
Chapter 5

Barycentric-valued Lipschitz extension

In this section, we will explain how separation profiles relate to Lipschitz extension.
We cannot invoke [173] as a “black box” because we need a more general result and
our definition of random partitions differs from that of [173]. But, the modifications
that are required in order to apply the ideas of [173] in the present setting are of a sec-
ondary nature, and the main geometric content of the phenomenon that is explained
below is the same as in [173].

In addition to making the present article self-contained, there are more advan-
tages to including here complete proofs of Theorem 66 and Theorem 114. Firstly,
the reasoning of [173] was designed to deal with a more general setting (treating
multiple notions of random partitions at once), and it is illuminating to present a
proof for separating decompositions in isolation, which leads to simplifications. Sec-
ondly, since [173] appeared, alternative viewpoints have been developed that relate
it to optimal transport, as carried out by Kozdoba [158], Brudnyi and Brudnyi [62],
Ohta [243], and culminating more recently with a comprehensive treatment by
Ambrosio and Puglisi [11]. Here we will frame the construction using the optimal
transport methodology, which has conceptual advantages that go beyond yielding a
clearer restructuring of the argument. The optimal transport viewpoint had an impor-
tant role in quantitative improvements that were obtained in [231, 233], as well as
results that will appear in forthcoming works. As a byproduct, we will use this view-
point to easily derive a stability statement for convex hull-valued Lipschitz extension
under metric transforms.

5.1 Notational preliminaries

We will start by quickly setting notation and terminology for basic concepts in mea-
sure theory and optimal transport. Everything that we describe in this subsection is
standard and is included here only in order to avoid any ambiguities in the subsequent
discussions.

Given a signed measure� on a measurable space .�;F/, its Hahn–Jordan decom-
position is denoted � D �C � ��, i.e., �C; �� are disjointly supported nonnegative
measures. The total variation measure of � is j�j D �CC��. For A 2 F, the restric-
tion of � to A is denoted �bA, i.e., �bA.E/ D �.A \ E/ for E 2 F. If .�0;F0/ is
another measurable space and f W �! �0 is a measurable mapping, then the push-
forward of � under f is denoted f#�. Thus f#�.E/ D �.f

�1.E// for E 2 F0, or
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equivalently

8h 2 L1.f#�/;

�
�0
h
�
!0
�

df#�
�
!0
�
D

�
�

h.f .!// d�.!/:

Suppose from now on that .M; dM/ is a Polish metric space. A signed Borel
measure � on M has finite first moment if

�
M dM.x; y/dj�j.y/ <1 for all x 2M.

Note that this implies in particular that j�j.M/ <1, because if x;x0 2M are distinct
points, then the mapping .y 2M/ 7! ŒdM.x; y/C dM.x

0; y/�=dM.x; x
0/ belongs to

L1.j�j/ and takes values in Œ1;1/ by the triangle inequality.
The set of all of the signed Borel measures on M of finite first moment is denoted

M1.M; dM/ or simply M1.M/ if the metric is clear from the context. The set of all
nonnegative measures in M1.M/ is denoted MC1 .M/, the set of all � 2 M1.M/ with
total mass 0, i.e., �C.M/D ��.M/, is denoted M01.M/, and the set of all probability
measures in M1.M/ is denoted P1.M/.

Given �; � 2 MC1 .M/ with �.M/ D �.M/, a Borel measure � on M �M is a
coupling of � and � if

�.E �M/ D �.A/ and �.M �E/ D �.A/

for every Borel subsetE �M. The set of couplings of � and � is denoted….�;�/�
MC1 .M �M/. Note that .� � �/=�.M/ D .� � �/=�.M/ 2….�; �/, so….�; �/ ¤
¿. The Wasserstein-1 distance between � and � that is induced by the metric dM,
denoted WdM

1 .�; �/ or simply W1.�; �/ if the metric is clear from the context, is the
infimum of

�
M�M dM.x; y/d�.x;y/ over all possible couplings � 2….x;y/. Since

.M; dM/ is Polish, the metric space .P1.M/;W1/ is also Polish; see, e.g., [42] or [10,
Proposition 7.1.5]. Throughout what follows, P1.M/ will be assumed to be equipped
with the metric W1. The Kantorovich–Rubinstein duality theorem (see, e.g., [307,
Theorem 5.10]) asserts that

W1.�; �/ D sup
 WM!R
k kLip.M/D1

��
M
 d� �

�
M
 d�

�
: (5.1)

Note that (5.1) implies that W1.�C �; � C �/ D W1.�; �/ for every � 2 MC1 .M/.
For � 2 M01.M/ we have �C.M/ D ��.M/, so we can define1:

k�kW1.M/ D W1.�
C; ��/:

1Note for later use that if �; � 2 MC
1
.M/ satisfy �.M/ D �.M/, then � � � 2 M0

1
.M/

and k�� �kW1.M/ DW1.�; �/. For a standard justification of the latter assertion, see, e.g., the
simple deduction of [236, equation (2.2)].
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This turns M01.M/ into a normed space whose completion is called the free space over
M (also known as the Arens–Eells space over M), and is denoted F.M/; see [16,
113,310] for more on this topic, and note that while F.M/ is commonly defined as the
closure of the finitely supported measures in M01.M/ with respect to the Wasserstein-
1 norm, since the finitely supported measures are dense in M01.M/ (see, e.g., [307,
Theorem 6.18]), the definitions coincide. It follows from (5.1) that the dual of F.M/

is canonically isometric to the space of all the real-valued Lipschitz functions on
M that vanish at some (arbitrary but fixed) point x0 2M, equipped with the norm
k � kLip.M/.

