
Chapter 2

Lower bounds

In this section we will prove the impossibility results that were stated in the Intro-
duction. Throughout what follows, all Banach spaces will be tacitly assumed to be
separable. Given a Banach space X, its Banach–Mazur distance to a Hilbert space will
be denoted dX 2 Œ1;1�, i.e., dX D dBM.X;H/ where H is a Hilbert space with either
dim.H/D dim.X/ when dim.X/ <1, or HD `2 when X is infinite dimensional. By
a classical result of Enflo [93, Theorem 6.3.3] (see also [36, Corollary 7.10]) we have
dX D c2.X/.

2.1 Proof of Theorem 13

Recall that the (Gaussian) type 2 and cotype 2 constants of a Banach space .X;k � kX/,
denoted T2.X/ and C2.X/, respectively, are the infimum over those T 2 Œ1;1� and
C 2 Œ1;1�, respectively, for which the following inequalities hold for every m 2 N
and every x1; : : : ; xm 2 X:
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where henceforth g1; g2; : : : will always denote i.i.d. standard Gaussian random vari-
ables. The following theorem of Kwapień [162] is fundamental (see also [261, Theo-
rem 3.3] or [305, Theorem 13.15]).

Theorem 92. Every Banach space .X; k � kX/ satisfies dX 6 T2.X/C2.X/.

We will use Theorem 92 to estimate the following quantity, which in turn will be
used to get the best bound that we currently have on the constant c that appears in the
lower bound on e.X/ of Theorem 13.

Definition 93 (Lindenstrauss–Tzafriri constant). Suppose that .X;k � kX/ is a Banach
space. Define LT.X/ to be the infimum over those K 2 Œ1;1� such that for every
closed linear subspace V � X there exists a projection Proj W X� V from X onto V
whose operator norm satisfies kProjkX!X 6 K.

So, the Lindenstrauss–Tzafriri constant of a Hilbert space equals 1, and Sobczyk
proved [290] that

8n 2 N; LT
�
`n1
�
� LT

�
`n1
�
�
p
n: (2.2)



76 Lower bounds

We chose the nomenclature of Definition 93 in reference to the famous solution [180]
by Lindenstrauss and Tzafriri of the complemented subspace problem, which asserts
that if .X; k � kX/ is a Banach space for which LT.X/ <1, then X is isomorphic to a
Hilbert space, i.e., dX <1. Moreover, if X is infinite dimensional, then it was shown
in [180] that

dX . LT.X/4:

This dependence was improved in [147] by Kadec and Mitjagin, who established the
following theorem, which is the currently best-known bound in the Lindenstrauss–
Tzafriri theorem (see also [3, 97, 150, 262, 264] for subsequent improvements of the
implicit universal constant factor and further generalizations).

Theorem 94. Every infinite dimensional Banach space .X; k � kX/ satisfies

dX . LT.X/2:

When dim.X/ < 1 the question of bounding dX by a function of LT.X/ was
left open in [180]. This question, which was eventually solved by Figiel, Linden-
strauss and Milman [99, Theorem 6.7], turned out to be significantly more subtle
than its infinite dimensional counterpart. The currently best-known estimate is due to
Tomczak-Jaegermann [305, Theorem 29.4], who proved the following theorem.

Theorem 95. Every finite dimensional Banach space .X; k � kX/ satisfies

dX . LT.X/5:

The proof of Theorem 95 is achieved in [305] through an interesting combination
of the proof of the Lindenstrauss–Tzafriri theorem [180] with the finite dimensional
machinery of [99] and Milman’s Quotient of Subspace Theorem [216].

The following theorem is a link between the Lindenstrauss–Tzafriri constant and
Lipschitz extension.

Theorem 96. Every Banach space .X; k � kX/ satisfies e.X/ > LT.X/.

Proof. By Remark 98, if dim.X/ D 1, then e.X/ D 1, so we may assume that
dim.X/ < 1. Fix L > e.X/ and let V � X be a linear subspace of X. Then, the
identity mapping from V to V can be extended to anL-Lipschitz mapping � WX!V.
In other words, � is an L-Lipschitz retraction from X onto V. By a classical theorem
of Lindenstrauss [179] (see also its elegant alternative proof by Pełczyńsky in [247,
p. 61]), there is a projection of norm at most L from X onto V. This proves that
LT.X/ 6 L.

The following theorem is the lower bound e.`n2/ & 4
p
n of [210] that we already

quoted in (1.22), in combination with the bi-Lipschitz invariance of the Lipschitz
extension modulus.
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Theorem 97. For every n 2 N, any normed space X D .Rn; k � kX/ satisfies

e.X/ &
4
p
n

dX
:

Remark 98. The question whether e.`2/ is finite or infinite was open for quite some
time: it was first stated in print in [140, p. 137], and it was also posed by Ball in [23,
p. 170] (Ball conjectured that e.`2/ D 1). We answered it in [224] by proving that
limn!1 e.`n2/ D 1. Due to Dvoretzky’s theorem [90] this implies that e.X/ is at
least an unbounded function of dim.X/ for any normed space X, and in particular
e.X/ D 1 if dim.X/ D 1. A rate at which e.`n2/ tends to 1 was not specified
in [224], but the reasoning of [224] was inspected quantitatively in [173, Remark 5.3],
yielding an explicit lower bound that depends on an auxiliary parameter, and it was
noted in [62] that an optimization over this parameter yields the estimate e.`n2/& 8

p
n.

A further improvement from [210] (whose proof refines ideas of Kalton [149, 151])
was the aforementioned estimate e.`n2/ & 4

p
n (a different proof of this bound follows

from [231]), which is the currently best-known lower bound on e.`n2/. By Milman’s
sharpening [215] of Dvoretzky’s theorem [90], it follows that every normed space X
satisfies e.X/ & 4

p
logn. As we explained in Section 1.3, the bound e.`n1/ &

p
n is

classical (specifically, by substituting (2.2) into Theorem 96). In combination with
the Alon–Milman theorem [5] (see also [299]), the fact that both e.`n2/ D n

�.1/ and
e.`n1/ D n

�.1/ formally implies that

e.X/ > e�
p

logn

for some universal constant � > 0 and every n-dimensional normed space X, which
was the best-known general lower bound on the Lipschitz extension modulus prior to
Theorem 1.

The above results imply as follows the lower bound on e.X/ of Theorem 13. By
combining Theorems 95 and 96, we have e.X/ & 5

p
dX. In combination with Theo-

rem 97, it therefore follows that
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p

dX

³
> 24
p
n; (2.3)

where the last step follows from elementary calculus and holds as equality when

dX D n
5
24 :

We will derive a better lower bound on e.X/ than (2.3) through the following
theorem which improves over the power of LT.X/ in Theorem 95, showing that in
the finite dimensional setting one can come close (up to logarithmic factors) to the
infinite dimensional bound of Theorem 94; see also Remark 103 below.
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Theorem 99. For every integer n > 2, any n-dimensional Banach space .X; k � kX/

satisfies
dX . LT.X/2.logn/3: (2.4)

Assuming Theorem 2.3, reason analogously to (2.3) while using (2.4) in place of
Theorem 95 to get
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where equality holds in the final step of (2.5) if and only if dX D
6
p
n.logn/2.

