
Chapter 6

Volume computations

In this section we will prove volume estimates that occur in our bounds on the sepa-
ration modulus.

6.1 Direct sums

Fix n 2 N and a normed space X D .Rn; k � kX/. Throughout what follows, the (nor-
malized) cone measure [120] on @BX will be denoted �X. Thus, for every measurable
A � @BX,

�X.A/
def
D

voln.Œ0; 1�A/
voln.BX/

D
voln.¹sv W .s; v/ 2 Œ0; 1� � Aº/

voln.BX/
: (6.1)

The probability measure �X is characterized by the following “generalized polar
coordinates” identity, which holds for every f 2 L1.Rn/; see, e.g., [242, Proposi-
tion 1]:
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dr: (6.2)

As a quick application of (6.2), we will next record for ease of later reference the
following computation of the volume of the unit ball of an p̀ direct sum of normed
spaces.

Lemma 149. Fix n;m1; : : : ;mn 2N and normed spaces ¹Xj D .Rm1 ;k � kXmj /º
n
jD1.
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(6.3)

Proof. This follows by induction on n from the following identity (direct application
of Fubini), which holds for every a; b 2 N and any two normed spaces X D .Ra; k �
kX/ and Y D .Rb; k � kY/:
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(6.2)
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By Lemma 149, for every m 2 N, every normed space X D .Rm; k � kX/ satisfies
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and hence,
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In particular, for every m; n 2 N and 1 6 p; q 61 we have
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and hence,
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The following simple lemma records an extension of (6.5) to m-fold iterations of
the operation X 7! `np.X/, i.e., to spaces of the form

`nmpm

�
`nm�1pm�1

�
� � � `n1p1 .X/ � � �

��
I

the main point for us here is that the implicit constants remain bounded as m!1.

Lemma 150. Fix ¹nkº1kD0 � N and ¹pkº1kD1 � Œ1;1�. Let X D .Rn0 ; k � kX/ be a
normed space and define

8k 2 N [ ¹0º; XkC1 D `nkpk .Xk/; where X0 D X:

Then, for every m 2 N we have
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Proof. With the convention that an empty product equals 1, by applying (6.4) induc-
tively we see that
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Hence,
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where for u; v; t > 0 we denote
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ds for z > 0 (see, e.g., [313, Chapter XII]), if u; t > 0
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Thus, fu;v is increasing on Œ0;1/, and therefore we get from (6.8) that
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The first part of Lemma 151 below is a restatement of Lemma 37 from the Intro-
duction. Qualitatively, it shows that the class of spaces for which Conjecture 10 holds
is closed under unconditional composition, namely, norms of the form (6.9) below.
The second part of Lemma 151 is further information that pertains to Conjecture 49,
i.e., to the symmetric version of the weak reverse isoperimetric conjecture, for which
we want the operator S to be the identity mapping (i.e., weak reverse isoperimetry
holds without the need to first change the “position” of the given normed space).

Lemma 151. Fix n;m1; : : : ; mn 2 N. Let

X1 D .Rm1 ; k � kX1/; : : : ;Xn D .R
mn ; k � kXn/

be normed spaces. Also, let E D .Rn; k � kE/ be an unconditional normed space.
Define a normed space X D .Rm1 � � � � �Rmn ; k � kX/ by

8x D .x1; : : : ; xn/ 2Rm1 � � � � �Rmn ; kxkX
def
D
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�
E: (6.9)
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Then, Conjecture 10 (equivalently, Conjecture 35) holds for the space X if it holds
for all of the spaces X1; : : : ;Xn.

More precisely, suppose that there exist S12SLm1.R/; : : : ;Sn2SLmn.R/, normed
spaces Y1 D .Rm1 ; k � kY1/; : : : ;Yn D .Rmn ; k � kYn/, and ˛ > 0 such that for every
k 2 ¹1; : : : ; nº we have

BYk � SkBXk and
iq
�
BYk

�
p
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�
volmk

�
BXk

�
volmk

�
BYk

�� 1
mk

6 ˛: (6.10)

Then, there exist a normed space Y D .Rm1 � � � � �Rmn ; k � kX/ and a linear trans-
formation S 2 SL.Rm1 � � � � �Rmn/ such that

BY � SBX and
iq.BY/

p
m1 C � � � Cmn

�
volm1C���Cmn.BX/

volm1C���Cmn.BY/

� 1
m1C���Cmn

. ˛: (6.11)

If furthermore S1; : : : ;Sn are all identity mappings (of the respective dimensions),
then S can be taken to be the identity mapping provided the following two conditions
hold:  nX

iD1

ei


E

 nX
iD1

ei


E*

. n (6.12)

and 
nY
kD1

m
mk
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�! 1
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.
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n
min

k2¹1;:::;nº
volmk
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� 1
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(6.13)
Note that (6.13) is satisfied in particular if mi � mj and

volmi .BXi /
1
mi � volmi .BXj /

1
mj

for every i; j 2 ¹1; : : : ; nº.

Prior to proving Lemma 151 we will make some basic observations. Firstly,
(6.9) indeed defines a norm because it is well known that the requirement that E D
.Rn; k � kE/ is an unconditional normed space is equivalent to (see, e.g., [181, Propo-
sition 1.c.7]) the following “contraction property”:

8a; x 2 Rn; k.a1x1; : : : ; anxn/kE 6 kak`n1kxkE: (6.14)

Thus, kxkE 6 kykE if x; y 2 Rn satisfy jxi j 6 jyi j for every i 2 ¹1; : : : ; nº, so the
triangle inequality for (6.9) follows from applying the triangle inequalities entry-wise
for each of the norms ¹k � kXi º

n
iD1, using this monotonicity property, and then apply-

ing the triangle inequality for k � kE.
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It is well known that condition (6.12) holds (as an equality) when E is a symmetric
normed space (see, e.g., [182, Proposition 3.a.6]). More generally, condition (6.12)
holds (also as an equality) in the setting of the following simple averaging lemma,
which shows in particular that Lemma 151 implies Lemma 53.

Lemma 152. Let XD .Rn;k � kX/ be a normed space such that for every two indices
j; k 2 ¹1; : : : ; nº there exists a permutation � D �jk 2 Sn with �.j / D k such that
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iD1 aieikX for every a1; : : : ; an 2 R. Then, nX
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ei
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D n:

Proof. Denote S.X/ D ¹� 2 Sn W T� 2 Isom.X/º, where T� 2 GLn.R/ was defined
in Example 40 for each � 2 Sn. Then, S.X/ is a subgroup of Sn that we are assuming
acts transitively on ¹1; : : : ; nº. Consequently,
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For every a1; : : : ; an 2 R we have
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where the penultimate step uses convexity and the final step uses the assumption that
T� is an isometry of X for every � 2S.X/. Since this holds for every a1; : : : ; an 2R,
we have k

Pn
iD1 eikX* 6 n=k

Pn
iD1 eikX. The reverse inequality holds for any normed

space X D .Rn; k � kX/ because h
Pn
iD1 ei ;

Pn
iD1 ei i D n.
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By combining Lemmas 151 and 152 we obtain the following corollary that estab-
lishes Conjecture 49 for the iteratively nested p̀ spaces of Lemma 150, provided it
holds for the initial space X.

Corollary 153. Fix ¹nkº1kD0 � N and ¹pkº1kD1 � Œ1;1�. Let X D .Rn0 ; k � kX/ be
a normed space and define

8k 2 N; XkC1 D `nkpk .Xk/; where X0 D X:

Suppose that ˛ > 0 and there exists a normed space YD .Rn0 ;k � kY/ with BY � BX

and that satisfies
iq.BY/
p
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�
voln0.BX/

voln0.BY/

� 1
n0

6 ˛: (6.16)

Then, for everym 2N there is a normed space Ym D .Rn0���nm ;k � kYm/ that satisfies
BYm � BXm and
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�
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�
p
n0 � � �nm

�
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BXm
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voln0���nm
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BYm

�� 1
n0���nm
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To see why Corollary 153 indeed follows from Lemmas 151 and 152, observe
that if we start with E0 D R and define inductively EkC1 D `

nk
pk .Ek/, then for each

m 2 N the space Em is unconditional and satisfies the assumptions of Lemma 152.
The space Ym of Corollary 153 is the same space that is defined in Lemma 151 if we
take E D Em, and also X1 D � � � D Xm D X, which ensures that (6.13) holds.

Proof of Lemma 151. Denote

M
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D
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1
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Fix numbers c; C1; : : : ; Cn; 1; : : : ; n; w1; : : : ; wn; w�1 ; : : : ; w
�
n ; ˇ1; : : : ; ˇn > 0

that satisfy the following conditions (their values will be specified later). Firstly, we
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Denote

D
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:

Consider the block diagonal linear operator S WRm1 � � � � �Rmn!Rm1 � � � � �Rmn

that is given by
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def
D

1

D

�
ˇ1S1x1; : : : ; ˇnSnxn

�
: (6.21)

The normalization by D in (6.21) ensures that S 2 SL.Rm1 � � � � �Rmn/.
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for every x D .x1; : : : ; xn/ 2 Rm1 � � � � �Rmn . This shows that
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Using Lemma 149, we therefore have
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Next, for every x D .x1; : : : ; xn/ 2 Rm1 � � � � �Rmn we have
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This establishes the following inclusion:

SBX �
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kD1

wkˇkSkBXk
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Thanks to (1.62), the assumption (6.10) of Lemma 151 implies that
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For each k 2 ¹1; : : : ;nº take fk W SkBXk !R that is smooth on the interior of SkBXk ,
vanishes on @SkBXk , and satisfies �fk D ��.SkBXk /fk on the interior of SkBXk .
Define f W �! R by
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Thus f � 0 on the boundary of � and on the interior of � it is smooth and satisfies
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Hence,
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By combining (6.22) and (6.26) we see that
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Another application of (1.62) now shows that the desired conclusion (6.11) holds with
Y D ChSX (recall the definition of Cheeger space in Section 1.6.1) provided

c

 
nY
kD1

.kCk/
mk

! 1
M

. 1: (6.27)

To get (6.11), by the Lozanovskiı̆ factorization theorem [186] there exist weights
w1; : : : ; wn; w

�
1 ; : : : ; w

�
n > 0 such that (6.18) holds and also wkw�k D mk=M for

every k 2 ¹1; : : : ; nº. Thus (6.19) holds (as equality) if we choose 1 D � � � D n D 1.
If we take c D C1 D � � � D Cn D 1 and ˇk D 1=.wk�k/ for each k 2 ¹1; : : : ; nº, then
both (6.20) and (6.27) also hold (as equalities). With these choices, (6.11) holds.

Suppose that the additional assumptions (6.12) and (6.13) hold. Denote

� D
1

n

 nX
iD1

ei


E

 nX
iD1

ei


E*

:

Thus, � D O.1/ by (6.12). Consider the weights w1 D � � � D wn D 1=k
Pn
iD1 eikE

and w�1 D � � � D w
�
n D 1=k

Pn
iD1 eikE* , so that (6.18) holds by design. This choice

also ensures that if we take k D mk=.�M/ for each k 2 ¹1; : : : ; nº, then (6.19)
holds (as an equality). Next, choose Ck D �k for each k 2 ¹1; : : : ; nº, as well as
ˇ1 D � � � D ˇn D k

Pn
iD1 eikE and c D 1=mink2¹1;:::;nº �k . This ensures that (6.20)

holds, and also that (6.27) coincides with the assumption (6.13), since �DO.1/. The
desired conclusion (6.11) therefore holds with Sx D .S1x1; : : : ; Snxn/ in (6.21). In
particular, if Sk D Idmk for every k 2 ¹1; : : : ; nº, then we can take S D IdRm1�����Rmn

in (6.11).