Suppose that .Z; k � kZ/ is a separable Banach space and fix � 2 M1.M/. By
the Pettis measurability criterion [249] (see also [36, Proposition 5.1]), any f 2
Lip.MI Z/ is j�j-measurable. Moreover, we have kf kZ 2 L1.j�j/ because if we
fix x 2M, then for every y 2M,

kf .y/kZ 6 kf .y/ � f .x/kZ C kf .x/kX

6 kf kLip.MIZ/dM.y; x/C kf .x/kX 2 L1.j�j/;

where the last step holds by the definition of M1.M/ and the fact that it implies
that j�j.M/ < 1. By Bochner’s integrability criterion [40] (see also [36, Propo-
sition 5.2]), it follows that the Bochner integrals

�
M f d�C and

�
M f d�� are

well-defined elements of Z, so we can consider the vector

If .�/
def
D

�
M
f d� D

�
M
f d�C �

�
M
f d�� 2 Z: (5.2)

If � 2 M01.M/, then If .�/D
�

M�M.f .x/� f .y//d�.x; y/ for every coupling � 2
….�C; ��/. Consequently, kIf .�/kZ 6 kf kLip.MIZ/

�
M�M dM.x; y/ d�.x; y/, so

by taking the infimum over all � 2 ….�C; ��/ we see that the norm of the linear
operator If from .M01.M/; k � kW1/ to Z satisfies

kIf k.M0
1
.M/;k�kW1 /!Z 6 kf kLip.MIZ/: (5.3)

Since M01.M/ is dense in F.M/, it follows that If extends uniquely to a linear opera-
tor If WF.M/!Z of norm at most kf kLip.MIZ/. So, even though elements of F.M/

need not be measures, one can consider the “integral” If .�/ 2 Z of f 2 Lip.MIZ/
with respect to � 2 F.M/; see [114] for more on this topic.

5.2 Refined extension moduli

Continuing with the notation that was introduced by Matoušek [199], we will con-
sider the following parameters related to Lipschitz extension. Suppose that .M; dM/,
.N; dN/ are metric spaces and that C �M. Denote by e.M;CIN/ the infimum over
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those K 2 Œ1;1� such that for every f W C ! N with kf kLip.CIN/ < 1 there is
F WM! N that extends f and satisfies

kF kLip.MIN/ 6 Kkf kLip.CIN/:

The supremum of e.M;CIN/ over all subsets C�M will be denoted e.MIN/. Note
that when N is complete, N-valued Lipschitz functions on C automatically extend to
the closure of C while preserving the Lipschitz constant, so we may assume here that
C is closed. The supremum of e.M;CIZ/ over all Banach spaces .Z; k � kZ/ will be
denoted below by e.M; C/. Thus, the notation e.M/ of the Introduction coincides
with the supremum of e.M;C/ over all subsets C �M.

If .M; dM/ is a metric space, C �M, and .Z; k � kZ/ is a Banach space, then it
is natural to consider variants of the above definitions with the additional restrictions
that the extended mapping F is required to take values in either the closure of the lin-
ear span of f .C/ or the closure of the convex hull of f .C/. Namely, let espan.M;CIZ/
be the infimum over those K 2 Œ1;1� such that for every f W C! Z there exists

F WM! span
�
f .C/

�
that extends f and satisfies

kF kLip.MIZ/ 6 Kkf kLip.CIZ/: (5.4)

Analogously, let econv.M; CI Z/ be the infimum over K 2 Œ1;1� such that for
every f W C! Z there exists

F WM! conv
�
f .C/

�
that extends f and satisfies (5.4). We then define econv.M;C/ to be the supremum of
econv.M;CIZ/ over all possible Banach spaces .Z; k � kZ/. Note that while one could
attempt to define espan.M; C/ similarly, there is no point to do so because it would
result in the previously defined quantity e.M; C/. By considering the supremum of
econv.M;C/ over all subsets C �M, one defines the quantity econv.M/.

Remark 133. By [179] one can have e.M;CIZ/De.MIZ/D1 yet espan.M;C;Z/D
1 for some metric space .M; dM/, some C�M and some Banach space .Z;k � kZ/.
Indeed, if X is a closed reflexive subspace of `1 and V � X is a closed uncom-
plemented subspace of X, then by [179] (see also [36, Corollary 7.3]) there is no
Lipschitz retraction from X onto V. Equivalently, the identity mapping from V to V
cannot be extended to a Lipschitz mapping from X to V. Hence, since span.V/DV�
`1, we have espan.X;VI`1/D1. In contrast, e.XI`1/D 1 by the nonlinear Hahn–
Banach theorem (see [206] or, e.g., [36, Lemma 1.1]). By combining [290] with the
discretization method of [138] (see also [195]), one can quantify the above example
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by showing that for arbitrarily large n 2 N there are Banach spaces .X; k � kX/ and
.Z; k � kZ/, and a subset C � X with jCj D n for which we have

espan.X;CIZ/
e.X;CIZ/

&

s
logn

log logn
: (5.5)

(In fact, in (5.5) one can have e.X;CIZ/ D e.XIZ/ D 1.) At present, the right-hand
side of (5.5) is the largest asymptotic dependence on n that we are able to obtain
for this question, and it remains an interesting open problem to determine the best
possible asymptotics here.

Most, but not all, of the Lipschitz extension methods in the literature, including
Kirszbraun’s extension theorem [155], Ball’s extension theorem [23] and methods
that rely on (variants of) partitions of unity such as in [61, 140, 166, 173], yield
convex hull-valued extensions, i.e., they actually provide bounds on the quantity
econv.M; CI Z/. Nevertheless, it seems likely that there is no ' W Œ1;1/ ! Œ1;1/

such that econv.M/ 6 '.e.M// for every Polish metric space .M; dM/, though if
such an estimate were available, then it would be valuable; see, e.g., Remark 141. In
fact, we propose the following conjecture.

Conjecture 134. There exists a Polish metric space .M; dM/ for which e.M/ <1

yet econv.M/ D1.