Prior to proving Theorem 99, we will record the following two standard lemmas
that will be used in its proof; both will be established in correct generality that also
treats infinite dimensional Banach spaces even though here we will need them only
in the finite dimensional setting (the infinite dimensional formulations are relevant to
the discussion in Remark 103).

Lemma 100. For every Banach space .X; k � kX/ we have LT.X�/ 6 LT.X/C 1.

Proof. We may assume that LT.X/ < 1. Then X is reflexive (even isomorphic to
Hilbert space), by [180]. Fix a closed linear subspace W of X� and denote its pre-
annihilator by

?W def
D

\
x�2W

®
x 2 X W x�.x/ D 0

¯
� X:

Suppose thatK > LT.X/. By the definition of LT.X/ there exists Proj WX!X that is a
projection from X onto ?W whose operator norm satisfies kProjkX!X 6 K. Observe
that for every x� 2 X� and x 2 ?W,�

x� � Proj�x�
�
.x/ D x�.x/ � x�.Projx/ D 0;

since Projx D x. This shows that�
IdX� � Proj�

�
.X�/ � .?W/? D

®
x� 2 X� W x�.?W/ D ¹0º

¯
DW;

where the last step follows from the double annihilator theorem since X is reflex-
ive and hence W is weak� closed in X�. If x� 2 W, then for any x 2 X we have
Proj�x�.x/D x�.Projx/D 0, as Projx 2 ?W. Hence Proj�x�D 0, and so IdX� � Proj�

acts as the identity when it is restricted to W, i.e., IdX� � Proj� W X� ! X� is a pro-
jection from X� onto W. It remains to note that

kIdX� � Proj�kX*!X* 6 1C kProj�kX*!X* D 1C kProjkX!X 6 K C 1:

The following simple lemma shows that the Lindenstrauss–Tzafriri constant is a
bi-Lipschitz invariant.
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Lemma 101. Any two Banach spaces .W; k � kW/ and .X; k � kX/ satisfy

LT.W/ 6 cX.W/LT.X/: (2.6)

Proof. We may assume that cX.W/ <1 and LT.X/ <1. By [180], the latter assump-
tion implies that X is isomorphic to a Hilbert space, and hence it is reflexive. We may
therefore apply a classical differentiation argument (see e.g., [36, Corollary 7.10]) to
deduce that there is a closed subspace Y of X such that

dBM.W;Y/ D cX.W/:

In other words, for everyD > cX.W/ there is a linear isomorphism T WW! Y satis-
fying kT kW!YkT

�1kY!W <D. If V is a closed subspace of W andK > LT.X/, then
there is a projection Proj from X onto TV with kProjkX!TV < K. Now, T �1ProjT is
a projection from W onto V of norm less than DK.

The type-2 constant of a normed space .X;k � kX/ is equal to its “equal norm type-
2 constant,” namely to the infimum over those T > 0 for which the second inequality
in (2.1) holds for everym 2N and every choice of vectors x1; : : : ; xm 2X that satisfy
the additional requirement

kx1kX D � � � D kxmkXI

this is a well-known result of Pisier, though it first appeared in James’ important
work [134], where it had a vital role. We will likewise need to use this result, with the
twist that we require a small number of unit vectors for which the type-2 constant of
X is almost attained. The classical proof of the aforementioned equivalence between
type-2 and “equal norm type-2” [134, p. 2] increases the number of vectors poten-
tially uncontrollably, so we will preform the analysis more carefully in the following
lemma, which shows that one need not increase the number of vectors when passing
from general vectors to unit vectors.

Lemma 102 (Equal norm type 2 without increasing the number of vectors). Fix n 2
N and 0 < ˇ 6 1. Let .X; k � kX/ be a normed space and suppose that there exist
vectors x1; : : : ; xn 2 X X ¹0º that satisfy 
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Then, there also exist unit vectors y1; : : : ; yn 2 ¹xi=kxikXº
n
iD1 � @BX that satisfy 
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Proof. We may assume without loss of generality the following normalized version
of assumption (2.7):
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For every k 2 N define a subset Ik of ¹1; : : : ; nº by
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²
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1
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³
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So, ¹Ikºk2N is a partition of ¹1; : : : ; nº as 0 < kxikX 6 1 for all i 2 ¹1; : : : ; nº by the
first equation in (2.8). Write

m
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��
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With this notation, Lemma 102 will be proven if we show that there exists S � U
with jS j D n such that�
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where ¹gij º1i;jD1 are i.i.d. standard Gaussian random variables.
To prove (2.11), observe first that by the contraction principle (see, e.g., [168,

Section 4.2]) we have�
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(2.12)
where we used the fact that 1=kxikX > 2k�1 for every k 2 N and i 2 Ik (by the
definition (2.9) of Ik). Also,
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This simplifies to give that jU j> 2n=ˇ2 >n. We can therefore average the right-hand
side of (2.12) over all the n-point subsets of U to get the following estimate:
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where the first step of (2.13) uses convexity, the penultimate step of (2.13) uses the
fact that   

22.m�k/X
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!
i2Ik

!m
kD1
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��
2m�kgi

�
i2Ik

�m
kD1

have the same distribution, and for the final step of (2.13) recall the definition (2.10)
of m.

It follows from (2.12) and (2.13) that there must exist S � U with jS j D n such
that �
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To use (2.14), we claim that jU j . n=ˇ2. Indeed,
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By combining the aforementioned upper bound on the size of U with (2.12) and
(2.14), we see that 
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From this, we deduce the desired estimate (2.11) by combining as follows the second
inequality in our assumption (2.8) with the triangle inequality and the definition (2.1)
of the type-2 constant T2.X/: 
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� ˇT2.X/:

Proof of Theorem 99. We will prove that the type 2 constant of X satisfies

T2.X/ . LT.X/.logn/
3
2 : (2.15)

After (2.15) will be proven, we deduce Theorem 99 as follows. We first claim that the
estimate (2.15) implies the same upper bound on the cotype 2 constant of X. Namely,
we also have

C2.X/ . LT.X/.logn/
3
2 : (2.16)

Indeed,

C2.X/ 6 T2.X�/ . LT.X�/.logn/
3
2

. LT.X/.logn/
3
2 ; (2.17)

where the first step of (2.17) follows from a standard duality argument [204] (see also,
e.g., [220, Section 9.10], [253, Section 4.9] or [3, Proposition 6.2.12]), the second step
of (2.17) is an application of (2.15) to X�, and the third step of (2.17) is application
of Lemma 100. The desired estimate (2.4) now follows by a substitution of (2.15)
and (2.16) into Theorem 92 (Kwapień’s theorem).

By [99, Lemma 6.1] (see also the exposition of this fact in [141, p. 546]) there
exists an integer1

1 6 m 6
n.nC 1/

2
(2.18)

1By [303], if one does not mind losing a universal constant factor in (2.19), then one could
takemD n here, but for the purpose of the ensuing reasoning it suffices to use the much simpler
result [99, Lemma 6.1].
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and x1; : : : ; xm 2 X X ¹0º such that 
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By Lemma 102, it follows that there exist y1; : : : ; ym 2 @BX and a universal constant
0 <  < 1 such that
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where the first step in (2.20) holds by (the Gaussian version of) Kahane’s inequal-
ity [148] (see, e.g., [168, Corollary 3.2] and specifically [167, Corollary 3] for the
(optimal) constant that we are quoting here even though its value is of secondary
importance in the present context). If we denote

ı
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; (2.21)

then a different way to write (2.20) is
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Because we ensured that y1; : : : ; ym are unit vectors in X, we may use a theorem
of Rudelson and Vershynin [274, Theorem 7.4] (an improved Talagrand-style two-
parameter version of Elton’s theorem; see Remark 103), to deduce from (2.22) that
there are two numbers 0 < s 6 1 and ı . t 6 1 that satisfy

t
p
s &

ı�
log
�
2
ı

�� 3
2

; (2.23)

such that there exists a subset J of ¹1; : : : ; mº whose cardinality satisfies

jJ j > sm; (2.24)

and moreover we have
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(2.25) means that the Banach–Mazur distance between span.¹yj ºj2J / and `jJ j1 is
O.1=t/. Hence,

cX
�
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jJ j
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�
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t
: (2.26)
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Now, the justification of (2.15), and hence also the proof of Theorem 99, can be
completed as follows:
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&
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.logn/
3
2
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where the final step of (2.27) holds because T2.X/> 1 and logm. logn by (2.18).

Remark 103. In the proof of Theorem 99 we relied on [274, Theorem 7.4], which
improves (in terms of the power of the logarithm in (2.23)) Talagrand’s refinement
[298] of Elton’s theorem [92] (which is itself a major quantitative strengthening of an
important theorem from [254]). Continuing with the notation of Theorem 99, Elton’s
theorem is a similar statement, except that the size of the subset J is a definite propor-
tion of m that depends only on the parameter ı for which (2.22) holds, and also the
parameter t for which (2.25) holds depends only on ı. The asymptotic dependence
on ı in Elton’s theorem [92] was improved by Pajor [245], a further improvement
was obtained in [298], and the optimal dependence on ı was found by Mendelson
and Vershynin in [213]. However, plugging this sharp dependence into our proof of
Theorem 99 shows that the classical formulation of Elton’s theorem is insufficient for
our purposes. The two-parameter formulation of Elton’s theorem that was introduced
in [298] allows for the subset J to have any size through the parameter s in (2.24),
but imposes a relation between s and t such as (2.23), thus making it possible for us
to obtain Theorem 99.

The only reason why the logarithmic factor in (2.4) occurs is our use of a
Talagrand-style two-parameter version of Elton’s theorem, for which the currently
best-known bound [274] is (2.23). Thus, if (2.23) could be improved to t

p
s & ı,

i.e., if Question 104 below has a positive answer, then the conclusion (2.4) of Theo-
rem 99 would become dX . LT.X/2. This would improve Theorem 95 to match the
bound of Theorem 94 which is currently known only for infinite dimensional Banach
spaces. Moreover, since the resulting bound is independent of the dimension of X,
this would yield a new proof of the Lindenstrauss–Tzafriri solution of the comple-
mented subspace problem; the infinite dimensional statement follows formally from
its finite dimensional counterpart (e.g., [3, Theorem 12.1.6]), though all of the steps
that led to Theorem 99 work for any reflexive Banach space. Question 104 is interest-
ing in its own right regardless of the above application to the complemented subspace
problem. In particular, a positive answer to Question 104 would resolve the question
that Talagrand posed in the remark right after Corollary 1.2 in [298], though we warn
that he characterises this in [298] as “certainly a rather formidable question.”
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Question 104. Fix 0 < ı < 1 and n 2 N. Let .X; k � kX/ be a Banach space and
suppose that x1; : : : ; xn 2 @BX satisfy EŒk

Pm
iD1 gixikX� > ın. Does this imply that

there are two numbers 0 < s, t 6 1 satisfying t
p
s & ı and a subset J � ¹1; : : : ; nº

with jJ j > sn such that k
P
j2J ajxj kX > t

P
j2J jaj j for every a1; : : : ; an 2 R?

2.2 Proof of (1.105)

Because by [76] we know that SEP.`n1/ � n for every n 2 N, using bi-Lipschitz
invariance we see that in order to prove (1.105) it suffices to show that for any normed
space X D .Rn; k � kX/,

9m 2 ¹1; : : : ; nº;
m

cX.`
m
1 /
> T2.X/2: (2.28)

We will prove (2.28) using Talagrand’s two-parameter refinement of Elton’s the-
orem [298] that we discussed in Remark 103 (it is worthwhile to note that the afore-
mentioned improvements over [298] in [213, 274] do not yield a better bound in the
ensuing reasoning. Also, the classical formulation of Elton’s theorem is insufficient
for our purposes, even if one incorporates the asymptotically sharp dependence on ı
from [213]). Suppose that k 2N and x1; : : : ;xk 2BX. Let g1; : : : ;gk be i.i.d. standard
Gaussian random variables. Denote

E
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gjxj


X

#
:

By [298, Corollary 1.2], there exist a universal constant C 2 Œ1;1/ and a subset
S � ¹1; : : : ; kº satisfying

m
def
D jS j >

E2

Ck
;

and such that for every .aj /j2S 2 RS we have

E
p
Ckm

�
log
�
eCkm
E2

��C X
j2S

jaj j 6
X
j2S

ajxj


X
6
X
j2S

jaj j:

Consequently,

cX
�
`m1
�
6
p
Ckm

E

�
log
�
eCkm

E2

��C
:

Therefore,

m

cX.`
m
1 /
>

E
p
m

p
Ck

�
log
�
eCkm
E2

��C > eC�
1
2

2CCCC1
�
E2

k
�
E2

k
;
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where the last step uses the fact that the function u 7!
p
u=.log.eCku=E2//C attains

its minimum on the ray ŒE2=.Ck/;1/ at u D e2C�1E2=.Ck/. It remains to choose
x1; : : : ; xk so that E2=k � T2.X/2. This is possible because the equal norm type 2
constant of X equals T2.X/, so there are x1; : : : ; xk 2 @BX for which

T2.X/
p
k �

 
E

" kX
jD1

gjxj


2

X

#! 1
2

� E;

where the last step uses Kahane’s inequality.

2.3 Hölder extension

In this section we will prove the lower bound on e� .`n1/ in (1.20) for every n 2 N
and 0 < � 6 1. It consists of two estimates, the first of which is

e� .`n1/ & n
�
2C�

2�1; (2.29)

and the second of which is
e� .`n1/ & n

�
4 : (2.30)

We will justify (2.29) and (2.30) separately.
Note that (2.29) is vacuous if �=2C �2 � 16 0, i.e., if 0 < � 6 .

p
17� 1/=2. The

reason for this is that (2.29) is based on a reduction to the linear theory from [233]
(extending the approach of [138] to the Hölder regime), that breaks down for func-
tions which are too far from being Lipschitz. Specifically, for a Banach space X and
a closed subspace E of X, let �.EIX/ be the projection constant [122] of E relative
to X, i.e., it is the infimum over those � 2 Œ1;1� for which there is a projection Proj
from X onto E whose operator norm satisfies kProjkX!E 6 �. Also, let e� .XIE/ be
the infimum over those L 2 Œ1;1� such that for every C � X and every f W C! E
that is � -Hölder with constant 1, there is F W X! E that extend f and is � -Hölder
with constant L. With this notation, it was proved in [233] (see equation (106) there)
that

e� .XIE/ &
�.EIX/�

dim.E/ 1��
2 dim.X/�.1��/c2.E/1��

: (2.31)

Using the bounds dim.E/6dim.X/ and c2.E/6
p

dim.E/ (John’s theorem) in (2.31),
we get that

e� .XIE/ &
�.EIX/�

dim.X/1��2
: (2.32)

By [290] there is a linear subspace E of `n1 with �.EI `n1/�
p
n, using which (2.32)

implies (2.29).
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Remark 105. In [233] it was deduced from (2.31) that

e� .`n1/ & n
�2� 12 : (2.33)

Specifically, by [153] there is a linear subspace E of `n1 with c2.E/. 1 and dim.E/D
bn=2c; call such E a Kašin subspace of `n1 . By [275] we have �.EI`n1/�

p
n, so (2.33)

follows by substituting these parameters into (2.31). For XD `n1, the poorly comple-
mented subspace that we used above can be taken to be the orthogonal complement
of any Kašin subspace of `n1 . Such a subspace of `n1 has pathological properties [98];
in particular its Banach–Mazur distance to a Euclidean space is of order

p
n. So, a

“vanilla” use of (2.31) leads at best to (2.29). However, we expect that it should be
possible to improve (2.29) to

e� .`n1/ & n
�2� 12 : (2.34)

If (2.34) holds, then (1.20) improves to

e� .`n1/ & n
max¹ �4 ;�

2� 12 º D

´
n
�
4 if 0 6 � 6 1C

p
33

8
;

n�
2� 12 if 1C

p
33

8
6 � 6 1:

For (2.34), it would suffice to prove the following variant of Conjecture 7 for random
subspaces of `n1. Let E be a subspace of Rn of dimension m D bn=2c that is chosen
from the Haar measure on the Grassmannian. We conjecture that there is a universal
constant D > 1 such that with high probability there is an origin-symmetric convex
body L � BE that satisfies MaxProj.L/= volm.L/ . 1. If this indeed holds, then by
using it in the proof of (2.31) in [233] we can deduce (2.34) (specifically, replace
in [233, Lemma 20] the averaging over B`m

2
by averaging over L; we omit the details

of this adaptation of [233]).

Proof of (2.30). Fix k; m 2 N satisfying k 6 2m 6 n=2 whose value will be spec-
ified later so as to optimize the ensuing reasoning (see (2.48) below). Denote ` D
b.4m=k/c and define C D C.k;m; n/ � `n1.C/ by

C
def
D
®
Em.ks/ W s 2 ¹1; : : : ; `º

n
¯
;

where for every s D .s1; : : : ; sn/ 2 Rn we define Em.s/ 2 Cn by

Em.s/
def
D

nX
jD1

e
�i
2m sj ej :

Denote the standard basis (delta masses) of RC by ¹ısºs2C. Let RC
0 be the hyper-

plane of RC consisting of those .as/s2C D
P
s2C asıs with

P
s2C as D 0. Suppose

that X� D .RC
0 ; k � kX� / is a normed space that satisfies

8x; y 2 C; kıx � ıykX� D kx � yk
�
`n1.C/

(2.35)
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and

8� 2 RC
0 ;

�
k

m

��
k�k`1.C/ . k�kX� . k�k`1.C/: (2.36)

For this, X� can be taken to be the normed space whose unit ball is

BX� D conv
²

1

kx � yk�
`n1.C/

.ıx � ıy/ W x; y 2 C; x ¤ y

³
� RC

0 ; (2.37)

which is the maximal norm on RC
0 satisfying (2.35). To check that (2.36) holds for

the choice (2.37), note that, as 1 6 k 6 2m, distinct x; y 2 C satisfy

k

m
. kx � yk`n1.C/ . 1:

It is simple to deduce (2.36) from this, as done in [233, Lemma 7]. The choice (2.37)
makes X� be the Wasserstein-1 space over .C; d� /, where d� is the � -snowflake of
the `n1.C/ metric, i.e., d� .x; y/ D kx � yk�`n1.C/ for x; y 2 `n1.C/; see Section 5.1.

By virtue of (2.35), if we define f W C! X� by setting

8x 2 C; f .x/
def
D ıx �

1

jCj

X
y2C

ıy ;

then f is � -Hölder with constant 1. We claim that if m > �
p
n, then by (2.35) every

F W `n1.C/! X� satisfies

1

.4m/n

nX
jD1

X
s2¹1;:::;4mºn

F �Em.s C 2mej /� � F �Em.s/�X�

.
m2C�

k� .12m/n

X
"2¹�1;0;1ºn

X
s2¹1;:::;4mºn

F �Em.s C "/� � F �Em.s/�X�
: (2.38)

Indeed, (2.38) follows from a substitution of (2.35) into the following inequality
from [209, Remark 7.5]:

1

.4m/n

nX
jD1

X
s2¹1;:::;4mºn

F �Em.s C 2mej /� � F �Em.s/�`1.C/
.

m2

.12m/n

X
"2¹�1;0;1ºn

X
s2¹1;:::;4mºn

F �Em.s C "/� � F �Em.s/�`1.C/:
Suppose that F W ¹1; : : : ; 4mºn! X� is � -Hölder with constant L > 1 on the set

.¹1; : : : ; 4mºn; k � k`n1.C//, i.e.,

x; y 2 ¹1; : : : ; 4mºn; kF.x/ � F.y/kX� 6 Lkx � yk
�
`n1.C/

:
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Then, each of the summands that appear in the right-hand side of (2.38) is at most
2L=m� . Consequently,

1

n.4m/n

nX
jD1

X
s2¹1;:::;4mºn

F �Em.s C 2mej /� � F �Em.s/�X�
.
Lm2

k�n
: (2.39)

If F also extends f , then F.Em.s// D f .Em.s0// for every s 2 Nn, where we use
the notation s0 D .s01; : : : ; s

0
n/ and for each u 2 N we let u0 be an element ˛ of

¹k; 2k; : : : ; `kº for which j˛ � u mod .4m/j is minimized, so that s0 2 C and

8s 2 Nn; kEm.s/ �Em.s
0/k`n1.C/ .

k

m
: (2.40)

Hence, for any j 2 ¹1; : : : ; nº and s 2 ¹1; : : : ; 4mºn we have

2� D
 � 2e �i2m sj ej�`n1.C/

D kEm.s C 2mej / �Em.s/k
�
`n1.C/

(2.41)

6 kEm..s C 2mej /0/ �Em.s0/k�`n1.C/
C kEm..s C 2mej /

0/ �Em.s C 2mej /k
�
`n1.C/

C kEm.s
0/ �Em.s/k

�
`n1.C/

6 kEm..s C 2mej /0/ �Em.s0/k�`n1.C/ C
2k�

m�
(2.42)