The following lemma provides a formula for the cone measure of Orlicz spaces.
Fix a convex increasing function  W Œ0;1/ ! Œ0;1� that satisfies  .0/ D 0 and
limx!1 .x/D1 (so, if limx!a�  .x/D1 for some a 2 .0;1/, then we require
that  .x/ D 1 for every x > a). Henceforth, the associated Orlicz space (see, e.g.,
[268]) `n D .R

n; k � k`n / will always be endowed with the Luxemburg norm that is
given by

8x 2 Rn; kxk`n D inf

´
s > 0 W
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�
jxi j

s

�
6 1

µ
: (6.28)

Lemma 154. Fix n 2 N. Suppose that  W Œ0;1/ ! Œ0;1� is convex, increas-
ing, continuously differentiable on the set ¹x 2 .0;1/ W  .x/ < 1º, and satisfies
limx!1  .x/ D1 and  .0/ D 0. Define a function 'n W R

n ! Œ0;1/ by setting

8� D .�1; : : : ; �n/ 2 Rn; 'n .�/
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D
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0
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 �1.j�i j/
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0
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� : (6.29)
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Then, for every g 2 L1.�`n / we have
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� �
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1
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For example, when  .t/ D tp for some p > 1 and every t > 0, in which case
`n D `

n
p , Lemma 154 gives

�
@B`np
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�
�
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�n �
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1!p.�/

j�1 � � � �nj
1� 1p

d�`n
1
.�/;

where M1!p W Rn ! Rn is the Mazur map [205] from `n1 to `np , i.e.,

8x 2 Rn; M n
1!p.x1; : : : ; xn/ D

�
jx1j

1
p sign.x1/; : : : ; jxnj

1
p sign.xn/

�
:

As another special case of Lemma 154, consider the following family of Orlicz spaces
�n
ˇ
D .Rn; k � k�n

ˇ
/:

8ˇ > 0; �nˇ
def
D `n ˇ ; (6.31)

where

t > 0;  ˇ .t/
def
D

8<: 1
ˇ

log
�
1
1�t

�
if 0 6 t < 1;

1 if t > 1:
(6.32)

Observe that by considering the case g� 1 of (6.30) we obtain the following identity:
�
@B`n
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�
'n .�/ d�`n

1
.�/

�
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1

'n .�/ d�`n
1
.�/

; (6.33)

where we recall that 'n is defined in (6.29). When  D  ˇ as in (6.32) for some
ˇ > 0 (we will eventually need to work with ˇ � n), for every � 2 @B`n

1
we have
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iD1

�
1 � e�ˇ j�i j
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eˇj�i j

ˇQn
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eˇj�i j

ˇ

D
ˇn�1
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�
eˇ j�i j � 1

�
e
ˇk�k`n

1

D
ˇn�1

eˇ

nX
iD1

�
eˇ j�i j � 1

�
: (6.34)
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Consequently, (6.33) gives the following identity, which we will need later:
�
@B�n

ˇ

g d��n
ˇ

D

�
@B`n

1

g
�
.eˇ j�1j�1/ sign.�1/; : : : ; .eˇ j�nj � 1/ sign.�n/

�Pn
iD1

�
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�
d�`n

1
.�/

�
@B`n

1

Pn
iD1

�
eˇ j�i j�1

�
d�`n

1
.�/

:

Proof of Lemma 154. For each i 2 ¹1; : : : ;nº define fi WRn!R by setting fi .0/D 0
and

8y 2 Rn X ¹0º; fi .y/ D kyk`n
1
 �1

�
jyi j

kyk`n
1

�
sign.yi /:

Consider f D .f1; : : : ; fn/ W Rn! Rn. Then, kf .y/k`n D kyk`n1 for every y 2 Rn.
Hence, f .B`n

1
/ D B`n . Now,

�
@B`n

 

g.�/ d�`n .�/
(6.2)
D

1

voln
�
B`n 

� �
f .B`n

1
/

g

�
1

kxk`n 
x

�
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D
1

voln
�
B`n 

� �
B`n
1

g

�
1

kf .y/k`n 
f .y/

�
jdetf 0.y/j dy

(6.2)
D
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�
B`n

1

�
voln

�
B`n 

� �
@B`n

1

g
�
f .�/

�
jdetf 0.�/j d�`n

1
.�/;

where in the final step we used the fact f is positively homogeneous of order 1, and
hence its derivative is homogeneous of order 0 almost everywhere (f is continuously
differentiable on ¹y 2 RnI y1; : : : ; yn ¤ 0º). Since the volume of the unit ball of `n1
equals 2n=nŠ, it remains to check that the Jacobian of f satisfies

detf 0.�/ D

Pn
iD1  

�1.j�i j/ 
0
�
 �1.j�i j/

�Qn
iD1  

0
�
 �1.j�i j/

� D 'n .�/;

for every � 2 @B`n
1

with �1; : : : ; �n ¤ 0. This indeed holds because for every such �
and i; j 2 ¹1; : : : ; nº we have

@jfi .�/ D
ıij � �i sign.�j /
 0
�
 �1.j�i j/

� C  �1.j�i j/ sign.�i / sign.�j /:

Hence, f 0.�/ D A.�/ C u.�/ ˝ v.�/, where A.�/ 2 Mn.R/ is the diagonal matrix
Diag..1= 0. �1.j�i j///niD1/ and the vectors u.�/; v.�/ 2 Rn are defined by setting

u.�/ D

�
 �1.j�i j/ sign.�i / �

�i

 0
�
 �1.j�i j/

��n
iD1

; v.�/ D
�
sign.�i /

�n
iD1
2 Rn:
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By the textbook formula for the determinant of a rank-1 perturbation of an invertible
matrix (e.g., [214, Section 6.2]), it follows that

detf 0.�/ D
�
1C hA.�/�1u.�/; v.�/i

�
detA.�/

D

1C
Pn
iD1  

0
�
 �1.j�i j/

��
 �1.j�i j/ sign.�i /�

�i
 0. �1.j�i j//

�
sign.�i /Qn

iD1  
0
�
 �1.j�i j/

�
D

Pn
iD1  

�1.j�i j/ 
0
�
 �1.j�i j/

�Qn
iD1  

0
�
 �1.j�i j/

� :

Another description of �X is the fact (see, e.g., [242, Lemma 1]) that the Radon–
Nikodým derivative of the .n � 1/-dimensional Hausdorff (non-normalized surface
area) measure on @BX with respect to the (non-normalized cone) measure voln.BX/�X

is equal at almost every x 2 @BX to n times the Euclidean length of the gradient at x
of the function u 7! kukX. In other words, for any g 2 L1.@BX/,�

@BX

g.x/ dx D n voln.BX/

�
@BX

g.x/
rk � kX.x/


`n
2

d�X.x/: (6.35)

The special case g � 1 of (6.35) gives the following identity:

voln�1.@BX/

voln.BX/
D n

�
@BX

rk � kX.x/

`n
2

d�X.x/

D

 
BX

krk � kX.x/k`n
2

kxkn�1X
dx; (6.36)

where the second equality in (6.36) is an application of (6.2) because it is straightfor-
ward to check that krk � kX.rx/k`n

2
D krk � kX.x/k`n

2
for any r > 0 and x 2 Rn at

which the norm k � kX is smooth.

Remark 155. By applying Cauchy–Schwarz to the first equality in (6.36), we see
that

voln�1.@BX/

voln.BX/
6 n

��
@BX

rk � kX.x/
2
`n
2

d�X.x/

� 1
2

D

�
n

voln.BX/

�
@BX

rk � kX.x/

`n
2

dx
� 1
2

; (6.37)

where the final step of (6.37) is an application of (6.35) with g.x/D krk � kX.x/k`n
2

.
If k � kX is twice continuously differentiable on Rn X ¹0º and ' W R! Œ0;1/ is twice
continuously differentiable with '0.1/ > 0 and '00.0/ D 0, then because for every
x 2 @BX the vector rk � kX.x/=krk � kX.x/k`n

2
is the unit outer normal to @BX at x,
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by the divergence theorem we have
�
@BX

�
�
' ı k � kX

�
.x/ dx D

�
@BX

divr
�
' ı k � kX

�
.x/ dx

D

�
@BX

hr.' ı k � kX/.x/;rk � kX.x/irk � kX.x/

`n
2

dx

D

�
@BX

'0
�
kxkX

�rk � kX.x/

`n
2

dx

D '0.1/

�
@BX

rk � kX.x/

`n
2

dx:

A substitution of this identity into (6.37) give the following bound:

voln�1.@BX/

voln.BX/
6
p
np

'0.1/

� 
@BX

�
�
' ı k � kX

�
.x/ dx

� 1
2

: (6.38)

In particular, for every p > 2 we have

voln�1.@BX/

voln.BX/
6
r
n

p

� 
BX

�
�
k � k

p
X
�
.x/ dx

� 1
2

: (6.39)

It is worthwhile to record (6.38) separately because this estimate is sometimes con-
venient for getting good bounds on voln�1.@BX/. In particular, by using (6.39) when
X is an p̀ direct sum one can obtain an alternative derivation of some of the ensu-
ing estimates. Another noteworthy consequence of (6.37) is when there is a transitive
subgroup of permutations G 6 Sn such that k.x�.1/; : : : ; x�.n//kX D kxkX for all
x 2 Rn and � 2 G. Under this further symmetry assumption, the first inequality
of (6.37) becomes

voln�1.@BX/

voln.BX/
6 n

3
2

��
@BX

�
@k � kX

@x1
.x/

�2
d�X.x/

� 1
2

:

The following lemma provides a probabilistic interpretation of the cone mea-
sure which generalizes the treatment of the special case X D `np by Schechtman–
Zinn [279] and Rachev–Rüschendorf [266].

Lemma 156 (Probabilistic representation of cone measure). Fix n 2 N and let X D
.Rn; k � kX/ be a normed space. Suppose that ' W Œ0;1/! Œ0;1/ is a continuous
function such that '.0/ D 0, '.t/ > 0 when t > 0 and

�1
0
rn�1'.r/ dr <1. Let V

be a random vector in Rn whose density at each x 2 Rn is equal to

1

n voln.BX/
�1
0
rn�1'.r/ dr

'
�
kxkX

�
; (6.40)



170 Volume computations

where we note that (6.40) in indeed a probability density by (6.2). Then, the density
of kVkX at s 2 Œ0;1/ is equal to sn�1'.s/=

�1
0
rn�1'.r/dr . Moreover, the following

two assertions hold:

• V=kVkX is distributed according to the cone measure �X,

• kVkX and V=kVkX are (stochastically) independent.

Proof. The density of kVkX at s 2 Œ0;1/ is equal to

d
ds

Prob
�
kVkX 6 s

� (6.40)
D

d
ds

�
1

n voln.BX/
�1
0
rn�1'.r/ dr

�
sBX

'
�
kxkX

�
dx
�

(6.2)
D

d
ds

�� s
0
t rn�1'.r/ dr�1

0
rn�1'.r/ dr

�
D

sn�1'.s/�1
0
rn�1'.r/ dr

:

The rest of Lemma 156 is equivalent to showing that for every measurable A � @BX

and � > 0,

Prob
�

V

kVkX
2 A j kVkX D �

�
D �X.A/:

To prove this identity, observe first that for every a; b 2 R with a < b we have

voln.Œa; b�A/ D voln
�
b
��
Œ0; 1�A

�
X

�a
b
Œ0; 1�A

���
D .bn � an/ voln.Œ0; 1�A/:

Hence, it follows from the definition (6.1) that

�X.A/ D
voln.Œa; b�A/

voln.Œa; b�@BX/
: (6.41)

Consequently,

Prob
�

V

kVkX
2 A j kVkX D �

�
D lim
"!0

ProbŒV2kVkXA and ��" 6 kVkX 6 �C "�
ProbŒ� � " 6 kVkX 6 �C"�

D lim
"!0

�
.Œ0;1/A/\.Œ��";�C"�@BX/

'.kxkX/ dx�
Œ��";�C"�@BX

'.kxkX/ dx

D lim
"!0

voln.Œ� � "; �C "�A/
voln.Œ� � "; �C "�@BX/

D �X.A/;

where the penultimate step holds as ' is continuous at � and '.�/ > 0, and the final
step uses (6.41).
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Lemma 157. Fix m; n 2 N and p 2 .1;1/. Suppose that X D .Rm; k � kX/ is a
normed space. Let R1; : : : ; Rn be i.i.d. random variables taking values in Œ0;1/
whose density at each t 2 .0;1/ is equal to

p

2.p � 1/�
�
m
p

� t m
2p�2�1e�t

p
2p�2

: (6.42)

Then,
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� �
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#

d�˝nX .x1; : : : ; xn/:

(6.43)

Furthermore,
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krk � k`np.X/k
2
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2
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p

�
�
�
m
p

�
�
�
nmC2p�2

p

� �
@BX

rk � kX
2
`m
2

d�X:

(6.44)

Proof. For almost every x D .x1; : : : ; xn/ 2 `np.X/ we have

rk � k`np.X/.x/ D
1

kxk
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`np.X/

�
kx1k

p�1
X rk � kX.x1/; : : : ; kxnk
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X rk � kX.xn/

�
:

Consequently,

kxk
p�1

`np.X/

rk � k`np.X/� x

kxk`np.X/

�
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2
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2

! 1
2

; (6.45)

where we used the straightforward fact that the gradient of any (finite dimensional)
norm is homogeneous of order 0 (on its domain of definition, which is almost every-
where).

Let
V D .V1; : : : ;Vn/
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be a random vector on `np.X/ whose density at x D .x1; : : : ; xn/ 2 `np.X/ is

1

�
�
1C nm

p

�
volnm

�
B`np.X/

�e�kxkp`np.X/ D 1

�
�
1C nm

p

�
volnm
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B`np.X/

� nY
iD1

e�kxik
p
X :

(6.46)
By combining Lemma 156 with the first equality in (6.36), we see that
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�
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�
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�
B`np.X/

� D nmE

�rk � k`np.X/� V

kVk`np.X/
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.`m
2
/

�
: (6.47)

Also, using the formula from Lemma 156 for the density of kVk`np.X/, for q > �nm
we have

E
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� : (6.48)

Consequently,
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� � volnm�1
�
@B`np.X/

�
volnm

�
B`np.X/

� ; (6.49)

where the first step of (6.49) uses the independence of kVk`np.X/ and V=kVk`np.X/,
by Lemma 156, and the final step of (6.49) is a substitution of (6.47) and the case
q D p � 1 of (6.48). Hence,
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X
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2

! 1
2
#
; (6.50)

where in the last step we used the identity (6.45).
The product structure of the density of V in (6.46) means that V1; : : : ; Vn are

(stochastically) independent. By Lemma 156, for each i 2 ¹1; : : : ; nº the random
vector Vi=kVikX is distributed on @BX according to the cone measure �X, and it is
independent of the random variable

Ri
def
D kVik

2p�2
X ; (6.51)
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whose density at t 2 .0;1/ is equal (using Lemma 156 once more) to

d
dt
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�
kVikX 6 t

1
2p�2

�
D

d
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1
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� t m
2p�2�1e�t

p
2p�2

:

Hence, the identity (6.50) which we established above coincides with the desired
identity (6.43).

To prove the identity (6.44), let R be a random variable whose density at each
t 2 .0;1/ is given by (6.42), i.e., R1; : : : ;Rn are independent copies of R. Then, for
every ˛ > �m=.2p � 2/ we have
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� : (6.52)

Using Lemma 156 (including the independence of Vi=kVikX and kVikX), we have
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rk � kX
2
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d�X; (6.53)

where we recall (6.51) and the last step of (6.53) is the case ˛ D 1 of (6.52). At the
same time,
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@B`np.X/

rk � k`np.X/2`n
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2
/

d�`np.X/; (6.54)

where the first step of (6.54) uses the identity (6.45), the second step of (6.54) uses
the independence of kVk`np.X/ and V=kVk`np.X/ per Lemma 156, and the final step of
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uses the case q D 2p � 2 of (6.48) and Lemma 156. The desired identity (6.44) now
follows by substituting (6.54) into (6.53).

The following lemma will have a central role in the proof of Theorems 24 and 48.

Lemma 158. Suppose that n;m 2 N and ˇ > 0 satisfy ˇ 6 m�1
2

. Then,

81 6 p 6 m; iq
�
B`np.�mˇ /

�
�
p
nm D

q
dim

�
`np.�

m
ˇ
/
�
:

Recall that the normed space �m
ˇ
D .Rm; k � k�m

ˇ
/ was defined in (6.31) and (6.32).

Prior to proving Lemma 158, we will show how it implies Theorem 48, and then
deduce Theorem 24.

Proof of Theorem 48 assuming Lemma 158. By the assumption (1.73) of Theorem
48, write nD km for some k;m 2N with max¹2;pº6m6 ep . Then .m� 1/=2 > 0
and m > p, so we may apply Lemma 158 with n replaced by k and ˇ D .m � 1/=2.
Denoting Y D `kp.�mˇ /, the conclusion of Lemma 158 is that iq.BY/ �

p
n.

Y is canonically positioned (it is a space from Example 40). To prove Theorem 48,
it remains to check that k � kY � k � k`np , where, since n D km, we identify Rn with
Mk�n.R/, namely we identify `np with `kp.`

m
p /.

In fact, for any ˇ > 0 (not only our choice ˇ D .m � 1/=2 above) we will check
that

8x 2 Rm;
�
1 � e�

ˇ
m

�
kxk�m

ˇ
6 kxk`m1 6 kxk�mˇ : (6.55)

It follows from (6.55) that k � k�m
ˇ
� k � k`m1 when ˇ � m. But, k � k`mp � k � k`m1 by

the assumption ep > m. So,

ˇ � n H) k � kY D k � k`kp.�mˇ /
� k � k`kp.`

m
1/
� k � k`kp.`

m
p /
D k � k`np :

Fix x 2 Rm. To verify the second inequality in (6.55), the definition (6.32) givesPm
iD1 ˇ .jxi j=s/D1when 0< s6 kxk`m1 , so kxk�m

ˇ
>kxk`m1 by (6.28) and (6.31).

For the first inequality in (6.55), by direct differentiation it is elementary to verify that
the function u 7! log.1=.1 � u//=u is increasing on the interval Œ0; 1/. Thus,
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Hence, for every fixed 0 < ˛ < 1,
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jxi j 6
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kxk`m1 :

(6.56)
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Provided ˛ > 1 � e�ˇ=m, the choice s D m log.1=.1 � ˛//kxk`m1=.˛ˇ/ satisfies the
requirement s > kxk`m1=˛, so we get from (6.28) and (6.56) that

kxk�m
ˇ
6
m log

�
1
1�˛

�
˛ˇ

kxk`m1 : (6.57)

The optimal choice of ˛ in (6.57) is ˛ D 1 � e�ˇ=m, giving the first inequality
in (6.55).

Having proved Theorem 48 (assuming Lemma 158, which we will soon prove),
we have also already established Theorem 24 provided n 2 N and p > 1 satisfy the
divisor condition (1.73). Indeed, the space Y that Theorem 48 provides is canonically
positioned and hence by the discussion in Section 1.6.2 it is also in its minimum
surface area position, so by [104, Proposition 3.1] we have

MaxProj.BY/

voln.BY/
�

voln�1.@BY/

voln.BY/
p
n
D

�
iq.BY/
p
n

�
1

voln.BY/
1
n

�
1

voln.B`np /
1
n

(6.4)
� n

1
p ;

where the penultimate step uses the fact that iq.BY/ �
p
n by Theorem 48, and also

that by Theorem 48 we have k � kY � k � k`np , which implies that the nth root of the
volume of the unit ball of Y is proportional to the nth root of the volume of the unit
ball of `np .

The deduction of Theorem 24 for the remaining values of p > 1 and n 2 N uses
the following identity, which we will also use in the proof of Proposition 164 below.

Lemma 159. Fix n;m 2 N. Suppose that K � Rn and L � Rm are convex bodies.
Then,

MaxProj.K � L/
volnCm.K � L/

D

�
MaxProj.K/2

voln.K/2
C

MaxProj.L/2

volm.L/2

� 1
2

:

Proof. Fix z 2 SnCm�1. By Cauchy’s projection formula [102] that we recalled in
(1.30), we have

volnCm�1
�
Projz?.K � L/

�
D
1

2

�
@.K�L/

ˇ̌
hz;NK�L.w/i

ˇ̌
dw;

where NK�L.w/ is the (almost-everywhere defined) unit outer normal to @.K � L/
at w 2 @.K � L/. Now,

@.K � L/ D .@K � L/ [ .K � @L/ and volnCm�1
�
.@K � L/ \ .K � @L/

�
D 0:

Consequently,
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D
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hz;NK�L.w/i
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dw C
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2
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K�@L
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hz;NK�L.w/i

ˇ̌
dw:
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If we write each w 2 Rn as w D .w1; w2/ where w1 2 Rn and w2 2 Rm, then
for almost every (with respect to the .nC m � 1/-dimensional Hausdorff measure)
w 2 @K �L we have NK�L.w/ D .NK.w1/; 0/. Also, NK�L.w/ D .0;NL.w2// for
almost every w 2 K � @L. We therefore have
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2
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2
L
�
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2
;

where the last step is two applications of the Cauchy projection formula (in Rn and
Rm). Hence,
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:

Consequently,
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:

We can now prove Theorem 24 in its full generality using the fact that we proved
Theorem 48.

Proof of Theorem 24. Let m 2 N satisfy max¹2; pº 6 m 6 ep (if 1 6 p 6 2, then
takemD 2, and if p > 2, then such anm exists because ep � p > e2 � 2 > 5). Write
nD kmC r for some k 2N [ ¹0º and r 2 ¹0; : : : ;m� 1º. If r D 0, thenm divides n
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and we can conclude by applying Theorem 48 as we did above (recall the paragraph
immediately before Lemma 159). So, assume from now that r > 1.

By Theorem 48 there is a canonically positioned normed space YD .Rkm;k � kY/

such that iq.BY/�
p
km and k � kY � k � k`kmp

. Define Ynp DY˚1�rˇ , where ˇ� r
and iq.�r

ˇ
/ �
p
r ; such ˇ exists trivially if r D 1, and if r > 2, then its existence

follows from an application of Lemma 158 (with the choices nD 1 and p D mD r).
Since ˇ � r , by (6.55) we have k � k�r

ˇ
� k � k`r1 . Also, k � k`r1 � k � k`rp since

ep > m > r . Consequently, for every .x; y/ 2 Rkm �Rr we have
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¯
� max

®
kxk`kmp
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C kyk
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� 1
p :

Recalling the definition of Ynp , this means that k � kYnp � k � k`np .
Since both Y and �r

ˇ
are canonically positioned and hence in their minimum

surface area positions,
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Consequently, since BYnp D BY � B�r
ˇ

, by Lemma 159 we conclude that
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The following lemma will be used in the proof of Lemma 158.

Lemma 160. Suppose thatm 2 N, r 2 N [ ¹0º and ˇ > 0 satisfy ˇ 6 mCr�2
2

. Then
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eˇ j�1j �
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!
d�`m

1
.�/
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ˇr.m � 1/Š

.mC r � 1/Š
: (6.58)

Proof. Let H1; : : : ;Hm be independent random variables whose density at each s 2 R
is equal to e�jsj=2. Then, jH1j; : : : ; jHmj are exponential random variables of rate 1,



178 Volume computations

and therefore if we denote

�
def
D

mX
iD1

jHi j;

then � has �.m; 1/ distribution, i.e., its density at s > 0 equals sm�1e�s=.m � 1/Š;
the proof of this standard probabilistic fact can be found in, e.g., [89]. By [266, 279]
(or Lemma 156), the random vector .H1; : : : ;Hm/=� is distributed according to �`m

1

and is independent of � . Thus, for every k 2 N,
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:

Consequently,
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.mC r � 2/Š

� 1

0

eˇt .1 � t /mCr�2 dt; (6.59)

where the last step is the integral form of the remainder of the Taylor series of the
exponential function.

It is mechanical to check that (6.58) holds for m 2 ¹1; 2º, so assume for the rest
of the proof of Lemma 160 that m > 3. We then see from (6.59) that our goal (6.58)
is equivalent to showing that

� 1

0

eˇt .1 � t /mCr�2 dt �
1

mC r
: (6.60)

For the upper bound in (6.60), estimate the integrand using

.1 � t /mCr�2 6 e�.mCr�2/t

to get
� 1

0

eˇt .1 � t /mCr�2 dt 6
� 1

0

e�.mCr�2�ˇ/t dt

D
1 � e�.mCr�2�ˇ/

mC r � 2 � ˇ
�

1

mC r
;
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where we used ˇ < mCr�2
2

. For the lower bound in (6.60), since .1 � t /mCr�2 & 1
when 0 6 t 6 1

mCr�2
,

� 1

0

eˇt .1 � t /mCr�2 dt >
� 1

mCr�2

0

eˇt .1 � t /mCr�2 dt

&
� 1

mCr�2

0

eˇt dt D
e

ˇ
mCr�2 � 1

ˇ
�

1

mC r
;

where in the last step we used the assumption ˇ < mCr�2
2

once more.

Proof of Lemma 158. By combining the case g � 1 of (6.30) with (6.34), we see that
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.2ˇ/m

eˇmŠ
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Since we are assuming in Lemma 158 that ˇ . m, in combination with (6.4) we get
from (6.61) that

volnm
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n
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; (6.62)

At the same time, by applying Cauchy–Schwarz to the identity (6.43) of Lemma 157
we have
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where the random variable R1 is as in Lemma 157, i.e., its density is in (6.42), and the
last step is an application the evaluation (6.52) of its moments and Stirling’s formula,
using the assumption 1 6 p 6 m.

Recalling (6.31) and (6.32), even though k � k�m
ˇ

is defined implicitly by (6.28),
we can computerk � k�m

ˇ
.�/ for almost every � 2 @B�m

ˇ
as the unique vector v 2Rm

that is normal to @B�m
ˇ

and satisfies hv; �i D 1. Indeed, since @�m
ˇ

is parameterized
as the zero set of the function ‰ˇ W Rn ! Rn that is given by

8x 2 Rn; ‰ˇ .x/
def
D 1 �

mX
iD1

 ˇ .jxi j/;
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the following vector is normal to @B�m
ˇ

for almost every � 2 @B�m
ˇ

:
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.�/D �ˇ .�/vˇ .�/ for almost every � 2 @B�m

ˇ
, where �ˇ .�/ 2R is such

that h�ˇ .�/vˇ .�/; �i D 1, i.e., �ˇ .�/ D �1=hvˇ .�/; �i. This shows that for almost
every � 2 @B�m

ˇ
,

rk � k�m
ˇ
.�/ D

1Pm
iD1 j�i j 

0
ˇ
.j�i j/

�
 0ˇ .j�1j/ sign.�1/; : : : ;  0ˇ .j�mj/ sign.�m/

�
D

1Pm
iD1

j�i j
1�j�i j

�
sign.�1/
1 � j�1j

; : : : ;
sign.�m/
1 � j�mj

�
; (6.64)

where the first equality in (6.64) holds for any  ˇ that satisfies the conditions of
Lemma 154, and for the second equality in (6.64) recall the definition (6.32) of the
specific  ˇ that we are using here. Therefore,
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where the first step of (6.65) is a substitution of (6.64) into (6.33) while using (6.34)
and that �1

ˇ
.t/D 1� e�ˇt for every t > 0, the second step of (6.65) uses the inequal-

ity et > t C 1 which holds for any t 2 R, and the final step of (6.65) is an application
of Lemma 160. Now, a combination of (6.63) and (6.65) gives
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By combining (6.62) and (6.66) we conclude that
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The reverse inequality, namely iq.B`np.�mˇ // &
p
nm, follows from the isoperimetric

theorem (1.12), so the proof of Lemma 158 is complete. Note that this also shows
that all of the inequalities that we derived in the above proof of Lemma 158 are in
fact asymptotic equivalences. This holds in particular for (6.66), i.e.,
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:

The following asymptotic evaluation of the surface area of the sphere of `np.`
m
q /

in the entire range of possible values of p; q > 1 and m; n 2 N is an application of
Lemma 157; by (6.7) it is equivalent to (1.82).

Theorem 161. For every n;m 2 N and p; q 2 Œ1;1� we have
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Proof. By continuity we may assume that p; q 2 .1;1/. Suppose that G is a sym-
metric real-valued random variable whose density at each s 2 R is equal to

1

2�
�
1C 1

q

�e�jsjq : (6.67)

Let G1; : : : ;Gm be independent copies of G. Set U
def
D .G1; : : : ;Gm/2Rm. By the prob-

abilistic representation of the cone measure on @B`mq in [266, 279] (or Lemma 156),
the random vector U=kUk`mq is distributed according to the cone measure on @B`mq ,
and moreover it is independent of kUk`mq .

Consider the following random variable:

N
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: (6.68)

If we let N1; : : : ;Nn;R1; : : : ;Rn be independent random variables such that N1; : : : ;Nn
have the same distribution as N, and R1; : : : ;Rn are as in Lemma 157, then Lemma
157 gives that
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where for (6.69) we introduce the following notation:

Z
def
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nX
iD1

RiNi

! 1
2

: (6.70)

Let R be a random variable that takes values in Œ0;1/ whose density at each
t 2 .0;1/ is given by (6.42), i.e., R1; : : : ;Rn are independent copies of R. We com-
puted the moments of R in (6.52) and by Stirling’s formula this gives the following
asymptotic evaluations:
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We also need an analogous asymptotic evaluation of moments of the random vari-
able N in (6.68). Observe that the random variables N and kUk`mq are independent,
since U=kUk`mq and kUk`mq are independent and N is a function U=kUk`mq . Conse-
quently, for every ˇ > 0 we have
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Since (e.g., by Lemma 156) the density of kUk`mq at s 2 .0;1/ is proportional to
sm�1e�s

q
, we can compute analogously to (6.48) that
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Therefore, (6.74) implies that
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By considering each of the values ˇ 2 ¹1
2
; 1; 2º in this identity and using Stirling’s

formula, we get the following asymptotic evaluations of moments of N in terms of
moments of kUk`m
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Due to (6.75), (6.76), (6.77), we will next evaluate the corresponding moments of
kUk`m
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. Recalling the density (6.67) of G, for every ˇ > �1=.2q � 2/ we have
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We therefore have
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Consequently, using Hölder’s inequality we get the following estimate:
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This simplifies to give
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At the same time, by Cauchy–Schwarz,
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Also, by the subadditivity of the square root on Œ0;1/,
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By combining (6.83) and (6.84) we see that (6.82) is in fact sharp, i.e.,
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By substituting (6.85) into (6.75), and correspondingly (6.79) into (6.76) and
(6.80) into (6.77), we get the following asymptotic identities:
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By combining (6.72) and (6.87) we see that
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Using Cauchy–Schwarz, this implies the following upper bound on the final term
in (6.69):
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Also, recalling (6.70) and using the subadditivity of the square root on Œ0;1/ in
combination with (6.71) and (6.86), we have the following additional upper bound on
the final term in (6.69):
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It follows from (6.89) and (6.90) that
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(6.91)

We will next prove that (6.91) is optimal in all of the six ranges that appear
in (6.91); by (6.69) and (6.6), this will complete the proof of Theorem 161. Recall-
ing (6.70) and using (6.72), (6.73), (6.87), (6.88), the fourth moment of Z can be
evaluated (up to universal constant factors) as follows:
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By using Hölder’s inequality similarly to (6.81), we conclude that

pn
1
pm

1
pEŒZ� > pn

1
pm

1
p

�
E
�
Z2
�� 3
2�

E
�
Z4
�� 1
2

(6.89)^(6.92)
� n1C

1
pm

1
2C

1
q

p
max¹m;pºmin¹m; qºp

max¹nm; pº

D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

n1C
1
pm1C

1
q m 6 min

®
p
n
; q
¯
;

p
qn1C

1
pm

1
2C

1
q q 6 m 6 p

n
;

p
pn

1
2C

1
pm

1
2C

1
q

p
n
6 m 6 min¹p; qº;

p
pqn

1
2C

1
pm

1
q max

®
p
n
; q
¯
6 m 6 p;

n
1
2C

1
pm1C

1
q p 6 m 6 q;

p
qn

1
2C

1
pm

1
2C

1
q m > max¹p; qº:



186 Volume computations

Lemma 162 below applies Theorem 161 iteratively to obtain an upper bound on
the surface area of the unit sphere of nested p̀ norms on k-tensors (the case k D 2
corresponds to n by m matrices equipped with the `np.`

m
q / norm). The second part

of Lemma 162, namely the conclusion (6.94) below, is an implementation of the
approach towards Conjecture 9 for the hypercube that we described in Remark 56.

Lemma 162. Suppose that k; n1; : : : ; nk 2 N and p1; : : : ; pk 2 Œ1;1� are such that
n1 > max¹3; p1 � 2º and n1n2 � � � nj�1 > pj � 2 for every j 2 ¹2; : : : ; kº. Define
normed spaces Y0;Y1; : : : ;Yk by setting Y0 D R and inductively Yj D `

nj
pj .Yj�1/

for j 2 ¹1; : : : ; kº. Then,

voln1���nk�1
�
@BYk

�
voln1���nk

�
BYk

� 6 eO.k/pp1 kY
jD1

n

1
2C

1
pj

j : (6.93)

Hence, using the natural identification of the vector space that underlies Yk with
Rdim.Yk/ D Rn1n2���nk , if in addition we have n1 D O.1/ and pj D log nj for every
j 2 ¹1; : : : ; kº, then

BYk � B`dim.Yk/
1

� eO.k/BYk and
MaxProj

�
BYk

�
voldim.Yk/

�
BYk

� 6 eO.k/; (6.94)

where we recall the notation (1.53).

Proof. Suppose that n;m 2 N and p 2 .1;1/. By applying Cauchy–Schwarz to the
right-hand side of (6.43) while using the case ˛ D 1 of (6.52), we see that for every
normed space X D .Rm; k � kX/ we have
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(6.95)
If also m > max¹3; p � 2º, then by Stirling’s formula (6.95) gives the following esti-
mate:
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By continuity we may assume that p1; : : : ; pk 2 .1;1/. Denote d0 D 1 and for
j 2 ¹1; : : : ; kº denote dj D dim.Yj / D n1n2 � � � nj . We will naturally identify Yj
with .Rdj ; k � kYj /. As Yk D `

nk
pk .Yk�1/, we deduce from (6.96) that
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At the same time, by (6.44) for every j 2 ¹1; : : : ; kº we have�
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If also j > 2, then dj�1 > n1 > 3 and by assumption dj�1 > pj � 2, so by Stirling’s
formula (6.98) gives that for every j 2 ¹2; : : : ; kº we have
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When j D 1 we have d0 D 1 and n1 > max¹3; p1 � 2º, and therefore by Stirling’s
formula (6.98) gives

�
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2
`
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Hence, by applying (6.99) iteratively in combination with the base case (6.100), we
conclude that
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A substitution of (6.101) into (6.97) yields the desired estimate (6.93).
To deduce the conclusion (6.94), note that for every j 2 ¹1; : : : ; kº we have the

point-wise bounds
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It follows by induction that
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where the final step holds if pj D log nj for every j 2 ¹1; : : : ; kº. This implies the
inclusions in (6.94). Furthermore, Yk belongs to the class of spaces from Example 40.
Hence Yk is canonically positioned and by the discussion in Section 1.6.2 know that
BY0 is in its minimum surface area position. Therefore,
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where the first step uses [104, Proposition 3.1], the second step is (6.93), and the final
step holds because p1DO.1/ and pj D lognj . This completes the proof of (6.94).

The following technical lemma replaces a more ad-hoc argument that we previ-
ously had to deduce Proposition 164 below from Lemma 162; it is due to Noga Alon
and we thank him for allowing us to include it here. This lemma shows that the set of
super-lacunary products n1n2 � � � nk that can serve as dimensions of the space Yk in
Lemma 162 for which (6.94) holds is quite dense in N.

Lemma 163. For every integer n > 3 there are k; m 2 N [ ¹0º and integers n1 <
n2 < � � � < nk that satisfy

• n D n1n2 � � �nk Cm,

• n1 2 ¹6; 7º and niC1 6 2ni 6 n3iC1 for every i 2 ¹1; : : : ; k � 1º,

• m 6 .logn/1Co.1/.

Prior to proving Lemma 163, we will make some preparatory (mechanical) obser-
vations for ease of later reference. Note first that the conclusion niC1 6 2ni 6 n3iC1
of Lemma 163 can be rewritten as

8i 2 ¹1; : : : ; k � 1º; log2 niC1 6 ni 6 log 3p
2
niC1:

It follows by induction that

8i 2 ¹1; : : : ; kº; logŒk�i�2 nk 6 ni 6 logŒk�i�3
p
2
nk; (6.102)

where, as we also did in (1.131), we denote the iterates of a function ' W .0;1/! R
by 'Œj � D ' ı 'Œj�1� W .'Œj�1�/�1.0;1/! R for each j 2 N, with the convention
'Œ0�.x/ D x for every x 2 .0;1/. Since n1 2 ¹6; 7º, it follows from (6.102) that

k � log�nk . log�n: (6.103)

Consequently,
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. .logn/2 C nk.lognk/.log lognk/O.log�nk/ . .logn/2 C nk.lognk/2:

This implies the following (quite crude) bounds on nk:

n

.logn/2
. nk .

n

logn
: (6.104)

Note in particular that thanks to (6.104) we know that (6.103) can be improved to
k � log�n.
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Proof of Lemma 163. Let M � N be the set of all those x 2 N that can be written as
x D n1n2 � � �nk for some k;n1; : : : ; nk 2N that satisfy nk > nk�1 > � � �> n1 2 ¹6;7º
and

8i 2 ¹1; : : : ; k � 1º; niC1 6 2ni 6 n3iC1: (6.105)

The goal of Lemma 163 is to show that there exists x 2M such that

n � .logn/1Co.1/ 6 x 6 n: (6.106)

By adjusting the o.1/ term, we may assume that n is sufficiently large, say, n > n.0/
for some fixed n.0/ 2 N that will be determined later. We will then find x 2M with
a representation x D n1n2 � � �nk as above and

n � n1n2 � � �nk�1 6 x 6 n: (6.107)

This would imply the desired bound (6.106) because
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(6.104)
. .logn/1Co.1/:

We will first construct ¹yiº1iD1 �M such that y1 D 7 and yi < yiC1 < 12yi for
every i 2 N. Furthermore, for each i 2 N there are k; n1; : : : ; nk 2 N with yi D
n1n2 � � �nk such that nk > nk�1 > � � � > n1 2 ¹6; 7º and

8j 2 ¹1; : : : ; k � 1º; n2jC1 6 2
nj 6 2n2jC1; (6.108)

which is a more stringent requirement than (6.105). Note in passing that (6.108)
implies the (crude) bound
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�
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To verify (6.109), note that since ¹nj ºkjD1 is strictly increasing and the second inequal-
ity in (6.108) holds, it is mechanical to check that n1 > 6, n2 > 7, n3 > 8, n4 > 12
and njC1 > 3nj for every j 2 ¹4; 5; : : : ; k � 1º. So,
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Suppose that yi has been defined with a representation yi D n1n2 � � �nk that fulfils
the above requirements. Definem0;m1; : : : ;mk 2N withm0 D 6,mk D nk C 1 and
mj 2 ¹nj ; nj C 1º for all j 2 ¹1; : : : ; k � 1º by induction as follows. Assuming that
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mjC1 has already been constructed for some j 2 ¹1; : : : ; k � 1º, let

mj
def
D

´
nj if m2jC1 6 2nj ;
nj C 1 if m2jC1 > 2

nj :
(6.110)

Definition (6.110) implies that mj < mjC1. Indeed, nj < njC1 so if mj D nj ,
then nj < njC1 6 mjC1 since mjC1 > njC1 by the induction hypothesis. On the
other hand, if mj D nj C 1, then since the first inequality in (6.108) holds, the defi-
nition (6.110) necessitates that mjC1 D nj C 1, so mj < mjC1 in this case as well.

Next, Definition (6.110) also ensures that the requirement (6.108) is inherited by
¹mj º

k
jD1, i.e.,

8j 2 ¹1; : : : ; k � 1º; m2jC1 6 2
mj 6 2m2jC1: (6.111)

Indeed, if mj D nj , then m2jC1 6 2nj D 2mj by (6.110), i.e., the first inequality
in (6.111) holds, and the second inequality in (6.111) holds because mjC1 > njC1
and (6.108) holds. On the other hand, ifmj Dnj C 1, then by (6.110) we havemjC1D
nj C 1 andm2jC1 > 2

nj , which directly gives the second inequality in (6.111), and in
combination with (6.108) we also get the first inequality in (6.111) because

mjC1

2mj
D
.nj C 1/

2

2njC1

(6.108)
6

.nj C 1/
2

2n2j
6 1;

where the final step uses nj > 6, though nj > 1=.
p
2 � 1/ D 2:414 : : : is all that is

needed for this purpose.
If the above construction producesm1 2 ¹6; 7º, then define yiC1 Dm1m2 � � �mk .

Otherwise necessarily m1 D n1 C 1 D 8, so (6.111) holds also when j D 0 (recall
that m0 D 6, hence m21 D 26 D 2m0), so we can define yiC1 D m0m1 � � �mk and
thanks to (6.111) in both cases yiC1 has the desired form. Moreover,

yiC1

yi
6 6

kY
jD1

�
1C

1

nj

�
(6.109)
6 12:

This completes the inductive construction of the desired sequence ¹yiº1iD1 �M.
With the sequence ¹yiº1iD1 �M at hand, will next explain how to obtain for each

integer n > n.0/, where n.0/ 2 N is a sufficiently large universal constant that is yet
to be determined, an element x 2M that approximates n as in (6.107). Let i 2 N be
such that yi 6 n 6 yiC1 and denote y D yi . Thus, there are k; n1; : : : ; nk 2 N for
which y D n1n2 � � �nk such that nk > nk�1 > � � � > n1 2 ¹6; 7º and (6.108) holds.

If y > n � n1n2 � � �nk�1, then x D y has the desired approximation property, so
suppose from now that y < n � n1n2 � � �nk�1, or equivalently

n

n1n2 � � �nk�1
>

y

n1n2 � � �nk�1
C 1 D nk C 1:
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Hence, if we define

n0k
def
D

j n

n1n2; : : : ; nk�1

k
and x D n1n2 � � �nk�1n

0
k;

then n0
k
> nk C 1 & n=.log n/2, where we used (6.104). Consequently, recalling

(6.102), there is a universal constant n.0/ 2 N such that if n > n.0/, then n0
k
>

max¹144; nk�1º. Thus, the sequence n1; n2; : : : ; nk�1; n0k is still increasing. Since
by design x satisfies (6.107), it remains to check that x 2M, i.e., that (6.105) holds.
Since n1; : : : ; nk are assumed to satisfy the more stringent requirement (6.108), we
only need to check that

n0k 6 2
nk�1 6 .n0k/

3: (6.112)

The second inequality in (6.112) is valid since (6.108) holds and n0
k
> nk . To justify

the first inequality in (6.112), observe that y 6 n 6 12y, as yiC1 6 12yi . Conse-
quently,

n0k 6 n=.n1n2 � � �nk�1/ 6 12y=.n1n2 � � �nk�1/ D 12nk :

Therefore,

2nk�1
(6.108)
> n2k >

�
n0
k

12

�2
> n0k;

where the last step uses the fact that n0
k
> 144.

We are now ready to extend the conclusion (6.94) of Lemma 162 to all dimensions
n 2 N. Namely, we will prove the following proposition, which comes very close to
proving Conjecture 9 for the hypercube Œ�1; 1�n via a route that differs from the way
by which we proved Theorem 24.

Proposition 164. For any n 2 N there is a normed space Y D .Rn; k � kY/ that for
every x 2 Rn X ¹0º we have

kxk`n1 6 kxkY 6 eO.log�n/
kxk`n1 and

voln�1
�
Projx?BY

�
voln.BY/

6 eO.log�n/:

Furthermore, Y can be taken to be an `1 direct sum of nested p̀ spaces as in
Lemma 162.

Proof. Let M � N be the set of integers from the proof of Lemma 163, namely m 2
M if and only if there are integers nk > nk�1 > � � � > n1 2 ¹6; 7º that satisfy (6.105)
such that m D n1n2 � � � nk . By Lemma 162, there exists C > 1 such that for every
m 2M there is a normed space Ym D .Rm; k � kYm/ that satisfies

k � k`m1 6 k � kYm 6 eC log�m
k � k`m1 and

MaxProj
�
BYm

�
voln

�
BYm

� 6 eC log�m:
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By applying Lemma 163 iteratively write nDm1C � � � CmsC1 form1; : : : ;ms 2
M and msC1 2 ¹1; 2º that satisfy miC1 6 .logmi /c for every i 2 ¹1; : : : ; sº, where
c > 1 is a universal constant. Denote YmsC1 D `msC11 and consider the `1 direct sum

Y def
D Ym1 ˚1 Ym2 ˚1 � � � ˚1 YmsC1 D .Rn; k � kY/:

Then k � k`n1 6 k � kY 6maxi2¹1;:::;sC1º eC log�mi k � k
`
mi
1
6 eC log�nk � k`n1 . We claim

that
MaxProj.BY/

voln.BY/
6 eO.log�n/:

SinceBYDBYm1 �BYm2 � � � � �BYmsC1 , by an inductive application of Lemma
159 we have
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volmi

�
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�2
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e2C log�mi

! 1
2

. eC log�n;

where the first step uses Lemma 159, the penultimate step is our assumption on Ymi ,
and the final step has the following justification. Recall that miC1 6 .logmi /c for
every i 2 ¹1; : : : ; sº, where c > 1 is a universal constant. So,miC2 6 cc.log logmi /c

for every i 2 ¹1; : : : ; s � 1º. Fix n0 2 N such that cc.log log n/c 6 log n for every
n > n0. Then, miC2 6 logmi if mi > n0, hence log�miC2 6 log�mi � 1. Let i0 be
the largest i 2 ¹1; : : : ; s C 1º for which mi < n0. Then,

log�m2i 6 log�m2 � i 6 log�n � i

and log�m2jC1 6 log�m1 � j 6 log�n � j if 2i; 2j C 1 2 ¹1; : : : ; i0 � 1º. We also
have j¹i0; : : : ; s C 1ºj D O.1/. Consequently,

sC1X
iD1

e2C log�mi 6 e2C log�n
1X
kD0

e�2Ck CO.1/ . e2C log�n:

Remark 165. A straightforward way to attempt to compute the surface area of the
unit sphere of a normed space XD .Rn;k � kX/ is to fix a direction z 2 Sn�1 and con-
sider @BX as the union of the two graphs of the functions ‰X

z ;  
X
z W Projz?.BX/! R

that are defined by setting ‰X
z .x/ and  X

z .x/ for each x 2 Projz?.BX/ to be, respec-
tively, the largest and smallest s 2 R for which x C sz 2 @BX. We then have

voln�1.@BX/ D

�
Proj

z?
.BX/

q
1C kr‰X

z .x/k
2
`n
2

dx

C

�
Proj

z?
.BX/

q
1C kr X

z .x/k
2
`n
2

dx: (6.113)
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When X D `np for some p 2 .1;1/ and z D en,

8x 2 Proje?n
�
B`np

�
D B`n�1p

; ‰
`np
en .x/ D � 

`np
en .x/ D

�
1 � kxk

p

`n�1p

� 1
p :

Therefore, (6.113) becomes

voln�1
�
@B`np

�
voln�1

�
B`n�1p

� D 2 
B
`n�1p

 
1C .1 � kxk

p

`n�1p

/�
2.p�1/
p

n�1X
iD1

jxi j
2.p�1/

! 1
2

dx:

By [31], a point chosen from the normalized volume measure on B`n�1p
is equidis-

tributed with �
jG1j

p
C � � � C jGn�1j

p
C Z

�� 1p .G1; : : : ;Gn�1/ 2 Rn�1;

where G1; : : : ;Gn�1;Z are independent random variables, the density of G1; : : : ;Gn�1
at s 2 R is equal to 2�.1C 1=p/�1e�jsj

p
and the density of Z at t 2 Œ0;1/ is equal

to e�t . Consequently,

voln�1
�
@B`np

�
voln�1

�
B`n�1p

� D 2E" 1C Z�
2.p�1/
p

n�1X
iD1

jGi j
2.p�1/

! 1
2
#
: (6.114)

Optimal estimates on moments such as the right-hand side of (6.114) were derived
(in greater generality) in [225], using which one can quickly get asymptotically sharp
bounds on the left-hand side of (6.114). It is possible to implement this approach to
get an alternative treatment of `np.`

m
q /, though it is significantly more involved than

the different way by which we proceeded above, and it becomes much more tedious
and technically intricate when one aims to treat hierarchically nested p̀ norms as we
did in Lemma 162. Nevertheless, an advantage of (6.113) is that it applies to normed
spaces that do not have a product structure as in Lemma 157, which is helpful in other
settings that we will study elsewhere.

6.2 Negatively correlated normed spaces

Our goal here is to further elucidate the role of symmetries in the context of the
discussion in Section 1.6.2. Fix n 2 N and  > 1. Say that a normed space X D
.Rn; k � kX/ is  -negatively correlated if the standard scalar product h�; �i on Rn is
invariant under its isometry group Isom.X/, i.e., Isom.X/ 6 On, and there exists a
Borel probability measure � on Isom.X/ such that

8x; y 2 Rn;

�
Isom.X/

jhUx; yij d�.U / 6

p
n
kxk`n

2
kyk`n

2
: (6.115)
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We were inspired to formulate this notion by the proof of [286, Theorem 1.1]. It is
tailored for the purpose of bounding volumes of hyperplane projections of BX from
above in terms of the surface area of @BX, as exhibited by the following lemma which
generalizes the reasoning in [286].

Lemma 166. Fix n 2 N and  > 1. If X D .Rn; k � kX/ is  -negatively correlated,
then

MaxProj.BX/ 6


2
p
n

voln�1.@BX/:

Proof. Recall that for every y 2 @BX at which @BX is smooth we denote the unit outer
normal to @BX at y by NX.y/ 2 S

n�1. By the Cauchy projection formula (1.30) for
every x 2 Sn�1 we have

voln�1
�
Projx?.BX/

�
D
1

2

�
@BX

jhx;NX.y/ij dy:

Since every U 2 Isom.X/ is an orthogonal transformation and NX ı U
� D U � ıNX

almost surely on @BX,

voln�1
�
Projx?.BX/

�
D
1

2

�
@BX

jhUx;NX.y/ij dy:

By integrating this identity with respect to �, we therefore conclude that

voln�1
�
Projx?.BX/

�
D
1

2

�
@BX

��
Isom.X/

jhUx;NX.y/ij d�.U /
�

dy

6


2
p
n

voln�1.@BX/;

where we used (6.115) and the fact that kxk`n
2
D 1 and kNX.y/k`n

2
D 1 for almost

every y 2 @BX.

By substituting Lemma 166 into Theorem 76 and using (1.96), we get the follow-
ing corollary.

Corollary 167. Fix n 2 N and  > 1. If X D .Rn; k � kX/ is  -negatively correlated,
then

e.X/ . SEP.X/ 6 2
voln�1.@BX/ diam`n

2
.BX/

voln.BX/
p
n

:

Corollary 167 generalizes Corollary 45 since any canonically positioned normed
space is 1-negatively correlated. Indeed, suppose that

X D .Rn; k � kX/

is canonically positioned. Recall that in Section 1.6.2 we denoted the Haar probability
measure on Isom.X/ by hX. Fix x; y 2 Rn. The distribution of the random vector
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Ux when U is distributed according to hX is Isom.X/-invariant, and therefore it is
isotropic. Hence,

�
Isom.X/

jhUx; yij dhX.U / 6
��

Isom.X/
hUx; yi2 dhX.U /

� 1
2

(1.69)
D
kyk`n

2
p
n

��
Isom.X/

kUxk2`n
2

dhX.U /

� 1
2

D
1
p
n
kxk`n

2
kyk`n

2
;

where the final step uses the fact that each U 2 Isom.X/ is an orthogonal transforma-
tion.

One way to achieve (6.115), which is close in spirit to the considerations in [286],
is when there are � � ¹�1; 1ºn and … � Sn such that U";� 2 Isom.X/ for every
."; �/ 2 � �…, where U";� 2 GLn.R/ is given by

8x D .x1; : : : ; xn/ 2 Rn; U";�x
def
D
�
"1x�.1/; : : : "nx�.n/

�
;

and also there are ˛; ˇ > 0 such that

8w 2 Rn;
1

j�j

X
"2�

jh"; wij 6 ˛kwk`n
2

(6.116)

and

8i; j 2 ¹1; : : : ; nº; j¹� 2 … W �.i/ D j ºj 6 ˇ
j…j

n
: (6.117)

Under these assumptions, X is  -negatively correlated with  D ˛
p
ˇ. Indeed, we

can take � in (6.115) to be the uniform distribution over the finite set

¹U";� W ."; �/ 2 � �…º � Isom.X/;

since every x; y 2 Rn satisfy

1

j� �…j

X
.";�/2��…

jhU";�x; yij
(6.116)
6

1

j…j

X
�2…

˛

 
nX
iD1

.x�.i/yi /
2

! 1
2

6 ˛

 
nX
iD1

�
1

j…j

X
�2…

x2�.i/

�
y2i

! 1
2

D ˛

 
nX
iD1

 
1

j…j

nX
jD1

j¹� 2 … W �.i/Dj ºjx2j

!
y2i

!1
2

(6.117)
6

˛
p
ˇ

p
n
kxk`n

2
kyk`n

2
:
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Condition (6.116) can be viewed as a negative correlation property of the coor-
dinates of sign vectors that are chosen uniformly from � . Condition (6.117) roughly
means that for each i 2 ¹1; : : : ;nº the sets ¹� 2… W �.i/D 1º; : : : ; ¹� 2… W �.i/D nº
form an approximately equitable partition of…. This holds with ˇ D 1 if… is a tran-
sitive subgroup of Sn. One could formulate weaker conditions that ensure the validity
of the conclusion of Lemma 166 (e.g., considering bi-Lipschitz automorphisms of X
rather than isometries of X), and hence also the conclusion of Corollary 167, though
we will not pursue this here as we expect that in concrete cases such issues should be
easy to handle.

6.3 Volume ratio computations

Here we will present asymptotic evaluations of volume ratios of some normed spaces,
for the purpose of plugging them into results that we stated in the Introdcution. Due
to the large amount of knowledge on this topic that is available in the literature, we
will only give a flavor of such applications. The main reference for the contents of
this section is the valuable work [285].

We will start by examining the iteratively nested p̀ products ¹Xkº1kD0 that we
considered in Corollary 153, in the special case when the initial space X D X0 is a
canonically positioned normed space for which Conjecture 49 holds. Thus, we are
fixing ¹nkº1kD0 � N and ¹pkº1kD1 � Œ1;1�, and assuming that

X D .Rn0 ; k � kX/

is a canonically positioned normed space satisfying Conjecture 49, i.e., (6.16) holds
with ˛ D O.1/; the case X D R is sufficiently rich for our present illustrative pur-
poses, but one can also take X D E to be any symmetric space, per Lemma 54. By
Corollary 153 and Corollary 79, if we define inductively

8k 2 N; XkC1 D `nkpk .Xk/; where X0 D X;

then, because ¹Xkº1kD1 are canonically positioned (they belong to the class of spaces
in Example 40),

8m 2 N; SEP.Xm/ � evr.Xm/
p

dim.Xm/ D evr.Xm/
p
n0 � � �nm: (6.118)

Let ¹Hkº
1
kD0

be the sequence of Euclidean spaces that arise from the above con-
struction with the same ¹nkº1kD0 � N but with pk D 2 for all k 2 N and X D `n02 .
Thus, for eachm2N the Euclidean space Hm can be identified naturally with `n0���nm2 .
Under this identification, by a straightforward inductive application of Hölder’s
inequality and the fact that the p̀ norm deceases with p, the Löwner ellipsoid of
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Xm satisfies1

LXm �

 
mY
kD1

n
max¹ 12�

1
pk
;0º

k

!
.LX/

n1���nm :

Also, by Lemma 150 we have

voln0���nm
�
BXm

� 1
n0���nk �

voln0
�
BX
� 1
n0Qm

kD1 n
1
pk

k

:

These facts combine to give the following consequence of (6.118):

SEP.Xm/ � evr.X/
mY
kD1

n
max¹ 12 ;

1
pk
º

k
:

In particular, when we take X D R and consider only two steps of the above
iteration, we get the following asymptotic evaluation of the separation modulus of the
`np.`

m
q / norm the space of n-by-mmatricesMn�m.R/ for any n;m 2N and p;q > 1;

the case of square matrices was stated in the Introduction as (1.5):

SEP
�
`np.`

m
q /
�
� nmax¹ 1p ;

1
2 ºmmax¹ 1q ;

1
2 º D max

®p
nm;m

1
q
p
n; n

1
p
p
m; n

1
pm

1
q

±
:

Next, fix an integer n > 2 and let E D .Rn; k � kE/ be an unconditional normed
space. Given q 2 Œ2;1� andƒ > 1, one says (see, e.g., [182, Definition 1.f.4]) that E
satisfies a lower q-estimate with constantƒ if for every ¹ukº1kD1 � Rn with pairwise
disjoint supports we have 

1X
kD1

kukk
q
E

! 1
q

6 ƒ

 1X
kD1

uk


E

: (6.119)

Note that by (6.14) this always holds with ƒ D 1 if q D1.
In concrete cases it is often mechanical to evaluate up to universal constant factors

the minimum radius of a Euclidean ball that circumscribes BX, but it is always within
a O.
p

logn/ factor of the expression

RE
def
D max

¿¤S�¹1;:::;nº

� p
jS j

k
P
i2S eikE

�
: (6.120)

More precisely, if E satisfies a lower q-estimate with constant ƒ, then

RE 6 outradius`n
2
.BX/ . ƒ.logn/

1
2�

1
qRE: (6.121)

1As Xm is canonically positioned, this holds as an equality, but for the present purposes we
just need the stated inclusion.
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The first inequality in (6.121) is immediate because k
P
i2S eik

�1
E
P
i2S ei 2 BE if

¿ ¤ S � ¹1; : : : ; nº. For a quick justification of the second inequality in (6.121),
note that by homogeneity we may assume without loss of generality that keikE > 1
for every i 2 N. Therefore, using (6.14) we see that if x D .x1; : : : ; xn/ 2 BE, then
maxi2¹1;:::;nº jxi j 6 1. Consequently, if we fix x 2 BE and denote for each k 2 N,

Sk D Sk.x/
def
D

²
i 2 ¹1; : : : ; nº W

1

2k
< jxi j 6

1

2k�1

³
; (6.122)

then the sets ¹Skº1kD1 are a partition of ¹1; : : : ; nº and in particular
P1
kD1 jSkj D n.

Next,

ƒRE > ƒREkxkE > RE

 
1X
kD1

 X
i2Sk

xiei

q
E

! 1
q

>

 
1X
kD1

R
q
E

X
i2Sk

1

2k
ei

q
E

! 1
q

>

 
1X
kD1

jSkj
q
2

2kq

! 1
q

: (6.123)

The second step of (6.123) uses (6.119), the penultimate step of (6.123) uses (6.14)
and (6.122), and the final step of (6.123) uses (6.120). Now, for every 0 < � < 1 we
have

kxk`n
2
D

 
1X
kD1

X
i2Sk

x2i

! 1
2

6

 
1X
kD1

jSkj

22.k�1/

! 1
2

D 2

 
1X
kD1

jSkj
1��

22k.1��/
jSkj

�2�2k�

! 1
2

6 2

 
1X
kD1

jSkj
q
2

22kq

! 1��
q
 
1X
kD1

jSkj

! �
2
 
1X
kD1

2�
2kq�

.q�2/.1��/

!. 12� 1q /.1��/
. .ƒRE/

1��n
�
2 ��.

1
2�

1
q /; (6.124)

where the second step of (6.124) uses (6.122), the penultimate step of (6.124) uses
trilinear Hölder with exponents 1=� , q=.2.1� �// and 1=..1� 2=q/.1� �//, and the
final step of (6.124) uses (6.123), the fact that

1X
kD1

jSkj D n;

and elementary calculus. By choosing � D 1= logn in (6.124), we get (6.121).
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By the Lozanovskiı̆ factorization theorem [186] there exist w1; : : : ; wn > 0 such
that  nX

iD1

wiei


E

D

 nX
iD1

1

wi
ei


E*

D
p
n: (6.125)

We will call any w1; : : : ;wn > 0 that satisfy (6.125) Lozanovskiı̆ weights for E. They
can be found by maximizing the concave function w 7!

Pn
iD1 logwi over w 2 BE

(see also, e.g., [263, Chapter 3]), which can be done efficiently if E is given by an
efficient oracle; their existence can also be established non-constructively using the
Brouwer fixed point theorem [135]. By [285, Lemma 1.2] (note that we are using a
different normalization of the weights than in [285]),

voln.BE/
1
n �

.w1 � � �wn/
1
n

p
n

: (6.126)

By combining (6.121) and (6.126), we get the following lemma.

Lemma 168. Fix an integer n > 2 and let E D .Rn; k � kE/ be an unconditional
normed space. Suppose that E satisfies a lower q-estimate with constant ƒ for some
q > 2 and ƒ > 1. Then,

evr.E/ .
max¿¤S�¹1;:::;nº

� p
jS j

k
P
i2S eikE

�
n
p
w1 � � �wn

ƒ.logn/
1
2�

1
q ;

for any Lozanovskiı̆ weights w1; : : : ; wn > 0 for E. If the Löwner ellipsoid of E is a
multiple of B`n

2
, then

max¿¤S�¹1;:::;nº

� p
jS j

k
P
i2S eikE

�
n
p
w1 � � �wn

. evr.E/

.
max¿¤S�¹1;:::;nº

� p
jS j

k
P
i2S eikE

�
n
p
w1 � � �wn

ƒ.logn/
1
2�

1
q :

The following corollary is a consequence of Lemma 168 because if

E D .Rn; k � kE/

is a normed space that satisfies the assumptions of Lemma 53 (in particular, E is
unconditional), then by Lemma 152

w1 D w2 D � � � D wn D

p
n

ke1 C � � � C enkE

are Lozanovskiı̆ weights for E.
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Corollary 169. If E D .Rn; k � kE/ a normed space that satisfies the assumptions of
Lemma 53, then

ke1 C � � � C enkE
p
n

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�
. evr.E/ .

ke1 C � � � C enkE
p
n

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�p
logn:

Hence, by Corollary 79 we have

ke1 C � � � C enkE

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�
. SEP.E/ . ke1 C � � � C enkE

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�p
logn;

More succinctly, this can be written in the following form, which we already stated in
Corollary 4:

SEP.E/ D ke1 C � � � C enkE

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�
no.1/:

By [285, Proposition 2.2], the unitary ideal of any symmetric normed space E D
.Rn; k � kE/ satisfies

vr.SE/ � vr.E/: (6.127)

This implies that
evr.SE/ � evr.E/; (6.128)

by (1.71) combined with S�E D SE* , though a straightforward adjustment of the proof
of (6.127) in [285] yields (6.128) directly, without using the much deeper result
(1.71). We therefore have the following corollary.

Corollary 170. If E D .Rn; k � kE/ is a symmetric normed space, then
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p
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logn:

Hence, by Corollary 79 we have
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�
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p
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. SEP.SE/ . ke1 C � � � C enkE

�
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k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�
p
n logn;
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More succinctly, this can be written in the following form, which we already stated in
Corollary 4:

SEP.SE/ D ke1 C � � � C enkE

�
max

k2¹1;:::;nº

p
k

ke1 C � � � C ekkE

�
n
1
2Co.1/:

Remark 171. In the above discussion, as well as in the ensuing treatment of ten-
sor products, we prefer to consider square matrices rather than rectangular matrices
because the setting of square matrices exhibits all of the key issues while being nota-
tionally simpler. Nevertheless, there are two places in which we do need to work
with rectangular matrices, namely the above proof of Proposition 164 and the proof
of the first inequality in (1.117). For the latter, fix p > 1 and n; m 2 N. As in the
proof of Theorem 77, denote the Schatten–von Neumann trace class on the n-by-m
real matrices Mn�m.R/ by Sn�mp ; recall (1.118). The following asymptotic identity
implies (1.119) (recall that in the setting of (1.119) we have r 2 ¹1; : : : ; nº)

evr
�
Sn�mp

�
�
�
min¹n;mº

�max¹ 1p�
1
2 ;0º: (6.129)

Volumes of unit balls of Schatten–von Neumann trace classes have been satisfacto-
rily estimated in the literature, starting with [293] and the comprehensive work [285],
through the more precise asymptotics in [146,277]. Unfortunately, all of these works
dealt only with square matrices. Nevertheless, these references could be mechani-
cally adjusted to treat rectangular matrices as well. Since (6.129) does not seem to
have been stated in the literature, we will next sketch its derivation by mimicking the
reasoning of [285], though the more precise statements of [146,277] could be derived
as well via similarly straightforward modifications of the known proofs for square
matrices. We claim that

volnm
�
BSn�mp

� 1
nm �

1�
min¹n;mº

� 1
p
p

max¹n;mº
: (6.130)

(6.130) gives (6.129) since Sn�mp is canonically positioned, so by Hölder’s inequality
its Löwner ellipsoid is

LSn�mp
D
�
min¹n;mº

�max
®
1
2�

1
p ;0
¯
BSn�m

2
:

To prove (6.130), note first that it follows from its special case p D 1. Indeed, as
Sn�m1 D .Sn�m1 /�, by the Blaschke–Santaló inequality [39, 278] and the Bourgain–
Milman inequality [50] the case p D 1 of (6.130) follows from its case p D1. Now,
(6.130) follows in full generality since by Hölder’s inequality:

1�
min¹n;mº

� 1
p

BSn�m1 � BSn�mp
�
�
min¹n;mº

�1� 1pBSn�m
1

:
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The upper bound volnm.BSn�m1 /1=.nm/ . 1=
p

max¹n;mº follows from the inclusion
BSn�m1 �

p
min¹n;mºBSn�m

2
. To justify the matching lower bound, if ¹"ij ºi;j2N are

i.i.d. Bernoulli random variables, then by [35, Theorem 1],

E

" nX
iD1

mX
jD1

"ij ei ˝ ej


Sn�m1

#
.
p

max¹n;mº;

This implies the lower bound volnm.BSn�m1 /1=.nm/ & 1=
p

max¹n;mº by an applica-
tion of [285, Lemma 1.5].

Proof of Lemma 54. By [285, equation (2.2)] we have
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n
: (6.131)

In particular,

8q > 1; voln2
�
BSnq

� 1
n2 �

1

n
1
2C

1
q

: (6.132)

Because Snq is canonically positioned (it belongs to the class of spaces in Example 40),
and hence it is in its minimum surface area position, by combining [104, Proposi-
tion 3.1] and (1.55) we see that
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Consequently,

iq
�
BSnq

�
D n

voln2�1
�
@BSnq

�
voln2

�
BSnq

� voln2
�
BSnq

� 1
n2

(6.132)^(6.133)
�

n
3
2C

1
q

p
min¹q; nº

n
1
2C

1
q

D n
p

min¹q; nº: (6.134)

Because by (6.14) we have

8x 2 Rn; kxkE 6 ke1 C � � � C enkEkxk`n1 ;

every matrix A 2 Mn.R/ satisfies

kAkSE 6 ke1 C � � � C enkEkAkSn1 6 ke1 C � � � C enkEkAkSnq :

Consequently,
1

ke1 C � � � C enkE
BSnq � BSE : (6.135)
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Moreover,

iq
�

1

ke1 C � � � C enkE
BSnq

�
D iq

�
BSnq

� (6.134)
� n

p
min¹q; nº

and

voln2
�

1

ke1 C � � � C enkE
BSnq

� 1

n2 (6.132)
�

1

ke1 C � � � C enkEn
1
2C

1
q

(6.131)
�

voln2
�
BSE

� 1
n2

n
1
q

:

By choosing q D log n we get (1.80) for the normed space Y whose unit ball is the
left-hand side of (6.135).

Remark 172. An inspection of the proof of Lemma 54 reveals that if Conjecture 49
holds for Sn1, then also Conjecture 49 holds for SE for any symmetric normed space
ED .Rn; k � kE/. Indeed, we would then take Y0 D .Mn.R/; k � kY0/ to be the normed
space whose unit ball is

BY0 D
1

ke1 C � � � C enkE
ChSn1 D

1

ke1 C � � � C enkE
S�`n1 ;

where we recall Corollary 43. If Conjecture 49 holds for Sn1, then we would have
n � iq.ChSn1/ D iq.BY0/, and also

voln2
�
ChSn1

� 1
n2 � voln2

�
Sn1

� 1
n2

(6.132)
�

1
p
n
;

from which we see that

voln2
�
BY0

� 1
n2 D

voln2
�
ChSn1

� 1
n2

ke1 C � � � C enkE
�

1

ke1 C � � � C enkE
p
n

(6.131)
� voln2

�
BSE

� 1
n2 :

This proves Conjecture 49 for SE. Note in passing that this also implies that

1
p
n
� voln2

�
S�`n1

� 1
n2

(6.131)
�

1

ke1 C � � � C enk�`n1
p
n
:

Hence, if Conjecture 49 holds for Sn1, then we would have ke1 C � � � C enk�`n1 � 1.
More generally, by mimicking the above reasoning we deduce that if Conjecture 49
holds for SE, then ke1 C � � � C enk�E � ke1 C � � � C enkE, which would be a modest
step towards Problem 44.

Fix n 2 N and p; q > 1. We claim that the volume ratio of the projective tensor
product `np y̋ `

n
q satisfies

vr
�
`np y̋ `

n
q

�
� p̂;q.n/; (6.136)



204 Volume computations

where

p̂;q.n/
def
D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

1 if 1 6 p; q 6 2;

n
1
2�

1
p if q 6 2 6 p 6 q

q�1
;

n
1
q�

1
2 if q 6 2 6 q

q�1
6 p;

n
1
2�

1
q if p 6 2 6 q 6 p

p�1
;

n
1
p�

1
2 if p 6 2 6 p

p�1
6 q;

1 if p; q > 2 and 1
p
C

1
q
> 1

2
;

n
1
2�

1
p�

1
q if 1

p
C

1
q
6 1

2
:

(6.137)

Assuming (6.137) for the moment, by substituting it into Theorem 3 we get that

SEP
�
`np {̋ `

n
q

�
& n vr

��
`np {̋ `

n
q

���
D n vr

�
`np� y̋ `

n
q�

�

� n p̂�;q�.n/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

n if p; q > 2;

n
1
pC

1
2 if q

q�1
6 p 6 2 6 q;

n
3
2�

1
q if p 6 q

q�1
6 2 6 q;

n
1
qC

1
2 if p

p�1
6 q 6 2 6 p;

n
3
2�

1
p if q 6 p

p�1
6 2 6 p;

n if p; q 6 2 and 1
p
C

1
q
6 3

2
;

n
1
pC

1
q�

1
2 if 1

p
C

1
q
> 3

2
:

Since for any two normed spaces X D .Rn; k � kX/ and Y D .Rn; k � kY/ the space
of operators from X� to Y is isometric to the injective tensor product X� {̋Y (see,
e.g., [87]), we get from this that

SEP
�
Mn.R/; k � k`np!`nq

�
D SEP

�
`np� {̋ `

n
q

�

&

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

n if p 6 2 6 q;
n
3
2�

1
p if 2 6 p 6 q;

n
3
2�

1
q if 2 6 q 6 p;

n
1
qC

1
2 if p 6 q 6 2;

n
1
pC

1
2 if q 6 p 6 2;

n if 2p
pC2
6 q 6 2 6 p;

n
1
q�

1
pC

1
2 if q 6 2p

pC2
:

(6.138)

Note that the rightmost quantity in (6.138) coincides with the right-hand side of
(1.14). Since `np {̋ `

n
q belongs to the class of spaces in Example 40, a positive answer
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to Conjecture 11 for `np {̋ `
n
q would imply the following asymptotic evaluation of

SEP.`np {̋ `
n
q/, which is equivalent to (1.14):

SEP
�
`np {̋ `

n
q

�
�

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

n if p; q > 2;
n
1
2C

1
p if q

q�1
6 p 6 2 6 q;

n
3
2�

1
q if p 6 q

q�1
6 2 6 q;

n
1
2C

1
q if p

p�1
6 q 6 2 6 p;

n
3
2�

1
p if q 6 p

p�1
6 2 6 p;

n if p; q 6 2 and 1
p
C

1
q
6 3

2
;

n
1
pC

1
q�

1
2 if 1

p
C

1
q
> 3

2
:

Furthermore, by Theorem 80 the leftmost quantity in (6.138) is bounded from above
by O.log n/ times the rightmost quantity in (6.138), thus implying the fourth bullet
point of Corollary 4.

The asymptotic evaluation (6.136) of vr.`np y̋ `
n
q/ was proved in [285] up to con-

stant factors that depend on p, q, namely [285, Theorem 3.1] states that

8p; q > 1; vr
�
`np y̋ `

n
q

�
�p;q p̂;q.n/: (6.139)

If 2 2 ¹p; qº and also min¹p; qº 6 2, then (6.139) is due to Szarek and Tomczak-
Jaegermann [293]. More recently, Defant and Michels [84] generalized (6.139) to
projective tensor products of symmetric normed spaces that are either 2-convex or 2-
concave. The proof of (6.139) in [285] yields constants that degenerate as min¹p; qº
tends to 1. We will therefore next improve the reasoning in [285] to get (6.136).

Lemma 173. Fix n 2 N and p; q > 1. Let ¹"ij ºi;j2¹1;:::;nº be i.i.d. Bernoulli random
variables (namely, they are independent and each of them is uniformly distributed
over ¹�1; 1º). Then,

E

" nX
iD1

nX
jD1

"ij ei ˝ ej


`np {̋ `

n
q

#
� nˇ.p;q/

def
D

´
n
1
pC

1
q�

1
2 if max¹p; qº 6 2;

n
1

min¹p;qº if max¹p; qº > 2:
(6.140)

Citing the work [79] of Chevet, a version of Lemma 173 appears as [285, Lemma
2.3], except that in [285, Lemma 2.3] the implicit constants in (6.140) depend on p, q.
An inspection of the proof of (6.139) in [285] reveals that this is the only source of
the dependence of the constants on p, q (in fact, for this purpose [285] only needs
half of (6.140), namely to bound from above its left-hand side by its right-hand side).
Specifically, all of the steps within [285] incur only a loss of a universal constant
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factor, and the proof of (6.139) in [285] also appeals to inequalities in the earlier
work [284] of Schütt, as well a classical inequality of Hardy and Littlewood [127];
all of the constants in these cited inequalities are universal. Therefore, (6.136) will be
established after we prove Lemma 173.

Proof of Lemma 173. We will denote the random matrix whose .i; j / entry is "ij by
E 2 Mn.R/. Then, the goal is

E
�
kEk`n

p�
!`nq

�
� nˇ.p;q/: (6.141)

In fact, the lower bound on the expected norm in (6.141) holds always, i.e., for a
universal constant c > 0,

8A 2 Mn.¹�1; 1º/; kAk`n
p�
!`nq
> cnˇ.p;q/: (6.142)

A justification of (6.142) appears in the proof of Proposition 3.2 of Bennett’s work
[34] (specifically, see the reasoning immediately after [34, inequality (15)]), where it
is explained that we can take c D 1 if min¹p�; qº > 2 or max¹p�; qº 6 2, and that
we can take c D 1=

p
2 otherwise.

Next, let ¹gij ºi;j2¹1;:::;nº be i.i.d. standard Gaussian random variables. By [79,
Lemme 3.1],

E

" nX
iD1

nX
jD1

gij ei ˝ ej


`np {̋ `

n
q

#
� nmax¹ 1pC

1
q�

1
2 ;
1
p º
p
p C nmax¹ 1pC

1
q�

1
2 ;
1
q º
p
q:

(6.143)
Consequently,

E

" nX
iD1

nX
jD1

"ij ei ˝ ej


`np {̋ `

n
q

#
6
r
�

2
E

" nX
iD1

nX
jD1

gij ei ˝ ej


`np {̋ `

n
q

#
. nˇ.p;q/

p
max¹p; qº; (6.144)

where the first step of (6.144) is a standard comparison between Rademacher and
Gaussian averages (a quick consequence of Jensen’s inequality; e.g., [204]) and the
final step of (6.144) uses (6.143). This proves the desired bound (6.140) when

max¹p; qº 6 2;

so suppose from now on that max¹p; qº > 2.
It suffices to treat the case p> 2. Indeed, if p6 2, then q > 2 since max¹p;qº> 2,

so by the duality
kEk`n

p�
!`nq
D kE�k`n

q�
!`np

;
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and the fact that the transpose E� has the same distribution as E, the case p 6 2
follows from the case p > 2. It also suffices to treat the case q 6 p because if q > p,
then k � k`nq 6 k � k`np point-wise, and therefore

kEk`n
p�
!`nq
6 kEk`n

p�
!`np

:

Consequently, since ˇ.p; q/D ˇ.p;p/ when q > p, the case q > p follows from the
case q D p.

So, suppose from now that p > 2 and q 6 p. If we denote

r
def
D
q.p � 2/

p � q
;

with the convention r D1 if q D p, then r > 1 and

1

q
D
1 � �

r
C
�

2
; where � def

D
2

p
2 Œ0; 1�: (6.145)

Hence, by the Riesz–Thorin interpolation theorem [272, 301] we have

kEk`n
p�
!`nq
6 kEk1��`n

1
!`nr
kEk�`n

2
!`n

2

D
�

max
i2¹1;:::;nº

Eei`nr �1��kEk�`n2!`n2 D n 1��r kEk�`n2!`n2 :
By taking expectations of this inequality, we get that

E
�
kEk`n

p�
!`nq

�
6 n

1��
r E

�
kEk�`n

2
!`n

2

�
6 n

1��
r

�
E
�
kEk`n

2
!`n

2

���
. n

1��
r C

�
2 D n

1
q D nˇ.p;q/; (6.146)

where the second step of (6.146) uses Jensen’s inequality, the third step of (6.146)
uses the classical fact that the expectation of the operator norm from `n2 to `n2 of an
n� nmatrix whose entries are i.i.d. symmetric Bernoulli random variables isO.

p
n/

(this follows from (6.144), though it is older; see, e.g., [35]), the penultimate step
of (6.146) uses (6.145), and the last step of (6.146) uses the definition of ˇ.p; q/
in (6.140) while recalling that we are now treating the case p > 2 and q 6 p.

A substitution of Lemma 173 into the proof of [285, Lemma 3.2] yields the fol-
lowing asymptotic evaluations of the n2-roots of volumes of the unit balls of injective
and projective tensor products; the statement of [285, Lemma 3.2] is identical, except
that the constant factors depend on p; q, but that is due only to the dependence of the
constants on p, q in [285, Lemma 2.3], which Lemma 173 removes

voln2
�
B`np {̋ `nq

� 1
n2 � n�ˇ.p;q/ and voln2

�
B`np y̋ `nq

� 1
n2 � nˇ.p

�;q�/�2: (6.147)
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Since `np y̋ `
n
q belongs to the class of spaces in Example 40, its Löwner ellipsoid

is the minimal multiple of the standard Euclidean ball BSn
2

that superscribes the unit
ball of `np y̋ `

n
q , namely

L`np y̋ `nq D R.n; p; q/BSn
2
;

where, since B`np y̋ `nq is the convex hull of B`np ˝ B`nq ,

R.n; p; q/ D max
x2B`np
y2B`nq

kx ˝ ykSn
2

D
�

max
x2B`np

kxk`n
2

��
max
y2B`nq

kyk`n
2

�
D nmax¹ 12�

1
p ;0ºCmax¹ 12�

1
q ;0º: (6.148)

By combining (6.147) and (6.148) we get that

vr
�
`np� {̋ `

n
q�

� (1.71)
� evr

�
`np y̋ `

n
q

�
D R.n; p; q/

� voln2.BSn
2
/

voln2.B`np y̋ `nq /

� 1

n2

� nmax¹ 12�
1
p ;0ºCmax¹ 12�

1
q ;0º�ˇ.p

�;q�/C1

(6.140)
D

´p
n if max¹p; qº > 2;

n
1

max¹p;qº if max¹p; qº 6 2:
(6.149)

A substitution of (6.149) into Theorem 3 gives

SEP
�
`np y̋ `

n
q

�
&

´
n
3
2 if max¹p; qº > 2;
n
1C 1

max¹p;qº if max¹p; qº 6 2:
(6.150)

Furthermore, if Conjecture 11 holds for `np y̋ `
n
q , then (6.150) is sharp, namely (1.15)

holds. Also, by Theorem 80 the left-hand side of (6.150) is bounded from above by
O.log n/ times the right-hand side of (6.150), thus implying the fifth bullet point of
Corollary 4.

Remark 174. The above results imply clustering statements (and impossibility
thereof) for norms that have significance to algorithms and complexity theory. For
example, the cut norm [101] on Mn.R/ is O.1/-equivalent [6] to the operator norm
from `n1 to `n1 . So, by (1.13) the separation modulus of the cut norm on Mn.R/ is
predicted to be bounded above and below by universal constant multiples of n3=2,
and by Theorem 80 we know that it is at least a universal constant multiple of n3=2

and at most a universal constant multiple of n3=2 log n. As another notable example,
we proved that

SEP.`n1 y̋ `
n
1/ & n

3
2 :
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Moreover, if Conjecture 11 holds for `n1 y̋ `
n
1, then SEP.`n1 y̋ `

n
1/ � n3=2 and by

Theorem 80 we have
SEP.`n1 y̋ `

n
1/ . n

3
2 logn:

Grothendieck’s inequality [121] implies that

8A 2 Mn.R/; kAk`n1 y̋ `n1 � 
1!1
2 .A/; (6.151)

where 1!12 .A/ is the factorization-through-`2 norm (see [261]) of A as an operator
from `n1 to `n1, i.e.,

1!12 .A/
def
D min

X;Y2Mn.R/
ADXY

kXk`n
2
!`n1kY k`n1!`

n
2

D min
X;Y2Mn.R/
ADXY

max
i;j2¹1;:::;nº

krowi .X/k`n
2
kcolumnj .Y /k`n

2
:

Above, for i; j 2 ¹1; : : : ;nº andM 2Mn.R/we denote by rowi .M/ and columnj .M/

the i th row and j th column of M , respectively. See [183] for the justification of
(6.151), as well as the importance of the factorization norm 1!12 to complexity the-
ory (see [38,202] for further algorithmic significance of factorization norms). Thanks
to the above discussion, we know that

n
3
2 . SEP

�
Mn.R/; 

1!1
2

�
. n

3
2 logn;

and that SEP.Mn.R/; 1!12 /� n3=2 assuming Conjecture 11. To check that this does
not follow from the previously known bounds (1.2), we need to know the asymptotic
growth rate of the Banach–Mazur distance between `n1 y̋ `

n
1 and each of the spaces

`n
2

1 ; `
n2

2 . However, these Banach–Mazur distances do not appear in the literature. In
response to our inquiry, Carsten Schütt answered this question, by showing that

dBM
�
`n
2

2 ; `
n
1
y̋ `n1

�
� dBM

�
`n
2

1 ; `
n
1
y̋ `n1

�
� n: (6.152)

More generally, Schütt succeeded to evaluate the asymptotic growth rate of the
Banach–Mazur distance between `np y̋ `

n
q and `np {̋ `

n
q to each of `n

2

1 ; `
n2

2 for every
p; q 2 Œ1;1� (this is a substantial matter that Schütt communicated to us privately
and he will publish it elsewhere). Due to (6.152), an application of (1.2) only gives the
bounds n. SEP.`n1 y̋ `

n
1/. n2, which hold for every n2-dimensional normed space.

More generally, Schütt’s result shows that (1.13) and (1.15) do not follow from (1.2).

The volume computations of this section are only an indication of the available
information. The literature contains many more volume estimates that could be sub-
stituted into Theorem 3 and Conjecture 6 to yield new results (and conjectures) on
separation moduli of various spaces; examples of further pertinent results appear
in [20, 85, 88, 104, 110, 115–117, 145, 146, 285].