Remark 135. By definition, for every metric space .M; dM/, every Banach space
.Z; k � kZ/ and every C �M,

econv.M;CIZ/ > espan.M;CIZ/ > e.M;CIZ/:

We explained in Remark 133 that the second of these inequalities can be strict (in a
strong sense). However, as a complement to Conjecture 134, we state that to the best
of our knowledge it is unknown whether this is so for the first of these inequalities,
i.e., if it could happen that espan.M;CIZ/ <1 yet econv.M;CIZ/ D1. We suspect
that this is possible, but if not, then it would be interesting to investigate how one
could bound econv.M;CIZ/ from above by a function of espan.M;CIZ/. We do know
that there are a metric space .M; dM/, a Banach space .Z; k � kZ/, a subset C �M

and a Lipschitz mapping f W C! Z that can be extended to a Lipschitz mapping that
takes values in span.f .C// but cannot be extended to a Lipschitz mapping that takes
values in conv.f .C//. To see this, let ¹ej º1jD1 be the standard basis of `1. For n 2 N
setm.n/D n.n� 1/=2 and let Xn be the span of ¹em.n/C1; : : : ; em.nC1/º in `1. Thus,
Xn is isometric to `n1 and `1 D .

L1
nD1 Xn/1. By [290], there is a linear subspace

Vn of Xn such that every linear projection Q W Xn ! Vn satisfies

kQkXn!Vn &
p
n:
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By the method of [138], it follows that there exists2 An � BVn D Vn \ B`1 with
jAnj 6 nO.n/ such that kFnkLip.XnIVn/ &

p
n for any Fn W Xn! Vn that extends the

formal identity IdAn!Vn W An ! Vn. By compactness, there exists ın 2 .0; 1/ such
that if we define

Cn D An [
®
ınem.n/C1; : : : ; ınem.nC1/

¯
[ ¹0º;

then also kˆnkLip.XnIXn/&
p
n for any mappingˆn from Xn to the polytope conv.Cn/

that extends the formal identity IdCn!Xn . Consider the subset

C D

1[
�

nD1

Cn � `1:

Suppose thatˆ W `1! conv.C/ extends IdC!`1 . Then, for each n 2N the mapping
Rn ı .ˆjXn/ W Xn ! Xn extends IdCn!`1 and takes values in conv.Cn/, where we
denote the canonical restriction operator from `1 to Xn by Rn W `1 ! Xn. Hence,

kˆkLip.`1IXn/ > kRn ı .ˆjXn/kLip.XnIXn/ &
p
n:

Since this holds for every n 2 N, the mapping ˆ is not Lipschitz. Consequently, we
have econv.`1; CI `1/ D 1. At the same time, by construction we have span.C/ D
span.¹ej º1jD1/ D c0 (recall that c0 commonly denotes the subspace of `1 consist-
ing of all those sequences that tend to 0). So, any 2-Lipschitz retraction � of `1
onto c0 extends IdC!`1 and takes values in span.C/; the existence of such a retrac-
tion � is due to [179] (see also [36, Example 1.5]). If espan.`1; CI `1/ were finite,
then this example would answer the above question,3 but we suspect that in fact
espan.`1;CI `1/ D1.

Proposition 136 is a convenient characterization of the quantities e.M; C/ and
econv.M; C/; while it was not previously stated explicitly in this form, its proof is
based on well-understood ideas.

Proposition 136. Suppose that .M; dM/ is a metric space, C is a Polish subset of M

and s0 2 C. Fix two nonnegative functions d WM�M! Œ0;1/ and " W C W! Œ0;1/.
Then, the following two equivalences hold.

2The subset An can be taken to be any "n-net of the unit sphere of Vn, for any "n . n�3=2.
Note, however, that the bound that follows from [138] (and also [195, Appendix C]) is "n .
n�2, and this suffices for the present purposes; see [233, Theorem 23] for the above stated
weaker requirement from "n.

3And, it would show that for arbitrarily large k 2 N there exist a metric space
.M; dM/, a Banach space .Z; k � kZ/ and a subset S � M with jSj D k such that
econv.M;SIZ/=espan.M;SIZ/ &

p
.log k/= log log k. It would then remain an interesting open

question to determine the largest possible asymptotic dependence on k here.
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(1) The following two statements are equivalent.

• For every Banach space .Z; k � kZ/ and every mapping f W C! Z that
is 1-Lipschitz with respect to the metric dM there exists F WM! Z that
satisfies the following two conditions.

– kF.s/ � f .s/kZ 6 ".s/ for every s 2 C.

– kF.x/ � F.y/kZ 6 d.x; y/ for every x; y 2M.

• There exists a family ¹�xºx2M of elements of the free space F.C/ with
the following properties.

– k�s � ıs C ıs0kF.C/ 6 ".s/ for every s 2 C.

– k�x � �ykF.C/ 6 d.x; y/ for every x; y 2M.

(2) The following two statements are equivalent.

• For every Banach space .Z;k � kZ/ and every mapping f WC!Z that is 1-
Lipschitz with respect to the metric dM there exists F WM! conv.f .C//
that satisfies the following two conditions.

– kF.s/ � f .s/kZ 6 ".s/ for every s 2 C.

– kF.x/ � F.y/kZ 6 d.x; y/ for every x; y 2M.

• There exists a family ¹�xºx2M of probability measures in P1.C/ with the
following properties.

– WdM
1 .�s; ıs/ 6 ".s/ for every s 2 C.

– WdM
1 .�x; �y/ 6 d.x; y/ for every x; y 2M.

In the setting of Proposition 136, if ".s/ D 0 for every s 2 C and also d D KdM

for some K > 1, then in [11, Definition 2.7] a family ¹�xºx2M � F.C/ as in part
(1) of Proposition 136 is called a K-random projection of M onto C, and in [243,
Definition 3.1] a family ¹�xºx2M � P1.C/ as in part (2) of Proposition 136 is called
a stochastic K-Lipschitz retraction of M onto C while in [11, Definition 2.7] it is
called a strong K-random projection of M onto C.