D
ıEm..sC2mej /0/ � ıEm.s0/X�

C
2k�

m�
(2.43)

D
f �Em..s C 2mej /0/� � f �Em.s0/�X�

C
2k�

m�
(2.44)

D
F �Em..s C 2mej /0/� � F �Em.s0/�X�

C
2k�

m�
(2.45)

6
F �Em.s C 2mej /� � F �Em.s/�X�

C
F �Em..s C 2mej /0/� � F �Em.s C 2mej /�X�

C
F �Em.s0/� � F �Em.s/�X�

C
2k�

m�

6
F �Em.s C 2mej /� � F �Em.s/�X�

C LkEm..s C 2mej /
0/ �Em.s C 2mej /k

�
`n1.C/

C LkEm.s
0/ �Em.s/k

�
`n1.C/

C
2k�

m�
(2.46)

6
F �Em.s C 2mej /� � F �Em.s/�X�

C
2.LC 1/k�

m�
; (2.47)
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where for (2.41) recall the definition of Em, in (2.42) and (2.47) we used (2.40),
in (2.43) we used (2.35), for (2.44) recall the definition of f , in (2.45) we used the
fact that F extends f and ¹.sC 2mej /0; s0º � C, and in (2.46) we used the fact that F
is � -Hölder with constantL. By averaging this inequality over .j;s/ chosen uniformly
at random from ¹1; : : : ; nº � ¹1; : : : ; 4mºn and applying (2.39), we conclude that

1 .
�
m2

k�n
C
k�

m�

�
L: (2.48)

This holds whenever k; m 2 N satisfy k 6 2m 6 n=2 and m > �
p
n, so choose

m�
p
n and k � 4

p
n to minimize (up to constants) the right-hand side of (2.48) and

deduce the desired lower bound L & n�=4.

By [210, Lemma 6.5], for every � 2 .0; 1� and n 2 N we have

e� .`n2/ & n
�
4 : (2.49)

In combination with (2.30) and [5], this implies that there is a universal constant c > 0
such that

e� .X/ > ec�
p

logn (2.50)

for every n-dimensional normed space X and every � 2 .0; 1�.

Conjecture 106. For any � 2 .0; 1� there is c.�/ > 0 such that e� .X/ > dim.X/c.�/

for every normed space X.

Conjecture 106 has a positive answer when the Hölder exponent is close enough
to 1. Specifically, if

0:9307777 : : : D

p
193C 1

16
< � 6 1; (2.51)

then

e� .X/ &
n
�.8�2���6/
20��8

.logn/
3�2

5��2

: (2.52)

Indeed, by bi-Lipschitz invariance, (2.49) implies the following generalization of
Theorem 97:

e� .X/ &
n
�
4

d�X
:

Also,

e� .X/
(2.31)
&

LT.X/�

n.1��/.�C
1
2 /d1��X

(2.4)
&

d
�
2

X =.logn/
3�
2

n.1��/.�C
1
2 /d1��X

D
d
3�
2 �1

X

n.1��/.�C
1
2 /.logn/

3�
2

:
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Therefore, in analogy to (2.5) we see that

e� .X/ & max

´
n
�
4

d�X
;

d
3�
2 �1

X

n.1��/.�C
1
2 /.logn/

3�
2

µ
: (2.53)

Elementary calculus shows that (2.53) implies (2.52) in the range (2.51). If � does
not satisfy (2.51), then (2.53) does not imply a lower bound e� .X/ that depends only
on n and grows to1 with n; for such � the best lower bound that we know is (2.50).
The application of (2.38) in the above proof of (2.30) can be mimicked using other
bi-Lipschitz invariants to prove Conjecture 106 for various normed spaces, such as
`n2.`

n
1/ or Sn1 , using [237] and [235], respectively. We do not know if Conjecture 106

holds even when, say, X D `n1 .

2.4 Justification of (1.25)

In the range p 2 Œ1; 4=3� [ ¹2º [ Œ3;1� the bound in (1.25) is a combination of [64,
Corollary 8.12] and [210, Theorem 1.17]. We only need to justify (1.25) in the range
p 2 .4=3; 3/X ¹2º because it was not previously stated in the literature. Suppose first
that p 2 .4=3; 2/. By [99], there is k 2 ¹1; : : : ; nº with k � n such that c`np .`

k
2/ � 1.

Hence,
e
�
`np
�
& e

�
`k2
�
& 4
p
k � 4
p
n;

where the penultimate inequality follows from [210, Theorem 1.17]. Analogously, if
q 2 .2; 3/, then by [99] there ism 2 ¹1; : : : ; nº withm� n2=q such that c`nq .`

m
2 /� 1.

We therefore have
e
�
`nq
�
& e

�
`m2
�
& 4
p
m � n

1
2q :

2.5 Proof of the lower bound on SEP.X/ in Theorem 3

Thanks to (1.71), the first part of Theorem 107 below coincides with the lower bound
on SEP.X/ in Theorem 3, except that in (2.54) below we also specify the constant
factor that our proof provides (there is no reason to expect that this constant is optimal;
due to the fundamental nature of this randomized clustering problem it would be
interesting to find the optimal constant here). The second part of Theorem 107 relates
to dimension reduction by controlling the cardinality of a finite subset C of X on
which the lower bound is attained. We conjecture that the first part of (2.55) below
could be improved to jCj1=n D O.1/; an inspection of the ensuing proof suggests
that a possible route towards this improved bound is to incorporate a proportional
Dvoretzky–Rogers factorization [51, 106, 297] in place of our use of the “vanilla”
Dvoretzky–Rogers lemma [91].
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Theorem 107. For every n2N, any n-dimensional normed space .X;k � kX/ satisfies

SEP.X/ > evr.X/
2.nŠ/

1
2n�

�
1C n

2

� 1
n

p
�n

D

p
2C o.1/

e
p
�

evr.X/
p
n: (2.54)

Furthermore, there exists a finite subset C of X satisfying

jCj
1
n .

p
n

evr.X/
and SEP.CX/ & evr.X/

p
n: (2.55)

Our proof of Theorem 107 builds upon the strategy that was used in [76] to treat
`n1 . A combinatorial fact on which it relies is Lemma 108 below, which is implicit in
the proof of [76, Lemma 3.1]. After proving Theorem 107 while using Lemma 108,
we will present a proof of Lemma 108 which is a quick application of the Loomis–
Whitney inequality [185]; the proof in [76] uses a result of [4] which is proved in [4]
via information-theoretic reasoning through the use of Shearer’s inequality [80]; the
relation between the Loomis–Whitney inequality and Shearer’s inequality is well
known (see, e.g., [64]), so our proof of Lemma 108 is in essence a repackaging of
the classical ideas.

Lemma 108. Fix n;M 2 N and a nonempty finite subset� of Zn. Suppose that P is
a random partition of � that is supported on partitions into subsets of cardinality at
most M , i.e.,

Prob
�

max
�2P
j�j 6M

�
D 1:

Then, there exists i 2 ¹1; : : : ; nº and x 2 � \ .� � ei / for which

Prob
�
P.x/ ¤ P.x C ei /

�
>

1
n
p
M
�
1

n

nX
iD1

j� X .� � ei /j

j�j
: (2.56)

Proof of Theorem 107 assuming Lemma 108. By suitably choosing the identification
of X with Rn, we may assume without loss of generality that X D .Rn; k � kX/ and
B`n

2
is the Löwner ellipsoid of BX. Then,

evr.X/ D
�voln.B`n

2
/

voln.BX/

� 1
n

D

p
�

�
�
1C n

2

� 1
n voln.BX/

1
n

: (2.57)

By the Dvoretzky–Rogers lemma [91], there exist contact points

x1; : : : ; xn 2 S
n�1
\ @BX

that satisfy

8k 2 ¹1; : : : ; nº;
Projspan.x1;:::;xk�1/?.xk/


`n
2

>
r
n � k C 1

n
: (2.58)
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Let ƒ D ƒ.x1; : : : ; xn/ � Rn denote the lattice that is generated by x1; : : : ; xn,
namely

ƒ D

nX
iD1

Zxi D

´
nX
iD1

kixi W k1; : : : ; kn 2 Z

µ
:

By (2.58), ƒ is a full-rank lattice. Denote the fundamental parallelepiped of ƒ by
Q D Q.x1; : : : ; xn/, i.e.,

Q D

nX
iD1

Œ0; 1/xi D

´
nX
iD1

sixi W 0 6 s1; : : : ; sn < 1

µ
:

Since x1; : : : ; xn 2 BX, we have Q �Q � nBX and by (2.58) the volume of Q (the
determinant of ƒ) satisfies

det.ƒ/ D voln.Q/ D
nY
kD1

Projspan¹x1;:::;xk�1º?.xk/

`n
2

(2.58)
>

nY
kD1

r
n � k C 1

n
D

p
nŠ

n
n
2

: (2.59)

Fix m 2 N and �;� > 0. Denote

Cm D Cm.x1; : : : ; xn/ D ƒ \ .mQ/

D

´
nX
iD1

kixi W k1; : : : ; kn 2 ¹0; : : : ; m � 1º

µ
;

and suppose that P is � -separating �-bounded random partition of Cm. The fact that
P is �-bounded means that � � � � �BX for every � � Cm with ProbŒ� 2 P� > 0.
Recalling that Q �Q � nBX, this implies that

BX �
1

�C n

�
.� CQ/ � .� CQ/

�
: (2.60)

Now,
p
�

�
�
1C n

2

� 1
n evr.X/

D voln.BX/
1
n >

2

�C n
voln.� CQ/

1
n

D
2

�C n

�
j�j voln.Q/

� 1
n >

2.nŠ/
1
2n

.�C n/
p
n
j�j

1
n ; (2.61)

where the first step of (2.61) is (2.57), the second step of (2.61) uses (2.60) and
the Brunn–Minkowski inequality, the third step of (2.61) holds because the paral-
lelepipeds ¹ C Q W  2 �º are disjoint, and the final step of (2.61) is (2.59). If
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T 2 GLn.R/ is given by Tei D xi , then by (2.61) the random partition

T �1P
def
D ¹T �1� W � 2 Pº

of T �1Cm D ¹0; : : : ; m � 1ºn satisfies the assumptions of Lemma 108 with

M D
.�n/

n
2 .�C n/n

2n�
�
1C n

2

�p
nŠ
�

1

evr.X/n
:

If we choose�D ¹0; : : : ;m� 1ºn D T �1Cm in Lemma 108, then we have j�j Dmn

and
j� X .� � ei /j D m

n�1

for every i 2 ¹1; : : : ; nº, so it follows from Lemma 108 that there exist i 2 ¹1; : : : ; nº
and x 2 Cm such that

Prob
�
P.x/ ¤ P.x C ei /

�
> evr.X/

2.nŠ/
1
2n�

�
1C n

2

� 1
n

.�C n/
p
�n

�
1

m
: (2.62)

At the same time, the left-hand side of (2.62) is at most �=�, since P is � -separating
and kxikX 6 1. Thus,

� > evr.X/
2�.nŠ/

1
2n�.1C n

2
/
1
n

.�C n/
p
�n

�
�

m
: (2.63)

By lettingm!1 in (2.63) and then letting�!1 in the resulting estimate, we
get (2.54). Also, if we set�D n in (2.63), then for sufficiently largem�

p
n=evr.X/

we have
SEP.Cm/ & evr.X/

p
n;

giving (2.55).

We will next provide a proof of Lemma 108 whose main ingredient is the follow-
ing lemma.

Lemma 109 (Application of Loomis–Whitney). Fix an integer n > 2 and a finite
subset � of Zn. For x 2 Zn and i 2 ¹1; : : : ; nº, let di .xI�/ 2 N [ ¹0º be the number
of times that the oriented discrete axis-parallel line x C Zei transitions from � to
Zn X � , and let g.xI�/ be the geometric mean of d1.xI�/; : : : ; dn.xI�/. Thus

8i 2 ¹1; : : : ; nº; di .xI�/
def
D
ˇ̌
¹k 2 Z W x C kei 2 � ^ x C .k C 1/ei … �º

ˇ̌
and

g.xI�/
def
D

n
p
d1.xI�/ � � � dn.xI�/:

Then,
1

n

nX
iD1

j� X .� � ei /j >
�X
x2Zn

g.xI�/
n
n�1

�n�1
n > j�j

n�1
n : (2.64)
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Proof. The second inequality in (2.64) holds because d1.xI �/; : : : ; dn.xI �/ > 1
for every x 2 � (as j�j < 1), and hence g.�I �/ > 1�.�/ point-wise. For the first
inequality in (2.64), observe that for each i 2 ¹1; : : : ; nº,

j� X .� � ei /j D
X
x2Zn

1�.x/1ZnX�.x C ei /

D

X
y2Proj

e?
i

�

�X
k2Z

1�.y C kei /1ZnX�

�
y C .k C 1/ei

��
D

X
y2Proj

e?
i

Zn

di .yI�/:

Consequently,

1

n

nX
iD1

j� X .� � ei /j D
1

n

nX
iD1

di .�I�/ 1
n�1

n�1
`n�1.Proj

e?
i

Zn/

>
nY
iD1

di .�I�/ 1
n�1

n�1n
`n�1.Proj

e?
i

Zn/

>
X
x2Zn

nY
iD1

di .Proje?
i
x/

1
n�1 ;

where the second step is an application of the arithmetic-mean/geometric-mean in-
equality and the final step is an application of the Loomis–Whitney inequality [185]
(see [288, Theorem 3] for the functional version of the Loomis–Whitney inequality
that they are using here); we note that even though this inequality is commonly stated
for functions on Rn rather than for functions on Zn, its proof for functions on Zn is
identical (in fact, [185] proves the continuous inequality by first proving its discrete
counterpart).

Note that when n D 1 Lemma 109 holds trivially if we interpret (2.64) as the
estimate j� X .� � 1/j > maxx2Z g.xI�/ > 1, since in this case

g.xI�/ D j� X .� � 1/j

for every x 2 Z.
The following corollary of Lemma 109 is a deterministic counterpart of Lemma

108.

Corollary 110. Fix n;M 2 N and a nonempty finite subset� of Zn. Suppose that P
is a partition of � with

max
�2P
j�j 6M: (2.65)
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Then,

1

n

nX
iD1

j¹x 2 � \ .� � ei / W P.x/ ¤ P.x C ei /ºj

>
j�j
n
p
M
�
1

n

nX
iD1

j� X .� � ei /j: (2.66)

Proof. Observe that for each fixed i 2 ¹1; : : : ; nº we have

j� X .� � ei /j C
X

x2�\.��ei /

1P.x/¤P.xCej /

D j� X .� � ei /j C
X

x2�\.��ei /

�X
�2P

1�.x/1ZnX�.x C ei /
�

D

X
x2Zn

X
�2P

1�.x/1ZnX�.x C ei /

D

X
�2P

j� X .� � ei /j; (2.67)

where the first step of (2.67) holds because P is a partition of � and the second step
of (2.67) holds because

1�.x/1ZnX�.x C ei / D 0

for every � � � if x 2 Zn X�, and if x 2 � X .� � ei /, then

1�.x/1ZnX�.x C ei / D 1

for exactly one � 2 P (specifically, this is satisfied only for � D P.x/ because we
have x C ei 2 Zn X� � Zn X P.x/). Now,

1

n

nX
iD1

j¹x 2 � \ .� � ei / W P.x/ ¤ P.x C ei /ºj C
1

n

nX
iD1

j� X .� � ei /j

(2.67)
D

X
�2P

1

n

nX
iD1

j� X .� � ei /j

(2.64)
>

X
�2P

j�j
n�1
n

(2.65)
>

1
n
p
M

X
�2P

j�j D
j�j
n
p
M
;

where the last step holds because P is a partition of �.

Proof of Lemma 108. Denoting

p D max
i2¹1;:::;nº

max
x2�\.��ei /

ProbŒP.x/ ¤ P.x C ei /�;
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the goal is to show that p is at least the right-hand side of (2.56). This follows from
Corollary 110 because

pj�j >
p

n

nX
iD1

j� \ .� � ei /j

>
1

n

nX
iD1

X
x2�\.��ei /

Prob
�
P.x/ ¤ P.x C ei /

�
D
1

n

nX
iD1

X
x2�\.��ei /

E
�
1P.x/¤P.xCei /

�
D E

"
1

n

nX
iD1

j¹x 2 � \ .� � ei / W P.x/ ¤ P.x C ei /ºj

#
(2.66)
>
j�j
n
p
M
�
1

n

nX
iD1

j� X .� � ei /j:

2.6 Proof of the lower bound on PADı.X/ in Theorem 69

Fixing n 2 N, a normed space XD .Rn; k � kX/, and ı 2 .0; 1/, recalling the notation
in Definition 65 we will prove here that

PADı.X/ > sup
m2N

PADmı .X/ >
2

1 �
n
p
ı
; (2.68)

which gives the first inequality in (1.102).

Proof of (2.68). Suppose that 0 < " < 1 and r > 2. Let N" be any "-net of rBX.
Then, log jN"j � n log.r="/ (see, e.g., [244, Lemma 9.18]). Fix a (disjoint) Voronoi
tessellation ¹Vxºx2N" of rBX that is induced by N". Thus, ¹Vxºx2N" is a partition of
rBX into Borel subsets such that x 2 Vx � x C "BX for every x 2 N". So, for every
w 2 rBX there is a unique net point x.w/ 2 N" such that w 2 Vx.w/.

Fix p > supm2N PADm
ı
.X/ > PADı.N"/. Assume from now that 0 < " < 1=.2p/

and r > 1=p � 2" (eventually we will consider the limits "! 0 and r ! 1). By
the definition of PADı.N"/, there exists a probability distribution P over 1-bounded
partitions of N" such that

8y 2 N"; Prob
��
y C

1

p
BX

�
\N" � P.y/

�
> ı: (2.69)

For every y 2 N" define

P�.y/
def
D

[
z2P.y/

Vz D
®
w 2 rBX W x.w/ 2 P.y/

¯
:



98 Lower bounds

Then ¹P�.y/ºy2N" is a (finitely supported) random partition of rBX into Borel sub-
sets.

We claim that for every y 2 N" the following inclusion of events holds:²
w 2 Rn W w C

1 � 2"p

p
BX � P�.y/

³
C

1 � 2"p

.1C 2"/p

�
P�.y/ � P�.y/

�
� P�.y/:

(2.70)
Indeed, take any w 2 Rn such that

w C
1 � 2"p

p
BX � P�.y/;

and also take any u; v 2 P�.y/. By the definition of P� we have x.u/;x.v/ 2 P.y/.
As P is 1-bounded, we have kx.u/ � x.v/kX 6 1. Therefore,

ku � vkX 6 ku � x.u/kX C kx.u/ � x.v/kX C kv � x.v/kX 6 1C 2":

Hence,
1 � 2"p

.1C 2"/p
.u � v/ 2

1 � 2"p

p
BX;

so the assumption on w implies that

w C
1 � 2"p

.1C 2"/p
.u � v/ 2 P�.y/:

This is precisely the assertion in (2.70). By the Brunn–Minkowski inequality, (2.70)
gives

voln
�
P�.y/

� 1
n > 2

1 � 2"p

.1C 2"/p
voln

�
P�.y/

� 1
n

C voln

�²
w 2 Rn W w C

1 � 2"p

p
BX � P�.y/

³� 1
n

:

This simplifies to give the following estimate:

voln

�²
w 2 Rn W w C

1 � 2"p

p
BX � P�.y/

³�
6
�
1 � 2

1 � 2"p

.1C 2"/p

�n
voln

�
P�.y/

�
: (2.71)

Now,

voln

�²
w 2 rBX W w C

1 � 2"p

p
BX � P�

�
x.w/

�³�
D

X
y2N"

voln

�²
w 2 P�.y/ W w C

1 � 2"p

p
BX � P�

�
x.w/

�³�
(2.72)
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D

X
y2N"

voln

�²
w 2 P�.y/ W w C

1 � 2"p

p
BX � P�.y/

³�
(2.73)

6
�
1 � 2

1 � 2"p

.1C 2"/p

�n X
y2N"

voln
�
P�.y/

�
(2.74)

D

�
1 � 2

1 � 2"p

.1C 2"/p

�n
rn voln.BX/: (2.75)

Here (2.72) holds because ¹P�.y/ºy2N" is a partition of rBX. The identity (2.73)
holds because, since by the definition of P� we havew 2P�.x.w// for everyw 2 rBX

and the sets ¹P�.y/ºy2N" are pairwise disjoint, if w 2 P�.y/ for some y 2 N" then
necessarily P�.x.w// D P�.y/. The estimate (2.74) uses (2.71). The identity (2.75)
uses once more that ¹P�.y/ºy2N" is a partition of rBX.

We next claim that for every w 2 .r C 2" � 1=p/BX the following inclusion of
events holds:²�

x.w/C
1

p
BX

�
\N" � P

�
x.w/

�³
�

²
w C

1 � 2"p

p
BX � P�

�
x.w/

�³
: (2.76)

Indeed, suppose that w 2 X satisfies .x.w/C .1=p/BX/ \N" � P.x.w// and also
kwkX 6 r C 2" � 1=p. Fix any z 2 X such that kw � zkX 6 .1 � 2"p/=p. Then we
have kzkX 6 kwkX C kw � zkX 6 r , so z 2 rBX and therefore x.z/ 2 N" is well
defined. Now,

kx.w/�x.z/kX6kx.w/�wkXCkw� zkXCkz �x.z/kX6"C
1 � 2"p

p
C "D

1

p
:

So, our assumption onw implies that x.z/2P.x.w//. By the definition of P�.x.w//,
this means that z 2P�.x.w//, thus completing the verification of (2.76). Due to (2.69)
and (2.76) we conclude that

8w 2

�
r C 2" �

1

p

�
BX; Prob

�
w C

1 � 2"p

p
BX � P�

�
x.w/

��
> ı: (2.77)

Finally,

ı

�
r C 2" �

1

p

�n
voln.BX/

(2.77)
6

�
.rC2"� 1p /BX

Prob
�
w C

1 � 2"p

p
BX � P�

�
x.w/

��
dw

D E

�
voln

�²
w 2

�
r C 2" �

1

p

�
BX W w C

1 � 2"p

p
BX � P�

�
x.w/

�³��
(2.75)
6

�
1 � 2

1 � 2"p

.1C 2"/p

�n
rn voln.BX/:
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This simplifies to give the estimate

n
p
ı

�
1 �

1

pr
C
2"

r

�
6 1 � 2

1 � 2"p

.1C 2"/p
:

By letting r !1, then "! 0, and then

p! sup
m2N

PADmı .X/;

the desired bound (2.68) follows.

2.7 Proof of Proposition 87

The final lower bound from the Introduction that remains to be proven is Proposi-
tion 87. The ensuing reasoning is a restructuring of a proof that was shown to us by
Lutwak.

Lemma 111. Every origin-symmetric convex body K � Rn satisfies
�
Sn�1

voln�1
�
Proju?.K/

�
kuknC1K

du >
n2�

�
n
2

�
2
p
��

�
nC1
2

� voln.K/2: (2.78)

Equality in (2.78) holds if and only if K is an ellipsoid.

Before proving Lemma 111, we will explain how it implies Proposition 87.

Proof of Proposition 87 assuming Lemma 111. The following standard identity fol-
lows from integration in polar coordinates (its quick derivation can be found, for
example, on [263, p. 91]):

voln.K/ D
1

n

�
Sn�1

du
kuknK

: (2.79)

Hence,
�
Sn�1

voln�1
�
Proju?.K/

�
kuknC1K

du 6
��

Sn�1

du
kuknK

�
max
u2Sn�1

voln�1
�
Proju?.K/

�
kukK

(2.79)
D n voln.K/ max

z2@K

�
kzk`n

2
voln�1

�
Projz?.K/

��
D n2 voln.K/ max

z2@K
voln

�
Conez.K/

�
: (2.80)

The desired inequality (1.126) follows by contrasting (2.80) with (2.78). Conse-
quently, if there is equality in (1.126), then (2.78) must hold as equality as well,
so the characterization of the equality case in Proposition 87 follows from the char-
acterization of the quality case in Lemma 111.
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The important Petty projection inequality [252] (see also [194, 281] for different
proofs, as well as the survey [190]) states that for every convex body K � Rn, the
affine invariant quantity

voln.K/n�1 voln.…�K/ (2.81)

is maximized whenK is an ellipsoid, and ellipsoids are the only maximizers of (2.81).
Recall that the polar projection body …�K is given by (1.30), which shows in partic-
ular that voln�1.B`n�1

2
/…�B`n

2
D B`n

2
. Hence,

voln.K/n�1 voln.…�K/ 6 voln.B`n
2
/n�1 voln.…�B`n

2
/

D

 
voln

�
B`n

2

�
voln�1

�
B`n�1

2

�!n D  2p���nC12 �
n�
�
n
2

� !n
:

At the same time, by combining (1.30) and (2.79) we have

voln.…�K/ D
1

n

�
Sn�1

du

voln�1
�
Proju?.K/

�n :
Consequently, Petty’s projection inequality can be restated as the following estimate:

�
Sn�1

du

voln�1
�
Proju?.K/

�n 6  2p���nC12 �
n�
�
n
2

� !n
n

voln.K/n�1
; (2.82)

together with the assertion that (2.82) holds as an equality if and only if K is an
ellipsoid.

Proof of Lemma 111. Observe that

voln.K/

D
1

n

�
Sn�1

 
1

voln�1
�
Proju?.K/

� n
nC1

! 
voln�1

�
Proju?.K/

� n
nC1

kuknK

!
du (2.83)

6
1

n

��
Sn�1

du

voln�1
�
Proju?.K/

�n� 1
nC1

��
Sn�1

voln�1
�
Proju?.K/

�
kuknC1K

du
� n
nC1

(2.84)

6
1

n

 
2
p
��

�
nC1
2

�
n�
�
n
2

� ! n
nC1

n
1
nC1

voln.K/
n�1
nC1

��
Sn�1

voln�1
�
Proju?.K/

�
kuknC1K

du
� n
nC1

;

(2.85)

where (2.83) is (2.79), in (2.84) we used Hölder’s inequality with the conjugate expo-
nents 1C 1

n
and nC 1, and (2.85) is an application of (2.82). This simplifies to give

the desired inequality (2.78).



102 Lower bounds

Remark 112. Fix n 2N, a normed space XD .Rn;k � kX/ and x 2 Sn�1. Both of the
bounds in (1.50) follow from elementary geometric reasoning (convexity and Fubini’s
theorem). Recalling (1.30), the second inequality in (1.50) is voln�1.Projx?BX/ 6
nkxkX voln.BX/=2; its justification can be found in the proof of [109, Lemma 5.1]
(this was not included in the version of [109] that appeared in the journal, but it
appears in the arxiv version of [109]). The rest of (1.50) is

voln.BX/kxkX 6 2 voln�1.Projx?BX/I

since we did not find a reference for the derivation of this simple lower bound on
hyperplane projections, we will now quickly justify it. For every u 2 Projx?BX let
s.u/ D inf¹s 2 R W uC sx 2 BXº and t .u/ D sup¹t 2 R W uC tx 2 BXº. For every
u 2 Projx?BX we have uC t .u/x 2 BX, and by symmetry also �u � s.u/x 2 BX.
Hence, by convexity

1

2

�
uC t .u/x

�
C
1

2

�
�u � s.u/x

�
D
t .u/ � s.u/

2
x 2 BX:

By the definition of t .0/, this means that .t.u/ � s.u//=2 6 t .0/ D 1=kxkX. Conse-
quently, using Fubini’s theorem (recall that x 2 Sn�1) we conclude that

voln.BX/ D

�
Proj

x?
BX

�
t .u/ � s.u/

�
du

6
�

Proj
x?
BX

2

kxkX
du D

2

kxkX
voln�1

�
Projx?BX

�
:


