a normed space with enough symmetries, then
there is a normed space Y D .Rn; k � kY/ that satisfies

BY � BX and
diamX*.…BY/

voln.BY/
. vr.X�/

p
n:
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As an illustrative example of Conjecture 7, consider the space X D `n1. We then
have vr..`n1/

�/D vr.`n1/DO.1/. One can compute that…B`n1 D 2
n�1B`n1 . There-

fore, diam`n
1
.…B`n1/= voln.B`n1/ � n, so taking Y D `n1 in Theorem 3 only gives

the bound SEP.`n1/ . n. However, we will prove that there exists a normed space
Y D .Rn; k � kY/ with BY � B`n1 for which diam`n

1
.…BY/= voln.BY/ .

p
n. More

generally, we will prove that Conjecture 7 (hence also Conjecture 6, by Theorem 3)
holds for any normed space for which the standard basis of Rn is 1-symmetric, and
we will also see that Conjecture 7 holds up to a logarithmic factor for its unitary ideal.

The minimization in Question 5 can be viewed as a shape optimization prob-
lem [130] that could potentially be approached using calculus of variations. Given
an origin-symmetric convex body K � Rn, it asks for the minimum of the affine
invariant functional L 7! outradiusKı.…L/= voln.L/ over all origin-symmetric con-
vex bodies L � K, where for any two origin-symmetric convex bodies A; B � Rn

we denote the minimum radius of a dilate of A that circumscribes B by

outradiusA.B/ D min¹r > 0 W B � rAº

and
Kı D ¹y 2 Rn W sup

x2K

hx; yi 6 1º

is the polar of K. Conjecture 7 asserts that if K has enough symmetries, then this
minimum is bounded above and below by universal constant multiples of vr.Kı/

p
n.

The minimization problem in Question 5 also has an isoperimetric flavor. As such,
its investigation led us to formulate the following conjectural twist of Ball’s reverse
isoperimetric phenomenon [22], which we think is a fundamental geometric open
question and it would be valuable to understand it even without its consequences that
we derive herein.

The isoperimetric quotient of a convex bodyK �Rn is defined (see [126, p. 269]
or [286]) to be

iq.K/ D
voln�1.@K/

voln.K/
n�1
n

: (1.11)

Using this notation, the classical Euclidean isoperimetric theorem states that

iq.K/ > iq
�
B`n

2

�
D

n
p
�

�
�
n
2
C 1

� 1
n

�
p
n: (1.12)

The following theorem of Ball [22] shows that a judicious choice of the scalar product
on Rn ensures that the isoperimetric quotient of a convex body can also be bounded
from above.

Theorem 8 (Ball’s reverse isoperimetric theorem [22]). For every n 2 N and every
origin-symmetric convex body K � Rn there exists a linear transformation S 2
SLn.R/ such that iq.SK/ 6 2n D iq.Œ�1; 1�n/.
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We expect that in the isomorphic regime (i.e., permitting non-isometric O.1/
perturbations), origin-symmetric convex bodies have asymptotically better reverse
isoperimetric properties than what is guaranteed by Theorem 8. In fact, we conjecture
that if in addition to passing fromK to SK for some S 2 SLn.R/, aO.1/-perturbation
of SK is allowed, then the isoperimetric quotient can be decreased to be of the same
order of magnitude as that of the Euclidean ball.

Conjecture 9 (Isomorphic reverse isoperimetry). There is a universal constant c > 0
with the following property. For every n2N and every origin-symmetric convex body
K � Rn, there exist a linear transformation S 2 SLn.R/ and an origin-symmetric
convex body L � Rn with cSK � L � SK and iq.L/ .

p
n.

Conjecture 9 can be restated analytically as the assertion that any n-dimensional
normed space is at Banach–Mazur distance O.1/ from a normed space whose unit
ball has isoperimetric quotient O.

p
n/. We will prove that Conjecture 9 holds when

K is the unit ball of `np for any p 2 Œ1;1� and n 2 N, and we will also see that
Conjecture 9 holds up to lower-order factors for any Schatten–von Neumann trace
class.

The requirementL� cSK of Conjecture 9 implies that n
p

voln.L/>c n
p

voln.K/.
So, the following weaker conjecture is implied by Conjecture 9; we will prove it for
any 1-unconditional body.

Conjecture 10 (Weak isomorphic reverse isoperimetry). For every n 2 N and every
origin-symmetric convex bodyK �Rn there exist a linear transformation S2SLn.R/
and an origin-symmetric convex bodyL� SK that satisfies n

p
voln.L/& n

p
voln.K/

and iq.L/ .
p
n.

In Section 1.6 we will elucidate the relation between the task of bounding from
above the rightmost quantity in (1.1) and isomorphic reverse isoperimetry. While
Conjecture 9 is the strongest version of the isomorphic reverse isoperimetric phe-
nomenon that we expect holds in full generality, we will see that it would suffice to
prove its weaker variant Conjecture 10 for the purpose of using Theorem 3. In par-
ticular, consider the following symmetric version of Conjecture 10, which we will
prove in Section 1.6 implies Conjecture 7 (hence, using Theorem 3, it also implies
Conjecture 6).

Conjecture 11 (Symmetric version of Conjecture 10). For every n 2 N and every
normed space X D .Rn; k � kX/ with enough symmetries whose isometry group is
a subgroup of the orthogonal group On � GLn.R/, there is a normed space Y D
.Rn; k � kY/ with BY � BX and n

p
voln.BY/ & n

p
voln.BX/ such that iq.BY/ .

p
n.

The only difference between Conjecture 10 and Conjecture 11 is that if we impose
the further requirement thatK is the unit ball of a normed space with enough symme-
tries whose isometry group consists only of orthogonal matrices, then we are naturally
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conjecturing that S can be taken to be the identity matrix, i.e., there is no need to
change the standard Euclidean structure on Rn.

We will prove Conjecture 11 for various spaces, including `np.`
n
q/ for any p;q > 1

and n 2 N, and any finite dimensional space with a 1-symmetric basis. Also, we will
show that Conjecture 11 holds up to a factor of O.

p
logn/ for any unitarily invariant

norm on Mn.R/. In general, an argument that was shown to us by B. Klartag and
E. Milman and is included in Section 7 (see also Section 1.6.3) shows that Conjec-
ture 10 and Conjecture 11 hold up to a factor of O.log n/. We will see that these
results lead to Corollary 4, and in general we will deduce that Conjecture 7, and
hence, thanks to Theorem 3, also Conjecture 6, hold up to lower order factors. Thus,
we will obtain the following theorem.

Theorem 12. SEP.X/� vr.X�/dim.X/ 12Co.1/ for any normed space X with enough
symmetries.

Assuming Conjecture 11, it is possible to compute the exact asymptotic growth
rate of the separation moduli of several important matrix spaces. For example, if
Conjecture 11 holds for Sn1, then we will see that the o.1/ term in (1.4) could be
removed altogether, i.e.,

8.p; n/ 2 Œ1;1� �N; SEP
�
Snp
�
� nmax¹1; 12C

1
p º: (1.13)

Also, assuming Conjecture 11 the lower order factors in the last two statements of
Corollary 4 could be removed, namely we will see that Conjecture 11 implies that the
separation modulus of Mn.R/ equipped with the operator norm k � k`np!`nq from `np to
`nq satisfies

SEP
�
Mn.R/; k � k`np!`nq

�
�

8̂̂̂̂
<̂
ˆ̂̂:
n
3
2�

1
min¹p;qº if p; q > 2;

n
1
2C

1
max¹p;qº if p; q 6 2;

n if p 6 2 6 q;
nmax¹1; 1q�

1
pC

1
2 º if q 6 2 6 p;

(1.14)

and the separation modulus of the projective tensor product `np y̋ `
n
q satisfies

SEP
�
`np y̋ `

n
q

�
�

´
n
3
2 if max¹p; qº > 2;
n
1C 1

max¹p;qº if max¹p; qº 6 2:
(1.15)

Remark 174 describes ramifications of these conjectural statements to norms of algo-
rithmic importance.

Roadmap. The rest of the Introduction effectively restarts the description of the
present work, with many more details/definitions/background/ideas of proofs, than
what we have included above. We organized the introductory material in this way
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because this work pertains to multiple mathematical disciplines, including notably
Banach spaces, convex geometry, nonlinear functional analysis, metric embeddings,
extension of functions, and theoretical computer science. The backgrounds of poten-
tial readers are therefore varied, so even though the above overview achieves the goal
of presenting the main results quickly, it inevitably includes terminology that is not
familiar to some. The aforementioned organizational choice makes the ensuing dis-
cussion accessible. Additional background can be found in the monographs [181,220,
305] (Banach space theory), [36] (nonlinear functional analysis), [201, 244] (metric
embeddings), [64] (extension of functions), as well as the references that are cited
throughout.

While the ensuing extended introductory text is not short, it achieves more than
merely a description of the results, history, concepts and methods: it also contains
groundwork that is needed for the subsequent sections. Thus, reading the Introduc-
tion will lead to a thorough conceptual understanding of the contents, leaving to the
remaining sections considerations that are for the most part more technical.

We will start by focusing on the classical Lipschitz extension problem because it
is more well known than the stochastic clustering issues that lead to most of our new
results on Lipschitz extension, and also because it requires less technicalities (e.g., a
suitable measurability setup) than our subsequent treatment of stochastic clustering.
Throughout the Introduction (and beyond), we will formulate conjectures and ques-
tions that are valuable even without the links to Lipschitz extension and clustering
that are derived herein. After the Introduction, the rest of this work will be orga-
nized thematically as follows. Section 2 is devoted to proofs of our various lower
bounds, namely impossibility results that rule out the existence of extensions and
clusterings with certain properties. Section 3 and Section 4 deal with positive results
about random partitions. Specifically, Section 3 is of a more foundational nature as
it describes the concepts, basic constructions, and proofs of measurability statements
that are needed for later applications in the infinitary setting (of course, measurabil-
ity can be ignored for statements about finite sets). Section 4 analyses in the case
of normed spaces a periodic version of a commonly used randomized partitioning
technique called iterative ball partitioning, and computes optimally (up to univer-
sal constant factors) the probabilities of its separation and padding events. Section 5
shows how to pass from random partitions to Lipschitz extension, by adjusting to the
present setting the method that was developed in [173]. Section 5 also contains further
foundational results on Lipschitz extension, as well questions and conjectures that are
of independent interest. Section 6 contains a range of volume and surface area esti-
mates that are needed in conjunction with the theorems of the preceding sections in
order to deduce new Lipschitz extension and stochastic clustering results for various
normed spaces and their subsets. Section 7 proves that Conjecture 10 and Conjec-
ture 11 hold up to a factor of O.logn/, and also shows that the approach that leads to
this result cannot fully resolve Conjecture 11.
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1.2 Basic notation

Given a metric space .M; dM/, a point x 2M and a radius r > 0, the corresponding
closed ball is denoted BM.x; r/D ¹y 2M W dM.y;x/6 rº. If .X;k � kX/ is a Banach
space (in this work, all vector spaces are over the real scalars unless stated otherwise),
then denote by BX the unit ball centered at the origin. Under this notation we have
BX D BX.0; 1/ and BX.x; r/ D x C rBX for every x 2 X and r > 0.

If .M; dM/; .N; dN/ are metric spaces and  WM! N, then for C �M the
Lipschitz constant of  on C is denoted k kLip.CIN/ 2 Œ0;1�. Thus, if C contains at
least two points, then

k kLip.CIN/
def
D sup

x;y2C
x¤y

dN

�
 .x/;  .y/

�
dM.x; y/

:

In the special case ND R we will use the simpler notation k kLip.CIR/ D k kLip.C/.
If .X;k � kX/; .Y;k � kY/ are isomorphic Banach spaces, then their Banach–Mazur

distance dBM.X;Y/ is the infimum of the products of the operator norms kT kX!Y

and kT �1kY!X over all possible (surjective) linear isomorphisms

T W X! Y:

The (bi-Lipschitz) distortion of a metric space .M; dM/ into a metric space .N; dN/,
denoted c.N;dN/.M; dM/ or cN.M/ if the underlying metrics are clear from the
context, is the infimum over those D 2 Œ1;1� for which there exists a mapping
� WM! N and (a scaling factor) � > 0 such that

8x; y 2M; �dM.x; y/ 6 dN

�
�.x/; �.y/

�
6 D�dM.x; y/: (1.16)

Fix n 2N. Throughout what follows, Rn will be always be endowed with its stan-
dard Euclidean structure, i.e., with the scalar product hx;yi D x1y1C � � � C xnyn for
x D .x1; : : : ; xn/; y D .y1; : : : ; yn/ 2 Rn. Given z 2 Rn X ¹0º, the orthogonal pro-
jection onto its orthogonal hyperplane z? D ¹x 2 Rn W hx; zi D 0º will be denoted
Projz? W R

n ! Rn. For 0 < s 6 n, the s-dimensional Hausdorff measure of a closed
subset A � Rn is denoted vols.A/. Integration with respect to the s-dimensional
Hausdorff measure is indicated by dx. If 0 < vols.A/ <1 and f W A! R is con-
tinuous, then write

�
A
f .x/ dx D vols.A/�1

�
A
f .x/ dx.

Given a normed space .X; k � kX/ and p 2 Œ1;1�, `np.X/ is the vector space Xn

equipped with the norm

8x D .x1; : : : ; xn/ 2 Xn; kxk`np.X/ D
�
kx1kX C � � � C kxnkX

� 1
p ;

where for p D 1 this is understood to be kxk`n1.X/ D maxj2¹1;:::;nº kxj kX. It is
common to use the simpler notation `np D `

n
p.R/ and we write as usual Sn�1 D @B`n

2
.
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M

F

))
C
?�

IdC!M

OO

f
// Z

Figure 1.1. Given K > 1, the assertion that the Lipschitz extension modulus of a metric space
M satisfies e.M/ < K means that for all subsets C �M, all Banach spaces Z and all 1-
Lipschitz mappings f W C ! Z, there is a K-Lipschitz mapping F WM ! Z such that the
above diagram commutes, where IdC!M W C!M is the formal inclusion.

The Schatten–von Neumann trace class Snp is the (n2-dimensional) space of all n by
n real matrices Mn.R/, equipped with the norm that is defined by

8T 2 Mn.R/; kT kSnp D
�
Tr
�
.T T �/

p
2

�� 1
p D

�
Tr
�
.T �T /

p
2

�� 1
p ;

where kT kSn1 D kT k`n2!`
n
2

is the operator norm of T when it is viewed as a linear
operator from `n2 to `n2 .

1.3 Lipschitz extension

As we recalled in Section 1.1, one associates to every metric space .M; dM/ a bi-
Lipschitz invariant6, called the Lipschitz extension modulus of .M;dM/ and denoted
e.M; dM/ or e.M/ if the metric is clear from the context, by defining it to be the
infimum over those K 2 Œ1;1� with the property that for every nonempty subset
C �M, every Banach space .Z; k � kZ/ and every Lipschitz function f W C ! Z
there is a mapping F WM ! Z that extends f , i.e., F.x/ D f .x/ whenever x 2
C, and kF kLip.M;Z/ 6 Kkf kLip.C;Z/; see Figure 1.1. All of the ensuing extension
theorems hold for a larger class of target metric spaces that need not necessarily
be Banach spaces, including Hadamard spaces and Busemann nonpositively curved
spaces [57], or more generally spaces that posses a conical geodesic bicombing (see,
e.g., [86]). This greater generality will be discussed in Section 5, but we prefer at
this introductory juncture to focus on the more classical and highly-studied setting of
Banach space targets.

When .X;k � kX/ is a finite dimensional normed space, the currently best-available
general bounds on the quantity e.X/ in terms of dim.X/ are contained the following
theorem.

6The assertion that e.M/ is a bi-Lipschitz invariant refers to the fact that the definition
immediately implies that if .N; dN/ is another metric space into which .M; dM/ admits a
bi-Lipschitz embedding, then e.M/ 6 cN.M/e.N/.
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Theorem 13. There is a universal constant c > 0 such that for any finite dimensional
normed space X,

dim.X/c . e.X/ . dim.X/: (1.17)

The bound e.X/ . dim.X/ in (1.17) is a famous result of Johnson, Lindenstrauss
and Schechtman [140], which they proved by cleverly refining the classical extension
method of Whitney [312]; different proofs of this estimate were found by Lee and the
author [173] as well as by Brudnyi and Brudnyi [61] (see also the discussion in the
paragraph following equation (1.37) below). It remains a major longstanding open
problem to determine whether the bound of [140] could be improved to

e.X/ D o
�

dim.X/
�
:

The new content of Theorem 13 is the lower bound on e.X/, which improves
over the previously known bound e.X/ > exp.c

p
log dim.X//; see Remark 98 for

the history of this question. It is a very interesting open problem to determine the
supremum over those c for which Theorem 13 holds.7 More generally, it is natural to
aim to evaluate the precise power-type behavior of e.X/ as dim.X/!1 for specific
(sequences of) finite dimensional normed spaces X. However, prior to the present
work and despite many efforts over the years, this was not achieved for any finite
dimensional normed space whatsoever.

Theorem 14 (Restatement of Theorem 2). For every n 2 N we have e.`n1/ �
p
n.

The bound e.`n1/ &
p
n follows from a combination of [60, Theorem 4] and [62,

Theorem 1.2]. The new content of Theorem 14 is the upper bound e.`n1/ .
p
n

(and, importantly, the extension procedure that leads to it; see below). The previously
best-known upper bound on e.`n1/ was the aforementioned O.n/ estimate of [140].
The question of evaluating the asymptotic behavior of e.`np/ as n ! 1 for each
p 2 Œ1;1� is natural and longstanding; it was stated in [60, Problem 2] and reiterated
in [63, Section 4], [62, Problem 1.4] and [64, Problem 8.14]. Theorem 14 answers this
question when p D1. The upper bound on e.`n1/ of Theorem 14 is a special case of
a general extension criterion that provides the best-known Lipschitz extension results
in other settings (including for `np when p > 2), but we chose to state it separately
because it yields the first (and currently essentially only) family of normed spaces for
which the growth rate of their Lipschitz extension moduli has been determined.

Remark 15. It is also meaningful to study extension of � -Hölder functions for any
0 < � 6 1. Namely, one can analogously define the � -Hölder extension modulus of a
metric space .M; dM/, denoted e� .M/. Alternatively, this notion falls into the above

7Our proof of the lower bound on e.X/ of Theorem 13 shows that this supremum is at least
1
12

; see equation (2.5).
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Lipschitz-extension framework because one can define

e� .M/
def
D e

�
M; d �M

�
: (1.18)

The results that we obtain herein also yield improved estimates on � -Hölder extension
moduli; see Corollary 140. However, when � < 1 we never get a matching lower
bound (the reason why we can do better in the Lipschitz regime � D 1 is essentially
due to the fact that Lipschitz functions are differentiable almost everywhere). For
example, in the setting of Theorem 14 we get the upper bound

8� 2 .0; 1�; e�
�
`n1
�
. n

�
2 ; (1.19)

but the best lower bound on e� .`n1/ that we are at present able to prove is

e�
�
`n1
�
& nmax¹ �4 ;

�
2C�

2�1º
D

´
n
�
4 if 0 6 � 6

p
65�1
8

;

n
�
2C�

2�1 if
p
65�1
8
6 � 6 1:

(1.20)

We conjecture that e� .`n1/ �� n
�
2 , but proving this for � < 1 would likely require a

genuinely new idea.

Question 16. Despite its utility in many cases, the extension method that underlies
Theorem 14 does not yield improved bounds for some important spaces, including
notably `n1 and `n2 . Thus, determining the asymptotic behavior of e.`n1/ and e.`n2/ as
n!1 remains a tantalizing open question. Specifically, the currently best-known
bounds on e.`n1/ are

p
n . e

�
`n1
�
. n; (1.21)

where the first inequality in (1.21) is due to Johnson and Lindenstrauss [138] and the
second inequality in (1.21) is the aforementioned general upper bound of [140] on
the Lipschitz extension modulus of any n-dimensional normed space. The currently
best-known bounds in the Hilbertian setting are

4
p
n . e

�
`n2
�
.
p
n; (1.22)

where the first inequality in (1.22) is due to Mendel and the author [210] (a different
proof of this lower bound on e.`n2/ follows from [231]), and the second inequality
in (1.22) is from [173].

By the bi-Lipschitz invariance of the Lipschitz extension modulus, the second
inequality in (1.22) implies the following bound from [173], which holds for every
finite dimensional normed space X:

e.X/ . dBM
�
X; `dim.X/

2

�p
dim.X/: (1.23)

This refines the upper bound on e.X/ in (1.17) because dBM.X; `dim.X/
2 / 6

p
dim.X/

by John’s theorem [137].
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Remark 17. In the context of the aforementioned question whether the bound
e.X/ . dim.X/ of [140] is optimal, by (1.23) we see that e.X/ D o.dim.X// unless
the Banach–Mazur distance between X and Euclidean space is of order

p
dim.X/.

Structural properties of such spaces of extremal distance to Euclidean space have
been studied in [15, 43, 142, 221, 255]; see also [305, Chapters 6 and 7]. In particu-
lar, the Mil’man–Wolfson theorem [221] asserts that this holds if and only if X has a
subspace of dimension k D k.dim.X// whose Banach–Mazur distance to `k1 isO.1/,
where limn!1 k.n/ D1.

As dBM.`
n
p; `

n
2/� n

jp�2j=.2p/ for all n 2N and p 2 Œ1;1� (see [139, Section 8]),
it follows from (1.23) that

e
�
`np
�
.

´
n
1
p if p 2 Œ1; 2�;

n1�
1
p if p 2 Œ2;1�:

(1.24)

(1.24) was the previously best-known upper bound on e.`np/, and here we improve it
for every p > 2.

Theorem 18. For every n 2 N and every p 2 Œ1;1� we have e.`np/ . n
max¹ 12 ;

1
p º.

Theorem 14 is the case p D 1 of Theorem 18. We do not know if Theorem 18
is optimal (perhaps up to lower order factors) as n!1 for fixed p 2 Œ2;1/, but
we conjecture that this is indeed the case, which would resolve [60, Problem 2]. The
currently best-known lower bound on e.`np/ for every p 2 Œ1;1� is

e
�
`np
�
&

8̂̂̂̂
<̂
ˆ̂̂:
n
1
p�

1
2 if 1 6 p 6 4

3
;

4
p
n if 4

3
6 p 6 2;

n
1
2p if 2 6 p 6 3;
n
1
2�

1
p if 3 6 p 61:

(1.25)

A lower bound on e.`np/ that coincides with (1.25) when p 2 Œ1; 4=3� [ Œ3;1� is
stated in [64, Corollary 8.12], but [64, Corollary 8.12] is weaker than (1.25) when
4=3<p < 3. The reason for this is that the lower bound of [210] on e.`n2/ that appears
in (1.22) was not available when [64] was written, but (1.25) for 4=3 < p < 3 follows
quickly by combining the first inequality in (1.22) with [99]; see Remark 2.4.

Remark 19. Theorem 18 resolves negatively a conjecture that A. Brudnyi and Y.
Brudnyi posed as Conjecture 5 in [60]. They conducted a comprehensive study of the
linear extension problem for real-valued Lipschitz functions, where one considers for
a metric space .M;dM/ a quantity �.M/which is defined the same as e.M/, but with
the further requirements that the function f is real-valued and that the extended func-
tion F depends linearly on f . Namely, �.M/ is the infimum over those K 2 Œ1;1�
such that for every C �M there is a linear operator ExtC W Lip.C/! Lip.M/ that
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assigns to every Lipschitz function f W C! R a function ExtCf WM! R satisfying
ExtCf .s/ D f .s/ for every s 2 C, and

kExtCf kLip.M/ 6 Kkf kLip.C/:

They also considered a natural variant of this quantity when M D X is a Banach
space, denoted �conv.X/, which is defined almost identically to �.X/ except that now
the subset C is only allowed to be any convex subset of X rather than a subset of X
without any additional restriction. Conjecture 5 in [60] states that

8.p; n/ 2 Œ1;1� �N; �
�
`np
�
�p �conv

�
`np
�p
n: (1.26)

Theorem 18 implies that this conjecture is false for every p 2 .2;1�. Indeed, the
asymptotic behavior of �conv.`

n
p/ was evaluated in [63, Theorem 2.19], where it was

shown that
8p 2 Œ1;1�; �conv

�
`np
�
� n

ˇ̌
1
2�

1
p

ˇ̌
:

Consequently, �conv.`
n
p/
p
n � n1�

1
p when p > 2. Next, in [62] a quantity �.M/

was associated to a metric space .M; dM/ by defining it almost identically to the
definition of e.M/, except that the target Banach space Z is allowed to be any finite
dimensional Banach space rather than any Banach space whatsoever. By definition
�.M/ 6 e.M/, but actually �.M/ D �.M/ thanks to [62, Theorem 1.2] (see the
work [11] of Ambrosio and Puglisi for more on this “linearization phenomenon”).
Using these results in combination with Theorem 18, we see that for every p 2 .2;1�,
as n!1 we have

�
�
`np
�
D �

�
`np
�
6 e

�
`np
�
.
p
n D o

�
n1�

1
p
�
:

Thus, �.`np/ D o
�
�conv.`

n
p/
p
n
�

as n!1 for any p > 2, in contrast to the conjec-
ture (1.26) of [60].

Prior to passing to the general Lipschitz extension theorem that underlies the new
results that were described above, we will further illustrate its utility by stating one
more concrete application. For each p 2 Œ1;1� and n 2 N, if k 2 ¹1; : : : ; nº, then let
.`np/6k denote the subset of Rn consisting of those vectors with at most k nonzero
coordinates, equipped with the metric that is inherited from `np .

Theorem 20. For every p 2 Œ1;1�, every n 2 N and every k 2 ¹1; : : : ; nº we have

e
�
.`np/6k

�
. kmax¹ 1p ;

1
2 º:

Theorem 18 is the special case k D n and p > 2 of Theorem 20. If 1 6 p 6 2 and
k D n, then Theorem 20 is the estimate (1.24), which is the best-known upper bound
on e.`np/ for p in this range. However, for general k 2 ¹1; : : : ; nº Theorem 20 yields
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a refinement of (1.24) in the entire range p 2 Œ1;1� which does not seem to follow
from previously known results. In particular, the case p D 2 of Theorem 20 becomes

e
�
.`n2/6k

�
.
p
k: (1.27)

Even though (1.27) concerns a Euclidean setting, its proof relies on a construction that
employs a multi-scale partitioning scheme using balls of an auxiliary metric on Rn

that differs from the ambient Euclidean metric. The utility of such a non-Euclidean
geometric reasoning despite the Euclidean nature of the question being studied is
discussed further in Section 1.4.

1.4 A volumetric upper bound on the Lipschitz extension modulus

We will prove that Theorem 20 (hence also its special cases Theorem 14 and The-
orem 18) is a consequence of Theorem 21 below, which is a Lipschitz extension
theorem for subsets of finite dimensional normed spaces in terms of volumes of
hyperplane projections of their unit balls. Throughout what follows, for dealing with
volumetric notions we will adhere to the following conventions. Given n 2 N, when
we say that X D .Rn; k � kX/ is a normed space we mean that the underlying vector
space is Rn and that k � kX W Rn! Œ0;1/ is a norm on Rn. This is, of course, always
achievable by fixing any scalar product on an n-dimensional normed space. While the
ensuing statements hold in this setting, i.e., for an arbitrary identification of X with
Rn, a judicious choice of such an identification is beneficial; the discussion of this
important matter is postponed to Section 1.6.2 because it is not needed for the initial
description of the main results. We will continue using the notation

BX D ¹x 2 Rn W kxkX 6 1º

for the unit ball of X. Also, given C�Rn we denote by CX the metric space consisting
of the set C equipped with the metric that is inherited from k � kX. This notation is
important for us because we will crucially need to simultaneously consider more than
one norm on Rn.

Theorem 21. Suppose that n 2 N and that X D .Rn; k � kX/ and Y D .Rn; k � kY/

are two normed spaces. Then, for every C � Rn we have the following upper bound
on the Lipschitz extension modulus of CX:

e.CX/ .
�

sup
x;y2C
x¤y

kx � ykX

kx � ykY

�
sup
x;y2C
x¤y

�
voln�1

�
Proj.x�y/?BY

�
voln.BY/

�
kx � yk`n

2

kx � ykX

�
: (1.28)

We will next discuss the geometric meaning of Theorem 21 and derive some of
its consequences, including Theorem 20. Firstly, by homogeneity the case C D Rn
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of (1.28) becomes

e.X/ .
�

sup
y2@BY

kykX
�

sup
x2@BX

�
voln�1

�
Projx?BY

�
voln.BY/

kxk`n
2

�
: (1.29)

The quantity supy2@BY kykX in (1.29) is the norm kIdnkY!X of the identity matrix
Idn 2 Mn.R/ as an operator from Y to X. Alternatively,

sup
y2@BY

kykX D
1

2
diamX.BY/;

where for each C � Rn we denote its diameter with respect to the metric that X
induces by

diamX.C/ D sup
x;y2C

kx � ykX:

Given a convex bodyK � Rn, let…�K � Rn be the polar of the projection body
of K, which is defined to be the unit ball of the norm k � k…*K on Rn that is given by
setting for every x 2 Rn X ¹0º,

kxk…*K
def
D
1

2

�
@K

ˇ̌
hx;NK.y/i

ˇ̌
dy D voln�1

�
Projx?K

�
kxk`n

2
; (1.30)

where NK.y/ 2 Sn�1 denotes the unit outer normal to @K at y 2 @K (which is
uniquely defined almost everywhere with respect to the surface-area measure on @K),
and the final equality in (1.30) is the Cauchy projection formula (see, e.g., [102,
Appendix A]). The projection body …K of K is the polar of …�K. These impor-
tant notions were introduced by Petty [251]. When X D .Rn; k � kX/ is a normed
space let …�X be the normed space whose unit ball is …�BX. Let …X D .…�X/� be
the normed space whose unit ball is …BX.

By substituting (1.30) into (1.29) we get the following interpretation of our bound
on e.X/ in terms of analytic and geometric properties of projection bodies; it is worth-
while to state it as a separate corollary even though it is only a matter of notation
because of its intrinsic interest and also because these alternative viewpoints were
useful for guiding some of the subsequent considerations.

Corollary 22. Any two normed spaces X D .Rn; k � kX/;Y D .Rn; k � kY/ satisfy

e.X/ .
diamX.BY/ diam…*Y.BX/

voln.BY/
�
kIdnkY!XkIdnkX!…*Y

voln.BY/

D
kIdnkX!YkIdnk…Y!X*

voln.BY/
�

diamX.BY/ diamX*.…BY/

vol.BY/
: (1.31)

The penultimate step in (1.31) is duality (the norm of an operator equals the norm
of its adjoint) and the final quantity in (1.31) relates Theorem 21 to the second esti-
mate in Theorem 3.
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Remark 23. It is worthwhile to note that Corollary 22 has the right affine invari-
ance. For S 2 SLn.R/ let SXD .Rn; k � kSX/ be the normed space whose unit ball is
SBX. Equivalently, kxkSX D kS

�1xkX for every x 2Rn. Then X and SX are isomet-
ric, so e.SX/ D e.X/. We have .SX/� D .S�/�1X� (by definition), and ….SBY/ D

.S�/�1…BY by [251]. From this we see that diam.SX/*.…BSY/ D diamX*.…BY/.
Thus, the minimum of the right-hand side of (1.31) over all normed spaces Y D
.Rn; k � kY/ is also invariant under the action of SLn.R/.

The special case of Theorem 21 in which the normed space Y coincides with
the given normed space X is in itself a nontrivial bound on the Lipschitz extension
modulus. Examining this special case first will help elucidate how the idea arose to
introduce an auxiliary space Y that may differ from X, and why this can yield stronger
estimates. If X D Y, then the bound (1.28) becomes

e.CX/ . sup
x;y2C
x¤y

�
voln�1

�
Proj.x�y/?BX

�
voln.BX/

�
kx � yk`n

2

kx � ykX

�
: (1.32)

Correspondingly, the bound (1.29) becomes

e.X/ . sup
z2@BX

�
voln�1

�
Projz?BX

�
voln.BX/

kzk`n
2

�
D

diam…*X.BX/

voln.BX/
: (1.33)

Even these weaker estimates suffice to obtain new results, e.g., we will see that this
is so if 2 6 p D O.1/ and X D `np . However, as we will soon explain, (1.33) does
not imply an upper bound on `n1 that is better than the aforementioned general bound
of [140]. Despite this shortcoming of (1.32) and (1.33) relative to (1.28), it is worth-
while to state these special cases of Theorem 21 separately because they are simpler
than (1.28) and hence perhaps somewhat easier to remember. Moreover, a naïve way
to enhance the applicability of (1.32) is to leverage the fact that the Lipschitz exten-
sion modulus is a bi-Lipschitz invariant, so that

e.CX/ 6 kIdnkLip.CY;CX/kIdnkLip.CX;CY/e.CY/:

Consequently, by estimating e.CY/ through (1.32) we formally deduce from (1.32)
that

e.CX/ .
�

sup
x;y2C
x¤y

kx � ykX

kx � ykY

��
sup
x;y2C
x¤y

kx � ykY

kx � ykX

�

� sup
x;y2C
x¤y

�
voln�1

�
Proj.x�y/?BY

�
voln.BY/

�
kx � yk`n

2

kx � ykY

�
: (1.34)

We do not see how to deduce Theorem 18 and Theorem 20 from (1.34). However, we
will show that (1.34) suffices for proving Theorem 14 (as well as some other results
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that will be presented later). In summary, even the case of Theorem 21 in which the
auxiliary space Y coincides with X is valuable, but Theorem 21 does not follow from
merely combining its special case Y D X with bi-Lipschitz invariance.

Given a normed space X D .Rn; k � kX/ and z 2 Rn X ¹0º, the quantity

1

n
voln�1

�
Projz?BX

�
kzk`n

2
(1.35)

is equal to the volume of the cone

Conez.BX/
def
D conv

�
¹zº [ Projz?BX

�
� Rn (1.36)

whose base is the .n � 1/-dimensional convex set Projz?BX � z
? and whose apex

is z. In (1.36) and throughout what follows, conv.�/ denotes the convex hull. Thus,
the estimate (1.33) can be restated as follows:

e.X/ . n sup
z2@BX

voln
�
Conez.BX/

�
voln.BX/

: (1.37)

Through (1.37) we see that the geometric interpretation of the “bad spaces” X
for (1.33) is that these are the spaces that have a “pointy direction” z 2 @BX for which
the volume of the cone Conez.BX/ is a significant fraction of the volume of BX.
Examples will be presented next, but note first that a short geometric argument (see
the proof of [109, Lemma 5.1]) shows that voln.Conez.BX// 6 voln.BX/=2, so the
right-hand side of (1.37) is at most n=2. Hence, (1.33) is a refinement of the classical
bound e.X/ . n of [140].

Nevertheless, a “vanilla” application of (1.33) does not yield an asymptotically
better estimate than that of [140] even when X D `n1. Indeed, B`n1 D Œ�1; 1�

n and a
simple argument (see [75]) shows that

8z 2 Rn X ¹0º;
voln�1

�
Projz? Œ�1; 1�

n
�

voln.Œ�1; 1�n/
D
kzk`n

1

2kzk`n
2

: (1.38)

So, by considering the all 1’s vector z D 1¹1;:::;nº 2 @B`n1 we see that for X D
`n1 the right-hand side of (1.33) is at least n=2. The right-hand side of (1.33) is at
least n=2 when X D `n1 , as seen by taking z D .1; 0; : : : ; 0/ 2 @B`n

1
. Such “prob-

lematic" directions z 2 @BX can sometimes be the overwhelming majority of @BX.
Consider Ball’s counterexample [21] to the Shepard Problem [287], which states that
for any n 2 N there is a normed space X D .Rn; k � kX/ such that voln.BX/ D 1

yet voln�1.Projz?BX/ &
p
n for every z 2 Sn�1. Since voln.B`n

2
/ 6 .3=

p
n/n while

voln.BX/ D 1, the proportion of those z 2 @BX for which kzk`n
2
>
p
n=4 tends to 1

as n!1 (exponentially fast). Any such z satisfies

voln�1.Projz?BX/

voln.BX/
kzk`n

2
& n:
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These obstacles can sometimes be overcome by perturbing the given normed
space X prior to invoking (1.33), i.e., by using of Theorem 21 with a suitably chosen
auxiliary normed space YD .Rn;k � kY/. In particular, k � k`n

2
6 n1=2�1=pk � k`np when

p > 2 by Hölder’s inequality, so Theorem 18 follows from a substitution of the space
Ynp of Theorem 24 below into Theorem 21 (with X D `np), or even into (1.34).

Theorem 24. For any n 2 N and p 2 Œ1;1� there is a normed space

Ynp D .R
n; k � kYnp /

that satisfies

8x 2 Rn X ¹0º; kxkYnp � kxk`np ; and
voln�1

�
Projx?BYnp

�
voln

�
BYnp

� . n
1
p : (1.39)

The case p D 1 of Theorem 24 implies Theorem 20 by an application of The-
orem 21. Indeed, fix p > 1 and n 2 N. Suppose that x; y 2 .`np/6k for some k 2
¹1; : : : ; nº. Then x � y has at most 2k nonzero coordinates. Therefore, if Yn1 is as in
Theorem 24, then by Hölder’s inequality we have

.2k/�max¹ 12�
1
p ;0ºkx � yk`n

2
6 kx � yk`np 6 .2k/

1
p kx � yk`n1 � k

1
p kx � ykYn1 :

(1.40)
Theorem 20 follows by substituting these bounds and the case p D 1 of (1.39)
into (1.28). Observe that we would have obtained the weaker bound e..`np/6k/ .
k1=pC1=2 if we used (1.34) instead of (1.28).

If p D O.1/, then one can take Ynp D `np in Theorem 24. In fact, the direction
z 2 Sn�1 at which

max
z2Sn�1

voln�1
�
Projz?B`np

�
(1.41)

is attained was determined by Barthe and the author in [32]. This result implies that

8p > 1; max
z2Sn�1

voln�1
�
Projz?B`np

�
voln.B`np /

� n
1
p

p
min¹p; nº: (1.42)

As [32] computes (1.41) exactly, the implicit constant factors in (1.42) can be eval-
uated, but in the present context such precision is of secondary importance. While
(1.42) follows from [32] (see the deduction in [227]), we will give a self-contained
proof of (1.42) in Section 6 as a special case of a more general result that we will
use for other purposes as well. In the range q 2 .2;1/, a different approach to com-
puting (1.41) was found in [157]. Earlier methods for estimating (1.41) with worse
lower order factors are due to [223, 286]; the latter is an adaptation of an idea (used
for related purposes) in [45].

For each k 2 ¹1; : : : ; nº, by applying (1.28) with Y D `nq for some q > p, using
(1.42) with p replaced by q, and optimizing the resulting bound over q, one obtains
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a result that matches Theorem 20 up to unbounded lower order factors. More pre-
cisely, the best that one can get with this approach is when

q D max
°
2 log

�n
k

�
; p
±

if p 6 log.2k/. If p > log.2k/, then use (1.28) with Y D `nlog.2k/.
Theorem 24 provides an auxiliary space Y for which a use of (1.28) removes

the above lower order factors, and yields a sharp result when p D 1 (we conjecture
that it is sharp for any p > 2). Regardless of whether we apply (1.28) with the space
YD Yn1 of Theorem 24 or with YD `nq for a suitable choice of q > p, we have seen
that without using an auxiliary space Y ¤ `np in (1.28) we do not come close to such
results.

Even though in Theorem 21 we are interested in extending functions that are
Lipschitz in the metric that is induced by the given norm k � kX, the underlying reason
for the bounds of Theorem 21 is a partitioning scheme (to be described below) that
iteratively carves out balls in the metric that is induced by the auxiliary norm k � kY.
So, the perturbation of X into Y amounts to exhibiting a Lipschitz extension operator
through the use of a multi-scale construction that utilizes geometric shapes that differ
from balls in the ambient metric. This strategy is feasible because the quantity e.CX/

in the left-hand side of (1.32) is a bi-Lipschitz invariant, while the volumes that appear
in the right-hand side of (1.32) scale exponentially in n. Hence, by passing to an
equivalent norm one could hope to reduce the right-hand side of (1.32) significantly,
while not changing the left-hand side of (1.32) by too much.

This perturbative approach is decisively useful for X D `n1. When one unravels
the ensuing proofs, the upper bound on e.`n1/ of Theorem 14 arises from a multi-
scale construction of an extension operator (using a gentle partition of unity [173])
that utilizes a partition of space that is obtained by iteratively removing sets of the
form xC rBYn1 , where Yn1 is as in Theorem 24. If one carries out the same procedure
while using balls of the intrinsic metric of `n1 (namely, hypercubes x C rŒ�1; 1�n

in place of x C rBYn1 , which look like hypercubes with “rounded corners”), then
only the weaker bound e.`n1/ . n is obtained. We already mentioned that such a
phenomenon even occurs in the proof of the Euclidean estimate (1.27).

The following two examples describe further uses of Theorem 21; we will work
out several more later.

Example 25. In the forthcoming work [234], the author and Schechtman prove (for
an application to metric embedding theory) the following asymptotic evaluation of
the maximal volumes of hyperplane projections of the unit balls of the Schatten–von
Neumann trace classes:

8q > 1; max
A2Mn.R/X¹0º

voln2�1
�
ProjA?BSnq

�
voln2

�
BSnq

� � n
1
2C

1
q

p
min¹q; nº: (1.43)
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Upon substitution into Theorem 21, this yields the following new estimates on the
Lipschitz extension moduli of Schatten–von Neumann trace classes, which holds for
every p > 1 and every integer n > 2:

e
�
Snp
�
.

´
n
1
2C

1
p if p 2 Œ1; 2�;

n
p

min¹p; lognº if p 2 Œ2;1�:
(1.44)

Indeed, by Hölder’s inequality

k � kSn
2
6 nmax¹0; 12�

1
p ºk � kSnp ;

so (1.44) for p 6 log n follows from a substitution of these point-wise bounds and
(1.43) when q D p into the case X D Y D Snp of Theorem 21. The case p > log n
of (1.44) follows from the same reasoning using (1.43) when q D log n and Theo-
rem 21 for X D Snp and Y D Snq , since in this case dBM.Snp;S

n
q/ . 1. Note that, since

dim.Snp/ D n
2, for every p 2 Œ1;1� the bound on e.Snp/ in (1.44) is o.dim.Snp//, i.e.,

it is asymptotically better than what follows from [140].
More generally, given p > 1, an integer n > 2 and r 2 ¹3; : : : ; nº, let .Snp/6r be

the set of n by n matrices of rank at most r , equipped with the metric inherited from
Snp . Then, (1.44) has the following strengthening:

e
�
.Snp/6r

�
. rmax¹ 1p ;

1
2 º
p
n �

8<:
q

max¹log.n
r
/; pº if p 6 log r;

p
logn if p > log r:

(1.45)

To justify (1.45), apply Theorem 21 with X D Snp and Y D Snq for some q > p
while using (1.43), and optimize the resulting bound over q. Specifically, as for
A;B 2 .Snp/6r the matrix A�B has at most 2r nonzero singular values, by Hölder’s
inequality we have

kA � BkSn
2
6 .2r/max¹0; 12�

1
p ºkA � BkSnp

and
kA � BkSnp 6 .2r/

1
p�

1
q kA � BkSnq :

In combination with (1.43), we therefore get the following bound from (1.28):

e
�
.Snp/6r

�
.
�

sup
A;B2.Snp/6r

A¤B

kA � BkSnp

kA � BkSnq

�
sup

A;B2.Snp/6r
A¤B

�
n
1
2C

1
q
p
q
kA � BkSn

2

kA � BkSnp

�
. r

1
p�

1
q n

1
2C

1
q
p
qrmax¹ 12�

1
p ;0º: (1.46)

The q > p that minimizes the right-hand side of (1.46) is max¹2 log.n=r/; pº, yield-
ing (1.45) when p 6 log r . If p > log r , then kA � BkSnp � kA � BkSnlog r

for every
A;B 2 .Snp/6r , so (1.45) reduces to its special case p D log r .
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We conjecture that it is possible to replace the logarithmic factor in (1.45) by a
universal constant, i.e.,

e
�
.Snp/6r

�
. rmax¹ 1p ;

1
2 º
p
n: (1.47)

As we will see in Section 1.6, Conjecture 26 below is equivalent to the symmetric
isomorphic reverse isoperimetry conjecture (see Conjecture 47) for Mn.R/ equipped
with the operator norm, which is an especially interesting special case of this much
more general conjectural phenomenon; by reasoning as we did in the above deduc-
tion of Theorem 20 from (the special case p D 1 of) Theorem 24 (recall the dis-
cussion immediately following (1.40)), a positive answer to Conjecture 26 would
imply (1.47).

Conjecture 26. For every n 2 N there exists a normed space

Y D .Mn.R/; k � kY/

such that for every nonzero n by nmatrix A 2 Mn.R/X ¹0º we have kAkY � kAkSn1

and
voln2�1.ProjA?BY/ . voln2.BY/

p
n:

Example 27. Since the `n1.`
n
1/ norm on Mn.R/ is isometric to `n

2

1 , by Theorem 24
there is a normed space Y D .Mn.R/; k � kY/ that satisfies

kAk`n1.`n1/ 6 kAkY . kAk`n1.`n1/

for every A 2 Mn.R/, and

max
A2Mn.R/X¹0º

voln2�1
�
ProjA?BY

�
voln2.BY/

D O.1/:

By Hölder’s inequality, for every p; q 2 Œ1;1� and A 2 Mn.R/ we have

kAk`np.`nq/ 6 n
1
pC

1
q kAk`n1.`n1/ 6 n

1
pC

1
q kAkY

and
kAk`n

2
.`n
2
/ 6 nmax¹ 12�

1
p ;0ºCmax¹ 12�

1
q ;0ºkAk`np.`nq/:

Therefore, Theorem 21 gives the Lipschitz extension bound

e
�
`np.`

n
q/
�
. n

1
pC

1
qCmax¹ 12�

1
p ;0ºCmax¹ 12�

1
q ;0º D nmax¹1; 1pC

1
q ;
1
2C

1
p ;
1
2C

1
q º: (1.48)

As in the case of `np , we get (1.48) if p; q D O.1/ by using Theorem 21 with Y D
X D `np.`np/, but otherwise we need to work with an auxiliary space Y ¤ X as above.
Specifically, in Section 6 we will prove the following asymptotic evaluation of the
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maximal volume of hyperplane projections of the unit ball of `np.`
n
q/:

max
A2Mn.R/X¹0º

voln2�1
�
ProjA?B`np.`nq/

�
voln2

�
B`np.`nq/

�

�

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

n if n 6 min¹
p
p; qº;

p
qn

1
2C

1
q if q 6 n 6 pp;

p
p if

p
p 6 n 6 min¹p; qº;

p
pqn

1
q�

1
2 if max¹

p
p; qº 6 n 6 p;

n
1
2C

1
p if p 6 n 6 q;

p
qn

1
pC

1
q if n > max¹p; qº:

(1.49)

The intricacy of (1.49) is perhaps unexpected, though it is nonetheless sharp in all
of the six ranges (depending on the relative locations of p; q; n and, somewhat curi-
ously,

p
p) that appear in (1.49). By reasoning analogously to the discussion follow-

ing (1.42), one can prove a bound on e.`np.`
n
q// that matches (1.48) up to lower order

factors by applying Theorem 21 with Y D `nr .`ns / and then optimizing over r; s > 1.
For the sole purpose of this application, only the range n > max¹p; qº of (1.49) is
needed. However, results such as (1.49) have geometric interest in their own right
for all of the possible values of the relevant parameters. We will actually prove a
version of (1.49) for `np.`

m
q / even when n ¤ m; the case of rectangular matrices is

independently interesting, but we will also use it elsewhere (see Remark 56 below).

Problem 28. Determine the exact maximizers of volumes of hyperplane projections
of the unit balls of Snp and `np.`

n
q/, i.e., for which A 2 Mn.R/ X ¹0º are the maxima

in (1.43) and (1.49) attained.

1.5 A dimension-independent extension theorem

In the preceding sections we stated all of the extension theorems using the traditional
setup that aims to extend a Lipschitz function to a function that is Lipschitz with
respect to the given metric. However, all of our new (positive) extension theorems
are a consequence of Theorem 29 below, which is a nonstandard Lipschitz extension
theorem.

Theorem 29 asserts that if X D .Rn; k � kX/ is a normed space and f is a 1-
Lipschitz function from a subset of Rn to a Banach space Z, then f can be extended
to a Z-valued function that is defined on all of Rn and is O.1/-Lipschitz with respect
to the metric that is induced on Rn by the norm jjj � jjj D 2k � k…*X= voln.BX/, i.e., a
suitable rescaling of the norm whose unit ball is the polar projection body of BX. This
rescaling ensures that jjj � jjj dominates k � kX; indeed, by an elementary geometric
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argument (see Remark 112),

8x 2 Rn; kxkX 6
2kxk…*X

voln.BX/
6 nkxkX: (1.50)

Thus, the conclusion of Theorem 29 that the extended function is Lipschitz with
respect to jjj � jjj is less stringent than the traditional requirement that it should be
Lipschitz with respect to k � kX, but Theorem 29 has the feature that the upper bound
on the Lipschitz constant is independent of the dimension.

Theorem 29. Fix n 2 N and a normed space X D .Rn; k � kX/. Fix also a Banach
space .Z; k � kZ/. Suppose that C � Rn and f W C! Z is 1-Lipschitz with respect
to the metric that is induced by k � kX, i.e., kf .x/ � f .y/kZ 6 kx � ykX for every
x; y 2 C. Then, there exists F W Rn ! Z that coincides with f on C and satisfies

8x; y 2 Rn; kF.x/ � F.y/kZ .
kx � yk…*X

voln.BX/
:

To see how Theorem 29 implies Theorem 21, denote (in the setting of the state-
ment of Theorem 21):

M D sup
x;y2C
x¤y

�
kx � ykX

kx � ykY

�
(1.51)

and

M 0 D sup
x;y2C
x¤y

�
voln�1

�
Proj.x�y/?BY

�
voln.BY/

�
kx � yk`n

2

kx � ykX

�
: (1.52)

Thus, every x; y 2 C satisfy kx � ykX 6Mkx � ykY and, recalling (1.30), also

kx � yk…*Y

voln.BY/
6M 0kx � ykX:

Let .Z;k � kZ/ be a Banach space. Consider an arbitrary subset C0 � C. If f W C0!Z is
1-Lipschitz with respect to the metric that is induced by k � kX, then the function f=M
is 1-Lipschitz with respect to the metric that is induced by Y. By Theorem 29 (with
X replaced by Y, C replaced by C0, f replaced by f=M ) we therefore see that there
exists F W Rn! Z (for Theorem 21 we only need F to be defined on C) that extends
F and satisfies kF.x/ � F.y/kZ .Mkx � yk…*Y= voln.BY/ 6MM 0kx � ykX for
all x; y 2 C. This coincides with (1.28).

Remark 30. Given p > 1, consider what happens when we apply Theorem 29 to the
space Ynp of Theorem 24. We get that for any C � Rn and any Banach space Z, if
f W C! Z is 1-Lipschitz with respect to the `np metric, then f can be extended to
F W Rn ! Z that is O.n1=p/-Lipschitz with respect to the Euclidean metric. When
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p < 2, the Lipschitz assumption on f is less stringent than requiring it to be O.1/-
Lipschitz with respect to the Euclidean metric, but we then get an extension F that
is O.n1=p/-Lipschitz with respect to the Euclidean metric; this upper bound on the
Lipschitz constant of F is asymptotically larger than theO.

p
n/ bound that we would

get if f were assumed to be 1-Lipschitz with respect to the Euclidean metric and we
applied the second inequality in (1.22), but we get it while requiring less from f .
In particular, when p D 1 we see that any Z-valued function on a subset of Rn that
is 1-Lipschitz with respect to the `n1 metric can be extended to a Z-valued function
defined on all of Rn whose Lipschitz constant with respect to the Euclidean metric is
O.n/, while an application of [140] will give an extension that isO.n/-Lipschitz with
respect to the `n1 metric. On the other hand, if p > 2, then the Lipschitz assumption
on f is more stringent than requiring it to be O.1/-Lipschitz with respect to the
Euclidean metric, but we then get an extension F that is O.n1=p/-Lipschitz with
respect to the Euclidean metric, which is asymptotically better than theO.

p
n/ bound

from (1.22). In particular, when pD1we see that any Z-valued function on a subset
of Rn that is 1-Lipschitz with respect to the `n1 metric can be extended to a Z-valued
function on all of Rn whose Lipschitz constant with respect to the Euclidean metric
is O.1/.

1.6 Isomorphic reverse isoperimetry

All of the applications that we found for Theorem 21 proceed by bounding the vol-
umes of hyperplane projections of BY that appear in right-hand side of (1.28) by

MaxProj.BY/
def
D max

z2Sn�1
voln�1

�
Projz?BY

�
: (1.53)

Thus, it follows from (1.29) that for any two normed spaces X D .Rn; k � kX/ and
Y D .Rn; k � kY/ with BY � BX we have

e.X/ .
MaxProj.BY/

voln.BY/
diam`n

2
.BX/: (1.54)

Even though there could conceivably be an application of (1.29) that is more
refined than (1.54), in this section we will investigate the ramifications of bounding
MaxProj.BX/ as a way to use Theorem 21. This will relate to the isomorphic reverse
isoperimetric phenomena that we conjectured in Section 1.1.1.

Any origin-symmetric convex body L � Rn satisfies

MaxProj.L/ &
voln�1.@L/
p
n

: (1.55)
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Indeed, this follows immediately from the following classical Cauchy surface area
formula (see, e.g., [282, equation (5.73)]) by bounding the integrand by its maximum:

voln�1.@L/ D
2
p
��

�
nC1
2

�
�
�
n
2

�  
Sn�1

voln�1
�
Projz?L

�
dz

�
p
n

 
Sn�1

voln�1
�
Projz?L

�
dz:

Remark 31. Using (1.55), Theorem 24 implies that Conjecture 9 (isomorphic reverse
isoperimetry) holds (with S the identity mapping) when K D B`np for any p > 1 and
n 2 N. Indeed, let Ynp be the normed space from Theorem 24. By the first inequality
in (1.40) we have

voln
�
BYnp

� 1
n � voln

�
B`np

� 1
n � n�

1
p ; (1.56)

where the last equivalence in (1.56) is a standard computation (e.g., [263, p. 11]).
By (1.55) and (1.56), the second inequality in (1.40) implies that the isoperimetric
quotient of BYnp is O.

p
n/. So, Conjecture 9 holds for K D B`np if we take L to be a

rescaling by a universal constant factor of BYnp so that L � K.

Thanks to (1.55), if we set K D BX and L D BY in (1.54), then the right-hand
side of (1.54) satisfies

MaxProj.L/
voln.L/

diam`n
2
.K/ &

voln�1.@L/
p
n voln.L/

diam`n
2
.K/

D
iq.L/
p
n
�

diam`n
2
.K/

voln.L/
1
n

&
diam`n

2
.K/

voln.K/
1
n

; (1.57)

where we recall notation (1.11) for the isoperimetric quotient iq.�/ and the last step
uses the isoperimetric theorem (1.12) and the assumption L � K. The following
proposition explains what it would entail for one to be able to reverse (1.57) after
an application of a suitable linear transformation; in particular, it shows that one can
find S 2 SLn.R/ and an origin-symmetric convex body L � SK such that

MaxProj.L/
voln.L/

diam`n
2
.SK/ .

diam`n
2
.SK/

voln.K/
1
n

if and only if Conjecture 10 on weak isomorphic reverse isoperimetry holds for K.

Proposition 32. The following two statements are equivalent for every n 2 N, every
origin-symmetric convex body K � Rn and every ˛ > 0.

(1) There exist a linear transformation S 2 SLn.R/ and an origin-symmetric con-
vex body L � SK with

MaxProj.L/
voln.L/

voln.K/
1
n . ˛: (1.58)
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(2) There exist a linear transformation S 2 SLn.R/ and an origin-symmetric con-
vex body L � SK that satisfies n

p
voln.L/ > ˇ n

p
voln.K/ and iq.L/ 6 

p
n

for some ˇ & 1=˛ and  . ˛ with =ˇ . ˛.

Proof. For the implication (1))(2) we introduce the notations  D iq.L/=
p
n and

ˇ D n
p

voln.L/= n
p

voln.K/. Then,

˛
(1.58)
&

MaxProj.L/
voln.L/

voln.K/
1
n

(1.55)
&

voln�1.@L/
voln.L/

p
n

voln.K/
1
n D



ˇ
:

Since by the isoperimetric theorem (1.12) we have  & 1, it follows from this that
ˇ & 1=˛, and since L� SK and S 2 SLn.R/, we have voln.L/6 voln.K/, so ˇ 6 1
and it also follows from this that  . ˛.

For the implication (2))(1), fix T 2 SLn.R/ that satisfies

voln�1.@TL/ D min
®
voln�1.@T 0L/ W T 0 2 SLn.R/

¯
;

i.e., TL is in its minimum surface area position [250]. So, voln�1.@TL/6voln�1.@L/
by the definition of T , and by Proposition 3.1 in the work [104] of Giannopoulos and
Papadimitrakis combined with (1.55) we have

MaxProj.TL/ �
voln�1.@TL/
p
n

:

Consequently, if L satisfies part (2) of Proposition 32, then

MaxProj.TL/
voln.TL/

voln.K/
1
n �

voln�1.@TL/
voln.TL/

p
n

voln.K/
1
n

6
voln�1.@L/

voln.TL/
p
n

voln.K/
1
n

D
iq.L/
p
n

�
voln.K/
voln.L/

� 1
n

6


ˇ
. ˛:

Hence, (1) holds with S replaced by TS 2 SLn.R/ andL replaced by TL� TSK.

Since when ˛ . 1 in Proposition 32 the assertion of its part (2) coincides with
Conjecture 10, it follows that Conjecture 10, and a fortiori Conjecture 9, imply that
for any normed space X D .Rn; k � kX/ there is S 2 SLn.R/ such that e.X/ is at most
a universal constant multiple of diam`n

2
.SBX/=

n
p

voln.BX/. Indeed, this follows by
applying Theorem 21 to the normed spaces X0 D .Rn; k � kX0/ and Y D .Rn; k � kY/

whose unit balls are SBX and L, respectively, where S and L are as in part (1) of
Proposition 32 for K D BX, while noting that e.X0/ D e.X/ since X0 is isometric
to X. We record this conclusion as the following corollary.
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Corollary 33. If Conjecture 10 holds for a normed space XD .Rn;k � kX/, then there
is S 2 SLn.R/ such that

e.X/ .
diam`n

2
.SBX/

voln.BX/
1
n

: (1.59)

The upshot of Corollary 33 is that the right-hand side of (1.59) involves only
Euclidean diameters and nth roots of volumes, which are typically much easier to
estimate than extremal volumes of hyperplane projections. This comes at the cost of
having to find the auxiliary linear transformation S 2 SLn.R/, but we expect that in
concrete settings it will be simple to determine S . Moreover, in all of the specific
examples of spaces for which we are interested (at least initially) in estimating their
Lipschitz extension modulus, S should be the identity mapping. We will discuss this
matter and its consequences in Section 1.6.2.

Remark 34. There is a degree of freedom that the above discussion does not exploit.
Let X D .Rn; k � kX/ be a normed space. By (1.31), we know that e.X/ is bounded
from above by a constant multiple of the minimum of diam…*Y.BX/= voln.BY/ over
all the normed spaces YD .Rn;k � kY/ for which BY � BX. By (1.54), to control this
minimum it suffices to estimate the minimum of MaxProj.BY/= voln.BY/ over all
such Y, which relates to isomorphic reverse isoperimetric phenomena. But, we could
also take a normed space W D .Rm; k � kW/ for m > n such that BW \ Rn D BX

(we need that W contains an isometric copy of X), estimate either of the two minima
above for the super-space W, and then use e.X/ 6 e.W/. Thus, it would suffice to
embed X into a larger normed space that exhibits good isomorphic reverse isoperime-
try. Our conjectures imply that such an embedding step is not needed, namely we
expect that the desired isomorphic reverse isoperimetric property holds for X. Nev-
ertheless, it could be that by finding a suitable super-space W one could bound e.X/
while circumventing the difficulty of proving Conjecture 10 for X. For example, if
X is a subspace of `m1 for some m D O.n/, then by Theorem 14 we know that
e.X/ .

p
n, but this is because we know that `m1 has the desired isomorphic reverse

isoperimetric property, and it is not clear how to prove it for X itself. It is also unclear
how to construct for a given normed X a super-space W that could be used as above.
We leave the exploration of this possibility for future research.

1.6.1 A spectral interpretation, reverse Faber–Krahn and the Cheeger space of
a normed space

We will henceforth quantify the extent to which Conjecture 10 holds through the
following condition:

iq.L/
p
n

�
voln.K/
voln.L/

� 1
n

D
voln.K/

1
n

p
n

�
voln�1.@L/

voln.L/

�
6 ˛: (1.60)
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The factors iq.L/=
p
n and .voln.K/= voln.L//1=n that appear in the left-hand side

of (1.60) are at least a positive universal constant (by, respectively, the isoperimetric
theorem and the assumed inclusion L � K), so (1.60) implies that

iq.L/ 6 ˛
p
n and n

p
voln.L/ & ˛�1 n

p
voln.K/:

Thus, if ˛ D O.1/, then (1.60) is equivalent to the conclusion of Conjecture 10.
However, even though Conjecture 10 expresses our expectation that (1.60) is always
achievable with ˛ D O.1/ upon a judicious choice of the Euclidean structure on Rn,
in lieu of Conjecture 10 it would still be valuable to obtain (1.60) with ˛ unbounded
but slowly growing. In such a situation, the bi-parameter quantification that we used
in part (2) of Proposition 32 contains more geometric information than (1.60), but
below we will work with (1.60) in order to simplify the ensuing discussion; this suf-
fices for our purposes because (1.60) is what shows up in all of the applications herein
(per the proof Proposition 32) since they all proceed by bounding the right-hand side
of (1.54) from above.

Alter and Caselles proved [7] that for every convex body K � Rn there is a
unique measurable set A � K, which we call the Cheeger body of K and denote
ChK, satisfying Per.A/= voln.A/ 6 Per.B/= voln.B/ for every measurable B � K
with voln.B/ > 0, where Per.�/ denotes perimeter in the sense of Caccioppoli and
de Giorgi; this notion is covered in [9] but we do not need to recall its definition
here since the perimeter of a convex body coincides with the .n � 1/-dimensional
Hausdorff measure of its boundary. It was proved in [7] that ChK is convex and
its boundary is C 1;1. Further information on this remarkable theorem can be found
in [7], where ChK is characterized in terms of the mean curvature of its boundary
through the work [8] of Alter, Caselles and Chambolle (see also the precursor [74]
by Caselles, Chambolle and Novaga which obtained these statements under stronger
assumptions on K).

Beyond the fact that it allows us to use the notation ChK and call it the Cheeger
body ofK, the aforementioned uniqueness statement will be used substantially in the
ensuing reasoning. It implies in particular that if K is origin-symmetric, then so is
ChK. Consequently, if X D .Rn; k � kX/ is a normed space, then ChBX is the unit
ball of a normed space that we denote by Ch X and call the Cheeger space of X.

For a convex body K � Rn, let �.K/ be the smallest Dirichlet eigenvalue of the
Laplacian onK, namely it is the smallest � > 0 for which there is a nonzero function

' W K ! R

that is smooth on the interior of K, vanishes on the boundary of K, and satisfies
�'D��' on the interior ofK; see, e.g., [77,81,265] for background on this classical
topic. If X D .Rn; k � kX/ is a normed space, then we denote

�.X/ D �.BX/:
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The quantity h.K/D voln�1.@ChK/=voln.ChK/ is called the Cheeger constant
of K; it relates to �.K/ by

2

�

p
�.K/ 6 h.K/ D

voln�1.@ChK/
voln.ChK/

6 2
p
�.K/: (1.61)

It is important for our purposes that the constants appearing in (1.61) are independent
of the dimension n. The second inequality in (1.61) is the Cheeger inequality for the
Dirichlet Laplacian on Euclidean domains. Cheeger’s proof of it for compact Rie-
mannian manifolds without boundary appears in [78] and that proof works mutatis
mutandis in the present setting; see its derivation in, e.g., the appendix of [174]. The
first inequality in (1.61) can be called the Buser inequality for the Dirichlet Lapla-
cian on convex Euclidean domains, since Buser proved [69] its analogue for compact
Riemannian manifolds without boundary that have a lower bound on their Ricci cur-
vature. In our setting, this reverse Cheeger inequality is more recent, namely it was
noted for planar convex sets by Parini [246] and in any dimension by Brasco [53]. It
can be justified quickly using the convexity of K and its Cheeger body ChK as fol-
lows. By a classical theorem of Pólya we have �.K/6 �2.voln�1.@K/=voln.K//2=4
(Pólya proved this for planar convex sets, but in [144] Joó and Stachó carried out
Pólya’s approach for convex bodies in Rn for any n 2 N). Therefore,

�.K/ 6 �.ChK/ 6
�
� voln�1.@ChK/
2 voln.ChK/

�2
D
�2

4
h.K/2;

since ChK is convex.
Let jn=2�1;1 be the smallest positive zero of the Bessel function Jn=2�1; see [14,

Chapter 4] for a treatment of Bessel functions and their zeros, though here we will
only need to know that jn=2�1;1 � n (see [306] for more precise asymptotics). By
classical computations (see, e.g., [129, equation (1.29)]),

�
�
B`n

2

�
D j 2n

2�1;1
:

The Faber–Krahn inequality [95, 159] (see also, e.g., [77, 265]) asserts that �.K/ is
at least the first Dirichlet eigenvalue of a Euclidean ball whose volume is the same as
the volume of K. Thus,

�.K/ voln.K/
2
n > �

�
B`n

2

�
voln

�
B`n

2

� 2
n D j 2n

2�1;1
voln

�
B`n

2

� 2
n � n;

where we used the straightforward fact that �.rK/ D �.K/=r2 for every r > 0.
Observe that (1.61) can be rewritten as follows for every convex body K � Rn:
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�
�.K/ voln.K/
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n
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6
iq.ChK/
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n
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voln.K/

voln.ChK/
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�
�.K/ voln.K/
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:
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Hence, for every ˛ > 0 we have

iq.ChK/
p
n

�
voln.K/

voln.ChK/

� 1
n

. ˛ ” �.K/ voln.K/
2
n . ˛2n: (1.62)

Since ChK is convex, the convex body L � K that minimizes the left-hand side
of (1.60) is equal to ChK. We therefore see that Conjecture 35 below is equivalent
to Conjecture 10. Furthermore, if one of these two conjectures hold for a matrix S 2
SLn.R/, then the same matrix would work for the other conjecture.

Conjecture 35 (Reverse Faber–Krahn). For any origin-symmetric convex bodyK �
Rn there exists a volume-preserving linear transformation S 2 SLn.R/ such that

�.SK/ vol.K/
2
n � n:

Remark 36. One can also wonder about exact maximizers in the context of Con-
jecture 35. Specifically, Bucur and Fragalà stated in [67, p. 389] that they expect
that for any origin-symmetric convex body K � Rn with voln.K/ D 1 there exists
S 2 SLn.R/ such that �.SK/6 �.Œ0; 1�n/D �2n. If true, then this would be a beauti-
ful statement even though it does not have substantial impact on Conjecture 10 and its
implications herein (it would only influence the value of the implicit constant factors
in our statements, which incur further losses that are most likely not sharp in other
steps of their derivations). The only available evidence for the aforementioned (spec-
ulative) exact statement is the partial result of [67] in the planar case n D 2, which
proves that it indeed holds when K � R2 is a convex axisymmetric octagon that has
four of its vertices lying on the axes at the same distance from the origin; see specif-
ically [67, Proposition 10], whose proof involves delicate reasoning that incorporate
computer-assisted steps. A complete result for n D 2 has been subsequently obtained
by the same authors in [68] for the analogous question in which one replaces the
Dirichlet eigenvalue of the Laplacian by the Cheeger constant. Namely, [68, Theo-
rem 1.1] states that for every origin-symmetric convex bodyK �R2 with vol2.K/D
1 there exists S 2 SL2.R/ such that h.SK/ 6 h.Œ0; 1�2/ D 2C

p
� (furthermore, in

this case S can be taken to be the matrix that puts K in John position, i.e., the ellipse
of maximal area that is contained in SK is a circle).

This above spectral interpretation of Conjecture 10 is useful for multiple pur-
poses, including the following lemma whose proof appears in Section 6.1. For its
statement, as well as throughout the ensuing discussion, recall that a basis x1; : : : ; xn
of an n-dimensional normed space .X; k � kX/ is a 1-unconditional basis of X if

k"1a1x1 C � � � C "nanxnkX D ka1x1 C � � � C anxnkX

for every choice of scalars a1; : : : ; an 2 R and signs "1; : : : ; "n 2 ¹�1; 1º. When we
say that XD .Rn;k � kX/ is an unconditional normed space, we mean that the standard
(coordinate) basis e1; : : : ; en of Rn is a 1-unconditional basis of X.
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Lemma 37 (Closure of Conjecture 10 under unconditional composition). Fix n 2 N
and m1; : : : ; mn 2 N. Let X1 D .Rm1 ; k � kX1/; : : : ;Xn D .Rmn ; k � kXn/ be normed
spaces. Also, let ED .Rn;k � kE/ be an unconditional normed space. Define a normed
space X D .Rm1 � � � � �Rmn ; k � kX/ by

8x D .x1; : : : ; xn/ 2 Rm1 � � � � �Rmn ; kxkX
def
D
�kx1kX1 ; : : : ; kxnkXn

�
E:

Suppose that there exist ˛ > 0, linear transformations S1 2 SLm1.R/; : : : ; Sn 2
SLmn.R/, and normed spaces Y1 D .Rm1 ; k � kY1/; : : : ;Yn D .Rmn ; k � kYn/ such
that

BYk � SkBXk and
iq
�
BYk

�
p
mk

�
volmk

�
BXk

�
volmk

�
BYk

�� 1
mk

6 ˛; (1.63)

for every k 2 ¹1; : : : ; nº. Then, there exist a normed space

Y D .Rm1 � � � � �Rmn ; k � kX/

and S 2 SL.Rm1 � � � � �Rmn/ such that

BY � SBX and
iq.BY/

p
m1 C � � � Cmn

�
volm1C���Cmn.BX/

volm1C���Cmn.BY/

� 1
m1C���Cmn

. ˛: (1.64)

As (1.63) with ˛ D O.1/ is immediate when n0 D 1, Lemma 37 establishes
Conjecture 10 for when K is the unit ball of an unconditional normed space X D
.Rn;k � kX/. This holds, in particular, for XD `np , though we will prove in Section 6.1
that the stronger conclusion of Conjecture 9 holds in this case (recall Remark 31).
Lemma 37 also shows that Conjecture 10 holds for, say, X D `np.`mq /; we expect that
the reasoning of Section 6.1 could be adapted to yield Conjecture 9 for these spaces
as well, but we did not attempt to carry this out. Other spaces that satisfy (1.63)
with ˛ slowly growing will be presented in Section 1.6.2; upon their substitution into
Lemma 37, more examples for which Conjecture 10 holds up to lower-order factors
are obtained (of course, we are conjecturing here that it holds for any space).

Remark 38. Say that a normed space X D .Rn; k � kX/ is in Cheeger position if

8S 2 SLn.R/;
voln�1.@ChBX/

voln.ChBX/
6

voln�1.@ChSBX/

voln.ChSBX/
:

Observe that if X is in Cheeger position, then its Cheeger space Ch X is in minimum
surface area position, namely, voln�1.@ChBX/ 6 voln�1.@S ChBX/ for every S 2
SLn.R/. Indeed, S ChBX � SBX, so by the definition of the Cheeger body of SBX we
have voln�1.@S ChBX/= voln.ChBX/ > voln�1.@ Ch SBX/= voln.Ch SBX/. At the
same time, voln�1.@Ch SBX/= voln.Ch SBX/ > voln�1.@ChBX/= voln.ChBX/ by
the definition of the Cheeger position, so voln�1.@S ChBX/ > voln�1.@ChBX/. This
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shows that in the proof of the implication (2))(1) of Proposition 32, if we worked
with L D Ch SK, then there would be no need to introduce the additional linear
transformation T 2 SLn.R/. It would be worthwhile to study the Cheeger position for
its own sake even if it were not for its connection to reverse isoperimetry. In particular,
we do not know if the converse of the above deduction holds, namely whether it is true
that if Ch X is in minimum surface area position, then X is in Cheeger position. We
also do not know if the Cheeger position is unique up to orthogonal transformation (as
is the case for the minimum surface area position [104]); we did not investigate these
matters since they are not needed for the present purposes, but we expect that the
characterisations of the Cheeger body in [7] would be relevant here. One could also
define that a normed space XD .Rn; k � kX/ is in Dirichlet position if �.X/ 6 �.SX/
for every S 2 SLn.R/. It is unclear how the Cheeger position relates to the Dirichlet
position and it would be also worthwhile to study the Dirichlet position for its own
sake. By (1.61), working with either the Cheeger position or the Dirichlet position
would be equally valuable for the reverse isoperimetric questions in which we are
interested here.

1.6.2 Symmetries and positions

Thus far we considered an arbitrary scalar product on an n-dimensional normed space
through which we identified its underlying vector space structure with Rn. How-
ever, the Lipschitz extension modulus is insufficiently understood for “very nice”
normed spaces (including even the Euclidean space `n2) that belong to a natural class
of normed spaces that have a canonical identification with Rn. It therefore makes
sense to first focus on this class.

For a finite dimensional normed space .X; k � kX/, let Isom.X/ be the group of
all of the isometric automorphism of X, i.e., all the linear operators U W X! X that
satisfy kUxkX D kxkX for every x 2 X. We will denote the Haar probability measure
on the compact group Isom.X/ by hX.

Definition 39. We say that a finite dimensional normed space .X; k � kX/ is canoni-
cally positioned if any two Isom.X/-invariant scalar products on X are proportional to
each other. In other words, if h�; �i WX�X!R and h�; �i0 WX�X!R are scalar prod-
ucts on X such that hUx; Uyi D hx; yi and hUx; Uyi0 D hx; yi0 for every x; y 2 X
and every U 2 Isom.X/, then there necessarily exists � 2 R such that h�; �i0 D �h�; �i.

On any finite dimensional normed space X there exists at least one scalar product
h�; �i W X � X! R that is invariant under Isom.X/, as seen, e.g., by averaging any
given scalar product h�; �i0 on X with respect hX, i.e., defining

8x; y 2 X; hx; yi def
D

�
Isom.X/

hSx; Syi0 dhX.S/:
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Definition 39 concerns those spaces X for which such an invariant scalar product is
unique up to rescaling, so there is (essentially, i.e., up to rescaling) no arbitrariness
when we identify X with Rdim.X/.

Example 40. The class of n-dimensional canonically positioned spaces includes
those normed spaces .X; k � kX/ that have a basis e1; : : : ; en such that for any dis-
tinct i; j 2 ¹1; : : : ; nº there are a permutation � 2 Sn with �.i/ D j and a sign
vector "D ."1; : : : ; "n/ 2 ¹�1; 1ºn with "i D �"j such that T� ; S" 2 Isom.X/, where
we denote T�x D

Pn
iD1 a�.i/ei and S"x D

Pn
iD1 "iaiei for x D

Pn
iD1 aiei 2 X

with a1; : : : ; an 2 R. Indeed, let h�; �i be a scalar product on X that is Isom.X/-
invariant. For every distinct i; j 2 ¹1; : : : ; nº, if � 2 Sn and " 2 ¹�1; 1ºn are as above,
then hei ; ei i D he�.i/; e�.i/i D hej ; ej i while hei ; ej i D h"iei ; "j ej i D �hei ; ej i, so
hei ; ej i D 0.

Example 40 covers all of the spaces for which we think that it is most press-
ing (given the current state of knowledge) to understand their Lipschitz extension
modulus, including normed spaces .E; k � kE/ that have a 1-symmetric basis, i.e.,
a basis e1; : : : ; en 2 E such that k

Pn
iD1 "ia�.i/eikE D k

Pn
iD1 aieikE for every

."; �/ 2 ¹�1; 1ºn � Sn. In particular, `np , and more generally Orlicz and Lorentz
spaces (see, e.g., [181]), are canonically positioned. We will use below the common
convention that a normed space .Rn;k � k/ is said to be symmetric if it is 1-symmetric
with respect to the standard (coordinate) basis e1; : : : ; en of Rn.

Example 40 also includes matrix norms

X D .Mn.R/; k � kX/

that remain unchanged if one transposes a pair of rows or columns, or changes the
sign of an entire row or a column, such as Snp . More generally, if ED .Rn; k � kE/ is a
symmetric normed space, then its unitary ideal SE D .Mn.R/; k � kSE/ is canonically
positioned (see, e.g., [37]), where for T 2 Mn.R/ one denotes its singular values by
s1.T / > � � � > sn.T / and defines kT kSE D k.s1.T /; : : : ; sn.T //kE. More examples
of such matrix norms are projective and injective tensor products (see, e.g., [276]) of
symmetric spaces, where if XD .Rn;k � kX/ and YD .Rm;k � kY/ are normed spaces,
then their projective tensor product X y̋Y is the norm on Mn�m.R/ D Rn ˝ Rm

whose unit ball is the convex hull of ¹x ˝ y W .x; y/ 2 BX � BYº, and their injective
tensor product X {̋Y is the dual of X�y̋Y� (equivalently, X {̋Y is isometric to the
operator norm from X� to Y; see, e.g., [87, Section 1.1]).

Henceforth, when we will say that a normed space XD .Rn;k � kX/ is canonically
positioned it will always be tacitly assumed that the standard scalar product h�; �i on
Rn is Isom.X/-invariant, i.e., Isom.X/ is a subgroup of the orthogonal group On �
Mn.R/. This is equivalent to the requirement that for every symmetric positive definite
matrix T 2 Mn.R/, if T U D UT for every U 2 Isom.X/, then there is � 2 .0;1/
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such that T D �Idn. Indeed, any scalar product h�; �i0 W Rn � Rn ! R is of the form
hx;yi0 D hT x;yi for some symmetric positive definite T 2Mn.R/ and all x;y 2Rn,
and using the Isom.X/-invariance of h�; �i we see that h�; �i0 is Isom.X/-invariant if and
only if T commutes with all of the elements of Isom.X/.

Remark 41. A symmetry assumption that is common in the literature is enough sym-
metries. A normed space .X; k � kX/ is said [103] to have enough symmetries if any
linear transformation T W X! X must be a scalar multiple of the identity if T com-
mutes with every element of Isom.X/. By the above discussion, if X has enough
symmetries, then X is canonically positioned. The converse implication does not hold,
i.e., there exist normed spaces that are canonically positioned but do not have enough
symmetries. For example, let Rot�=2 2 O2 be the rotation by 90 degrees and let G be
the subgroup of O2 that is generated by Rot�=2. Thus, G is cyclic of order 4. Suppose
that

X D .R2; k � kX/

is a normed space with Isom.X/ D G; the fact that there is such a normed space
follows from the general result [118, Theorem 3.1] of Gordon and Loewy on existence
of norms with a specified group of isometries, though in this particular case it is
simple to construct such an example (e.g., the unit ball of X can be taken to be a
suitable non-regular octagon). Since Isom.X/ is Abelian, the matrix Rot�=2 commutes
with all of the elements of Isom.X/ yet it is not a multiple of the identity matrix, so X
does not have enough symmetries. Nevertheless, X is canonically positioned. Indeed,
suppose that T 2 M2.R/ is a symmetric matrix that commutes with Rot�=2. Then,
Rot�=2 preserves any eigenspace of T , which means that any such eigenspace must
be ¹0º or R2. But T is diagonalizable over R, so it follows that for some � 2 R
we have T D �Id2. If n is even, then one obtains such an n-dimensional example by
considering `n=21 .X/. However, a representation-theoretic argument due to Emmanuel
Breuillard (private communication; details omitted) shows that if n is odd, then any
n-dimensional normed space has enough symmetries if and only if it is canonically
positioned.

The following lemma is important for us even though it is an immediate conse-
quence of the (major) theorem of [7] that the Cheeger body of a given convex body
in Rn is unique (recall Section 1.6.1).

Lemma 42. Let X D .Rn; k � kX/ be a normed space such that Isom.X/ 6 On is a
subgroup of the orthogonal group. Then the isometry group of its Cheeger space Ch X
satisfies

Isom.Ch X/ � Isom.X/:

Consequently, if X is canonically positioned, then also Ch X is canonically posi-
tioned.
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Proof. For any U 2 Isom.X/ we have

voln�1.@U ChBX/

voln.U ChBX/
D

voln�1.@ChBX/

voln.ChBX/
;

and alsoU ChBX�UBXDBX, sinceU 2On. Consequently, (by definition),U ChBX

is a Cheeger body of BX. The uniqueness of the Cheeger body now implies that
U ChBX D ChBX. Therefore, U 2 Isom.Ch X/.

The following corollary is a quick consequence of Lemma 42.

Corollary 43. Let E D .Rn; k � kE/ be a symmetric normed space. Then, its Cheeger
space Ch E is also symmetric and there exists a (unique) symmetric normed space
�E D .Rn; k � k�E/ such that the Cheeger space of the unitary ideal SE is the unitary
ideal of �E, i.e., Ch SE D S�E.

Proof. The assertion that Ch E is symmetric coincides with requiring that Isom.Ch E/
contains the group ¹�1; 1ºn Ì Sn D ¹T"S� W .";�/ 2 ¹�1; 1ºn � Snº 6 On, where we
recall the notation of Example 40. We are assuming that Isom.E/ � ¹�1; 1ºn Ì Sn,
so this follows from Lemma 42. For U; V 2 On define RU;V W Mn.R/! Mn.R/ by
.A 2 Mn.R// 7! UAV . Since Isom.SE/ � ¹RU;V W U; V 2 Onº, by Lemma 42 so
does Isom.ChSE/. A normed space .Mn.R/; k � k/ that is invariant under RU;V for all
U; V 2 On is the unitary ideal of a symmetric normed space F D .Rn; k � kF/; see,
e.g., [37, Theorem IV.2.1]. This F is unique (consider the values of k � kSF on diagonal
matrices), so we can introduce the notation F D �E.

The same reasoning as in the proof of Corollary 43 shows that if

E D .Rn; k � kE/

is an unconditional normed space, then so is Ch E. Thus, the space Y in Lemma 37
when

X1 D � � � D Xn D R

that satisfies (1.64) can be taken to unconditional, as seen by an inspection of the
proof of Lemma 37 (specifically, the operator S in (1.64) that arises in this case is
diagonal, so SE is also unconditional and we can take Y D ChSE).

Problem 44. We associated above to every symmetric normed space

E D .Rn; k � kE/

two symmetric normed spaces Ch E D .Rn; k � kCh E/ and �E D .Rn; k � k�E/. It
would be valuable to understand these auxiliary norms on Rn, and in particular how
they relate to each other. By the definition of the Cheeger body, its convexity and
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uniqueness, Ch E is the unique minimizer of the functional

F 7!
voln�1

�
@BF

�
voln

�
BF
� D

�
@BF

1 dx�
BF
1 dx

(1.65)

over all symmetric normed spaces F D .Rn; k � kF/ with BF � BE; denote the set of
all such F by Sym.� BE/. In contrast to (1.65), �E is the unique minimizer of the
functional

F 7!

�
@BF

Q
16i<j6n jx

2
i � x

2
j j dx�

BF

Q
16i<j6n jx

2
i � x

2
j j dx

(1.66)

over the same domain Sym.� BE/. To justify (1.66), observe first that by Corol-
lary 43 we know that �E is the unique minimizer of the following functional over
Sym.� BE/:

F 7!
voln2�1

�
@BSF

�
voln2

�
BSF

� D lim
"!0C

��
BSFC"BSn

2

�
XBSF

1 dx

"
�
BF
1 dx

: (1.67)

We claim that for every F 2 Sym.� BE/ and " > 0,�
BSF C "BSn

2

�
X BSF

D
®
A 2Mn.R/ W s.A/

def
D
�
s1.A/; : : : ; sn.A/

�
2
�
BF C "B`n

2

�
X BF

¯
; (1.68)

where we denote the singular values of A 2 Mn.R/ by s1.A/ > � � � > sn.A/. Indeed,
if A belongs to the right-hand side of (1.68), then ks.A/kF > 1 and s.A/ D x C y
for x; y 2 Rn that satisfy kxkF 6 1 and kyk`n

2
6 ". Write A D UDV , where D 2

Mn.R/ is the diagonal matrix whose diagonal is the vector s.A/ 2 Rn, and U; V 2
On. Let D.x/;D.y/ 2 Mn.R/ be the diagonal matrices whose diagonals equal x; y,
respectively. By noting that kAkSF D ks.A/kF > 1 and AD UDxV CUDyV , where
kUD.x/V kSF 6 1 and kUD.y/V kSn

2
6 ", we conclude thatA belongs to the left-hand

side of (1.68). The reverse inclusion is less straightforward. If A belongs to the left-
hand side of (1.68), then kAkSF > 1 and A D B C C , where B; C 2 Mn.R/ satisfy
kBkSF D ks.B/kF 6 1 and kCkSn

2
6 ". By an inequality of Mirsky [222] we have

ks.A/� s.B/k`n
2
6 kA�BkSn

2
DkCkSn

2
6 ". Hence s.A/D s.B/C .s.A/� s.B//2

.BF C "B`n
2
/XBF, i.e., A belongs to the right-hand side of (1.68). With (1.68) estab-

lished, since membership of a matrix A in either BF or .BF C "B`n
2
/ X BF depends

only on s.A/, by the Weyl integration formula [311] (see [12, Proposition 4.1.3] for
the formulation that we are using),

�
.BSFC"BSn

2
/XBSF

1 dx
�
BF
1 dx

D

�
.BFC"B`n

2
/XBF

Q
16i<j6n jx

2
i � x

2
j j dx�

BF

Q
16i<j6n jx

2
i � x

2
j j dx

:
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Thus (1.66) follows from (1.67). Analysing the functional in (1.66) seems nontrivial
but likely tractable using ideas from random matrix theory. It would be especially
interesting to treat the case ED `n1. While we have a reasonably good understanding
of the (isomorphic) geometry space Ch `n1, its noncommutative counterpart �`n1 is
still mysterious and understanding its geometry is closely related to Conjecture 10
(and likely also Conjecture 9) in the important special case of the operator norm Sn1;
see also Remark 172.

If XD .Rn;k � kX/ is canonically positioned and � is a Borel measure on Rn that
is Isom.X/-invariant, i.e., �.UA/ D �.A/ for every U 2 Isom.X/ and every Borel
subset A � Rn, then consider the scalar product

8x; y 2 Rn; hx; yi0
def
D

�
Rn
hx; zihy; zi d�.z/:

For every U 2 Isom.X/ and x; y 2 Rn we have

hUx;Uyi0 D

�
Rn
hUx; zihUy; zi d�.z/ D

�
Rn
hx; U�1zihy; U�1zi d�.z/

D

�
Rn
hx; zihy; zi d�.z/ D hx; yi0;

where the second step uses the Isom.X/-invariance of h�; �i, and the third step uses the
Isom.X/-invariance of �. Hence hx; yi0 D �hx; yi for some � 2 R and every x; y 2
Rn. By considering the case x D y of this identity and integrating over x 2 Sn�1 one
sees that necessarily n� D

�
Rn kzk

2
`n
2

d�.z/. Hence,

8x; y 2 Rn;

�
Rn
hx; zihy; zi d�.z/ D

�
Rn kzk

2
`n
2

d�.z/

n
hx; yi: (1.69)

By establishing (1.69) we have shown that if

X D .Rn; k � kX/

is a canonically positioned normed space, then any Isom.X/-invariant Borel measure
on Rn is isotropic [55,107] (the converse also holds, i.e., X is canonically positioned
if and only if every Isom.X/-invariant Borel measure on Rn is isotropic). In particular,
let �X be the measure on Sn�1 that is given by

�X.A/ D voln�1.¹x 2 @BX W NX.x/ 2 Aº/

for every measurable A � Sn�1, where for x 2 @BX the vector NX.x/ 2 S
n�1 is

the (almost-everywhere uniquely defined) unit outer normal to @BX at x, i.e., recall-
ing (1.30), we use the simpler notation NBX D NX. In other words, �X is the image
under the Gauss map of the .n � 1/-dimensional Hausdorff measure on @BX. Then,
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�X is Isom.X/-invariant because every U 2 Isom.X/ is an orthogonal transforma-
tion and NX ı U D U ı NX almost everywhere on @BX. By [250], this implies that
X is in its minimum surface area position (recall the proof of Proposition 32), so
MaxProj.BX/ � voln�1.@BX/=

p
n by [104, Proposition 3.1].

The following corollary follows by substituting the above conclusion into Theo-
rem 21.

Corollary 45. Suppose that n 2 N and that X D .Rn; k � kX/ and Y D .Rn; k � kY/

are two n-dimensional normed spaces. Suppose also that Y is canonically positioned
and BY � BX. Then,

e.X/ .
voln�1.@BY/ diam`n

2
.BX/

voln.BY/
p
n

:

The assumption in Corollary 45 that Y is canonically positioned can be replaced
by the requirement MaxProj.BY/ . voln�1.@BY/=

p
n, which is much less stringent.

In particular, by [104, Proposition 3.1] it is enough to assume here that BY is in its
minimum surface area position; see also Section 6.2.

We will denote the John and Löwner ellipsoids of a normed space XD .Rn;k � kX/

by JX and LX, respectively; see [128]. Thus, JX � Rn is the ellipsoid of maximum
volume that is contained in BX and LX �Rn is the ellipsoid of minimum volume that
contains BX. Both of these ellipsoids are unique [137]. The volume ratio vr.X/ of X
and external volume ratio evr.X/ of X are defined by

vr.X/ def
D

�
voln.BX/

voln.JX/

� 1
n

and evr.X/ def
D

�
voln.LX/

voln.BX/

� 1
n

: (1.70)

By the Blaschke–Santaló inequality [39, 278] and the Bourgain–Milman inequal-
ity [50],

evr.X/ � vr.X�/: (1.71)

By the above discussion, we can quickly deduce the following theorem that relates
the Lipschitz extension modulus of a canonically positioned space to volumetric and
spectral properties of its unit ball.

Theorem 46. Suppose that n 2 N and that X D .Rn; k � kX/ is a canonically posi-
tioned normed space. Then,

e.X/ .
diam`n

2
.BX/

p
n

p
�.X/ � evr.X/

q
�.X/ voln.BX/

2
n

� vr.X�/
q
�.X/ voln.BX/

2
n : (1.72)

In fact, the minimum of the right-hand side of (1.54) over all those normed spaces YD
.Rn; k � kY/ for which BY � BX is bounded above and below by universal constant
multiples of diam`n

2
.BX/

p
�.X/=n.
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Proof. By Lemma 42 the Cheeger space ChX is canonically positioned. So, by Corol-
lary 45 with Y D Ch X,

e.X/ .
voln�1.@ChBY/ diam`n

2
.BX/

voln.ChBY/
p
n

(1.61)
.

diam`n
2
.BX/

p
n

p
�.X/:

This proves the first inequality in (1.72). The final equivalence in (1.72) is (1.71).
To prove the rest of (1.72), let rmin D min¹r > 0 W rB`n

2
� BXº denote the radius of

the circumscribing Euclidean ball of BX. We claim that rminB`n
2
D LX. Indeed, for

every U 2 Isom.X/ � On the ellipsoid ULX contains BX and has the same volume
as LX, so because the minimum volume ellipsoid that contains BX is unique [137], it
follows thatULXDLX. Hence, the scalar product that corresponds to LX is Isom.X/-
invariant and since X is canonically positioned, this means that LX is a multiple
of B`n

2
. Now,

voln.BX/
1
n evr.X/ (1.70)

D voln
�
rminB`n

2

� 1
n �

rmin
p
n
D

diam`n
2
.BX/

2
p
n

:

The above reasoning shows that the minimum of the right-hand side of (1.54)
over all the normed spaces Y D .Rn; k � kY/ with BY � BX is at most a universal
constant multiple of diam`n

2
.BX/

p
�.X/=n (take YD Ch X). In the reverse direction,

for any such Y by (1.55) with L D BY we have

MaxProj.BY/

voln.BY/
&

voln�1.@BY/

voln.BY/
p
n
>

voln�1.@ChBX/

voln.ChBX/
p
n

(1.61)
>

2
p
�.X/

�
p
n
;

where the penultimate step follows from the definition of the Cheeger body ChBX.

It is natural to expect that if X D .Rn; k � kX/ is a canonically positioned normed
space, then in Conjecture 9 for K D BX holds with S the identity matrix and with
L being the unit ball of a canonically positioned normed space. We formulate this
refined special case of Conjecture 9 as the following conjecture.

Conjecture 47. Fix n 2 N and a canonically positioned normed space

X D .Rn; k � kX/:

Then, there exists a canonically positioned normed space Y D .Rn; k � kY/ that satis-
fies k � kY � k � kX and iq.BY/ .

p
n.

Theorem 48 below shows that Conjecture 47 holds if X D `np for any p > 1 and
infinitely many dimensions n 2 N; specifically, it holds if n satisfies the mild arith-
metic (divisibility) requirement (1.73) below. An obvious question that this leaves is
to prove Conjecture 47 for X D `np and arbitrary .p; n/ 2 Œ1;1� �N. We expect that
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this question is tractable by (likely nontrivially) adapting the approach herein, but we
did not make a major effort to do so since obtaining Conjecture 47 for such a dense
set of dimensions n suffices for our purposes (the bi-Lipschitz invariants that we con-
sider can be estimated from above for any n 2 N since the requirement (1.73) holds
for some N 2 N \ Œn; O.n/� and `np embeds isometrically into `Np ). In Section 6 we
will prove Theorem 48, and deduce Theorem 24 from it. Recall Remark 31, which
explains that Conjecture 9 when K is the unit ball of `np follows (with S the identity
matrix) from Theorem 24. Thus, we do know that a body L as in Conjecture 9 exists
for all the possible choices of p > 1 and n 2 N, and (1.73) is only relevant to ensure
that L is the unit ball of a canonically positioned normed space.

Theorem 48. Fix n 2 N and p > 1. Conjecture 47 holds for X D `np if the following
condition is satisfied:

9m 2 N; m j n and max¹p; 2º 6 m 6 ep: (1.73)

The following conjecture is a variant of Conjecture 11.

Conjecture 49. Fix n 2 N and suppose that X D .Rn; k � kX/ is a canonically posi-
tioned normed space. Then, there exists a normed space Y D .Rn; k � kY/ with BY �

BX yet n
p

voln.BY/ & n
p

voln.BX/ such that iq.BY/ .
p
n.

Conjecture 47 requires Y to be canonically positioned while Conjecture 49 does
not. The reason for this is that if any normed space Y satisfies the conclusion of
Conjecture 49, then also the Cheeger space Ch X of X satisfies it (this is so because
the convex body L that minimizes the second quantity in (1.60) is, by definition, the
Cheeger body of K D BX), and by Lemma 42 the Cheeger space of X inherits from
X the property of being canonically positioned. This use of the uniqueness of the
Cheeger body will be important below. By (1.62), Conjecture 49 is equivalent to the
following symmetric version of Conjecture 35.

Conjecture 50. If X D .Rn; k � kX/ is a canonically positioned normed space, then
�.X/ vol.BX/

2
n � n:

The following corollary is a substitution of Conjecture 50 into Theorem 46.

Corollary 51. If Conjecture 49 (equivalently, Conjecture 50) holds for a canonically
positioned normed space X D .Rn; k � kX/, then the right-hand side of (1.54) when
Y D Ch X is O.evr.X/

p
n/. Consequently,

e.X/ . evr.X/
p
n � vr.X�/

p
n: (1.74)

It is worthwhile to note that by [19], the rightmost quantity in (1.74) is maximized
(over all possible n-dimensional normed spaces) when XD `n1 , in which case we have
evr.`n1/

p
n � n.
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Remark 52. We currently do not have any example of a normed space

X D .Rn; k � kX/

for which (1.74) provably does not hold. If (1.74) were true in general, or even if it
were true for a restricted class of normed spaces that is affine invariant and closed
under direct sums, such as spaces that embed into `1 with distortion O.1/, then it
would be an excellent result. When one leaves the realm of canonically positioned
spaces, (1.74) acquires a self-improving property8 as follows. Suppose that X is in
Löwner position, i.e., LX D B`n

2
. Fix m 2 N and consider the .nCm/-dimensional

space X0 D X˚1 `m2 . If (1.74) holds for X0, then

e.X/ 6 e.X0/

. evr.X0/
p

dim.X0/

.

 
volnCm

�
B
`
nCm
2

�
voln.BX/ volm

�
B`m

2

�! 1
nCm
p
nCm

D

�
voln.LX/

voln.BX/

� 1
nCm

 
volnCm

�
B
`
nCm
2

�
voln

�
`n2
�

volm
�
B`m

2

�! 1
nCm
p
nCm

� evr.X/
n

nCmn
n

2.nCm/m
m

2.nCm/ : (1.75)

The value of m that minimizes the right-hand side of (1.75) is

m � n log.evr.X/C 1/;

for which (1.75) becomes

e.X/ .
q
n log

�
evr.X/C 1

�
: (1.76)

As evr.X/ 6
p
n by John’s theorem, (1.76) gives e.X/ .

p
n logn, which would be

an improvement of [140]. Also, by (1.9) the bound (1.76) gives

e.X/ .
p
n log.C2.X/C 1/;

which is better than the conjectural bound (1.10). Here and throughout what follows,
for 1 6 p 6 2 6 q the (Gaussian) type-p and cotype-q constants [204] of a Banach
space .X; k � kX/, denoted Tp.X/ and Cq.X/, respectively, are the infimum over those

8We recommend checking that the analogous stabilization argument does not lead to a
similar self-improvement phenomenon in Conjecture 9, Conjecture 10 and Corollary 33; the
computations in Section 4 of [198] are relevant for this purpose.
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T 2 Œ1;1� and C 2 Œ1;1�, respectively, for which the following inequalities hold
for every m 2 N and every x1; : : : ; xm 2 X, where the expectation is with respect to
i.i.d. standard Gaussian random variables g1; : : : ; gm:

1

C

 
mX
jD1

kxj k
q
X

! 1
q

6

 
E

" mX
jD1

gjxj


2

X

#! 1
2

6 T

 
mX
jD1

kxj k
p
X

! 1
p

: (1.77)

This observation indicates that it might be too optimistic to expect that (1.74) holds
in full generality, but it would be very interesting to understand the extent to which it
does. Obvious potential counterexamples are `n1˚ `

m
2 ; if (1.74) holds for these spaces,

then e.`n1/ .
p
n logn by the above reasoning (with m � n logn), which would be a

big achievement because the best-known bound remains e.`n1/ . n from [140].

Lemma 53 below, whose proof appears in Section 6.1, shows that Conjecture 49
holds for a class of normed space that includes any normed spaces with a 1-symmetric
basis, as well as, say, `np.`

m
q / for any n;m 2N and p;q > 1. Other (related) examples

of such spaces arise from Lemma 151 below.

Lemma 53. Let X D .Rn; k � kX/ be an unconditional normed space. Suppose that
for any j; k 2 ¹1; : : : ; nº there is a permutation � 2 Sn with �.j / D k such that
k
Pn
iD1 a�.i/eikX D k

Pn
iD1 aieikX for every a1; : : : ; an 2 R. Then, Conjecture 49

holds for X. Therefore, we have �.X/ voln.BX/
2=n � n and e.X/ . evr.X/

p
n.

By [293, Theorem 2.1], any unconditional normed space XD .Rn;k � kX/ satisfies
vr.X/ . C2.X/

p
n, where C2.X/ is the cotype-2 constant of X (this is an earlier

special case of (1.9) in which the logarithmic term is known to be redundant). Hence,
if X satisfies the assumptions of Lemma 53, then we know that

e.X/ . C2.X�/
p
n: (1.78)

By combining [22, Theorem 6] and (1.71), for any p 2 Œ1;1�, if a normed space XD
.Rn; k � kX/ is isometric to a quotient of Lp (equivalently, the dual of X is isometric
to a subspace of Lp=.p�1/), then

evr.X/ . evr
�
`np
p�1

�
� min

®
n
1
p�

1
2 ; 1

¯
:

Consequently, if X D .Rn; k � kX/ satisfies the assumptions of Lemma 53 and is also
a quotient of Lp , then

e.X/ . nmax¹ 12 ;
1
p º: (1.79)

Both (1.78) and (1.79) are generalizations of Theorem 18.
Lemma 54 below, whose proof appears in Section 6.3, shows that the unitary

ideal of any n-dimensional normed space with a 1-symmetric basis (in particular,
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any Schatten–von Neumann trace class), satisfies Conjecture 49 up to a factor of
O.
p

logn/. Upon its substitution into Lemma 151 below, more such examples are
obtained.

Lemma 54. Let ED .Rn;k � kE/ be a symmetric normed space. Conjecture 49 holds
up to lower order factors for its unitary ideal SE. More precisely, there is a normed
space Y D .Mn.R/; k � kY/ such that BY � BSE and

voln2.BY/
1

n2 � voln2
�
BSE

� 1
n2 and n . iq.BY/ . n

p
logn: (1.80)

Therefore, we have

n2 . �
�
SE
�

voln2
�
BSE

� 2
n2 . n2 logn and e.SE/ . evr.SE/n � evr.E/n:

For the final assertion of Lemma 54, the fact that evr.SE/ � evr.E/ follows by
combining Proposition 2.2 in [285], which states that vr.SE/� vr.E/, with (1.71) and
the duality S�E D SE* (e.g., [289, Theorem 1.17]).

The proof of Lemma 54 also shows (see Remark 172 below) that if we could
prove Conjecture 49 for Sn1, then it would follow that SE satisfies Conjecture 49 for
any symmetric normed space E D .Rn; k � kE/, i.e., the logarithmic factor in (1.80)
could be replaced by a universal constant.

By substituting Lemma 54 into Corollary 51 and using volume ratio computations
of Schütt [285], we will derive in Section 6.3 the following proposition.

Proposition 55. If E D .Rn; k � kE/ is a symmetric normed space, then

e.E/ . diam`n
2

�
BE
�
ke1 C � � � C enkE

and
e
�
SE
�
. diam`n

2

�
BE
�
ke1 C � � � C enkE

p
n logn:

The following remark sketches an alternative approach towards Conjecture 9
when K is the hypercube Œ�1; 1�n that differs from how we will prove Theorem 24.
It yields the desired result up to a lower order factor that grows extremely slowly.
Specifically, it constructs an origin-symmetric convex body L � Œ�1; 1�n with

iq.L/ D eO.log�n/ and Œ�1; 1�n � eO.log�n/L:

Here, for each x > 1 the quantity log�x is defined to be the k 2 N such that

tower.k � 1/ 6 x < tower.k/

for the sequence ¹tower.i/º1iD0 that is defined by tower.0/ D 1 and tower.i C 1/ D
exp.tower.i//. We think that this approach is worthwhile to describe despite the fact
that it falls slightly short of fully establishing Conjecture 9 for Œ�1; 1�n due to its
flexibility that could be used for other purposes, as well as due to its intrinsic interest.
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Remark 56. Fix n 2N and q > 1. Since the nth root of the volume of the unit ball of
`nq is of order n�1=q and `nq is in minimum surface area position, we can restate (1.42)
as

iq
�
B`nq

�
� min¹

p
qn; nº: (1.81)

In particular, for Y D `nq with q D logn, we have k � kY � k � k`n1 and

iq.Y/ .
p
n logn;

which already comes close to the conclusion of Conjecture 9. We can do better using
the following evaluation of the isoperimetric quotient of the unit ball of `np.`

m
q /, which

holds for every n;m 2 N and p; q > 1:

iq
�
B`np.`mq /

�
�

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

nm m 6 min
®
p
n
; q
¯
;

n
p
qm q 6 m 6 p

n
;

p
pnm p

n
6 m 6 min¹p; qº;

p
pqn max

®
p
n
; q
¯
6 m 6 p;

m
p
n p 6 m 6 q;

p
qnm m > max¹p; qº:

(1.82)

We will prove (1.82) in Section 6. Note that when m D 1 this yields (1.81). The case
n D m of (1.82) is equivalent to (1.49) since `np.`

m
q / is canonically positioned (it

belongs to the class of spaces in Example 40) and using a simple evaluation of the
volume of its unit ball (see (6.6) below). The range of (1.82) that is most pertinent
for the present context is m > max¹p; qº, which has the feature that the factor that
multiplies the quantity

p
nm D

q
dim

�
`np.`

m
q /
�

is O.
p
q/ and there is no dependence on p. This can be used as follows. Suppose

that n D ab for a; b 2 N satisfying a � n= log n and b � log n. Identify `n1 with
`a1.`

b
1/. If we set YD `ap.`bq/ for p D loga � logn and q D log b � log logn, then

k � kY � k � k`n1 , while
iq.BY/ �

p
n log logn

by (1.82). By iterating we get that for infinitely many n 2 N there is a normed space
Y D .Rn; k � kY/ for which

k � kY 6 k � k`n1 6 e
O.log�n/

k � kY and iq.BY/ D e
O.log�n/:

Even though the set of n 2 N for which this works is not all of N, it is quite dense in
N per Lemma 163 below. This will allow us to deduce that a space Y with the above
properties exists for every n 2 N; see Section 6.1 for the details.
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Remark 57. Recalling Remark 38, Conjecture 10 is equivalent to the assertion that
if a normed space X D .Rn; k � kX/ is in Cheeger position, then iq.ChBX/ .

p
n

and voln.ChBX/
1=n & voln.BX/

1=n. Since Ch X is in minimum surface area position
when X is in Cheeger position (as explained in Remark 38), the proof of Proposi-
tion 32 shows that Conjecture 10 implies that if X is in Cheeger position, then

e.X/ .
diam`n

2
.BX/

voln.BX/
1
n

: (1.83)

In fact, the right-hand side of (1.54) is at most the right-hand side of (1.83) for
a suitable choice of normed space Y D .Rn; k � kY/, specifically for Y D Ch X.
The discussion in Section 1.6.2 was about establishing (1.83) when X is canoni-
cally positioned (conceivably that assumption implies that X is in Cheeger position
or close to it, which would be a worthwhile to prove, if true). Even though, as we
explained earlier, given the current state of knowledge, understanding the Lipschitz
extension problem for canonically positioned spaces is the most pressing issue for
future research, it would be very interesting to study if (1.83) holds in other situa-
tions. For examples, we pose the following two natural questions.

Question 58. Does (1.83) hold if the normed space X D .Rn; k � kX/ is in minimum
surface area position?

The extent to which…X is close to being in minimum surface area position when
X is in minimum surface area position seems to be unknown. Therefore, the con-
nection between Question 59 below and Question 58 is unclear, but even if there is
no formal link between these two questions, both are natural next steps beyond the
setting of canonically positioned normed spaces.

Question 59. Let ZD .Rn;k � kZ/ be a normed space in minimum surface area posi-
tion. Does (1.83) hold for the normed space XD…Z whose unit ball is the projection
body of BX?

If Z D .Rn; k � kZ/ is a normed space in minimum surface area position, then

diam`n
2
.…BZ/

voln.…BZ/
1
n

�
p
n: (1.84)

Indeed, because Z is in minimum surface area position, by [104, Corollary 3.4] we
have

voln.…BZ/
1
n �

voln�1.@BZ/

n
;

and also by combining [104, Proposition 3.1] and (1.55) we have

MaxProj.BZ/ �
voln�1.@BZ/
p
n

:
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We can therefore justify (1.84) using these results from [104] and duality as follows:

diam`n
2
.…BZ/

voln.…BZ/
1
n

�
nkIdnk…Z!`n

2

voln�1.@BZ/
D
nkIdnk`n

2
!…*Z

voln�1.@BZ/

D
nmaxz2Sn�1 kzk…*Z

voln�1.@BZ/

(1.30)
D

nMaxProj.BZ/

voln�1.@BZ/
�
p
n:

By this observation, a positive answer to Question 59 would show that e.…Z/ .
p
n

for any normed space Z D .Rn; k � kZ/. Indeed, if we take S 2 SLn.R/ such that SZ
is in minimum surface area position, then by [251] we know that …Z and …SZ are
isometric, so e.…Z/ D e.…SZ/. As the class of projection bodies coincides with the
class of zonoids [41, 283], which coincides with the class of convex bodies whose
polar is the unit ball of a subspace of L1, we have thus shown that a positive answer
to Question 59 would imply the following conjecture (which would simultaneously
improve (1.23) and generalize Theorem 18).

Conjecture 60. For any normed space X D .Rn; k � kX/ we have

e.X/ . cL1.X
�/
p
n:

Note that Conjecture 60 is consistent with the estimate e.X/ . evr.X/
p
n that

has been arising thus far. Indeed, if X� is isometric to a subspace of L1 (it suffices to
consider only this case in Conjecture 60 by a well-known differentiation argument;
see, e.g., [36, Corollary 7.10]), then we have the bound evr.X/ . 1 which can be seen
to hold by combining (1.71) with (1.9), since C2.X�/ 6 C2.L1/ . 1.9

Relating e.X/ to evr.X/ is valuable since the Lipschitz extension modulus is for
the most part shrouded in mystery, while the literature contains extensive knowl-
edge on volume ratios (we have already seen several examples of such consequences
above, and we will derive more later). Section 6.3 contains examples of volume ratio
evaluations for various canonically positioned normed spaces. Through their substi-
tution into Corollary 51, they illustrate how our work yields a range of new Lipschitz
extension results, some of which are currently conjectural because they hold assuming
Conjecture 49 for the respective spaces; specifically, consider the Lipschitz extension
bounds that correspond to using (1.14) and (1.15) with [173].

9Alternatively, evr.X/ . 1 can be justified by writing X D …Z for some normed space
Z D .Rn; k � kZ/ (using [41, 283]), and then applying the bound (1.84) that we derived above
(this even demonstrates that the external volume ratio of …Z is O.1/ when Z is in minimum
surface area position rather when Z is in Löwner position). Actually, the sharp bound evr.X/ 6
evr.`n1/ holds, as seen by combining [22, Theorem 6] with Reisner’s theorem [271] that the
Mahler conjecture [193] holds for zonoids.
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1.6.3 Intersection with a Euclidean ball

Fix an integer n > 2 and a canonically positioned normed space X D .Rn; k � kX/.
A natural first attempt to prove Conjecture 49 for X is to consider the normed space
YD .Rn;k � kY/ such that BY DBX \ rB`n

2
for a suitably chosen r > 0 (equivalently,

we have kxkY Dmax¹kxkX;kxk`n
2
=rº for every x 2Rn). However, we checked with

G. Schechtman that this fails even when X D `n1. Specifically, if the nth root of the
volume of B`n1 \ .rB`n2 / is at least a universal constant, then necessarily r &

p
n, but

8s > 0; iq
�
B`n1 \ .s

p
nB`n

2
/
�
&s n: (1.85)

A justification of (1.85) appears in Section 7 below. In terms of the quantification
(1.60) of Conjecture 49 that is pertinent to the applications that we study herein, we
will also show in Section 7 that

min
r>0

iq
�
B`n1 \ .rB`n2 /

�
p
n

�
voln.B`n1/

voln
�
B`n1 \ .rB`n2 /

�� 1n �plogn; (1.86)

where the minimum in the right-hand side of (1.86) is attained at some r > 0 that
satisfies r �

p
n= logn.

Even though the above bounds demonstrate that it is impossible to resolve Con-
jecture 49 by intersecting with a Euclidean ball, this approach cannot fail by more
than a lower-order factor; the reasoning that proves this assertion was shown to us
by B. Klartag and E. Milman in unpublished private communication that is explained
with their permission in Section 7. Specifically, we have the following proposition.

Proposition 61. For any normed space X D .Rn; k � kX/ there exist a matrix S 2
SLn.R/ and a radius r > 0 such that forLD .SBX/\ .rB`n

2
/�SBX we have iq.L/.

p
n and n

p
voln.L/ & n

p
voln.BX/=K.X/, where K.X/ is the K-convexity constant

of X. If X is canonically positioned, then this holds when S is the identity matrix.

For Proposition 61, the K-convexity constant of X is an isomorphic invariant
that was introduced by Maurey and Pisier [204]; we defer recalling its definition to
Section 7 since for the discussion here it suffices to state the following bounds that
relate K.X/ to quantities that we already encountered. Firstly,

K.X/ . log
�
dBM.`

n
2;X/C 1

�
. logn; (1.87)

The first inequality in (1.87) is a useful theorem of Pisier [256, 257]. The second
inequality in (1.87) follows from John’s theorem [137], though for this purpose it
suffices to use the older Auberbach lemma (see [27, p. 209] and [83, 300]). By [257]
(see also, e.g., [143, Lemma 17]) the rightmost quantity in (1.87) can be reduced if X
is a subspace of L1, namely we have

K.X/ . cL1.X/
p

logn: (1.88)
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Secondly, K.X/ relates to the notion of type that we recalled in (1.77) through the
following bounds:

T1C c

K.X/2
.X/

1
2 . K.X/ 6 inf

p2.1;2�
e.CTp.X//

p
p�1

; (1.89)

where c; C > 0 are universal constants. The qualitative meaning of (1.89) is that the
K-convexity constant of a Banach space is finite if and only if it has type p for some
p > 1; this is a landmark theorem of Pisier (the ‘if’ direction is due to [259] and
the ‘only if’ direction is due to [254]). Since in our setting X is finite dimensional
(dim.X/ D n > 2), such a qualitative statement is vacuous without its quantitative
counterpart (1.89). The first inequality in (1.89) can be deduced from [260] (together
with the computation of the implicit dependence on p in [260] that was carried out
in [131, Lemma 32]). The second inequality in (1.89) follows from an examination
of the proof in [259]. We omit the details of both deductions as they would result in a
(quite lengthy and tedious) digression. It would be very interesting to determine the
best bounds in the context of (1.89).

Proposition 61 combined with (1.87) implies that Conjecture 10 holds up to a
logarithmic factor in the sense that for every integer n > 2, any origin-symmetric
convex body K � Rn admits a matrix S 2 SLn.R/ and an origin-symmetric convex
body L � SK such that

iq.L/
p
n

�
voln.K/
voln.L/

� 1
n

. logn: (1.90)

Furthermore, by (1.88) the log n in (1.90) can be replaced by
p

logn if K is the
unit ball of a subspace of L1 (equivalently, the polar of K is a zonoid), and by the
second inequality in (1.89) if p > 1, then the log n in (1.90) can be replaced by
a dimension-independent quantity that depends only on p and the type-p constant
of the norm whose unit ball is K. Also, Corollary 33 holds with the right-hand side
of (1.59) multiplied by logn, and the reverse Faber–Krahn inequality of Conjecture 35
holds up to a factor of .log n/2, i.e., for any origin-symmetric convex body K � Rn

there is S 2 SLn.R/ such that �.SK/ vol.K/2=n . n.log n/2. If X D .Rn; k � kX/ is
a canonically positioned normed space, then it follows that for a suitable choice of
normed space Y D .Rn; k � kY/ the right-hand side of (1.28), and hence also e.X/
by Theorem 21, is at most a universal constant multiple of evr.X/

p
n log n, and also

n . �.X/ voln.BX/
2=n . n.logn/2.

1.7 Randomized clustering

All of the new upper bounds on Lipschitz extension moduli that we stated above rely
on a geometric structural result for finite dimensional normed spaces (and subsets
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thereof). Beyond the application to Lipschitz extension, this result is of value in its
own right because it yields an improvement of a basic randomized clustering method
from the computer science literature.

The link between random partitions of metric spaces and Lipschitz extension was
found in [173]. We will adapt the methodology of [173] to deduce the aforemen-
tioned Lipschitz extension theorems from our new bound on randomized partitions
of normed spaces. In order to formulate the corresponding definitions and results, one
must first set some groundwork for a notion of a random partition of a metric space,
whose subsequent applications necessitate certain measurability requirements.

A framework for reasoning about random partitions of metric spaces was devel-
oped in [173], but we will formulate a different approach. The reason for this is that
the definitions of [173] are in essence the minimal requirements that allow one to use
at once several different types of random partitions for Lipschitz extension, which
leads to definitions that are more cumbersome than the approach that we take below.
Greater simplicity is not the only reason why we chose to formulate a foundation that
differs from [173]. The approach that we take is easier to implement, and, impor-
tantly, it yields a bi-Lipschitz invariant, while we do not know if the corresponding
notions in [173] are bi-Lipschitz invariants (we suspect that they are not, but we did
not attempt to construct examples that demonstrate this). The Lipschitz extension
theorem of [173] is adapted accordingly in Section 5, thus making the present article
self-contained, and also yielding simplification and further applications. Neverthe-
less, the key geometric ideas that underly this use of random partitions are the same
as in [173].

Obviously, there are no measurability issues when one considers finite metric
spaces (in our setting, finite subsets of normed spaces). The ensuing measurability
discussions can therefore be ignored in the finitary setting. In particular, the computer
science literature on random partitions focuses exclusively on finite objects. So, for
the purpose of algorithmic clustering, one does not need the more general treatment
below, but it is needed for the purpose of Lipschitz extension.

1.7.1 Basic definitions related to random partitions

Let .M; dM/ be a metric space. Suppose that P � 2M is a partition of M. For x 2
M, denote by P.x/ �M the unique element of P to which x belongs. The sets
¹P.x/ºx2M are often called the clusters of P. Given � > 0, one says that P is �-
bounded if diamM.P.x// 6 � for every x 2M, where

diamM.S/ D sup¹dM.x; y/ W x; y 2 Sº

denotes the diameter of ¿ ¤ S �M.
Suppose that .Z; F/ is a measurable space, i.e., Z is a set and F � 2Z is a � -

algebra of subsets of Z. Recall (see [133] or the convenient survey [309]) that if
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.M; dM/ is a metric space, then a set-valued mapping

� W Z! 2M

is said to be strongly measurable if for every closed subset E �M we have

��.E/
def
D
®
z 2 Z W E \ �.z/ ¤ ¿

¯
2 F: (1.91)

Throughout what follows, when we say that P is a random partition of a met-
ric space .M; dM/, we mean the following (formally, the objects that we will be
considering are random ordered partitions into countably many clusters). There is a
probability space .�;Prob/ and a sequence of set-valued mappings®

�k W �! 2M
¯1
kD1

:

We write P! D ¹�k.!/º1
kD1

for each ! 2 � and require that the mapping ! 7! P!

takes values in partitions of M. We also require that for every fixed k 2 N, the set-
valued mapping �k W � ! 2M is strongly measurable, where the � -algebra on �
is the Prob-measurable sets. Given � > 0, we say that P is a �-bounded random
partition of .M; dM/ if P! is a �-bounded partition of .M; dM/ for every ! 2 �.

Remark 62. Recall that when we say that X D .Rn; k � kX/ is a normed space we
mean that the underlying vector space is Rn, equipped with a norm k � kX W Rn !
Œ0;1/. By doing so, we introduce a second metric on X, i.e., Rn is also endowed
with the standard Euclidean structure that corresponds to the norm k � k`n

2
. This leads

to ambiguity when we discuss �-bounded partitions of X for some � > 0, as there
are two possible metrics with respect to which one could bound the diameters of the
clusters. In fact, a key aspect of our work is that it can be beneficial to consider another
auxiliary norm k � kY on Rn, as in, e.g., Theorem 21, thus leading to three possible
interpretations of �-boundedness of a partition of Rn. To avoid any confusion, we
will adhere throughout to the convention that when we say that a partition P of X is
�-bounded we mean exclusively that all the clusters of P have diameter at most �
with respect to the norm k � kX.

1.7.2 Iterative ball partitioning

Fix � 2 .0;1/. Iterative ball partitioning is a common procedure to construct a �-
bounded random partition of a metric probability space. We will next describe it to
clarify at the outset the nature of the objects that we investigate, and because our new
positive partitioning results are solely about this type of partition. Thus, our contri-
bution to the theory of random partitions is a sharp understanding of the performance
of iterative ball partitioning of normed spaces, and, importantly, the demonstration
of the utility of its implementation using balls that are induced by a suitably chosen
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auxiliary norm rather than the given norm that we aim to study. On the other hand,
our impossibility results rule out the existence of any random partition whatsoever
with certain desirable properties.

The iterative ball partitioning method is a ubiquitous tool in metric geometry and
algorithm design. To the best of our knowledge, it was first used by Karger, Motwani
and Sudan [152] and the aforementioned work [76] in the context of normed spaces,
and it has become very influential in the context of general metric spaces due to its
use in that setting (with the important twist of randomizing the radii) by Calinescu,
Karloff and Rabani [71]. To describe it, suppose that .M; dM/ is a metric space and
that � is a Borel probability measure on M. Let ¹Xkº1kD1 be a sequence of i.i.d.
points sampled �. Define inductively a sequence ¹�kº1

kD1
of random subsets of M

by setting �1 D BM.X1; �=2/ and

8k 2 ¹2; 3; : : : ; º; �k
def
D BM

�
Xk;

�

2

�
X

k�1[
jD1

BM

�
Xj ;

�

2

�
:

By design, diamM.�
k/6�. Under mild assumptions on M and� that are simple

to check, �k will have the measurability properties that we require below and P D

¹�kº1
kD1

will be a partition of M almost-surely. While initially the clusters of P are
quite “tame,” e.g., they start out as balls in M, as the iteration proceeds and we discard
the balls that were used thus far, the resulting sets become increasingly “jagged.”
In particular, even when the underlying metric space .M; dM/ is very “nice,” the
clusters of P need not be connected; see Figure 1.2. Nevertheless, we will see that
such a simple procedure results in a random partition with probabilistically small
boundaries in sense that will be described rigorously below.

In the present setting, the metric space that we wish to partition is a normed space
X D .Rn; k � kX/, so it is natural to want to use the Lebesgue measure on Rn in the
above construction. Since this measure is not a probability measure, we cannot use
the above framework directly. For this reason, we will in fact use a periodic variant
of iterative ball partitioning of X by adapting a construction that was used in [173].

1.7.3 Separation and padding

Fix�> 0. Let P be a�-bounded random partition of a metric space M. As a random
“clustering” of M into pieces of small diameter, P yields a certain “simplification”
of M. For such a simplification to be useful, one must add a requirement that it
“mimics” the geometry of M in a meaningful way. The literature contains multiple
definitions that achieve this goal, leading to applications in both algorithms and pure
mathematics. We will not attempt to survey the literature on this topic, quoting only
the definitions of separating and padded random partitions, which are the simplest
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Figure 1.2. A schematic depiction of (randomized) iterative ball partitioning of a bounded sub-
set of R2, where R2 is equipped with a norm whose unit ball is a regular hexagon. The centers
of the above hexagons are chosen independently and uniformly at random from a large region
that contains the given subset of R2. At each step of the iteration, a new hexagon appears, and it
carves out a new cluster which consists of the part of the hexagon that does not intersect any of
the clusters that have been formed in the previous stages of the iteration. The first few clusters
that are formed by this procedure are typically hexagons, but at later stages the clusters become
more complicated and less “round.” In particular, they can eventually become disconnected, as
exhibited by the region that is shaded black above.

and most popular notions of random partitions of metric spaces among those that
have been introduced.

Definition 63 (Separating random partition and separation modulus). Let .M; dM/

be a metric space. For �; � > 0, a �-bounded random partition P of .M; dM/ is
� -separating if

8x; y 2M; Prob
�
P.x/ ¤ P.y/

�
6
�

�
dM.x; y/: (1.92)

The separation modulus10 of .M; dM/, denoted SEP.M; dM/ or simply SEP.M/ if
the metric is clear from the context, is the infimum over those � > 0 such that for
every � > 0 there exists a � -separating �-bounded random partition of .M; dM/.
If no such � exists, then write SEP.M; dM/ D 1. Similarly, for n 2 N, the size-n
separation modulus of .M; dM/, denoted SEPn.M; dM/ or simply SEPn.M/ if the
metric is clear from the context, is the infimum over those � > 0 such that for every
S �M with jS j 6 n and every�> 0 there exists a � -separating�-bounded random

10In [227] we called the same quantity the “modulus of separated decomposability.”
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partition of .S; dM/. In other words,

SEPn.M; dM/
def
D sup

S�M
jS j6n

SEP.S; dM/:

While the notions that we presented in Definition 63 are standard (see below for
the history), it will be beneficial for us (e.g., for proving Theorem 29) to introduce
the following terminology.

Definition 64 (Separation profile). Let .M; dM/ be a metric space. We say that a
metric d WM �M! Œ0;1/ on M is a separation profile of .M; dM/ if for every
� > 0 there exists a �-bounded random partition P� of .M; dM/ that is defined on
some probability space .��;Prob�/ such that

8x; y 2M; d.x; y/ > sup
�2.0;1/

�Prob�
�
P�.x/ ¤ P�.y/

�
: (1.93)

So, the separation modulus of .M; dM/ is the infimum over those � > 0 for
which �dM is a separation profile of .M; dM/. Definition 64 would make sense for
functions d WM �M ! Œ0;1/ that need not be metrics on M, but we prefer to
deal only with separation profiles of .M; dM/ that are metrics on M so as to be
able to discuss the Lipschitz condition with respect to them; observe that the right-
hand side of (1.93) is a metric on M, so any such function is always at least (point-
wise) a metric that is a separation profile of .M; dM/. If d WM �M! Œ0;1/ is a
separation profile of .M; dM/, then d.x; y/ > dM.x; y/ for all x; y 2M because
diamM.PdM.x;y/�".x// 6 dM.x; y/ � " < dM.x; y/ for any 0 < " < dM.x; y/, so
we necessarily have y … PdM.x;y/�".x/ (deterministically) and therefore

d.x; y/ > .dM.x; y/ � "/ProbdM.x;y/�"

�
PdM.x;y/�".x/ ¤ PdM.x;y/�".y/

�
D dM.x; y/ � ": (1.94)

Definition 65 (Padded random partition and padding modulus). Let .M; dM/ be a
metric space. For ı;p;� > 0, a�-bounded random partition P of .M; dM/ is .p; ı/-
padded if

8x 2M; Prob
h
BM

�
x;
�

p

�
� P.x/

i
> ı: (1.95)

Denote by PADı.M; dM/, or simply PADı.M/ if the metric is clear from the con-
text, the infimum over those p > 0 such that for every � > 0 there exists a .p; ı/-
padded �-bounded random partition P of .M; dM/. If no such p exists, then write
PADı.M; dM/ D1. For every n 2 N, denote

PADnı .M; dM/
def
D sup

S�M
jS j6n

PADı.S; dM/:
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See Section 3 for a quick justification why the above definition of random par-
tition implies that the events that appear in (1.92) and (1.95) are indeed Prob-mea-
surable.

Qualitatively, condition (1.92) says that despite the fact that P decomposes M

into clusters of small diameter, any two nearby points are likely to belong to the same
cluster. Condition (1.95) says that every point in M is likely to be “well within” its
cluster (its distance to the complement of its cluster is at least a definite proportion
of the assumed upper bound on the diameter of that cluster). Both of these require-
ments express the (often nonintuitive) property that the “boundaries” that the random
partition induces are “thin” in a certain distributional sense, despite the fact that each
realization of the partition consists only of small diameter clusters that can sometimes
be very jagged. Neither of the above two definitions implies the other, but it follows
from [170] that if P is a .p; ı/-padded �-bounded random partition of .M; dM/,
then there exists a random partition P0 of .M; dM/ that is .2�/-bounded and .4p=ı/-
separating.

Separating and padded random partitions were introduced in the articles [29, 30]
of Bartal, which contained decisive algorithmic applications and influenced a flurry
of subsequent works that obtained many more applications in several directions.
Other works considered such partitions implicitly, with a variety of applications; see
the works of Leighton–Rao [175], Awerbuch–Peleg [18], Linial–Saks [184], Alon–
Karp–Peleg–West [4], Klein–Plotkin–Rao [156] and Rao [269]. The nomenclature of
Definition 63 and Definition 65 comes from [124, 160, 170, 171, 173].

By [29], for every metric space .M; dM/ and every integer n > 2, we have the
bound SEPn.M/ . log n. It was observed by Gupta, Krauthgamer and Lee [124]
that [29] also implicitly yields the padding bound PADn0:5.M/ . logn. It was proved
in [29] that both of these estimates are sharp.

Random partitions of normed spaces were first studied by Peleg and Reshef [248]
for applications to network routing and distributed computing. The aforementioned
work [76] improved and generalized the bounds of [248], and influenced later works;
see, e.g., [173], and the work [13] of Andoni and Indyk. Similar partitioning schemes
appeared implicitly in earlier work [152] on algorithms for graph colorings based on
semidefinite programming.

1.7.4 From separation to Lipschitz extension

As we already explained, the connection between random partitions and Lipschitz
extension was found in [173]. Here we will use the following theorem to deduce
Theorem 29. It implies in particular the bound

e.M/ . SEP.M/ (1.96)



58 Introduction

of [173] and its proof is an adaptation of the ideas of [173] to both the present setup
(extension to a function that is Lipschitz with respect to a different metric) and our
different measurability requirements from the random partitions; we stress, however,
that even though we cannot apply [173] directly as a “black box,” the geometric ideas
that underly the proof of Theorem 66 are the same as those of [173].

Theorem 66. Suppose that d is a separation profile of a locally compact metric space
.M; dM/. For every Banach space .Z; k � kZ/ and every subset C �M, if f W C! Z
is 1-Lipschitz with respect to the metric dM, i.e., kf .x/ � f .y/kZ 6 dM.x; y/ for
every x; y 2M, then there is F WM! Z that extends f and is O.1/-Lipschitz with
respect to the metric d, i.e., kF.x/ � F.y/kZ . d.x; y/ for every x; y 2M.

1.7.5 Bounds on the separation and padding moduli of normed spaces

To facilitate the ensuing discussion of upper and lower bounds on the separation
and padding moduli of (subsets of) normed spaces, we will first record two of their
rudimentary properties. Firstly, the following lemma formally expresses the afore-
mentioned advantage of the definitions in Section 1.7.3 over those of [173], namely
that the moduli SEP.�/ and PADı.�/ are bi-Lipschitz invariants; its straightforward
proof appears in Section 3.

Lemma 67 (Bi-Lipschitz invariance of separation and padding moduli). Let .M;dM/

be a complete metric space that admits a bi-Lipschitz embedding into a metric space
.N; dN/. Then

SEP.M; dM/ 6 c.N;dN/.M; dM/SEP.N; dN/ (1.97)

and

8ı 2 .0; 1/; PADı.M; dM/ 6 c.N;dN/.M; dM/PADı.N; dN/: (1.98)

Secondly, we have the following tensorization property of the separation and
padding moduli, whose simple proof appears in Section 3. For s 2 Œ1;1� and met-
ric spaces .M1; dM1

/; .M; dM2
/, the metric dM1˚sM2

WM1 �M2 ! Œ0;1/ on
the Cartesian product M1 �M2 is defined by setting for every .x1; x2/; .y1; y2/ 2
M1 �M2,

dM1˚sM2

�
.x1; x2/; .y1; y2/

� def
D
�
dM.x1; y1/

s
C dN.x2; y2/

s
� 1
s : (1.99)

With the usual convention that when s D 1 the right-hand side of (1.99) is equal to
the maximum of dM.x1;y1/ and dN.x2;y2/. The metric space .M1�M2;dM1˚sM2

/

is will be denoted M1 ˚s M2.
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Lemma 68 (Tensorization of separation and padding moduli). For any s 2 Œ1;1�
and ı1; ı2 2 .0; 1/, any two metric spaces .M1; dM1

/ and .M2; dM2
/ satisfy

SEP.M1 ˚s M2/ 6 SEP.M1/C SEP.M2/; (1.100)

and
PADı1ı2.M1 ˚s M2/ 6

�
PADı1.M1/

s
C PADı2.M2/

s
� 1
s : (1.101)

The following theorem shows that the bi-Lipschitz invariant PADı.�/ is not suf-
ficiently sensitive to distinguish substantially between normed spaces, as its value is
essentially independent of the norm.

Theorem 69. For every n 2 N, every normed space X D .Rn; k � kX/ satisfies

8ı 2 .0; 1/;
1

1 �
n
p
ı
6
1

2
PADı.X/ 6

1C
n
p
ı

1 �
n
p
ı
: (1.102)

Therefore, PADı.X/ � max¹1; dim.X/
log.1=ı/º for every finite dimensional normed space X

and ı 2 .0; 1/.

As we explained above, in the setting of Theorem 69 the fact that

PAD 1
2
.X/ D O.n/

is well known. We will prove the upper bound on PADı.X/ that appears in (1.102),
i.e., with sharp dependence on both n and ı, in Section 4.1. The fact that PAD0:5.X/
is at least a universal constant multiple of n was proved in the manuscript [170].
Because [170] is not intended for publication, we will prove the lower bound on
PADı.X/ that appears in (1.102) in Section 2.6, by following the reasoning of [170]
while taking more care than we did in [170] in order to obtain sharp dependence on ı
in addition to sharp dependence on n.

In contrast to Theorem 69, the separation modulus of a finite dimensional normed
space can have different asymptotic dependencies on its dimension. For example, we
have SEP.`n2/ �

p
n and SEP.`n1/ � n by [76]. Using Lemma 67, we see from this

that every normed space X D .Rn; k � kX/ satisfies the a priori bounds

n

dBM.`
n
1;X/

. SEP.X/ . dBM.`
n
2;X/
p
n; (1.103)

which we already quoted in the above overview as (1.2).
Giannopoulos proved [105] that every n-dimensional normed space X satisfies

dBM.`
n
1; X/ . n5=6, so the first inequality in (1.103) implies that SEP.X/ & 6

p
n.

Alternatively, the fact that SEP.X/ > nc for some universal constant c > 0 follows
from by combining Theorem 1 with (1.96). Actually, we always have

SEP.X/ &
p
n; (1.104)
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which coincides with the first half of (1.7). Observe that (1.104) cannot follow from a
“vanilla” application of the first inequality in (1.103) by Szarek’s work [295]. In fact,
the first inequality of (1.103) must sometimes yield a worse power type dependence
on n than in (1.104), because Tikhomirov proved in [302] that there is a normed space
XD .Rn; k � kX/ that satisfies dBM.`

n
1;X/ > na for some universal constant a > 1=2.

Nevertheless, we can prove (1.104) by the following a “hereditary” application
of (1.103). Bourgain–Szarek [51] and independently Ball (see [51, Remark 7], [296,
Remark 7], [305, p. 138]) proved (relying on the Bourgain–Tzafriri restricted invert-
ibility principle [52]) that there is m 2 ¹1; : : : ; nº with m � n such that cX.`

m
1 / .p

n (in fact, by [51] any 2n-dimensional normed space has Banach–Mazur distance
O.
p
n/ from `n1 ˚ `

n
2). Hence, SEP.X/ & SEP.`m1 /=cX.`

m
1 / � m=cX.`

m
1 / &

p
n,

by (1.97).
The second half of (1.7) is the following lower bound on SEP.X/ in terms of the

type 2 constant of X:
SEP.X/ & T2.X/2: (1.105)

We will prove (1.105) in Section 2.2 using Talagrand’s refinement [298] of Elton’s
theorem [92], by the same hereditary use of (1.103), namely showing that there is
m 2 ¹1; : : : ; nº for which m=cX.`

m
1 / & T2.X/2.

Remark 70. It is impossible to improve (1.7) for all the values of the relevant param-
eters, as seen by considering XD `n�m2 ˚2 `

m
1 for eachm 2 ¹1; : : : ; nº. Indeed, since

in this case T2.X/ �
p
m,

SEP.X/
(1.100)
6 SEP

�
`n�m2

�
C SEP

�
`m1
�

�
p
n �mCm �

p
nC k � max

®p
dim.X/; T2.X/2

¯
:

Thanks to (1.71), the following theorem is a restatement of the lower bound on
SEP.X/ in Theorem 3.

Theorem 71. For every n 2 N, any normed space X D .Rn; k � kX/ satisfies

SEP.X/ & evr.X/
p
n:

As evr.X/ > 1 (by definition), Theorem 71 implies (1.104), via a proof that dif-
fers from the above reasoning. Also, Theorem 71 is stronger than the first inequality
in (1.103) because evr.`n1/ �

p
n, and hence

evr.X/
p
n >

evr.`n1/
dBM.`

n
1;X/

p
n �

n

dBM.`
n
1;X/

:

We will prove Theorem 71 in Section 2.5 by adapting to the setting of general normed
spaces the strategy that was used in [76] to treat `n1 . The volumetric lower bound on
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SEP.X/ of Theorem 71 is typically quite easy to use and it often leads to estimates
that are better than the first inequality in (1.103).

For example, by [285, Proposition 2.2] the Schatten–von Neumann trace class Snp
satisfies

8p > 1; evr
�
Snp
�
� nmax¹ 1p�

1
2 ;0º: (1.106)

By substituting (1.106) into Theorem 71 we get that

81 6 p 6 2; SEP.Snp/ & n
1
p�

1
2

q
dim

�
Snp
�
� n

1
pC

1
2 : (1.107)

An upper bound that matches (1.107) is a consequence of the second inequality
in (1.103) as follows

SEP
�
Snp
�
. dBM

�
Snp; `

n2

2

�q
dim

�
Snp
�
D dBM

�
Snp;S

n
2

�
n D n

1
pC

1
2 :

We therefore have
81 6 p 6 2; SEP

�
Snp
�
� n

1
pC

1
2 :

At the same time, the first inequality in (1.103) does not imply (1.107) since by
a theorem of Davis (which was published only in the monograph [305]; see Theo-
rem 41.10 there), for every 1 6 p 6 2 we have

dBM
�
`n
2

1 ;S
n
p

�
� n: (1.108)

So, the first inequality in (1.103) only implies the weaker bound SEP.Snp/ & n. Of
course, this rules out a “vanilla” use of (1.103) and a hereditary application of (1.103)
as we did above could conceivably lead to (1.107), i.e., there could bem 2 ¹1; : : : ; nº
such thatm=cSnp .`

m
1 / is at least the right-hand side of (1.107). However, this possibil-

ity seems to be unlikely, as it would mean that the following conjecture has a negative
answer, which would entail finding a remarkable (and likely valuable elsewhere) sub-
space of Snp .

Conjecture 72. Fix 1 6 p 6 2 and 0 < ı 6 1. If n;m 2 N satisfy m > ın2, then

dBM.`
m
1 ;X/ &p;ı n

for every m-dimensional subspace X of Snp .

Thus, (1.108) is the case ı D 1 of Conjecture 72, which asserts that the same
asymptotic lower bound persists if we consider subspaces of Snp of proportional di-
mension rather than Snp itself. Conjecture 72 is attractive in its own right, but it also
implies that (1.107) does not follow from a hereditary application of the first inequal-
ity in (1.103). To see this, suppose for contradiction that there were m 2 ¹1; : : : ; nº
such that

m

cSnp .`
m
1 /
&p n

1
pC

1
2 : (1.109)
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By Rademacher’s differentiation theorem [267] there is an m-dimensional subspace
X of Snp satisfying

cSnp .`
m
1 / D dBM.`

m
1 ;X/ &

dBM.`
m
1 ; `

m
2 /

dBM.Snp;S
n
2/
D

p
m

n
1
p�

1
2

: (1.110)

By contrasting (1.110) with (1.109) we deduce that necessarilym &p n2, so an appli-
cation of Conjecture 72 givesm=cSnp .`

m
1 /.p n, which contradicts (1.109) since p<2.

Remark 73. The Löwner ellipsoid of `n1.`
n
1/ is
p
nB`n

2
.`n
2
/, and B`n1.`n1 / D .B`n1 /

n.
Consequently,

evr
�
`n1.`

n
1/
�
n D n

 
.�n/

n2

2 =�
�
n2

2
C 1

�
2n
2
=.nŠ/n

! 1

n2

� n
3
2 :

Therefore, Theorem 71 gives

SEP
�
`n1.`

n
1/
�
& n

3
2 : (1.111)

We will soon see that (1.111) is optimal, though unlike the above discussion for Snp
when 1 6 p 6 2, this does not follow from the second inequality in (1.103) because
by [163],

dBM
�
`n
2

2 ; `
n
1.`

n
1/
�
� dBM

�
`n
2

1 ; `
n
1.`

n
1/
�
� n: (1.112)

(1.112) also shows that (1.111) does not follow from the first inequality in (1.103).
It seems that the method used in [163] to prove (1.112) is insufficient for prov-
ing that (1.111) does not follow from a hereditary application of the first inequal-
ity in (1.103). Analogously to Conjecture 72, we conjecture that this is impossible,
which is a classical-sounding question about Banach–Mazur distances of independent
interest.

Before passing to a description of our upper bounds on the separation modulus,
we formulate the following corollary of Theorem 71 on the separation modulus of
norms whose unit ball is a polytope; it restates the lower bound (1.6) and establishes
its optimality.

Theorem 74. Fix n 2 N and a normed space X D .Rn; k � kX/. Suppose that BX

is a polytope that has exactly �n vertices (note that necessarily � > 2, since BX is
origin-symmetric). Then

SEP.X/ &
n

p
log �

: (1.113)

Moreover, this bound cannot be improved in general.
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As an example of a consequence of Theorem 74, let

G D .Rn; k � kG/

be a Gluskin space [111], i.e., it is a certain random norm on Rn whose unit ball
has O.n/ vertices; see the survey [196] for extensive information about this impor-
tant construction and its variants. The expected Banach–Mazur distance between two
independent copies of G is at least cn for some universal constant c > 0, so the
expected Banach–Mazur distance between G and `n1 is at least

p
cn. Thus, the first

inequality in (1.103) only shows that SEP.G/&
p
n in expectation, while Theorem 74

shows that SEP.G/ & n=
p

logn. It would be interesting to determine the growth rate
of EŒSEP.G/�. In particular, can it be that EŒSEP.G/� & n?

Proof of Theorem 74. By applying a linear isometry of X we may assume that B`n
2

is
the Löwner ellipsoid of BX. Since BX is a polytope with �n vertices that is contained
in B`n

2
, we have

n
p

voln.BX/ .
p

log �
n

by a result of Maurey [258] (see also [25, 28, 48, 72, 73, 112, 164] and the expository
treatments in [24, 55]). Hence, evr.X/ &

p
n= log �, so (1.113) follows from Theo-

rem 71.
Consider the following (dual of an) example of Figiel and Johnson [98]. Fix

m 2 N. Let Z D .Rm; k � kZ/ be a normed space with dBM.`
m
2 ; Z/ . 1 such that

BZ is a polytope of eO.m/ vertices; e.g., BZ can be taken to be the convex hull of
a net of Sm�1. For k 2 N, let X D `k1.Z/. So, dim.X/ D km and BX is a poly-
tope of 2keO.m/ vertices. Thus (1.113) becomes SEP.X/ & k

p
m. At the same time,

since dBM.`
m
2 ;Z/ . 1 we have dBM.`

km
2 ;X/ .

p
k, so by (1.103) in fact SEP.X/ .

p
k �
p
km D k

p
m, i.e., (1.113) is sharp in this case.

Theorem 29 follows from Theorem 66 thanks to the following randomized parti-
tioning theorem.

Theorem 75. For every n 2 N and every normed space X D .Rn; k � kX/, the metric
d that is defined by

8x; y 2 Rn; d.x; y/ D
4kx � yk…*X

voln.BX/

is a separation profile for X.

To illustrate Theorem 75, fix 1 6 p 61 and apply it when X is the space Ynp
of Theorem 24. By using Theorem 75 we see that for every � > 0 there is a random
partition P of Rn with the following properties.

(1) For every x 2 Rn we have diam`np
.P.x// 6 �.
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(2) For every x; y 2 Rn we have

Prob
�
P.x/ ¤ P.y/

�
.
kx � yk…*Ynp

voln.BYnp /

(1.30)^(1.39)
.

n
1
p

�
kx � yk`n

2
: (1.114)

In comparison to the O.
p
n/-separating partition of `n2 from [76], when p < 2 the

above random partition has smaller clusters in the sense that their diameter in the `np
metric is at most�, which is more stringent than the requirement that their Euclidean
diameter is at most �. This improved control on the size of the clusters comes at the
cost that in the probabilistic separation requirement (1.114) the quantity that multi-
plies the Euclidean distance increases from O.

p
n/ to O.n1=p/. When p > 2 this

tradeoff is reversed, i.e., we get an asymptotic improvement in the separation guar-
antee (1.114) at the cost of requiring less from the cluster size, namely the diameter
of each cluster is now guaranteed to be small in the `np metric rather than the more
stringent requirement that it is small in the Euclidean metric.

Theorem 76 below follows from Theorem 75 the same way we deduced Theo-
rem 21 from Theorem 29.

Theorem 76. Fix n 2 N and two normed spaces X D .Rn; k � kX/;Y D .Rn; k � kY/.
Every closed C � Rn satisfies

SEP.CX/

6 4
�

sup
x;y2C
x¤y

kx � ykX

kx � ykY

�
sup
x;y2C
x¤y

�
voln�1

�
Proj.x�y/?.BY/

�
voln.BY/

�
kx � yk`n

2

kx � ykX

�
: (1.115)

Proof of Theorem 76 assuming Theorem 75. Let M , M 0 be as in (1.51) and (1.52).
By Theorem 75 applied to Y, for every � > 0 there is a random partition P of Rn

that is .�=M/-bounded with respect to Y, i.e.,

diamX
�
P.x/

�
M

(1.51)
6 diamY

�
P.x/

�
6
�

M

for every x 2 Rn, and also, recalling Definition 64, for every distinct x; y 2 Rn we
have

�

M
Prob

�
P.x/ ¤ P.y/

�
6
4kx � yk…*Y

voln.BY/

(1.30)
D

4 voln�1
�
Proj.x�y/?.BY/

�
kx � yk`n

2

voln.BY/

(1.52)
6 4M 0kx � ykX:

The special case C D Rn of Theorem 76 coincides (with an explicitly stated
constant factor) with the upper bound on SEP.X/ in Theorem 3, since under the
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normalization BY � BX we have

SEP.X/
(1.30)^(1.115)
6 4

supz2@BX kzk…*Y

voln.BY/

D 4
kIdnkX!…*Y

voln.BY/
D 4
kIdnk…Y!X*

voln.BY/
D 2

diamX*.…BY/

voln.BY/
:

Also, Theorem 76 is stronger than the second inequality in (1.103) because by apply-
ing a linear isometry of X we may assume without loss of generality that kxkX 6
kxk`n

2
6 dBM.`

n
2;X/kxkX for all x 2 Rn, in which case the special case C D Rn and

Y D `n2 of (1.115) implies that

SEP.X/ 6
4 voln�1

�
B`n�1

2

�
voln

�
B`n

2

� dBM.`
n
2;X/ D

4�
n�1
2 �

�
n
2
C 1

�
�
n
2�
�
n�1
2
C 1

� dBM.`
n
2;X/

D
2
3
2 C o.1/
p
�

dBM.`
n
2;X/
p
n:

The right-hand side of (1.115) coincides (up to a universal constant factor) with
the right-hand side of (1.28), so all of the upper bounds for the Lipschitz extension
modulus that we derived in the previous sections from Theorem 21 hold for the sep-
aration modulus, by Theorem 76. For the separation modulus, we get several lower
bounds from Theorem 71 that either provably match our upper bounds up to lower
order factors, or match them assuming our conjectural isomorphic reverse isoperime-
try. We will next spell out some of those consequences on randomized clustering of
high dimensional norms.

Theorem 77. For every p > 1, n 2 N and k; r 2 ¹1; : : : ; nº we have

SEP
�
.`np/6k

�
� kmax¹ 1p ;

1
2 º (1.116)

and

rmax¹ 1p ;
1
2 º
p
n . SEP

�
.Snp/6r

�
. rmax¹ 1p ;

1
2 º
p
n �

8<:
q

max¹log.n
r
/; pº if p 6 log r;

p
logn if p > log r:

(1.117)

Moreover, if Conjecture 49 holds for X D Snp , then in fact

SEP
�
.Snp/6r

�
� rmax¹ 1p ;

1
2 º
p
n:

Proof. The deduction of the upper bounds on the separation modulus that appear
in (1.116) and (1.117) from Theorem 76 are identical, respectively, to the ways we
deduced Theorem 20 and (1.45) from Theorem 21.
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For the first inequality in (1.116), since .`np/6k contains an isometric copy of `kp ,
we have

SEP
�
.`np/6k

�
> SEP

�
`kp
�
&

k

dBM
�
`kp ; `

k
1

� (1.103)
�

k

kmax¹1� 1p ;
1
2 º
D kmin¹ 1p ;

1
2 º;

where the asymptotic evaluation of dBM.`
k
p ; `

k
q/ for all p;q > 1 is due Gurariı̆, Kadec’

and Macaev [125].
For the first inequality in (1.117), use the fact that .Snp/6r contains an isometric

copy of Sr�np , which is the Schatten–von Neumann trace class on the r-by-n real
matrices Mr�n.R/, whose norm is given by

8A 2Mr�n.R/; kAkSr�np
D
�
Tr
�
.AA�/

p
2

�� 1
p : (1.118)

We then have the following rectangular version of (1.106) whose derivation is ex-
plained in Remark 171:

evr
�
Sr�np

�
� rmax¹ 1p�

1
2 ;0º: (1.119)

The desired lower bound on SEP..Snp/6r/ is now an application of Theorem 71.

Remark 78. Theorem 3.3 in [76] asserts that SEP.`np/ � n
max¹1=p;1�1=pº for every

p > 1. Therefore, when p > 2 it was previously thought that SEP.`np/ � n1�1=p ,
which contradicts the case k D n of (1.116). While [76] provides a complete and
correct proof that SEP.`np/ � n

1=p when 1 6 p 6 2, in the range p > 2 the assertion
SEP.`np/ � n

1�1=p in [76] is justified through the use of a result from reference [14]
in [76], which is cited there as a “personal communication” with P. Indyk (dated April
1998). This reference was never published. After discovering Theorem 77, we con-
firmed with Indyk that his aforementioned personal communication with the authors
of [76] contained a gap.

Corollary 79. Conjecture 49 implies Conjecture 6. Namely, if Conjecture 49 holds
for a canonically positioned normed space X D .Rn; k � kX/, then

SEP.X/ � evr.X/
p
n � vr.X�/

p
n: (1.120)

In particular, if X satisfies the assumptions of Lemma 53 (e.g., if X is symmetric),
then (1.120) holds. Furthermore, if E D .Rn; k � kE/ is a symmetric normed space,
then SEP.SE/ D evr.E/n1Co.1/. More precisely,

evr.E/n . SEP.SE/ . evr.E/n
p

logn:

Proof. The lower bound on SEP.X/ in (1.120) is Theorem 71 (thus, it requires neither
Conjecture 49 nor X being canonically positioned). The matching upper bound on
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SEP.X/ in (1.120) follows from Corollary 51 and the fact that by Theorem 76 the
separation modulus of any (not necessarily canonically positioned) normed space

X D .Rn; k � kX/

is bounded from above by the right-hand side of (1.54). The rest of the assertions of
Corollary 79 follow from Lemma 53 and Lemma 54.

By incorporating Proposition 61 into the same reasoning as in the justification of
Corollary 79, we also deduce the following stronger version of Theorem 12.

Theorem 80. If X D .Rn; k � kX/ is a canonically positioned normed space, then

evr.X/
p
n . SEP.X/ . K.X/ evr.X/

p
n

(1.87)
. evr.X/

p
n logn:

Section 6.3 contains volume ratio computations that show how Corollary 79 and
Theorem 80 imply Corollary 4, as well as the conjectural (i.e., conditional on the
validity of Conjecture 49 for the respective spaces) asymptotic evaluations (1.14)
and (1.15), and several further results of this type. Most of the volume ratio compu-
tations in Section 6.3 rely on the available literature (notably Schütt’s work [285]),
with a few new twists that are perhaps of independent geometric/probabilisitic interest
(e.g., Lemma 173).

1.7.6 Dimension reduction

Fix n 2 N and a metric space .M; dM/. Recall that in Definition 63 we denoted by
SEPn.M; dM/ the supremum over all the separation moduli of subsets of M of size
at most n. In [76] it was shown that SEPn.`2/ .

p
logn. Indeed, this follows from

the Johnson–Lindenstrauss dimension reduction lemma [138], which asserts that any
n-point subset of `2 can be embedded with O.1/ distortion into `m2 with m . log n,
combined with the proof in [76] that SEP.`m2 / .

p
m.

One might expect that the optimal bounds that we know for SEP.`np/ in the
entire range p 2 .1;1/ also translate to improved bounds on SEPn. p̀/. The term
“improved” is used here to mean any upper bound of the form op.log n/ as n!1,
since the benchmark general result is the aforementioned upper bound

SEPn.M; dM/ . logn

from [29], which holds for any n-point metric space .M; dM/. This bound is sharp in
general [29], so (because every n-point metric space embeds isometrically into `n1)
we cannot hope to get a better bound on SEPn.`1/ despite the fact that we obtained
here an improved upper bound on SEP.`n1/.

The obstacle is that when p 2 Œ1;1� X ¹2º no bi-Lipschitz dimension reduction
result is known for finite subsets of p̀ , and poly-logarithmic bi-Lipschitz dimension
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reduction is impossible if p 2 ¹1;1º; the case p D 1 is due to Matoušek [200]
(see also [228, 230]) and the case p D 1 is due to Brinkman and Charikar [58] (see
also [172,232,240,270]). When p 2 Œ1;1�X ¹1;2;1º remarkably nothing is known,
i.e., neither positive results nor impossibility results are available for bi-Lipschitz
dimension reduction, and it is a major open problem to make any progress in this
setting; see [229] for more on this area. Despite this obstacle, we have the following
theorem that treats the range p 2 Œ1; 2�.

Theorem 81. For every p 2 .1; 2� and n 2 N we have

.logn/
1
p . SEPn. p̀/ .

.logn/
1
p

p � 1
:

The lower bound on SEPn. p̀/ of Theorem 81 can be deduced from [76]; see
Section 4.2 for the details. An upper bound of SEPn. p̀/ .p .logn/1=p was obtained
when p 2 .1; 2� in the manuscript [170]. As [170] is not intended for publication, a
proof of the upper bound on SEPn. p̀/ that is stated in Theorem 81 is included in
Section 4.2, where we perform the argument with more care than the way we initially
did it in [170], so as to obtain the best dependence on p that is achievable by this
approach. Nevertheless, we conjecture that the dependence on p in Theorem 81 could
be removed altogether, though this would likely require a substantially new idea.

Conjecture 82. The dependence on p in Theorem 81 can be improved to

SEPn. p̀/ . .logn/
1
p :

So, if p 6 1C c.log log logn/= log logn for some universal constant c > 0, then
Theorem 81 does not improve asymptotically over SEPn. p̀/ . log n, while Conjec-
ture 82 would imply that SEPn. p̀/ D o.logn/ if and only if

lim
n!1

.p � 1/ log logn D1:

For fixed p 2 .2;1/, at present we do not see how to obtain an upper bound on
SEPn. p̀/ of the form op.logn/ as n!1. We state this separately as an interesting
and challenging open question.

Question 83. Is it true that for every n 2 N and p 2 .2;1/ we have

lim
n!1

SEPn. p̀/

logn
D 0‹

More ambitiously, is it true that SEPn. p̀/ .p
p

logn?

Note that SEPn.X/ &
p

logn for any infinite-dimensional normed space X, be-
cause by Dvoretzky’s theorem [90] we have cX.`

m
2 / D 1 for every m 2 N, and there-

fore SEPn.X/ > SEPn.`2/ �
p

logn.
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1.8 Consequences in the linear theory

Even though the purpose of the present article was to investigate the nonlinear invari-
ants e.�/ and SEP.�/, by relating them to volumetric quantities and other linear invari-
ants of Banach spaces (such as type and cotype), we arrive at consequences that have
nothing to do with nonlinear issues. In this section, we will give a flavor of such con-
sequences, though we will not be exhaustive since it would be more natural to pursue
them separately for their own right in future work.

Denote the Minkowski functional of an origin-symmetric convex body K � Rn

by k � kK , i.e., it is the norm on Rn whose unit ball is equal toK. The following theo-
rem coincides with the second inequality in (1.1) upon a straightforward application
of duality as we did in (1.31); this formulation is intended to highlight how we are
bounding a convex-geometric quantity by a bi-Lipschitz invariant.

Theorem 84 (Nonsandwiching between a convex body and its polar projection body).
Fix n 2N and ˛;ˇ 2 .0;1/. LetK;L� Rn be origin-symmetric convex bodies with
voln.L/ D 1. Suppose that

˛L � K � ˇ…�L: (1.121)

Then,
ˇ

˛
& SEP

�
Rn; k � kK

�
: (1.122)

Since the separation modulus of a metric space is at least the separation modu-
lus of any of its subsets, by combining (1.122) with the first inequality in (1.1) we
see that the sandwiching hypothesis (1.121) implies the following purely volumetric
consequence for every linear subspace V � Rn:

ˇ

˛
& evr

�
K \ V

�p
n � vr

�
ProjVK

ı
�p
n: (1.123)

In particular, using evr.`n1/ �
p
n, we record separately the following special case

of (1.123).

Corollary 85 (Nonsandwiching of the cross-polytope). Fix n 2N and ˛;ˇ 2 .0;1/.
If L � Rn is a convex body of volume 1 that satisfies ˛L � B`n

1
� ˇ…�L, then

necessarily ˇ=˛ & n.

The geometric meaning of Theorem 84 when L D K is spelled out in the follow-
ing corollary.

Corollary 86 (Every origin-symmetric convex body admits a large cone). For every
n 2 N, every origin-symmetric convex body K � Rn has a boundary point z 2 @K
that satisfies

voln
�
Conez.K/

�
voln.K/

&
1

n
SEP

�
Rn; k � kK

�
: (1.124)
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To see that Corollary 86 coincides with the case L D K of Theorem 84, simply
recall the definition of the polar projection body …�K in (1.30), while also recalling
that for z 2 Rn X ¹0º we denote the cone whose base is Projz?.K/ � z

? and whose
apex is z by Conez.K/, and the volume of Conez.K/ is given in (1.35).

A substitution of (1.104) into Corollary 86 shows that any origin-symmetric con-
vex body K � Rn has a boundary point z 2 @K that satisfies

voln
�
Conez.K/

�
voln.K/

&
1
p
n
: (1.125)

It seems (based on inquiring with experts in convex geometry) that the classical-
looking geometric statement (1.125) did not previously appear in the literature. How-
ever, in response to our inquiry Lutwak found a different proof of (1.125) which in
addition shows that the best possible constant in (1.125) is 1=

p
2� . More precisely,

we have the following proposition, whose proof (which relies on classical Brunn–
Minkowski theory, unlike the indirect way by which we found (1.125)), is included
in Section 2.7 (this proof is a restructuring of the proof that Lutwak found; we thank
him for allowing us to include it here).

Proposition 87 (Lutwak). For every n 2 N, any origin symmetric convex body K �
Rn satisfies

max
z2@K

voln
�
Conez.K/

�
voln.K/

>
�
�
n
2

�
2
p
��

�
nC1
2

� > 1C 1
4n

p
2�n

: (1.126)

Moreover, the first inequality in (1.126) holds as equality if and only if K is an ellip-
soid.

A substitution of (1.105) into Corollary 86 yields the following geometric in-
equality.

Corollary 88. Fix n 2 N and suppose that K � Rn is an origin-symmetric convex
body. There is a boundary point z 2 @K such that the following inequality holds for
every x1; : : : ; xn 2 K:

voln
�
Conez.K/

�
voln.K/

&
1

n

 
Sn�1

 nX
iD1

�ixi


2

K

d�: (1.127)

By combining [303] with Lemma 102 below, the maximum of the right-hand side
of (1.127) over all possible x1; : : : ; xn 2 K is bounded above and below by universal
constant multiples of T2.Rn; k � kK/2=n (recall the definition (1.77) of the type-2
constant), so Corollary 88 is indeed a substitution of (1.105) into (1.124).

Returning to Corollary 86, recall that both the cross-polytope B`n
1

and the hyper-
cube Œ�1; 1�n are examples of extremal symmetric convex bodies K � Rn that have
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a boundary point z 2 @K for which the volume of Conez.K/ is a universal con-
stant proportion of the volume of K (the Euclidean ball is an example of a convex
body that is not extremal in this regard). But, there is a difference between the cross-
polytope and the hypercube in terms of the stability of this property. Specifically,
there is an origin-symmetric convex body K � Œ�1; 1�n � O.1/K such that for
every z 2 @K the left-hand side of (1.124) is at most a universal constant multi-
ple of 1=

p
n. In contrast, the following proposition shows that the extremality of

maxz2@B`n
1

voln.Conez.B`n
1
//=voln.B`n

1
/ (up to constant factors) persists underO.1/

perturbations.

Proposition 89. Fix n 2 N and ˛; ˇ 2 .0;1/. Suppose that K � Rn is an origin-
symmetric convex body that satisfies ˛K � B`n

1
� ˇK. Then there exists a boundary

point z 2 @K such that
voln

�
Conez.K/

�
voln.K/

&
˛

ˇ
:

Proposition 89 is a direct consequence of Corollary 86, the bi-Lipschitz invari-
ance of the modulus of separated decomposability, and the lower bound SEP.`n1/ & n
of [76].

The following proposition is an application in a different direction of the results
that we described in the preceding sections.

Proposition 90. If .E;k � kE/ is a finite dimensional normed space with a 1-symmetric
basis, then every subspace X of E satisfies

evr.X/
p

dim.X/ . evr.E/
p

dim.E/: (1.128)

Proposition 90 holds because SEP.E/ . evr.E/
p

dim.E/ by Corollary 79, while

SEP.X/ & evr.X/
p

dim.X/

by Theorem 71, so (1.128) follows from SEP.X/ 6 SEP.E/. This justification shows
that Proposition 90 holds for a class of spaces that is larger than those that have a
1-symmetric basis, and Conjecture 6 would imply that Proposition 90 holds when E
is any canonically positioned normed space.

Nevertheless, Proposition 90 fails to hold true without any further assumption on
the normed space E. For example, the computation in Remark 52 shows that for any
n;m 2 N with n > 2 and m � n logn, the space E D `n1 ˚ `

m
2 satisfies

evr.E/
p

dim.E/ .
p
n logn

while its subspace X D `n1 satisfies evr.X/
p

dim.X/ � n.
Proposition 90 shows that if E has a 1-symmetric basis, then among the linear

subspaces X of E the invariant evr.X/
p

dim.X/ is maximized up to universal constant
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factors at X D E. The fact we are multiplying here the external volume ratio of X by
the square root of its dimension is an artifact of our proof and it would be interesting
to understand what correction factors allow for such a result to hold.

Question 91. Characterize (up to universal constant factors) those A W Œ1;1/ !
Œ1;1/ with the property that for any n > 1 we have evr.X/A.k/ 6 evr.E/A.n/ for
every normed space .E; k � kE/ of dimension at most n that has a 1-symmetric basis,
every k 2 ¹1; : : : ; nº, and every k-dimensional subspace X of E.

Proposition 90 shows that ifA.n/�
p
n, thenA W Œ1;1/! Œ1;1/ has the proper-

ties that are described in Question 91. At the same time, no A W Œ1;1/! Œ1;1/ with
A.n/ D O.1/ can be as in Question 91. Indeed, for any such A consider the symmet-
ric normed space E D `n1. There is a universal constant � > 0 such that any normed
space X with dim.X/ 6 � log n is at Banach–Mazur distance at most 2 from a sub-
space of `n1.11 In particular, this holds for XD `m1 whenm 2N satisfiesm 6 � logn,
so we get that

A.� logn/
p

logn � evr
�
`m1
�
A.� logn/ 6 2 evr

�
`n1
�
A.n/ � A.n/: (1.129)

So, A.n/ &
p

logn and by iterating (1.129) one gets the slightly better lower bound
A.n/&

p
.logn/ log logn, as well asA.n/&

p
.logn/.log logn/ log log logn and so

forth, yielding in the end the estimate

A.n/ >
�Qlog�n

kD1
logŒk� n

� 1
2

eO.log�n/
; (1.130)

where for k 2 N [ ¹0º we denote the kth iterant of the logarithm by logŒk�, i.e.,
logŒ0� x D x for x > 0, and

logŒk�x > 0 H) logŒkC1� x D log
�
logŒk� x

�
: (1.131)

There is no reason to expect that the lower bound (1.130) is close to being optimal,
but in combination with Proposition 90 it does show that the answer to Question 91
is likely nontrivial.

These considerations lead to the following open-ended question. The literature
contains multiple results showing that `np maximizes certain geometric invariants
(for examples, Banach–Mazur distance to `n2 [176], or volume ratio [22]) among all

11This assertion is standard, here is a quick sketch. Take a ı-net N of the unit sphere of X�

for a sufficiently small universal constant ı > 0 and consider the embedding x 7! .x�.x//x�2N

from X to `1.N/. Since log jNj � dim.X/, this gives a distortion 2-embedding (say, for ı D
1=10) of X into `n1 provided log n is at least a sufficiently large universal constant multiple of
dim.X/.
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the n-dimensional subspaces or quotients of Lp . Is there an analogous theory in the
spirit of (1.128) in the much more general setting of spaces that have a 1-symmetric
basis? This could be viewed as a symmetric space variant of the classical work of
Lewis [176, 177]. An interesting step in this direction can be found in [304]; specif-
ically, see [304, Theorem 1.2], which could be relevant to Question 91 through the
approach of [22, Section 2].