Proof of Proposition 136. Suppose first that ¹�xºx2M �F.C/ and ¹�xºx2M�P1.C/
are as in the two parts of Proposition 136. Let .Z; k � kZ/ be a Banach space and
fix a 1-Lipschitz function f W C ! Z. Since C is Polish and hence separable, by
replacing Z with the closure of the linear span of f .C/ we may assume that Z is
separable. Recalling the notation (5.2) and the discussion immediately following it
for the (integration) operator

If W M1.M/ [F.M/! Z;

define two (linear) mappings

Ext�Cf;Ext�Cf WM! Z



144 Barycentric-valued Lipschitz extension

by setting for every x 2M,

Ext�Cf .x/
def
D f .s0/C If .�x/ and Ext�Cf .x/

def
D If .�x/

(5.2)
D

�
C

f d�x : (5.6)

Observe that since �x is a probability measure, Ext�Cf .x/ belongs to the closure of
the convex hull of f .C/.

For every x; y 2M we have

Ext�Cf .x/ � Ext�Cf .y/




Z D


If .�x � �y/




Z

(5.3)
6 k�x � �ykF.C/ 6 d.x; y/;

and similarly (using Kantorovich–Rubinstein duality),

Ext�Cf .x/ � Ext��f .y/




Z 6 WdM
1 .�x; �y/ 6 d.x; y/:

Also, for every s 2 C we have

Ext�Cf .s/ � f .s/




Z D


If .�s � ıs C ıs0/




Z 6 k�s � ıs C ıs0kF.C/ 6 ".s/;

and similarly,

Ext�Cf .s/ � f .s/




Z D


If .�s � ıs/




Z 6 WdM

1 .�s; ıs/ 6 ".s/:

Conversely, define f W C ! F.C/ by setting f .s/ D ıs � ıs0 for each s 2 C.
Then f is 1-Lipschitz. Fix F WM! F.C/. Writing F.x/ D �x for each x 2M, the
assumptions of the first half of part (1) of Proposition 136 coincide with the assertions
of its second half. As C is Polish, P1.C/ is closed in F.C/. Therefore,

conv
�
f .C/

�
D P1.C/ � ıs0 ;

where the closure is with respect to the topology of F.C/. Thus, if

F.M/ � conv
�
f .C/

�
;

then �x
def
D F.x/C ıs0 2 P1.C/ and the assumptions of the first half of part (2) of

Proposition 136 coincide with the assertions of its second half.

The proof of Proposition 136 shows that even though in the first parts of the two
equivalences in Proposition 136 one assumes merely the existence of an F with the
desired properties, it follows that such an F can in fact be chosen to depend linearly
on the input f , per (5.6).

Due to Proposition 136, the following question is closely related to Conjecture
134, though we think that it is also of independent interest.

Question 137. Characterize those Polish metric spaces .M; dM/ for which there
exists a Lipschitz mapping � W F.M/ ! P1.M/ (recall that by default P1.M/ is
equipped with the Wasserstein-1 metric) and x0 2M such that �.ıy � ıx0/ D ıy for
every y 2M.
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5.3 Barycentric targets

Following [210], say that a metric space .M; dM/ is W1-barycentric with constant
ˇ > 0 if there is a mapping B W P1.M/ !M that satisfies B.ıx/ D x for every
x;2M, and also

8�; � 2 P1.M/; dM

�
B.�/;B.�/

�
6 ˇWdM

1 .�; �/:

The infimal ˇ for which this holds is denoted ˇ1.M/. This notion (and variants
thereof) were studied in various contexts; see, e.g., [17,33,94,119,165,173,178,210,
241,243,292]. Any normed space X is W1-barycentric with constant 1, as seen by con-
sidering B.�/ D

�
X x d�.x/. Other examples of spaces that are W1-barycentric with

constant 1 include Hadamard spaces and Busemann nonpositively curved spaces [57],
or more generally spaces with a conical geodesic bicombing [86].

Thanks to Proposition 136, convex hull-valued (approximate) extension theorems
automatically generalize to extension theorems for mappings that take value in W1-
barycentric metric spaces.

Proposition 138. Let .M; dM/ be a metric space and let C �M be a Polish subset
of M. Fix d WM �M! Œ0;1/ and " W C! Œ0;1/. Assume that for every Banach
space .Z; k � kZ/ and every f W C! Z that is 1-Lipschitz with respect to dM there is
F WM! conv.f .C// that satisfies

8s 2 C; kF.s/ � f .s/kZ 6 ".s/

and
8x; y 2M; kF.x/ � F.y/kZ 6 d.x; y/:

Fix � W C ! .1;1/ and � WM �M ! .1;1/, as well as ˇ > 0 and a concave
nondecreasing function ! W Œ0;1/ ! Œ0;1/ with !.0/ D 0. If .N; dN/ is a W1-
barycentric metric space with constant ˇ and � W C ! N has modulus of uniform
continuity ! with respect to dM, namely dN.f .s/; f .t// 6 !.dM.s; t// for every
s; t 2 C, then there is ˆ WM!N such that dN.ˆ.s/; �.s// 6 !.�.s/".s// for every
s 2 C and dN.ˆ.x/;ˆ.y// 6 !.�.x; y/d.x; y// for every x; y 2M.

Proof. By Proposition 136, there is a collection of measures ¹�xºx2M � P1.C/ such
that

8s 2 C; WdM
1 .�s; ıs/ 6 ".s/ and 8x; y 2M WdM

1 .�x; �y/ 6 d.x; y/:

Hence, for every s 2 C and x; y 2M there are couplings �s 2….�s; ıs/ and �x;y 2
….�x; �y/ such that

�
C�C

dM.u; v/ d�s.u; v/ 6 �.s/".s/
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and �
C�C

dM.u; v/ d�x;y.u; v/ 6 �.x; y/d.x; y/:

Since .� � �/#�s 2 ….�#�s; �#ıs/ and .� � �/#�x;y 2 ….�#�x; �#�y/, it follows
that

WdN
1 .�#�s; �#ıs/ 6

�
N�N

dN.a; b/ d.� � �/#�s.a; b/

D

�
N�N

dN

�
�.u/; �.v/

�
d�s.u; v/

6
�

N�N
!
�
dN.u; v/

�
d�s.u; v/

6 !
��

N�N
dN.u; v/ d�s.u; v/

�
6 !

�
�.s/".s/

�
;

where the penultimate step uses the concavity of !. For the same reason, also

WdN
1 .�#�x; �#�y/ 6 !

�
�.x; y/d.x; y/

�
:

Since .N; dN/ is ˇ-barycentric there is B W P1.N/!N satisfying B.ız/D z for
every z;2 N, and

8�1; �2 2 P1.N/; dN

�
B.�1/;B.�2/

�
6 ˇWdN

1 .�1; �2/:

Define ˆ WM! N by

8x 2M; ˆ.x/
def
D B.�#�x/:

Then, for every s 2 C we have

dN

�
ˆ.s/; �.s/

�
6 ˇWdN

1

�
�#�s; �#ıs

�
6 !

�
�.s/".s/

�
:

For the same reason also dN.ˆ.x/; �.y//6!.�.x; y/d.x; y// for every x; y2M.

Because (as we will soon see) all of our new Lipschitz extension theorems are in
fact bounds on econv.�/, the following immediate corollary of Proposition 138 (with d

a multiple of dM and ! linear) shows that they apply to barycentric targets and not
only to Banach space targets.

Corollary 139. Fix ˇ > 0. Suppose that M is a Polish metric space and that N is a
complete W1-barycentric metric space with constant ˇ. Then,

econv.M;N/ 6 ˇeconv.M/:



Gentle partitions of unity 147

Another noteworthy special case of Proposition 138 is when !.s/ D s� for some
0 < � 6 1, i.e., in the setting of Hölder extension that we discussed in Remark 15
and Section 2.3. Analogously to (1.18), we denote the convex hull-valued � -Hölder
extend modulus of a metric space .M; dM/ by

e�conv.M/ D econv
�
M; d �M

�
:

Corollary 140. Suppose that M is a Polish metric space. Then, for every 0 < � 6 1
we have

e� .M/ 6 e�conv.M/ 6 econv.M/� :

Because the upper bound on e.`n1/ that we obtain in Theorem 14 is actually an
upper bound on econv.`

n
1/, Corollary 140 implies (1.19). More generally, Proposi-

tion 138 implies that

econv
�
M; ! ı dM

�
6 sup
d>0

!
�
econv.M/d

�
!.d/

6 econv.M/

for any concave nondecreasing function ! W Œ0;1/! Œ0;1/ with !.0/ D 0.

Remark 141. The question of how Lipschitz extension results imply extension re-
sults for other moduli of uniform continuity was studied in [224] and treated defini-
tively by Brudnyi and Shvartsman in [65] using an interesting connection to the
Brudnyı̆–Krugljak K-divisibility theorem [66] (see also [82]) from the theory of
real interpolation of Banach spaces. In particular, by [65] we have e� .M/ . e.M/2,
which remains the best-known bound on e� .M/ in terms of e.M/ and it would be
interesting to determine if it could be improved. As Corollary 140 shows that a better
bound is available in terms of e�conv.M/, Conjecture 134 and Question 137 could be
relevant for this purpose.

5.4 Gentle partitions of unity

The following definition describes a numerical parameter that underlies the extension
method of [173].

Definition 142 (Modulus of gentle partition of unity). Suppose that .M; dM/ is a
metric space and that C �M is nonempty and closed. Define the modulus of gentle
partition of unity of M relative to C, denoted GPU.M; dMIC/ or simply GPU.MIC/
when the metric is clear from the context, to be the infimum over those g 2 .0;1�

such that for every x 2M there is a Borel probability measure �x supported on C

with the requirements that if s 2 C, then �s D ıs , and also for every x; y 2M we
have �

C

dM.s; x/ dj�x � �y j.s/ 6 gdM.x; y/:
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The modulus of gentle partitions of unity of M, denoted GPU.M; dM/ or simply
GPU.M/ when the metric is clear from the context, is defined to be the supremum of
GPU.M; dMIC/ over all nonempty closed subsets C �M.

The nomenclature of Definition 142 is derived from [173], though we warn that
Definition 142 considers objects that are not identical to those that were introduced
in [173]. In [173] the measures ¹�xºx2MXC were also required to have a Radon–
Nikoým derivative with respect to some reference measure�. This additional require-
ment arises automatically from the constructions of [173] but it is not needed for any
of the known applications of gentle partitions of unity, so it is beneficial to remove
it altogether. The formal connection between [173] and Definition 142 was clarified
in [11].

In anticipation of the proof of Theorem 66, one can generalize Definition 142 to
the case of general profiles, analogously to what we did in Definition 64.

Definition 143 (Gentle partition of unity profile). Suppose that .M; dM/ is a metric
space and that C �M is nonempty and closed. A metric d WM �M! Œ0;1/ is
called a gentle partition of unity profile for .M; dM/ relative to C if for every x 2M

there is a Borel probability measure �x supported on C with the requirements that if
s 2 C, then �s D ıs , and also for every x; y 2M we have

�
C

dM.s; x/ dj�x � �y j.s/ 6 d.x; y/:

If d is a gentle partition of unity profile for .M; dM/ relative to every closed subset
¿ ¤ C �M, then we say that d is a gentle partition of unity profile for .M; dM/.

Note in passing that if d is a gentle partition of unity profile for .M; dM/ relative
to C, then for every x 2M the probability measure �x in Definition 143 has finite
first moment. Indeed, for any s0 2 C,

�
C

dM.s0; s/ d�x.s/ D
�
C

dM.s0; s/ d
�
�x � ıs0

�
.s/

6
�
C

dM.s0; s/ d
ˇ̌
�x � �s0

ˇ̌
.s/ 6 d.s0; x/ <1; (5.7)

where we used the fact that �s0 D ıs0 , since s0 2 C.
Suppose that .M; dM/ is a Polish metric space. The following estimate is implicit

in [173]:
econv.M/ 6 2GPU.M/:

In fact, the same reasoning as in [173] leads to the following more general lemma.

Lemma 144. Suppose that .M; dM/ is a Polish metric space and that C �M is
nonempty and closed. Assume that d WM�M! Œ0;1/ is a gentle partition of unity
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profile for .M; dM/ relative to C. Then, for every Banach space .Z; k � kZ/ and every
1-Lipschitz mapping f W C! Z there exists

F WM! conv
�
f .C/

�
that extends f and satisfies kF.x/ � F.y/kZ 6 2d.x; y/ for every x; y 2M.

Proof. Let ¹�xºx2M be probability measures as in Definition 143. Then, ¹�xºx2M �

P1.C/ by (5.7). So, by Proposition 136 (with " � 0) it suffices to check that for every
x; y 2M we have W1.�x; �y/ 6 2d.x; y/. To this end, fix � > 0 and s0 2 C such
that dM.x; s0/ 6 dM.x;C/C �. Then, for every s 2 C we have

dM.s; s0/ 6 dM.s; x/C dM.x; s0/ 6 dM.s; x/C dM.x;C/C � 6 2dM.s; x/C �:

Consequently, every 1-Lipschitz function  W C! R satisfies�
C

 d�x �
�
C

 d�y D
�
C

�
 .s/ �  .s0/

�
d.�x � �y/.s/

6
�
C

j .s/ �  .s0/j dj�x � �y j.s/

6
�
C

dM.s; s0/ dj�x � �y j.s/

6
�
C

.2dM.s; x/C �/ dj�x � �y j.s/

6 2d.x; y/C 2�:

The desired conclusion follows by letting

�! 0

and using the Kantorovich–Rubinstein duality (5.1).

5.5 The multi-scale construction

Suppose that .M; dM/ is a Polish metric space and fix another metric d on M. In
this section we will show that there is a universal constant ˛ > 1 with the following
property. Assume that either .M; dM/ is locally compact and d is a separation mod-
ulus for .M; dM/ per Definition 64, or the assumptions of Theorem 114 are satisfied.
We will prove that either of these assumptions implies that ˛d is a gentle partition
of unity profile for .M; dM/. By Lemma 144 this gives Theorems 66 and 114, and
will show that in fact these extension results are both convex hull-valued and via a
linear extension operator. This also implies that every locally compact metric space
M satisfies

GPU.M/ . SEP.M/: (5.8)
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Remark 145. The bound (5.8) need not be sharp. Indeed, it was proved in [173] that
if M is finite, then

GPU.M/ .
log jMj

log log jMj
: (5.9)

However, by [29] sometimes SEP.M/ & log jMj (and always SEP.M/ . log jMj).
A shorter presentation of the proof of (5.9) can be found in [226], and a different
proof of (5.9) will appear in the forthcoming work [207]. Also, in the forthcoming
work [212] it is proved that (5.9) is optimal.

The following theorem is a precise formulation of what we will prove in this
section.

Theorem 146. Let .M; dM/ be a Polish metric space and fix another metric d on
M. Suppose that for every � > 0 there is a probability space .��; Prob�/ and a
sequence of set-valued mappings ¹�k� W��! 2Mº1

kD1
such that one of the following

two measurability assumptions hold.

• Either .M; dM/ is locally compact and �k� is strongly measurable for each fixed
k 2 N and � > 0,

• or �� is a Borel subset of some Polish metric space Z� and Prob� is a Borel
probability measure supported on ��, and �k� is a standard set-valued mapping
for each fixed k 2 N and � > 0.

Suppose that the following three requirements hold.

(1) P!� D ¹�
k
�.!/º

1
kD1

is a partition of M for every ! 2 ��,

(2) diamM.P
!
�.x// < � for every x 2M and ! 2 ��,

(3) �Prob�
�
! 2 �� W P

!
�.x/ ¤ P!�.y/

�
6 d.x; y/ for every x; y 2M.

Then, ˛d is a gentle partition of unity profile for .M;dM/ for some universal constant
˛ 2 Œ1;1/.

Suppose from now on that C is a nonempty closed subset of M. We will first set
notation and record basic properties of a sequence of bump functions that will be used
in the proof of Theorem 146; this part of the discussion is entirely standard and has
nothing to do with random partitions.

Fix a 1-Lipschitz function  W Œ0;1/! Œ0;1/ such that supp. / � Œ1; 4� and
 .t/ D 1 for every t 2 Œ2; 3� (these requirements uniquely determine  , which is
piecewise linear). Define for each n 2 Z,

8x 2M; �n.x/ D �
C
n .x/

def
D  

�
2�ndM.x;C/

�
:

Then k�nkLip.M/ 6 2�n and if �n.x/ ¤ 0 then necessarily 2n 6 dM.x; C/ 6 2nC2.
We also denote

8x 2M; ˆ.x/ D ˆC.x/
def
D

X
m2Z

�n.x/:
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For each x 2M, at most two summands in the sum that defines ˆ.x/ do not
vanish. If x 2MXC, then since C is closed we have dM.x;C/> 0, and therefore there
is n 2 Z for which 2n 6 dM.x;C/ < 2

nC1. For this value of n we have �n.x/ D 1,
so ˆ.x/ > 1 for every x 2M X C. Finally, for each n 2 Z define

8x 2M; �n.x/ D �
C
n .x/

def
D

´
�n.x/
ˆ.x/

if x 2M X C;

0 if x 2 C:

By design,
P
n2Z �n.x/ D 1 for every x 2M X C. Further properties of these bump

functions are recorded in the following basic lemma, for ease of later reference.

Lemma 147. Suppose that x;y 2M satisfy dM.x;C/> dM.y;C/ > dM.x;y/. Then
for every n 2 Z,

2n

dM.y;C/
…

�
1

4
; 2

�
H) �n.x/ D �n.y/ D �n.x/ D �n.y/ D 0 (5.10)

and

2n�1 < dM.y;C/ < 2
nC2

H)
ˇ̌
�n.x/ � �n.y/

ˇ̌
.
dM.x; y/

dM.y;C/
: (5.11)

Proof. Our assumption implies that dM.x; C/; dM.y; C/ > 0, so x; y 2M X C. To
prove (5.10), suppose first that 2n > 2dM.y; C/. Then, since supp. / � Œ1; 4� and
2�ndM.y;C/ 6 1 we have �n.y/ D �n.y/ D 0. Also,

dM.x;C/ 6 dM.x; y/C dM.y;C/ < 2dM.y;C/ 6 2n;

so 2�ndM.x;C/ 6 1 and hence �n.x/ D �n.x/ D 0. The remaining case of (5.10) is
when dM.y;C/ > 2nC2. When this holds we have 2�ndM.x;C/ > 2�ndM.y;C/ > 4
and therefore ¹2�ndM.x; C/; 2

�ndM.y; C/º \ supp. / D ¿. Consequently, in this
case we have �n.x/ D �n.y/ D �n.x/ D �n.y/ D 0.

To prove (5.11), assume that 2n�1 < dM.y; C/ < 2nC2. Recalling that (point-
wise) on M X C we have �n D �n=ˆ for all n 2 Z and ˆ > 1, and moreover
k�nkLip.M/ 6 2�n, we conclude as follows:ˇ̌

�n.x/ � �n.y/
ˇ̌
6
ˇ̌
�n.x/ � �n.y/

ˇ̌
ˆ.x/

C
�n.y/

ˆ.x/ˆ.y/

ˇ̌
ˆ.y/ �ˆ.x/

ˇ̌
6 2�ndM.x; y/C

X
n2Z

ˇ̌
�n.x/ � �n.y/

ˇ̌
(5.10)
6 2�ndM.x; y/C

X
n2Z

2n�1<dM.y;C/<2nC2

2�ndM.x; y/

�
dM.x; y/

dM.y;C/
:
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The interaction between ¹�nºn2Z and the random partitions of Theorem 146 is
the content of the following lemma. Note that by reasoning as in (1.94), the metric d

in Theorem 146 must satisfy

8x; y 2M; d.x; y/ > dM.x; y/:

Lemma 148. In the setting of Theorem 146, if x 2M X C and y 2M X ¹xº satisfy
dM.x;C/ > dM.y;C/, thenX

n2Z

1X
kD1

�
�2n

ˇ̌
�n.x/1�k

2n
.!/.x/ � �n.y/1�k

2n
.!/.y/

ˇ̌
dProb2n.!/

.
d.x; y/

dM.y;C/C dM.x; y/
: (5.12)

Proof. As
P
n2Z �n.x/ D

P
n2Z �n.y/ D 1 and

1X
kD1

1�k
2n
.!/.x/ D

1X
kD1

1�k
2n
.!/.y/ D 1

for every n 2Z and ! 2�2n , the left-hand side of (5.12) is at most 2. Since d.x;y/>
dM.x; y/, it follows that (5.12) holds if dM.y; C/ 6 dM.x; y/. So, we will assume
in the rest of the proof of Lemma 148 that dM.x; y/ < dM.y;C/ (thus, in particular,
y 2M X C), in which case the right-hand side of (5.12) becomes at least a universal
constant multiple of the quantity d.x; y/=dM.y;C/.

We claim that for every n 2 Z the following inequality holds for every ! 2 �2n :
1X
kD1

ˇ̌
�n.x/1�k

2n
.!/.x/ � �n.y/1�k

2n
.!/.y/

ˇ̌
.
�
2�ndM.x; y/C 1¹P!

2m
.x/¤P!

2n
.y/º

�
1
¹ 14<

2n

dM.y;C/
<2º
: (5.13)

Assuming (5.13) for the moment, we will conclude the proof of (5.12) in the remain-
ing case dM.x; y/ < dM.y;C/ as follows:X
n2Z

1X
kD1

�
�2n

ˇ̌
�n.x/1�k

2n
.!/.x/ � �n.y/1�k

2n
.!/.y/

ˇ̌
dProb2n.!/

.
X
n2Z

2n�1<dM.y;C/<2nC2

�
2�ndM.x; y/C Prob2n

�®
! 2 �2n W P

!
2n.x/ ¤ P!2n.y/

¯��
.

X
n2Z

2mn�1<dM.y;C/<2nC2

2�n
�
dM.x; y/C d.x; y/

�
�

d.x; y/

dM.y;C/
�

d.x; y/

dM.y;C/C dM.x; y/
;
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where the first step uses (5.13), the second step is where we used condition (3) of
Theorem 146, the penultimate step uses d.x; y/ > dM.x; y/, and in the final step
uses the assumption dM.x; y/ < dM.y;C/.

It therefore remains to establish (5.13). By Lemma 147, if it is not the case that
2n�1 < dM.y;C/ < 2

nC2, then �n.x/ D �n.y/ D 0, so both sides of (5.13) vanish.
Thus, we may assume from now that 2n�1 < dM.y;C/ < 2

nC2. Under this assump-
tion, if P!2n.x/ ¤ P!2n.y/, then the right-hand side of (5.13) is at least 1, while the
left-hand side of (5.13) consists of a sum of two numbers, each of which is at most
1. It therefore remains to establish (5.13) when P!2n.x/ D P!2n.y/ (and still 2n�1 <
dM.y;C/ < 2

nC2). In this case, (5.13) becomes the inequality j�2n.x/ � �2n.y/j 6
dM.x; y/=dM.y;C/, which we proved in Lemma 147.

Proof of Theorem 146. By Lemma 115 and Corollary 118, for every � > 0 there
exists a Prob�-to-Borel measurable mapping 
k� W �m ! C such that

8! 2��; �k�.!/¤¿ H) dM

�

k�.!/;�

k
�.!/

�
6 dM

�
C; �k�.!/

�
C�: (5.14)

(In fact, in the locally compact setting of Theorem 146, the use of Lemma 115 shows
that the additive � term in the right-hand side of (5.14) can be removed).

For every x 2M X C define a Borel measure �x supported on C by

�x
def
D

X
n2Z

1X
kD1

�n.x/
�

k2n

�
#

�
Prob2n

�
¹!2�2n Wx2�

k
2n
.!/º

�
: (5.15)

In other words, for every Borel-measurable mapping h W C! Œ0;1/ we have

�
C

h.s/ d�x.s/ D
X
n2Z

1X
kD1

�n.x/

�
¹!2�2n Wx2�

k
2n
.!/º

h
�

k2n.!/

�
dProb2n.!/: (5.16)

Since P!2n is a partition of X for every n 2 Z and ! 2 �2n , the special case h D 1C

of (5.16) implies that

�x.C/ D
X
n2Z

1X
kD1

�n.x/Prob2n
�®
! 2 �2n W x 2 �

k
2n.!/

¯�
D

X
n2Z

�n.x/Prob2n

"´
! 2 �2n W x 2

1[
kD1

�k2n.!/

µ#
D

X
n2Z

�n.x/ D 1:

Thus �x is a probability measure. Consequently, if we also denote �s D ıs for every
s 2 C, then the proof of Theorem 146 will be complete if we show that

8x; y 2M;

�
C

dM.s; x/ dj�x � �y j.s/ . d.x; y/: (5.17)
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It suffices to prove (5.17) when x; y 2M are distinct and ¹x; yº 6� C. Indeed,
if ¹x; yº � C then �x D ıx and �y D ıy , so the left-hand side of (5.17) is equal to
dM.x; y/, which is at most d.x; y/. Hence, in the rest of the proof of Theorem 146
we will assume without loss of generality that x 2MX C and dM.x;C/> dM.y;C/.

We claim that the left-hand side of (5.17) can be bounded from above as follows:
�
C

dM.s; x/ dj�x � �y j.s/ 6 dM.x; y/

C

X
n2Z

1X
kD1

�
�2n

dM

�

k2n.!/; x

�ˇ̌
�n.x/1�k

2n
.!/.x/��2n.y/1�k

2n
.!/.y/

ˇ̌
dProb2n.!/:

(5.18)

Indeed, if x; y 2M X C, then �x; �y are defined according to (5.15), so that
�
C

dM.s; x/ dj�x � �y j.s/

6
X
n2Z

1X
kD1

�
C

dM.s; x/

d
��

k2n

�
#

ˇ̌
�n.x/Prob2n

�
¹!2�2n Wx2�

k
2n
.!/º
��n.y/Prob2n

�
¹!2�2n Wy2�

k
2n
.!/º

ˇ̌�
.s/

D

X
n2Z

1X
kD1

�
�2n

dM

�

k2n.!/; x

�ˇ̌
�n.x/1�k

2n
.!/.x/ � �n.y/1�k

2n
.!/.y/

ˇ̌
dProb2n.!/;

thus establishing (5.18) in this case. The remaining case is when x 2M X C and
y 2 C, so that �x is given in (5.15) and �y D ıy . We can then use the following
(crude) estimate:
�
C

dM.s; x/ dj�x � �y j.s/

6
�
C

dM.s; x/ d�y.s/C
�
C

dM.s; x/ d�x.s/

D dM.x; y/C
X
n2Z

1X
kD1

�
�2n

dM

�

k2n.!/; x

�
�n.x/1�k

2n
.!/.x/ dProb2n.!/: (5.19)

It remains to observe that because y 2C we have �n.y/D 0 for all n2Z and therefore
the right-hand side of (5.19) coincides with the right-hand side of (5.18).

Next, we claim that for every .n; k/ 2 Z �N and every ! 2 �2n we have

dM

�

k2n.!/; x

�ˇ̌
�n.x/1�k

2n
.!/.x/ � �n.y/1�k

2n
.!/.y/

ˇ̌
.
�
dM.y;C/C dM.x; y/

�ˇ̌
�n.x/1�k

2n
.!/.x/ � �n.y/1�k

2n
.!/.y/

ˇ̌
: (5.20)
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By substituting the point-wise estimate (5.20) into (5.18) and using dM.x; y/ 6
d.x; y/ the desired estimate (5.17) follows from Lemma 148, thus completing the
proof of Theorem 146.

To verify (5.20), note first that both sides of (5.20) vanish unless x 2 �k2n.!/ or
y 2 �k2n.!/ and also, due to Lemma 147, 2n�1 < dM.y;C/ < 2

nC2. So, assume from
now on that

¹x; yº \ �k2n.!/ ¤ ¿ and 2n�1 < dM.y;C/ < 2
nC2: (5.21)

Our goal (5.20) then becomes to deduce that

dM

�

k2n.!/; x

�
. dM.y;C/C dM.x; y/: (5.22)

Choose a point z 2 �km.!/ such that

dM

�

k2n.!/; z

�
6 dM

�

k2n.!/; �

k
2n.!/

�
C 2n

(5.14)
D dM

�
C; �k2n.!/

�
C 2nC1

(5.21)
� dM

�
C; �k2n.!/

�
C dM.y;C/: (5.23)

If x 2 �k2n.!/, then

dM

�
C; �k2n.!/

�
6 dM.x;C/ 6 dM.x; y/C dM.y;C/

and
dM.x; z/ 6 diamM

�
�k2n.!/

�
6 2n

(5.21)
� dM.y;C/:

By combining these two estimates with (5.23) and the triangle inequality, we see that

dM

�

k2n.!/; x

�
6 dM

�

k2n.!/; z

�
C dM.z; x/ . dM.x; y/C dM.y;C/:

Hence, the desired estimate (5.22) holds when x 2 �k2n.!/.
It remains to check (5.22) when y 2 �k2n.!/, in which case we proceed similarly

by noting that now
dM

�
C; �k2n.!/

�
6 dM.y;C/;

and
dM.y; z/ 6 diamM

�
�k2n.!/

�
6 2n

(5.21)
� dM.y;C/:

By combining these two estimates with (5.23) and the triangle inequality, we conclude
that

dM

�

k2n.!/; x

�
6 dM

�

k2n.!/; z

�
C dM.z; y/C dM.y; x/

. dM.y;C/C dM.x; y/:


