Chapter 6

Volume computations

In this section we will prove volume estimates that occur in our bounds on the sepa-
ration modulus.

6.1 Direct sums

Fix n € N and a normed space X = (R”, | - ||x). Throughout what follows, the (nor-
malized) cone measure [120] on 0Bx will be denoted kx. Thus, for every measurable
A C 9By,

def Vol ([0, 1]4)  vol,({sv : (s,v) € [0, 1] x A})

=By vol, (Bx)

(6.1)

The probability measure «x is characterized by the following “generalized polar
coordinates” identity, which holds for every f € L;(R"); see, e.g., [242, Proposi-
tion 1]:

/ f(x)dx = nvol,(Bx) /oo rl (/ f(ro) dKX(O)) dr. (6.2)
R~ 0 dBx

As a quick application of (6.2), we will next record for ease of later reference the
following computation of the volume of the unit ball of an £, direct sum of normed
spaces.

Lemma 149. Fixn,my,...,m, € N and normed spaces {X; = (R™1,|| - ||xmj)}7=1.
Then

[Ti2i T(1 + =£) voly, (Bx;)
Vp e [1’ OO], V01m1+"'+m" (Bxlﬂap"'@pxn) =— F(l + m117+...+m"j) &8
p
(6.3)

Proof. This follows by induction on n from the following identity (direct application
of Fubini), which holds for every a, b € N and any two normed spaces X = (R4, || -
Ix) and Y = (R || - [ly):

1
volg+p(Bxe,y) = /B vol (1 — llx[I%) ? By) dx
) b
V4

= voly(By) [ (1= 1+1%)" v



158 Volume computations

1 b
€2 vol, (Bx) Volb(BY)/ ar“_l(l — rp) 2 dr
0
L1+ 2)r(1+9)
— J2 P
= vol, (Bx) voly(By) F(l n m) . [
p
By Lemma 149, for every m € N, every normed space X = (R™, || - ||x) satisfies
r(1+2)"
Volym (Ben(x)) = =2~ vol,,(Bx)", 6.4
nm( Kp(X)) F(l I %) m( X) (6.4)
and hence,
1
1 vol,(Bx)m
VOlnm(B(Z(X))“m = LLX) (65)
nr
In particular, for every m,n € N and 1 < p,g < oo we have
214+ H)* (1 4 m)”
VOlnm(B@;t)(a[n)) = ( mql ( nmp) (66)
T(1+2)"T(1+ )
and hence,
1 1
Volum (B em) ™ < ——- 6.7)
nrma

The following simple lemma records an extension of (6.5) to m-fold iterations of
the operation X +— E;‘, (X), i.e., to spaces of the form

m Tm—1 (... " “ee N
(Gt (6100 -)):
the main point for us here is that the implicit constants remain bounded as m — oo.

Lemma 150. Fix {n;}$2 € N and {p}32 | € [1,00]. Let X = (R™, || - ||x) be a
normed space and define

Yk e NU{0}, Xit1 =8 (Xg), where Xo =X.
Then, for every m € N we have

1
1 L., (Bx)"

Volygenm, (me) no'}‘nk = M
]_[Z=1”/fk

Proof. With the convention that an empty product equals 1, by applying (6.4) induc-
tively we see that

N1 \PBk " Pm
F(1+n0pnkk 1) k

F(l + nopknk) k+1

m
VOluganyy (Bx,,) = volno (Bx)" ™" T
k=1
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Hence,
e 1
VOan nm(BXm)nO Ni Hk lnk ﬁ 1+ M)no Np_q npi
VOan(BX)% k=1 (1 4 n()pknk)nolnk k
“ 1
= l:[ fn() N—1-Nk (;), (6.8)

where for u, v,t > 0 we denote
1
def F(l + ut)ﬁ
Jup(t) = ﬁvt~
'+ uvt)wo
Since (log '(2))’ = [>° <= ds for z > 0 (see, e.g., [313, Chapter XII), if u,7 > 0

T—e—
and v > 1, then

9 log fun() =1 +/°o( —uts _gwots) g5 >
— 10 = 108V e — e —as =2 L.
a8 w S A [—es

Thus, f, v is increasing on [0, o), and therefore we get from (6.8) that

1 1
- VOlng-my (Bxm) "0 "% Tlg=1 1"

1 = 1—[ fn()---nk_l,nk (0) $ 1
k=1 Vol (Bx) ™

1
(noh)"ony---nm

m
< l_[ fn(y--nk_l,nk(l) = i <e. [ |
k=1 ((n() e nm)') no-nm

The first part of Lemma 151 below is a restatement of Lemma 37 from the Intro-
duction. Qualitatively, it shows that the class of spaces for which Conjecture 10 holds
is closed under unconditional composition, namely, norms of the form (6.9) below.
The second part of Lemma 151 is further information that pertains to Conjecture 49,
1.e., to the symmetric version of the weak reverse isoperimetric conjecture, for which
we want the operator S to be the identity mapping (i.e., weak reverse isoperimetry
holds without the need to first change the “position” of the given normed space).

Lemma 151. Fixn,mq,...,m, € N. Let
Xi=@®R" - x)s Xe = R Ix,,)

be normed spaces. Also, let E = (R", || - ||[g) be an unconditional normed space.
Define a normed space X = (R™! x --- x R™ || - ||x) by

def

VX =(x1,. . x0) €RM o x R™ L ixlx Z || (11 1%, - X l1x,) [ - (6.9)
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Then, Conjecture 10 (equivalently, Conjecture 35) holds for the space X if it holds
for all of the spaces Xy, ..., X,.

More precisely, suppose that there exist S} €SL,,, (R),. .., Sy €SLy, (R), normed
spaces Y1 = (R, || - |ly,),.... Yn = R™ | - |ly,), and o« > 0 such that for every
k €{l,...,n} we have

1

iq(By,) (VOlmk (Bx) ) e
o <a. 6.10
Yir = PkDX, an M VOlmk(BYk) ’ ( )

Then, there exist a normed space Y = (R™! x --- x R™" || - ||x) and a linear trans-
formation S € SL(R™ x --- x R™7) such that

By € SBx and

. e
iq(By) (Volm1 Sty (Bx)) P <a. (6.11)
vmi + -+ my \ Vol 4m, (By)

Iffurthermore Sy, ..., Sy are all identity mappings (of the respective dimensions),
then S can be taken to be the identity mapping provided the following two conditions

n n
2 e |2 e

i=1 i=1

<n (6.12)
E*

E

and

1
n my~+-+mn
Mt tmn 1
[T e volm, (Bx;) < ————" min voly, (Bx,)"*.
i n kellm)

Note that (6.13) is satisfied in particular if m; < m; and
e e
VOl; (Bx;)"i < Vol (Bx; )™

foreveryi,j e{l,...,n}.

Prior to proving Lemma 151 we will make some basic observations. Firstly,
(6.9) indeed defines a norm because it is well known that the requirement that E =
(R™, ]| - |lg) is an unconditional normed space is equivalent to (see, e.g., [181, Propo-
sition 1.c.7]) the following “contraction property”:

Va,x e R", |(aix1,....anxn)llE < llallen, || x|e- (6.14)

Thus, ||x|g < ||y|g if x, y € R” satisfy |x;| < |y;| for every i € {1,...,n}, so the
triangle inequality for (6.9) follows from applying the triangle inequalities entry-wise
for each of the norms {|| - ||x; }7—,. using this monotonicity property, and then apply-
ing the triangle inequality for || - || g.
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It is well known that condition (6.12) holds (as an equality) when E is a symmetric
normed space (see, e.g., [182, Proposition 3.a.6]). More generally, condition (6.12)
holds (also as an equality) in the setting of the following simple averaging lemma,
which shows in particular that Lemma 151 implies Lemma 53.

Lemma 152. Let X = (R”, || - |x) be a normed space such that for every two indices
J.k €{1,...,n} there exists a permutation m = w;i € Sy with w(j) = k such that
13271 aneillx = | o= aieillx for every ay, ... an € R. Then,

n n
Eei }ei

i=1 i=1

=n.
X*

X

Proof. Denote ©(X) = {wr € S, : T, € Isom(X)}, where T, € GL, (R) was defined
in Example 40 for each = € Sj,. Then, &(X) is a subgroup of S,, that we are assuming

acts transitively on {1, ..., n}. Consequently,
6(X
Vi,je{l,....,n}, {meX):n(i)=j} = |©( )l. (6.15)
n
For every ay,...,a, € R we have
1 - [ U € B(X) i w(i) = j}
B0l L 20 = Z( BX) “v e
Te&(X)i=1 i=1 \j=1

n

n
(6.15) Zj:laj
= —E e;.
n .
i=1

Hence,

n n
> ey aje;
j=1  j=1

n
> as
j=1

_n ” m ZﬂEG(X) Z?=1 Ar(i)€i ||x
Dy
et rea) | izt axirei |x
|2 eillx
_n |35 aiei|
(parye HX ’

where the penultimate step uses convexity and the final step uses the assumption that
Ty is an isometry of X for every n € &(X). Since this holds for every a1, ...,a, € R,

we have || Y7 eillx* <n/ll Y_i—; eillx. The reverse inequality holds for any normed
space X = (R”, | - |x) because (> ;_, ei, > r_, €i) = n. ]




162 Volume computations

By combining Lemmas 151 and 152 we obtain the following corollary that estab-
lishes Conjecture 49 for the iteratively nested £, spaces of Lemma 150, provided it
holds for the initial space X.

Corollary 153. Fix {n}3>, € N and {pi}32, € [1,00]. Let X = (R", | - |[x) be
a normed space and define

Vk e N, Xpip1 =8 (Xg), whereXo =X.

Suppose that a > 0 and there exists a normed space Y = (R™0, || - ||y) with By C Bx
and that satisfies
1
iq(B 1, (Bx)\ 70
o) (0B 6.16)
/Mo \ vol,,(By)
Then, for every m € N there is a normed space Y, = (R0 || - ||y,,) that satisfies

By,, <€ Bx,, and

iq(By,,) (volno.‘.nm(BXm))W _.
no - Am \VOlyg.m,y, (BYm) o,

To see why Corollary 153 indeed follows from Lemmas 151 and 152, observe
that if we start with Eg = R and define inductively Ez+; = K;’; (E), then for each
m € N the space E,, is unconditional and satisfies the assumptions of Lemma 152.
The space Y, of Corollary 153 is the same space that is defined in Lemma 151 if we
take E = E,;,, and also X; = --- = X,;, = X, which ensures that (6.13) holds.

Proof of Lemma 151. Denote
n 1
MEY mp=dimX) and Vk €{l.....n}, px = voly, (Bx,)™. (6.17)
k=1

Fix numbers ¢, Cy1, ..., Cy, Y1, oo s Vs Wiy oo s Wy, WYL oo, Wy, Brs oo s B >0
that satisfy the following conditions (their values will be specified later). Firstly, we
require that

n n
Y wiei| =D wie| =1 (6.18)
i=1 E i=1 E*
Secondly, we require that
mg
Vk e{l,....n}, wrw; = ——. (6.19)
“T M
Finally, we require that
1 C
Vk ell,....n), <pp< = (6.20)

~ ~ ’
CWk Pk Wi Pk
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Denote

def = ﬁ
k=1

Consider the block diagonal linear operator S : R™! x ... x R"? — R™1 x ... x R™»

that is given by

def 1

Vx =(x1,...,Xx) € R™ x ... x R"", Sx:B

The normalization by D in (6.21) ensures that S € SL(R™! x --- x R™),
Since Y wy e is a unit functional in E*, we have

n

Z ”Sk_lxk ||Xk e
Bk

k=1

(6.9AE21)

|5~ ¥ D

E
n n -1
(6.18) S lx|x
> D<Zw;ek,z—” k,B | kek>
k=1 k=1 k
6.19 " S—1
©19 D o~ Mkl S el

M~ yrwiPr

for every x = (x1,...,x,) € R™ x ... x R™2_ This shows that

n

my || S x M
SBx C {xeR’”‘ X e x R™ - Zk”"—ﬂk”"ksf}
Yk Wk Pk

k=1
M
= D DL X))@ e (kb s, X,,)

Using Lemma 149, we therefore have

a
PP S X))@y @) (Yinbn 5%

1
©» 1 MM ﬁm, view Beor \ ™\
D\ M k- my

k=1

1 M
volps (Bx) ™ < 3 volys (B

1

D

S

©200 1 [ MM 2 my! M
< — |1 i i Co)™
( M! k=1 mkk
1

< %( H(ykck)"'k) .

k=1

(B1S1x1..... BnSnxn). (6.21)

(6.22)
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Next, for every x = (x1,...,x,) € R™ x ... x R™" we have
n -1
_ (6.9)A6.21) ||Sk Xk||xk
HS 1x” = D Z—ek
X
k=1 Pr E
(6.14) S Ly X
90 e ISE el
kefl,...,n} wkﬁk
ST 1x
619 5 1S, k||xk'

ke{l,...n}  wiPr

This establishes the following inclusion:

1 u def
SBx 2 Bk]j[1 wi Bi S Bx, = Q. (6.23)

Thanks to (1.62), the assumption (6.10) of Lemma 151 implies that
2
Vk e {l.....n}. A(SkBx, ) o2 "= A(Sk Bx, ) Volmy (Bx, )™ < o2my. (6.24)

Foreachk € {1,...,n} take fi : Sx Bx, — R thatis smooth on the interior of Sy Bx, ,
vanishes on 0S5k Bx, , and satisfies A fi = —A(Sk Bx, ) fx on the interior of Sy Bx, .
Define f : Q@ — R by

1 £ def T~ D
Vx =(x1,...,xp) € Q2= — Wi Br Sk Bx, , Xx) = k( xk),
LX) l)k]:[1 BeSkBx,. [(x) ,Elf —H

Thus f = 0 on the boundary of 2 and on the interior of 2 it is smooth and satisfies

2 Sk Bxy
P (Z (wkﬂk)z) (623
Hence,
B 62, (Sk Bx,
ASX) = 2(5By) (g o w)

((,2 ) (6.24)

< (cD)? (ZA(SkBXk)p,’ﬁ) < (caD)®>M.  (6.26)

By combining (6.22) and (6.26) we see that

2

n M
A(SX) voly (Bx) 7 < 62( H(chk)mk) o’ M.
k=1
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Another application of (1.62) now shows that the desired conclusion (6.11) holds with
Y = Ch SX (recall the definition of Cheeger space in Section 1.6.1) provided

n i
c( H(chk)mk) S L (6.27)

k=1

To get (6.11), by the Lozanovskif factorization theorem [186] there exist weights

Wi, ..., Wp, W, ..., w, > 0 such that (6.18) holds and also wkw;(= = my /M for
every k € {1,...,n}. Thus (6.19) holds (as equality) if we choose y; =--- =y, = 1.
Ifwetakec = Cy =---=C, = l and Bx = 1/(wgpx) foreach k € {1,...,n}, then

both (6.20) and (6.27) also hold (as equalities). With these choices, (6.11) holds.
Suppose that the additional assumptions (6.12) and (6.13) hold. Denote

1 n n
n= 0 Zei Zei
i=1 Ell i=1 E*
Thus, n = O(1) by (6.12). Consider the weights w; = --- = w, = 1/[| Y./, eile
and w =--- = w} = 1/| X7, eillg*» so that (6.18) holds by design. This choice
also ensures that if we take y, = my/(nM) for each k € {1, ..., n}, then (6.19)
holds (as an equality). Next, choose Cy = pi for each k € {1,...,n}, as well as
Br=-=Pn=|>;_¢illg and c = 1/ minge(s,.._n} pk. This ensures that (6.20)

holds, and also that (6.27) coincides with the assumption (6.13), since = O(1). The
desired conclusion (6.11) therefore holds with Sx = (S1x1,...,Syxy,) in (6.21). In
particular, if S = Idy,, forevery k € {1,...,n}, then we can take S = Idgm1 x..xgmn
in (6.11). [

The following lemma provides a formula for the cone measure of Orlicz spaces.
Fix a convex increasing function v : [0, 00) — [0, oo] that satisfies ¥ (0) = 0 and
limy 00 ¥ (x) = 00 (80, if limy—;— ¥ (x) = oo for some a € (0, 00), then we require
that ¥ (x) = oo for every x = a). Henceforth, the associated Orlicz space (see, e.g.,
[268]) €% = (R™, || - || o ) will always be endowed with the Luxemburg norm that is

given by
n
. |xi
n — . _
Vx eR", [lxlley —1nf{s>0.;w( =) <1 (6.28)
i=
Lemma 154. Fix n € N. Suppose that i : [0, 00) — [0, o0] is convex, increas-
ing, continuously differentiable on the set {x € (0, 00) : ¥ (x) < oo}, and satisfies
limy 00 ¥ (x) = 00 and ¥ (0) = 0. Define a function ¢y, : R" — [0, 00) by setting

n —1(1.-. I (1= ().
V= (rr.....1) CR". %(T)d:efzmw by’ (0 5D) (o)

[T v/ (v~ (D)
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Then, for every g € L (K(l‘}/ ) we have

”—!voln(B% ) / g(0) dicgn (6)

n B
Sy

= [ e qubsientm). ...y Gl () () g (). (630
en

For example, when v/ (¢) = t? for some p = 1 and every ¢ = 0, in which case
£y, = {3, Lemma 154 gives

r(l+7%) goM!, (1)
[, e =t B [ LM g
L B

1
n'F(l—f—;) 0 5? |Tl"'fn| P
where M_, , : R" — R" is the Mazur map [205] from £} to ZZ, ie.,

1. 1,
Vx € R”, Ml”_,p(xl, ceXp) = (|x1|P sign(xy), ..., |xn|? s1gn(xn)).

As another special case of Lemma 154, consider the following family of Orlicz spaces
= R || - lan):

VB>0. Qb= (6.31)

where

wr | plog(is) if0<r <1,

120, Ya)Z (6.32)

00 ift = 1.

Observe that by considering the case g = 1 of (6.30) we obtain the following identity:

g dign
/G;Berl v
v

fagen g () sign(m), ..., ¥~ (| ) sign(za)) @y (v) dicen (7)
_ 1 , (6.33)
o 740 gy (0

where we recall that go"; is defined in (6.29). When ¥ = v as in (6.32) for some
B > 0 (we will eventually need to work with § =< n), for every t € 834:11 we have

S vy (uhvg (07 (mh) X (1 — e Bty 2!

Movpvp'dmd) eﬂ;il

n—1 ,3|1’1|_1 n
_ BT Y _ eﬂ Z (Pl 1), (6.34)

ﬂ”T”[’l
1 i=1

P (1) =
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Consequently, (6.33) gives the following identity, which we will need later:

/ g dKQn
9Bon b

Jop,, 8(( M =Dysign(z). ... (A1 — 1) sign(za)) 7, (€A77 =1) diegy (v)
fBBe? Yoiz1(ePlil=1) dicgn (7) '

Proof of Lemma 154. Foreachi €{1,...,n}define f; : R" — R by setting f; (0) =0
and il

Consider f = (f1,..., fn) : R" — R”. Then, ||f(y)||4:}, = ||y||grll for every y € R”.
Hence, f(Byr) = B%. Now,

(6.2) 1 1
g(0) diyn (0) = / g( x) dx
/33% “ vol, (B ) ") £ \xlle

1
~ vl (B, )/Ben (Ilf(y)ll 0 e £ Oy

©2) vol,, (Bgrll )
vol, (B% )

Vy eR < {0) £i0) = Iyl ( )sign(y».

| sl @)dens @l deey 0

where in the final step we used the fact f is positively homogeneous of order 1, and
hence its derivative is homogeneous of order 0 almost everywhere ( f is continuously
differentiable on {y € R"; yi,..., y, # 0}). Since the volume of the unit ball of £
equals 2" /n!, it remains to check that the Jacobian of f satisfies

Yo v M why' (v wh) -,

det () = = ¢y (1),
[Ti= v/ (v~ (uD) Y
for every 7 € aBgrll with 71, ..., 7, # 0. This indeed holds because for every such ©
andi, j € {l,...,n} we have
7; sign(ty) _ ) .
0, fi() = S NENG) o 1)) sign () sign(y ).

D))

Hence, f'(7) = A(t) + u(r) ® v(r), where A(zr) € M, (R) is the diagonal matrix
Diag((1/v'(¥ ' (|7i])))?_,) and the vectors u(7), v(r) € R" are defined by setting

T—(H))):l v() = (sign(w));_, € R".

) = (v G sente) = e S
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By the textbook formula for the determinant of a rank-1 perturbation of an invertible
matrix (e.g., [214, Section 6.2]), it follows that

det f'(7)

(1 + (A(x)"u(z), v(r))) det A(r)
2 ¥ (0 () (0 (D) sign(a) — 5y sign(z)
[T= v (v~ (uD)
X v N uhy' (v (k) .
M- v (v=dub)

Another description of kx is the fact (see, e.g., [242, Lemma 1]) that the Radon—
Nikodym derivative of the (n — 1)-dimensional Hausdorff (non-normalized surface
area) measure on dBx with respect to the (non-normalized cone) measure vol, ( Bx)kx
is equal at almost every x € dBx to n times the Euclidean length of the gradient at x
of the function u + ||u||x. In other words, for any g € L{(dBx),

/ g(x) dx = n vol, (Bx) / gV - lIx ()] gr diex (x). (6.35)
0Bx 0Bx 2

The special case g = 1 of (6.35) gives the following identity:

VOln_l (aBX) _
ol (By) " /BBX [VI1 - x ) diex )

VI - n
L f Iy 636
Bx

—1
1%

where the second equality in (6.36) is an application of (6.2) because it is straightfor-
ward to check that [ V|| - [x(rx)llez = [Vl - [x(x)[|¢z for any r > 0 and x € R at
which the norm || - ||x is smooth.

Remark 155. By applying Cauchy—Schwarz to the first equality in (6.36), we see
that

vol,—1 (0Bx) , !
e <[ 191 ol aesco)

i !
= (m /BBX HV“ - Ix(x) “eg dx) , 6.37)

where the final step of (6.37) is an application of (6.35) with g(x) = [[V| - [|x(x)[l¢z-
If || - ||x is twice continuously differentiable on R” ~ {0} and ¢ : R — [0, 00) is twice
continuously differentiable with ¢’(1) > 0 and ¢”(0) = 0, then because for every
x € dBx the vector V|| - [|lx(x)/|IVIl - ||X(x)||4§ is the unit outer normal to dBx at x,
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by the divergence theorem we have

/an Alpoll-lx)(x)dx = /me divV(g o || - [Ix)(x) dx

_ / (Vigoll- (), VI - x())
o8y [V Ix]

- / ¢ (1x11x) [ V1 - x(x) | g dx
3By 2

dx

=) [ |91 s g .

A substitution of this identity into (6.37) give the following bound:

vol,—1 (0Bx) Jn ( Mool ] )2
vol,, (Bx) < Jo'() ]gBX (ol lx)(x)dx ) . (6.38)

In particular, for every p > 2 we have

VOln_l(an) n %
ol (By) \/; (]ix Al 1) (x) dx) . (6.39)

It is worthwhile to record (6.38) separately because this estimate is sometimes con-
venient for getting good bounds on vol,—; (dBx). In particular, by using (6.39) when
X is an £, direct sum one can obtain an alternative derivation of some of the ensu-
ing estimates. Another noteworthy consequence of (6.37) is when there is a transitive
subgroup of permutations G < S, such that [|(Xz(1), ..., Xzm)|x = ||x||x for all
x € R" and w € G. Under this further symmetry assumption, the first inequality
of (6.37) becomes

vol,—1(3Bx) _ 3 oll-lx .\ :
vol(Bx) (/aB( o, (x)) d""(x)) |

The following lemma provides a probabilistic interpretation of the cone mea-
sure which generalizes the treatment of the special case X = £}, by Schechtman-
Zinn [279] and Rachev—Riischendorf [266].

Lemma 156 (Probabilistic representation of cone measure). Fixn € N and let X =
(R”, || - IIx) be a normed space. Suppose that ¢ : [0, 00) — [0, 00) is a continuous
function such that ¢(0) = 0, () > 0 whent > 0 and [;° r" 1o(r)dr < co. Let V
be a random vector in R" whose density at each x € R" is equal to

1
n vol, (Bx) fooo r"=lo(r)dr

e(lxlx). (6.40)
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where we note that (6.40) in indeed a probability density by (6.2). Then, the density
of IV|x at s € [0, 00) is equal to s" ' ¢(s)/ fooo "~ Lo(r)dr. Moreover, the following
two assertions hold:

e V/|\Vlx is distributed according to the cone measure kx,

o ||Vlx and V/||V|x are (stochastically) independent.

Proof. The density of ||V|x ats € [0, 00) is equal to
d%Pmb[”V”X <] = dis(n vol, (Bx) foio r"o(r)dr /sBx ?(lxlx) dx)
©2 d (f(f tr"o(r) dr)
ds \ [ r*=lo(r)dr
s"Lg(s)
- fooo rn=lo(rydr

The rest of Lemma 156 is equivalent to showing that for every measurable A C dBx
and p > 0,

V
Prob|:— e A||VIx = pj| = kx(A).
IVIIx

To prove this identity, observe first that for every a, b € R with a < b we have
a
vol, ([a, b]A) = vol, (b(([o, 14) ~ (E[O’ 1]A)))
= (b" —a") vol, ([0, 1]A).

Hence, it follows from the definition (6.1) that

vol, ([a, b]A)

vol, ([a, b]0Bx) " ©41)

kx(A) =

Consequently,

v Prob[V e ||V|[x4 and p—e < |V||x <
Prob[_ eAl|VIx = p] = lim — [Ve|V|xA and p—e < ||V|x < p + €]
IVl 50 Problp —& < |[V[|x < p+é]

= lim f([O’OO)A)ﬂ([p—s,ers]an)‘P(||x||x) dx
>0 Jipme prejony P [1x) dx
vol, ([p — &, p + €]A)
= 11um
e~>0 vol, ([p — &, p + £]9Bx)

= kx(4),

where the penultimate step holds as ¢ is continuous at p and ¢(p) > 0, and the final
step uses (6.41). [ ]
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Lemma 157. Fix m,n € N and p € (1, 00). Suppose that X = (R™, || - ||x) is a
normed space. Let Ry, ..., Ry, be ii.d. random variables taking values in [0, 00)
whose density at each t € (0, 00) is equal to

P

—1 _t2p —2

— Ll (6.42)
2(p — DI (%)
Then,
VOlnm_l (ang (X))
VOlnm (B(Z (X))
1
pT(1+ %) / |:( n 2
= ey E| | DoRAVI-IxGolEy | | deg” (vre ).
—1 { X n
F(l + %) (3Bx)" ! 2
(6.43)
Furthermore,
T (1) (202) :
V1 legool gy decy b [ 191 Il dex.
/BBeg(x) pX) ez (e Sp(X) = (%)F(nm—ﬂp 2) 3By “ “(2
(6.44)
Proof. For almost every x = (x1,...,x,) € £7(X) we have
VI leoo () = ——== (Il VI Ix G, 1 IE VI xGen)).
E Ilm)
Consequently,
X
102 0 | VI oo ()
fieo PO xlggoo /Ny
1
Xi 2 \?
anznz” Vi ||x(—)
llx[lez ox)

1

2 2
m) , (6.45)
2

I 13272 9l (=)
(Z ! i/ le
where we used the straightforward fact that the gradient of any (finite dimensional)
norm is homogeneous of order O (on its domain of definition, which is almost every-
where).

Let
V=(V1,...,Vn)
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be a random vector on {7 (X) whose density at x = (x1, ..., x,) € £7(X) is
n
! oMo _ 1 oIl
T (1 + 22) volum (Benx) ) L (1 + 22) volum (Besx) i)
(6.46)
By combining Lemma 156 with the first equality in (6.36), we see that
volnm—1(3Bgz(x)) Vv
L = nmE[HVH . ||£7,(X)(—) ] (6.47)
VOlym (Beg(x)) IVIlenx) e

Also, using the formula from Lemma 156 for the density of [|V||¢z(x), for g > —nm

we have
fo gnm+a—1,=s? q¢ F(M)

V n = P . 4
[” ”g (X)] foooi”nm le_rp dr F(%) (6 8)

Consequently,

[nvu VI - e ( v ) ]
n 129691 BT
L5 (X) »(X) ”V”EZ(X) e

\'%
= E[IVI1 5B H'V“ | “fﬁ@(m)
D

+p—1
_ F(—nm pp ) ] volnm_l(ang(X))
nml"(%) Volnm(B%(X))
where the first step of (6.49) uses the independence of [|V||¢z(x) and V/|[V| ¢ (x),
by Lemma 156, and the final step of (6.49) is a substitution of (6.47) and the case
qg = p — 1 0of (6.48). Hence,
Volpm—1 (aBZ%(X))
VOlnm (Bg;t] (X))
an(l + "m)
= (1 4 nm= 1) |:||V”€”(X)

A (z;")}

) (6.49)

Vi ( v )
s lenx _—
PO\ VIl o

ﬁg(zzm)}
= P 2 Vil 2|V ( )

2\ 2
) :| (6.50)
where in the last step we used the identity (6.45).

The product structure of the density of V in (6.46) means that Vy, ..., V, are
(stochastically) independent. By Lemma 156, for each i € {1, ..., n} the random
vector V;/||V;||x is distributed on dBx according to the cone measure xx, and it is
independent of the random variable

def
Ri = Vi3 72, 6.51)
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whose density at ¢ € (0, 00) is equal (using Lemma 156 once more) to

1

d 1 d (177 gmelems”
—Prob|||V;|x <1272 | = — ds
dr [” illx ] dr Jo fooo pm—1p=r? qp

- r zzﬁz_le_ﬂ"’%z

2(p - 1T (%)

Hence, the identity (6.50) which we established above coincides with the desired
identity (6.43).

To prove the identity (6.44), let R be a random variable whose density at each
t € (0,00) is given by (6.42), i.e., Ry, ..., R, are independent copies of R. Then, for
every @ > —m/(2p — 2) we have

E[RY] = dt= ———— P2 2 (652

A F(2a + 25%)
20— DT(2) Jo r(=)

Using Lemma 156 (including the independence of V;/||V;||x and ||V; | x), we have

n V 2
E| S v 127 vn-nx( ! )
[; X IVillx /|l g
nr(m+2p—2

= nElR] [ 90 ] aex
0Bx 2
) >
= o /a . [ VIl diex (6.53)

r(%)

where we recall (6.51) and the last step of (6.53) is the case o« = 1 of (6.52). At the

same time,
2
Vi
vu-ux( )
IVillx /1l g

n
2p—2
E|:Z||Vi||xp
i=1

Vv 2

= E[nvnzf‘2 VI llenx (—) }

£ (X) »™X) IVllez ) / llez ey

2p—2 v ’
— Ve |9 oo (e )|

[ ep<X>] >0 IVIlep e / llez ey
) IV1 - g ey ey (654)
) lleg g B0 '
L) Bepoo TR

where the first step of (6.54) uses the identity (6.45), the second step of (6.54) uses
the independence of |[V||¢zx) and V/||V||¢zx) per Lemma 156, and the final step of
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uses the case ¢ = 2p — 2 of (6.48) and Lemma 156. The desired identity (6.44) now
follows by substituting (6.54) into (6.53). [ ]

The following lemma will have a central role in the proof of Theorems 24 and 48.

Lemma 158. Suppose that n,m € N and B > 0 satisfy B < == Then,

Vi< p<m, iq(Bgl;)(ng)) n dlm(ﬂ”(Qm))

Recall that the normed space Q’" ®R™ ] - ”Qm) was defined in (6.31) and (6.32).

Prior to proving Lemma 158, we will show how it implies Theorem 48, and then
deduce Theorem 24.

Proof of Theorem 48 assuming Lemma 158. By the assumption (1.73) of Theorem
48, write n = km for some k,m € N with max{2, p} <m <e?.Then(m—1)/2>0
and m = p, so we may apply Lemma 158 with n replaced by k and 8 = (m — 1)/2.
Denoting Y = E’Ij (QZ’), the conclusion of Lemma 158 is that iq(By) < /7.

Y is canonically positioned (it is a space from Example 40). To prove Theorem 48,
it remains to check that || - [ly < || - [[¢z, where, since n = km, we identify R" with
Mixn (R), namely we identify £ with £% (¢7).

In fact, for any 8 > 0 (not only our choice 8 = (m — 1)/2 above) we will check
that 5

Vx eR™, (1—e m)xllay < lxllen < lxllay. (6.55)

It follows from (6.55) that || - ||Qan < |- llez, when g < m. But, || - [|gz < [| - |z, by
the assumption e? = m. So,

B = v =1 gy = I ez = - legeegy = 11+ leg-

Fix x € R™. To verify the second inequality in (6.55), the definition (6.32) gives
Y1V (|xil/s)=00 when 0 <s < ||x[| ¢z, so [|x [l = [|x ez by (6.28) and (6.31).
For the first inequality in (6.55), by direct differentiation it is elementary to verify that
the function u > log(1/(1 — u))/u is increasing on the interval [0, 1). Thus,

log(125)
of

1 1
O$t$a<1:>1ﬂ,3(t)=glog(l t)$ 1.

Hence, for every fixed 0 < a < 1,

mlog (-
> ~xllen, = Zw (") < Z aﬂs o)), < Ojﬂ(;—“)nxnegno.

i=1
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Provided & = 1 — e™#/™ the choice s = m log(1/(1 — a))|lx|l¢m /(aB) satisfies the
requirement s = ||x ||z /@, so we get from (6.28) and (6.56) that

mlog (s
Ixllgz < —la)||x||egg~ (6.57)
ap
The optimal choice of « in (6.57) is ¢ =1 — eBim, giving the first inequality
in (6.55). [ ]

Having proved Theorem 48 (assuming Lemma 158, which we will soon prove),
we have also already established Theorem 24 provided n € N and p > 1 satisty the
divisor condition (1.73). Indeed, the space Y that Theorem 48 provides is canonically
positioned and hence by the discussion in Section 1.6.2 it is also in its minimum
surface area position, so by [ 104, Proposition 3.1] we have

MaxProj(By)  vol,—1(dBy) iq(By) 1 1 ©h 1
= = = = n l
vol, (By) vol, (By)/n NG

voly(By)®  vol,(Bg)7
where the penultimate step uses the fact that iq(By) < +/n by Theorem 48, and also
that by Theorem 48 we have || - [y < || - [|¢z, which implies that the nth root of the
volume of the unit ball of Y is proportional to the nth root of the volume of the unit
ball of £7.
The deduction of Theorem 24 for the remaining values of p = 1 and n € N uses
the following identity, which we will also use in the proof of Proposition 164 below.

Lemma 159. Fix n,m € N. Suppose that K € R" and L € R™ are convex bodies.
Then,

MaxProj(K x L) MaxProj(K)?>  MaxProj(L)? 3
Volpym(K x L) — U vol,(K)? vol,, (L)2

Proof. Fix z € S"*™~1 By Cauchy’s projection formula [102] that we recalled in
(1.30), we have

. 1
Vol 4-m—1(Proj, 1 (K x L)) = 3 /8(K 5 |(z. Nrxr(w))] dw,
X

where Ngxr (w) is the (almost-everywhere defined) unit outer normal to d(K x L)
atw € (K x L). Now,

(K xL)=(@KxL)U(KxdL) and Voln+m_1((8K x L) N (K x 3L)) =0.
Consequently,

VOl 4m—1(Proj, . (K x L))

_ %/BKXL (2. Nisr (w))| dw + %/KXM (2. Nicr ()] duw.
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If we write each w € R” as w = (wy, wy) where w; € R” and w, € R™, then
for almost every (with respect to the (n + m — 1)-dimensional Hausdorff measure)
w € 0K x L we have Ngxr (w) = (Ng(wy),0). Also, Ngxr(w) = (0, Np(w5)) for
almost every w € K x dL. We therefore have

V01n+m—1 (Prosz (K X L))

I (L ln (K
_ Yol )/3K|(ZI,NK(x)>|dx+V° . )/BL|<22’NL(Y)>|"Y

= vol,, (L) vol,—; (Pron% K)|z1llen 4 voly (K) voly—1 (Projzé_ L)lz2llep,

where the last step is two applications of the Cauchy projection formula (in R” and
R™). Hence,

Vol 4m—1(Proj, . (K x L))
Vol +m (K X L)
Vol tm—1(Proj, L (K x L))

vol, (K) vol,, (L)
vol,—1 (PrOJ'ZlL K) voly,—1 (ProjzzlL)
= vol, () lz1llez + voln(L) llz21lez-
Consequently,
MaxProj(K x L)
voly4m (K X L)
—  max VOln-i—m—l(PrszL(K x L))
zesntm=l Vol 1m (K x L)
= max max max VO]”+m—1(Pr°j(ux+vy)L(K x L))
(40)eS! resn=t yesnl Vol e (K x L)

VOln_l(PrijJ_K)| 4 Vol —1 (Proj, . L) |
vol, (K) " vol,, (L)
MaxProj(K) MaxProj(L)
= max jul + o
(u,v)es! vol, (K) voly, (L)
_ (MaxProj(K)*> = MaxProj(L)? 2
U vol,(K)2? vol,, (L)2

= max max max
(u,v)eS! xesn—1yesgm—1

We can now prove Theorem 24 in its full generality using the fact that we proved
Theorem 48.

Proof of Theorem 24. Let m € N satisfy max{2, p} <m < e? (if 1 < p < 2, then
take m = 2, and if p > 2, then such an m exists because e? — p = e? —2 > 5). Write
n=km+rforsomek e NU{O}andr €{0,...,m — 1}.If r =0, then m divides n
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and we can conclude by applying Theorem 48 as we did above (recall the paragraph
immediately before Lemma 159). So, assume from now that r > 1.

By Theorem 48 there is a canonically positioned normed space Y = (R*¥™_ || - ||y)
such that iq(By) =< vkm and || - ||y < || - ||e]1§m. Define Y, =Y ®oo Q;}, where 8 =< r
and iq(erg) = /r; such B exists trivially if » = 1, and if r > 2, then its existence
follows from an application of Lemma 158 (with the choicesn = 1 and p = m =r).

Since B =< r, by (6.55) we have || - ||Q;3 <[ Nleng - Also, [ - [z, =< || - lle; since

e? = m > r. Consequently, for every (x, y) € R¥” x R” we have

N

max{[lx[ly. [y lgy} =< max{[lx[lgm. [¥lle} =< (lxlgem + 171,)

Recalling the definition of Yj,, this means that [| - [lyz < || - [[¢.
Since both Y and erg are canonically positioned and hence in their minimum
surface area positions,
MaxProj(By) _  iq(By) 1 1

(km)?
= NN = NS = m)r
VOlg (BY) vkm Vol m (BY) km Vol (Bﬁf,m) km

and

X
~
=

= =1
vol, (BQ;rS) \/7

MaxProj(BQg) g (1q($22) ) 1 1
VOI(QE)% VOI(EZO)%

Consequently, since By = By x Bglrg, by Lemma 159 we conclude that

1
MaxProj(By:) [ MaxProj(By)? MaxProj(B Qy )2 :
vol, (By) volgm (By)? VOlr(BQg)z

2 2,1 1 1
< ((km)? +r7)? < (km+r)7 =n7. n
The following lemma will be used in the proof of Lemma 158.

Lemma 160. Suppose thatm € N, r € N U {0} and > 0 satisfy B < % Then

©  pki_ 1k © ki 1k
Blul A" |71 _/ B 71|
e — E dicgm (t) = E dicgm ()
/BB@,ln ( k! 4 9Ben \ i k! “

k=r—1
"(m—1)!
< Lm= DL (6.59)
(m+r—1)
Proof. LetHy,...,H, beindependent random variables whose density at each s € R

is equal to e 7181 /2. Then, |H;|. ..., |H,| are exponential random variables of rate 1,
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and therefore if we denote
m
def
TE) [Hil,
i=1

then I' has I"(m, 1) distribution, i.e., its density at s > 0 equals s le™/(m — 1)!;
the proof of this standard probabilistic fact can be found in, e.g., [89]. By [266,279]
(or Lemma 156), the random vector (Hq, ..., H;,)/ T is distributed according to Kem
and is independent of I". Thus, for every k € N,

Hil* ] E[IHil
/ |T1|deglln(‘E):]E|:| 1| :|: [ ]
332'1"

rk E[T*]
B [ ske™s ds
(mil)! fooo ghtm—1o—s qg¢
_ klm—1)!
Ck4+m—1)
Consequently,
o0 o0 —
BEIn ¥ (m—1)1 & prrmt
/ (Z kvl dicgy (v) = pm—1 Z(k+m—1)'
Bgm \ = k=r :
_ Bm-1!

1
= i) /0 P =)™ 2dr, (6.59)
where the last step is the integral form of the remainder of the Taylor series of the
exponential function.

It is mechanical to check that (6.58) holds for m € {1, 2}, so assume for the rest
of the proof of Lemma 160 that m > 3. We then see from (6.59) that our goal (6.58)
is equivalent to showing that

1
/ P — )"t 2dr <
0

. 6.60
m-+r ( )

For the upper bound in (6.60), estimate the integrand using

(1 _ t)m+r—2 < e—(m+r—2)t
to get

1 1
/ eﬂt(l _ t)m+r—2 dr < / e—(m+r_2_ﬁ)t dr
0 0
1— e—(m+r—2—ﬂ) 1

~

m4r—2—-8 " m+r’
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where we used 8 < %’_2 For the lower bound in (6.60), since (1 — )™ =2 > |

1
< < —
whenO\t\ r—2°

1 2
/ eﬂt(l _ [)m+r—2 dt > / eﬂt(l _ t)m+r—2 dr
0 0

=2 eﬁ—l 1
2/ ePrar = = ,
0 ,3 m-+r

m+2r =2 once more. n

where in the last step we used the assumption 8 <
Proof of Lemma 158. By combining the case g = 1 of (6.30) with (6.34), we see that

658 (28)™

,Bm_12m
_m/aB (P11 — 1) degrr () = o (661
e'l" :

eBm!

VOlm (BQ’Z;) =

Since we are assuming in Lemma 158 that 8 < m, in combination with (6.4) we get
from (6.61) that
B

1
vol,,m(Bg;z,(ng))”’" = — 0, (6.62)
nrm

At the same time, by applying Cauchy—Schwarz to the identity (6.43) of Lemma 157
we have

volum—1 (9B )

volum (Bey )
pI(1 + %) i )
< r(l_l_—%—l)(ﬂ(]E[Rl]) /BBQM MREAC] d,c%,,(g))
B
2
= ”Hm( / [V Nl 0) [ dKQg(e)) , 6.63)
839? 2

where the random variable R; is as in Lemma 157, i.e., its density is in (6.42), and the
last step is an application the evaluation (6.52) of its moments and Stirling’s formula,
using the assumption 1 < p < m.

Recalling (6.31) and (6.32), even though | - ||le is defined implicitly by (6.28),
we can compute V|| - || Qm (0) for almost every 6 € 8BQ:;; as the unique vector v € R™
that is normal to 839731 and satisfies (v, 8) = 1. Indeed, since BQZ‘ is parameterized
as the zero set of the function Wg : R” — R" that is given by

m
Vx e R", Wg(x) Ly ZWﬂ(lxiD’

i=1
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the following vector is normal to 8Bg’r3n for almost every 6 € BBQ?;:

vg(0) Z VWg(0) = —(W5(101]) sign(81). . ... ¥ (16m]) sign(Om)).
So, V|| - ||QZ7 (0) = Ag(8)vg () for almost every 6 € BBQréz,where Ag(0) € Ris such
that (Ag(0)vg(0),0) = 1,i.e., Ag(0) = —1/(vg(0), 0). This shows that for almost
every 0 € aBQ’é’l,

1 ’ . ’ .
VI -lagy @) = gy (V19D sien(8). ... ¥ (6 sign(t)

_ 1 (sign(@l) sign(@m))
- m ei _ LERIE ] _ ’
S L\ Tl =16

where the first equality in (6.64) holds for any /g that satisfies the conditions of
Lemma 154, and for the second equality in (6.64) recall the definition (6.32) of the
specific ¥4 that we are using here. Therefore,

(6.64)

> 28Izl

o, ST
em YL (ePTil-1)
V|- Nl (0) | 5 dicge (8) = —

/8ng H 2 ”‘Zz 2 m faBe’I” (ePlnrl — l)dkeqﬂ (7)

dicgm (7)

2817;

Yitie | m
faBeqn B In dKﬁl (v)
o (P~ 1) G
fagem 2Pl dicgm ()
_ 1
B T, P~ ) 0

m
/\ﬁ’

(6.65)

where the first step of (6.65) is a substitution of (6.64) into (6.33) while using (6.34)
and that wﬁ_l (1) =1—e P! forevery t = 0, the second step of (6.65) uses the inequal-
ity e’ =t + 1 which holds for any ¢ € R, and the final step of (6.65) is an application
of Lemma 160. Now, a combination of (6.63) and (6.65) gives

volum—1(8Bey@yp) _ nv*2m

volum (Bggeapy)  ~ B

Nl

(6.66)

By combining (6.62) and (6.66) we conclude that

VOlpm—1 (3355(9;;1)) 1
1 Byngny) " < 4/ .

ia(Bey ) =



Direct sums 181

The reverse inequality, namely iq(Bez @) X /nm, follows from the isoperimetric
theorem (1.12), so the proof of Lemma 158 is complete. Note that this also shows
that all of the inequalities that we derived in the above proof of Lemma 158 are in
fact asymptotic equivalences. This holds in particular for (6.66), i.e.,

volum—1(0Bepy)) — nrtim3
volum (Beyey) B

The following asymptotic evaluation of the surface area of the sphere of {7 (£7")
in the entire range of possible values of p,q = 1 and m,n € N is an application of
Lemma 157; by (6.7) it is equivalent to (1.82).

Theorem 161. For everyn,m € N and p,q € [1, co] we have
Volum—1 (0B )

n'Trm'Ta mSmin{E,q},
11,1
Jan'trmeta g <m <2,

_ 2an( ) ( p) . \/ﬁn%"'Lm%"'é ; <m< mln{p q},

)
(1+ )n (1 +%) ./pqn%Jr%mé max{2. ¢} <m < p,
11%+%1n“ré ps<m<yq,
+

1 1 1 1
Jqn? »m2Ta  m = max{p,q}.

Proof. By continuity we may assume that p, g € (1, 0c0). Suppose that G is a sym-
metric real-valued random variable whose density at each s € R is equal to

L s
——¢ . (6.67)
2r(1+ 1)

LetGy,...,G, beindependent copies of G. Set U = «f (G1,...,Gm) € R™. By the prob-
abilistic representation of the cone measure on aBgzn in [266,279] (or Lemma 156),
the random vector U/[|U][¢z is distributed according to the cone measure on 3By,
and moreover it is independent of [|U||¢z.

Consider the following random variable:

def U 2 Z 24-3 _ U] Zq 22
N V) g (—) G2 = B (g
“\IIUlleg /ey ||U||2q 2 ol
IfweletNy,...,N,,Ry,...,R, beindependent random variables such that Ny, ..., N,
have the same distribution as N, and Ry, ..., R, are as in Lemma 157, then Lemma

157 gives that

VOlnm_l(ang(ajn)) _ pF(l + %)

Volum (Beyey) (1 + 221)

E[Z] < pnrm?E[Z],  (6.69)
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where for (6.69) we introduce the following notation:

1
n 2
z¥ (Z R,N,-) . (6.70)
i=1

Let R be a random variable that takes values in [0, c0) whose density at each
t € (0,00) is given by (6.42), i.e., Ry, ..., R, are independent copies of R. We com-
puted the moments of R in (6.52) and by Stirling’s formula this gives the following
asymptotic evaluations:

E[R}] = 2 6.71)
p
m ml_%
E[R] = max{—, 1} , (6.72)

p p
m3 m'~r

E[R?] < max{—S, 1} . (6.73)
P p

We also need an analogous asymptotic evaluation of moments of the random vari-
able N in (6.68). Observe that the random variables N and [[U||¢z are independent,
since U/[|U|[¢zz and [|U]|¢z are independent and N is a function U/|[U||¢z. Conse-
quently, for every § > 0 we have

E[||U||§§?‘2)ﬂ]1E[Nﬂ] - IE[||U||Z7?_2)ﬂ NA] L) ]E[||U||%Z:22)ﬁ]. (6.74)

Since (e.g., by Lemma 156) the density of [|[U]|¢z at s € (0, 00) is proportional to

s 1= 'we can compute analogously to (6.48) that

_ _ _ —28
]E[”U”(zq_z)ﬁ] _ fooo §m 1+(2q 2)ﬂ€ s9 ds _ F(ZIB + mq )
&' fooo pm—le=r gy F(%)

Therefore, (6.74) implies that

r@)

E[N?] = E[|u) 2924

Z2:1—2

By considering each of the values 8 € {%, 1,2} in this identity and using Stirling’s
formula, we get the following asymptotic evaluations of moments of N in terms of

moments of ||U|;m _:
2g—2

q _
= l_éE[HUHZ%;], (6.75)

m

D=

E[N
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E[N]xmin{n%,l} 1‘15 [||U||Zq 22] (6.76)
m
q3 q 4q—4
E[Nz]xmin{ﬁ,l}ml s [IIu|| - 2], (6.77)

Due to (6.75), (6.76), (6.77), we will next evaluate the corresponding moments of
||U||@12nq_2. Recalling the density (6.67) of G, for every § > —1/(2g — 2) we have

2qg—2
E[1G|29=287 — _r = (2q-2)B ,—57 45 = F( qq :3“‘5)
[l61Co~2#] [T 2 e Pt D)
r(+2) gT(1+ 1)

Hence,
E[|G|97!] < E[|G]??72] < E[|G|* ] < 1 (6.78)
q

We therefore have

E[|Ullg ] = mE[|GP~2 (6.79)

E[IUllgh ] = E[(i |G,»|2q—2)2}

Jj=1

(6.78) m
I'= q

and

= mE[|G[**] + m(m — 1)(E[|G|*2])*
©78) max{ﬂ, l}ﬂ (6.80)
9 Jq

Consequently, using Holder’s inequality we get the following estimate:

~

(6.79)
=S E[uigg ]

—E[nun*("_”uun““qz“’]
q— 3 4q—4
< (E[Iuig" ) EQur )’

@ (& [lung, _2])%(max{%, 1}%)5. 6.81)

_ . m m
E[||U||g,2,,q‘_2] zmm{ /5,;}. (6.82)

At the same time, by Cauchy—Schwarz,

B, ] < @0uEg ) 2 (683)

This simplifies to give

(Sl
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Also, by the subadditivity of the square root on [0, c0),

m % m
-1 _ _
E[1Ulg" ] =E[(Z 161 2) }SE[ZIG;'I" 1}
j=1 ji=1

= mE[ja]7] %" 2. (6.84)
q

By combining (6.83) and (6.84) we see that (6.82) is in fact sharp, i.e.,

— . m m
E[||U||szqi2] xmm{ /3’3}‘ (6.85)

By substituting (6.85) into (6.75), and correspondingly (6.79) into (6.76) and
(6.80) into (6.77), we get the following asymptotic identities:

E[N] < min{\/g, 1}m3:, (6.86)
E[N] = mm{i 1}m%, (6.87)
E[Nz] = mln{— 1 mg (6.88)

By combining (6.72) and (6.87) we see that

E[22] = n(E[R])(2N)) = P LL

ST

Using Cauchy—Schwarz, this implies the following upper bound on the final term
in (6.69):

pn%m%E[Z] < pn%m%(E[Zz])%

= n2* 5 ma /maxim, p) min{m, q}. (6.89)

Also, recalling (6.70) and using the subadditivity of the square root on [0, c0) in
combination with (6.71) and (6.86), we have the following additional upper bound on
the final term in (6.69):

=" om2ty min{m, q}. (6.90)



It follows from (6.89) and (6.90) that

pn%m%E[Z] < n2trma \/min{m,q}min{«/nm, v/ max{m, p}}
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m < min{2 ¢},
g<m<E,
P < m < mi
xS m < min{p,qj, 6.91)

p
max{;,q} =m<p,
psms<gq,

m = max{p,q}.

We will next prove that (6.91) is optimal in all of the six ranges that appear
in (6.91); by (6.69) and (6.6), this will complete the proof of Theorem 161. Recall-

ing (6.70) and using (6.72), (6.73), (6.87), (6.88), the fourth moment of Z can be
evaluated (up to universal constant factors) as follows:

E[z*] = E[iiRiRjNiN,}

i=1j=1

= n(E[R?])(E[N?]) + n(n — D(E[R))(EIN])’

(max{m, p})*(min{m,q})*> a_a_,
= nma »

P4

: 2
. (maxtm. p)mintm. 7
4
: 2
max{m, p} min{m, max{nm, 4_4_
_ (max{m, p} min{ 4q}) nm, p} -4 6.92)
p
By using Holder’s inequality similarly to (6.81), we conclude that
3
T 1 (E[27])
pnrm?E[Z] = pnPm? T
(E[z¢])°
CINC?) 141 Lyl y/max{m, p} min{m, q}
vmax{nm, p}
't omita m < min{Z ¢},
\/ﬁnH%mlJré g<m< 5’
pn%+117m%+% 2 <m < min{p, g},
= |
./pqn%J“%mé max{Z, g} <m < p,
Lyl q41
n2 rm "4 psm<yq,
qn%+%m%+é m = max{p,q}.
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Lemma 162 below applies Theorem 161 iteratively to obtain an upper bound on
the surface area of the unit sphere of nested £, norms on k-tensors (the case k = 2
corresponds to n by m matrices equipped with the £7(£7') norm). The second part
of Lemma 162, namely the conclusion (6.94) below, is an implementation of the
approach towards Conjecture 9 for the hypercube that we described in Remark 56.

Lemma 162. Suppose thatk,ny,...,nr € Nand p1,..., pr € [1,00] are such that
ny = max{3, p1 —2} and niny---n;_y = p; —2 for every j € {2, ..., k}. Define
normed spaces Yo, Y1, ..., Yy by setting Yo = R and inductively Y; = ZZ; (Yj-1)
for j €{1,...,k}. Then,

VOln 1ng—1 (BBYk)

vOlyny (By,

ko1,
< 00 ml‘[n]? Pi (6.93)
=1

Hence, using the natural identification of the vector space that underlies Yy with
RAmYK) = Rk if in addition we have ny = O(1) and p;j = lognj for every
j e{l,...,k}, then

MaxProj (BY k)

O(k)
— "~ <e , (6.94)
vOlgim(y;) (Byy)

By, C Bédim(Yk) C eo(k)BYk and
oo

where we recall the notation (1.53).

Proof. Suppose that n,m € N and p € (1, c0). By applying Cauchy—Schwarz to the
right-hand side of (6.43) while using the case « = 1 of (6.52), we see that for every
normed space X = (R™, | - ||x) we have

1
2

wlonct(BBi0) P04 (TR oy o
ohn(Bgoo) PO+ TG ST
(6.95)

P
If also m = max{3, p — 2}, then by Stirling’s formula (6.95) gives the following esti-

mate: 1
L.{.L 2 2
Bhn([ 191 Il ae ) 699
dBx 2

By continuity we may assume that py,..., px € (1,00). Denote dy = 1 and for
Jj €{l,... .k} denote d; = dim(Y;) = nyny---n;. We will naturally identify Y;
with (R%, || - |ly;). As Y = £;F (Yi—1), we deduce from (6.96) that

i) o () bt )
R S S 774 . — . |
volg, (BYk) = ny H nj 9By, ” I vy, ”(;k_l Ky,

j=1
(6.97)

VOlnm_l (aBgZ (X))
VOlnm (Bgz (X))

<
~

S
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At the same time, by (6.44) for every j € {1,...,k} we have

g 1701l 0o,

d; dj_1+2p;—2
R e

C(&n) P (222 o

HV” : ||Yj_1 ”2’/—1 dry; . (6.98)

Ifalso j = 2,thend;_; = n; = 3 and by assumption dj_; = p; — 2, so by Stirling’s
formula (6.98) gives that for every j € {2,...,k} we have

2 21
/aBy. VI Iy, ||ez21j dey, = nj”f /aB

2
VI lyy o[ diey; o (6.99)

J Yj—1 2

When j = 1 we have dyp = 1 and n; = max{3, p; — 2}, and therefore by Stirling’s

formula (6.98) gives

2 _
/BB [VI- v, [ dieyy = pan g (6.100)
Y

1
Hence, by applying (6.99) iteratively in combination with the base case (6.100), we
conclude that
k=1 2
/ [VI- v [ dieyy < @®pa [T/ (6.101)
Yi—1 j=1
A substitution of (6.101) into (6.97) yields the desired estimate (6.93).
To deduce the conclusion (6.94), note that for every j € {1,..., k} we have the
point-wise bounds
#
<nl7 -

. . < . . = . . . .
|| ”(Zé (Y;_1) < || ”Yj || ”E;j (Y;_1) < fgé Y, 1)

It follows by induction that

1

k
: . 2\ = G0
Il <1 ||Yks(1'[n,. )n g = €“@N- 1l
j=1

where the final step holds if p; = logn; for every j € {1, ..., k}. This implies the
inclusions in (6.94). Furthermore, Y belongs to the class of spaces from Example 40.
Hence Yy, is canonically positioned and by the discussion in Section 1.6.2 know that
By’ is in its minimum surface area position. Therefore,

MaxProj(By,) _ volg,—1(dBy,)

k1
- < 2 0) n? = eo(k)’
oy (Bry) vola, B << Yl

Jj=1
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where the first step uses [104, Proposition 3.1], the second step is (6.93), and the final
step holds because p; = O(1) and p; =logn;. This completes the proof of (6.94). =

The following technical lemma replaces a more ad-hoc argument that we previ-
ously had to deduce Proposition 164 below from Lemma 162; it is due to Noga Alon
and we thank him for allowing us to include it here. This lemma shows that the set of
super-lacunary products nin; - - - ny that can serve as dimensions of the space Y in
Lemma 162 for which (6.94) holds is quite dense in N.

Lemma 163. For every integer n = 3 there are k,m € N U {0} and integers ny <
ny < --- < ng that satisfy
* n=mnny---ng+m,
e npe{6,7tandnjy; <2M < ni3+1f0reveryi e{l,....k—1},
o m < (logn)ito®),
Prior to proving Lemma 163, we will make some preparatory (mechanical) obser-

vations for ease of later reference. Note first that the conclusion n; 47 < 2% < ”1'3 1
of Lemma 163 can be rewritten as

Vie{l,....k—1}, logynit1 <n; < log%niﬂ.
It follows by induction that

Vie{l,....k}, logF ™ np <n; < 1og[§f;” k. (6.102)

where, as we also did in (1.131), we denote the iterates of a function ¢ : (0,00) — R
by ¢l = @ o =11 (lI=11)=1(0, 00) — R for each j € N, with the convention
¢l (x) = x for every x € (0, 00). Since 1] € {6, 7}, it follows from (6.102) that

k =< log*n; <log*n. (6.103)

Consequently,

k k k
i
nilogng <X ngng—q < l_[nk <Sn=m+ l—[nk < (10gn)1+"(1) + Hlog[%l]nk

i=1 i=1 i=1

< (logn)? + ng (log ng) (loglog ni) 4™ 5 (logn)? + nyc(log ).
This implies the following (quite crude) bounds on 7:

n
<n, <

Note in particular that thanks to (6.104) we know that (6.103) can be improved to
k =< log*n.

. (6.104)
logn
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Proof of Lemma 163. Let Ml C N be the set of all those x € N that can be written as
X =niny---ny forsome k,ny,...,n; € N that satisfy ny >ng_q1 >--->ny € {6,7}
and

Vie{l,....k—1}, njp1 <2" <nj,. (6.105)

The goal of Lemma 163 is to show that there exists x € M such that
n — (logn)' M < x <. (6.106)

By adjusting the o(1) term, we may assume that » is sufficiently large, say, n = n(0)
for some fixed 7(0) € N that will be determined later. We will then find x € M with
a representation x = njn, ---ny as above and

n—niny - Ngp—1 <X <N (6.107)

This would imply the desired bound (6.106) because

k—1

[Tm =<
i=1

We will first construct {y; }72, € M such that y; = 7 and y; < y;4+1 < 12y; for
every i € N. Furthermore, for each i € N there are k,n1,...,n; € N with y; =
nin,---ng suchthatny > ng_; > --- > n; € {6,7} and

(6.103)
l_[log nk < (lognk)1+"(1) < (logn)1+"(1)
i=1

(. |0°)

Vjell,... k—1} ni, <2% <2, (6.108)

which is a more stringent requirement than (6.105). Note in passing that (6.108)

implies the (crude) bound
k

IT(LFI) 2. (6.109)
nj

Jj=1

To verify (6.109), note that since {n; }j?zl is strictly increasing and the second inequal-
ity in (6.108) holds, it is mechanical to check thatn; = 6,n, = 7, n3 = 8, nqg = 12
andnj41 = 3n; forevery j € {4,5,...,k —1}. So,

k

1 1 1 1) yoo
[T(1+=)<(t+=)(1+2])(1+)e—onF
j=1 n; 6 7 8

L )14 2) (14 1)t <2
= - = —Jes <2.
6 7 8

Suppose that y; has been defined with a representation y; = nyn, - - -ny that fulfils
the above requirements. Define mq, m1,...,my € N withmg = 6, my = ny + 1 and
mj € {nj,n; + 1} forall j € {1,...,k — 1} by induction as follows. Assuming that
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mj 41 has already been constructed for some j € {1,...,k — 1}, let
n; itm?,, <2m,
m; &L SRrAR (6.110)
nj+1 1fm12.+1>2”f.

Definition (6.110) implies that m; < m;1. Indeed, n; < njyq soif m; = nj,
then n; < njiq < mjyq since mjy1 = nj4q by the induction hypothesis. On the
other hand, if m; = n; + 1, then since the first inequality in (6.108) holds, the defi-
nition (6.110) necessitates that m; 1 = nj + 1, som; < m; 1 in this case as well.

Next, Definition (6.110) also ensures that the requirement (6.108) is inherited by
{m; }}‘:1, ie.,

Vief{l,....k—1}, mi, <2™ <2mj,,. (6.111)

Indeed, if m; = nj, then mjz-+1 < 2% = 2™/ by (6.110), i.e., the first inequality
in (6.111) holds, and the second inequality in (6.111) holds because m; 1 = n; 1
and (6.108) holds. On the other hand, if m; =n; + 1, then by (6.110) we have m; 1=
n; + 1 and mJ2 41 > 2", which directly gives the second inequality in (6.111), and in
combination with (6.108) we also get the first inequality in (6.111) because

mjp1 _ (n + 1)? ©109) (nj + 1)? <1
2m; T e T
where the final step uses n; = 6, though n; = 1/(v/2—1) = 2.414 ... is all that is
needed for this purpose.

If the above construction produces m € {6, 7}, then define y; 1 = mymy - --my.
Otherwise necessarily m; = n; + 1 = 8, so (6.111) holds also when j = 0 (recall
that my = 6, hence m% = 26 = 2™M0), 50 we can define y; 1 = momy ---my and
thanks to (6.111) in both cases y;+; has the desired form. Moreover,

(6.109)

k
~ I
2l < 6] |(1+—) <
Yi i=1 nj

This completes the inductive construction of the desired sequence {y; }72, € M.

With the sequence {y; }72, € M at hand, will next explain how to obtain for each
integer n = n(0), where n(0) € N is a sufficiently large universal constant that is yet
to be determined, an element x € M that approximates # as in (6.107). Leti € N be
such that y; < n < y;41 and denote y = y;. Thus, there are k,ny,...,nx € N for
which y = nyny---ng suchthatng > ngp_; > --- > n; € {6,7} and (6.108) holds.

If y=>n—nyny---ng_1, then x = y has the desired approximation property, so
suppose from now that y <n —njny---ng_q, or equivalently

n y

> + 1 =n;+ 1.
ning---Ng—1 ninz---Ng—1
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Hence, if we define

/ def n /
n=|——— and x = NNy« NNy,
ninz,...,Ng—q

then nj = nx + 1 2 n/(log n)?, where we used (6.104). Consequently, recalling
(6.102), there is a universal constant 7(0) € N such that if n > n(0), then nj >
max{144, ny_.}. Thus, the sequence ny,ns, ..., ng_1, n;c is still increasing. Since
by design x satisfies (6.107), it remains to check that x € M, i.e., that (6.105) holds.
Since ny, ..., ng are assumed to satisfy the more stringent requirement (6.108), we
only need to check that

nj, < 2"=1 < (n)). (6.112)

The second inequality in (6.112) is valid since (6.108) holds and n}c > ng. To justify
the first inequality in (6.112), observe that y < n < 12y, as y;4+1 < 12y;. Conse-
quently,

ny <nf(niny---ng_y) <12y /(niny---ng_y) = 12ny.

2
(6.108) n’

-1 =2 = (K ) >,
12

where the last step uses the fact that n} > 144. |

Therefore,

We are now ready to extend the conclusion (6.94) of Lemma 162 to all dimensions
n € N. Namely, we will prove the following proposition, which comes very close to
proving Conjecture 9 for the hypercube [—1, 1]* via a route that differs from the way
by which we proved Theorem 24.

Proposition 164. For any n € N there is a normed space Y = (R”, | - ||y) that for
every x € R" ~ {0} we have

VOln—l(ProijBY) ~ eO(log*n)
vol, (By) N '

lxllen, < Ixlly < P | x||n  and

Furthermore, Y can be taken to be an L, direct sum of nested £, spaces as in
Lemma 162.

Proof. Let M C N be the set of integers from the proof of Lemma 163, namely m €
M if and only if there are integers ny > ny_; > --- > n; € {6, 7} that satisfy (6.105)
such that m = nyn, ---ng. By Lemma 162, there exists C > 1 such that for every
m € M there is a normed space Y” = (R™, || - ||ym) that satisfies

MaxProj(Bym) < (Clog™m
VOln (Bym) '

C log*
- llem <1~ llym < e ™| -|lgn  and <
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By applying Lemma 163 iteratively writen =mq + -+ +mgyq formy, ... ,ms €
M and m41 € {1, 2} that satisfy m; 1 < (logm;)€ foreveryi € {1,...,s}, where

. . me . .
¢ > 1 is a universal constant. Denote Y”s+1 = £o ™" and consider the £, direct sum

Y = def Y"1 Doo Y™2 Do Poo Yt = (Rn’ ” : ”Y)

C log*m; ”

* .
Then | - lez, < |- Iy < maxjeqs,...s+13 € eClogmn|. [|¢n, . We claim

that

: ”g’:ol S

MaxProj(By) _ oqes'n
vol,(By) .

Since By = Bymi X Byms X -+ X Bymsy1, by an inductive application of Lemma
159 we have

1 1
. +1
MaxProj(By) - ( MaXPI'O_](BYm, ) (SX: 2C log* mz) < (Clog™n
i=1

VOln (BY) VOlml' (Ble )

where the first step uses Lemma 159, the penultimate step is our assumption on Y,
and the final step has the following justification. Recall that m; 4+ < (logm;)¢ for
every i € {1,...,s}, where ¢ > 1 is a universal constant. So, m; 4, < c¢(loglogm; )¢
for everyi € {1,...,s — 1}. Fix ng € N such that c¢¢(loglogn)¢ < logn for every
n = ng. Then, m; 5 < logm; if m; = ng, hence log*m; 1> < log*m; — 1. Let iy be
the largest i € {1,...,s + 1} for which m; < n¢. Then,

i=1

log*my; <log*my —i <log*n —i

and log*myj 41 <log*my — j <log*n — j if2i,2j + 1 €{l,...,ip — 1}. We also
have |{ig,...,s + 1}| = O(1). Consequently,

s+1
ZeZClog mi < eZClog n Ze—ZCk + 0(1) < eZClog n -
i=1 k=0

Remark 165. A straightforward way to attempt to compute the surface area of the
unit sphere of a normed space X = (R”, || - ||x) is to fix a direction z € $”~! and con-
sider dBx as the union of the two graphs of the functions WX, X : Proj,. (Bx) — R
that are defined by setting UX(x) and ¥ X(x) for each x € Proj, (Bx) to be, respec-
tively, the largest and smallest s € R for which x 4+ sz € dBx. We then have

vl @B = [ [TV ax
Proj, 1 (Bx) 2

+/ \/1 + VY02, dx. (6.113)
Proj, 1 (Bx)
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When X = E;‘, for some p € (1,00) and z = e,

N

. o o
Vx € PrOJe,Jl- (B(Z;',) = Bzg*l, Ve (X) = =V, (x) = (l - ”x”é};l)

Therefore, (6.113) becomes

1

vol,—1(0B¢x) sy A\

Voo 1 (By1) Zf I+ (1= “x”fg_l) P E |xi|2(p D) 4y
n—I1

V01n—1(ng—l) Bep i=1

By [31], a point chosen from the normalized volume measure on Beg—l is equidis-
tributed with

_1
(IG1]? + -+ + |Gu=1]? +2Z) 7 (G1.....Gu1) € R*T,

where Gy, . ..,G,—1,Z are independent random variables, the density of Gy, ...,G,—1
ats € R is equal to 2I'(1 + 1/p)~'e™ 11" and the density of Z at ¢ € [0, 00) is equal
to e~*. Consequently,

1
n—1 2
Vol (0B) _ ZE[(I ) |Gi|2<p—l>) ] 6114

T

Optimal estimates on moments such as the right-hand side of (6.114) were derived
(in greater generality) in [225], using which one can quickly get asymptotically sharp
bounds on the left-hand side of (6.114). It is possible to implement this approach to
get an alternative treatment of £ (£7"), though it is significantly more involved than
the different way by which we proceeded above, and it becomes much more tedious
and technically intricate when one aims to treat hierarchically nested £, norms as we
did in Lemma 162. Nevertheless, an advantage of (6.113) is that it applies to normed
spaces that do not have a product structure as in Lemma 157, which is helpful in other
settings that we will study elsewhere.

6.2 Negatively correlated normed spaces

Our goal here is to further elucidate the role of symmetries in the context of the
discussion in Section 1.6.2. Fix n € N and y = 1. Say that a normed space X =
(R”™, || - IIx) is y-negatively correlated if the standard scalar product (-, -) on R” is
invariant under its isometry group Isom(X), i.e., Isom(X) < O,, and there exists a
Borel probability measure p on Isom(X) such that

Y
Vx.y € R, / (U ) i) < = Jixllen 1y - 6.115)
Isom(X) \/ﬁ 2 2
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We were inspired to formulate this notion by the proof of [286, Theorem 1.1]. It is
tailored for the purpose of bounding volumes of hyperplane projections of Bx from
above in terms of the surface area of dBy, as exhibited by the following lemma which
generalizes the reasoning in [286].

Lemma 166. Fixn € N and y = 1. If X = (R", || - ||x) is y-negatively correlated,
then y
MaxProj(Bx) < —— vol,—1(dBx).
xProj(Bx) 2ﬁVn1( X)
Proof. Recall that for every y € dBx at which dBx is smooth we denote the unit outer
normal to dBx at y by Nx(y) € S"!. By the Cauchy projection formula (1.30) for
every x € S~ ! we have

Vol (Proj (By)) = 5 / It s .

Since every U € Isom(X) is an orthogonal transformation and Nx o U* = U* o Nx
almost surely on 9By,

. 1
vol, -1 (Proje (B)) = 5 [ 1(Ux. Nx()}
2 JaBy
By integrating this identity with respect to u, we therefore conclude that

b (o (80) = 3 [ ([ s onlan) ) oy

Y
< l,,—1(9Bx),
2/ vol,—1(dBx)
where we used (6.115) and the fact that || x|z = 1 and || Nx(y)ll¢z = 1 for almost
every y € dBx. ]

By substituting Lemma 166 into Theorem 76 and using (1.96), we get the follow-
ing corollary.

Corollary 167. Fixn € Nandy = 1. If X = (R", || - ||x) is y-negatively correlated,
then
vol,,—1(0Bx) diamgz (Bx)

vol, (Bx) /1

Corollary 167 generalizes Corollary 45 since any canonically positioned normed
space is 1-negatively correlated. Indeed, suppose that

e(X) < SEP(X) < 2y

X=R"["Ix)

is canonically positioned. Recall that in Section 1.6.2 we denoted the Haar probability
measure on Isom(X) by hx. Fix x, y € R”. The distribution of the random vector
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Ux when U is distributed according to hx is Isom(X)-invariant, and therefore it is
isotropic. Hence,

/ |<Ux,y>|dhx(U)s(/ <Ux,y>2dhx<U>)
Isom(X) Isom(X)

169y 1y llez / 5 )
= Ux||7» dhx(U
\/ﬁ Isom(X) ” “62 X( )

1
= el

1

where the final step uses the fact that each U € Isom(X) is an orthogonal transforma-
tion.

One way to achieve (6.115), which is close in spirit to the considerations in [286],
is when there are I' € {—1, 1} and Il € S, such that U, , € Isom(X) for every
(g,m) € I' x I1, where U, , € GL,(R) is given by

def
Vx = (x1,...,x5) €R", Ugpx = (slxn(l), . ..snx,,(n)),

and also there are ¢, 8 > 0 such that

1
VweR", — > [(e.w)| < allwle (6.116)
|F| eel :
and -
Vi,je{l,...,n}, |{n€H:n(i)=j}|S,Bu. (6.117)
n

Under these assumptions, X is y-negatively correlated with y = a\/ﬁ . Indeed, we
can take p in (6.115) to be the uniform distribution over the finite set

{Ue : (e,m) € T x IT} C Isom(X),
since every x, y € R” satisfy

1
1 6.116) 1 n 2
Y W) < = 3 a3 G i)?
IT ] I{ e,mX hal I Ot( (xﬂ(l)yl) )

(e,m)erxI1 rell i=1

< “(i(ﬁ 2 xfr(i))yiz)5

i=1 nwell

i=1 j=1
(6-1<l7) (X\/B

< gyl
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Condition (6.116) can be viewed as a negative correlation property of the coor-
dinates of sign vectors that are chosen uniformly from I'. Condition (6.117) roughly
means that foreachi € {1,...,n}thesets{m € [1:x(i)=1},...,{mell:n(i) =n}
form an approximately equitable partition of IT. This holds with 8 = 1 if IT is a tran-
sitive subgroup of S,,. One could formulate weaker conditions that ensure the validity
of the conclusion of Lemma 166 (e.g., considering bi-Lipschitz automorphisms of X
rather than isometries of X), and hence also the conclusion of Corollary 167, though
we will not pursue this here as we expect that in concrete cases such issues should be
easy to handle.

6.3 Volume ratio computations

Here we will present asymptotic evaluations of volume ratios of some normed spaces,
for the purpose of plugging them into results that we stated in the Introdcution. Due
to the large amount of knowledge on this topic that is available in the literature, we
will only give a flavor of such applications. The main reference for the contents of
this section is the valuable work [285].

We will start by examining the iteratively nested £, products {Xg}?2, that we
considered in Corollary 153, in the special case when the initial space X = Xj is a
canonically positioned normed space for which Conjecture 49 holds. Thus, we are
fixing {ng )7, € N and {px}72; C [I, 0], and assuming that

X=R".]-[x)

is a canonically positioned normed space satisfying Conjecture 49, i.e., (6.16) holds
with @« = O(1); the case X = R is sufficiently rich for our present illustrative pur-
poses, but one can also take X = E to be any symmetric space, per Lemma 54. By
Corollary 153 and Corollary 79, if we define inductively

Vk e N, Xpi1 = F(Xk), where Xo = X,

then, because {Xj }22, are canonically positioned (they belong to the class of spaces
in Example 40),

Vm e N, SEPX,,) < evr(Xy)vdim(X,,) = evr(X;,)/No - Nm.  (6.118)

Let {H }72, be the sequence of Euclidean spaces that arise from the above con-
struction with the same {nx}z2, € N but with py = 2 forall k € N and X = 05°.
Thus, for each meN the Euclidean space H,;, can be identified naturally with £5°"".
Under this identification, by a straightforward inductive application of Holder’s
inequality and the fact that the £, norm deceases with p, the Lowner ellipsoid of
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X,, satisfies'
m ax{l—-L o
Lx,, € ( l_[ nzdx{z DK’ }) (Lx)™mm
k=1

Also, by Lemma 150 we have

1
1 l,,(Bx)"

VOl (me)"o‘}'"k = M.
[Ti= ”lfk

These facts combine to give the following consequence of (6.118):
m
. X{l,L}
SEP(Xpm) = eviX) [[ g~ 7% -
k=1
In particular, when we take X = R and consider only two steps of the above
iteration, we get the following asymptotic evaluation of the separation modulus of the
€5 (£7') norm the space of n-by-m matrices Mpxm (R) forany n,m € N and p,q = 1;
the case of square matrices was stated in the Introduction as (1.5):

1 1 11 1 1 1 1
SEP(@‘,(EZ’)) = gtz gk, mady, ot max{«/nm,mﬁ n,nfﬂ,nfmﬁ}.

Next, fix an integer n = 2 and let E = (R”, || - |g) be an unconditional normed
space. Given g € [2,00] and A = 1, one says (see, e.g., [182, Definition 1.f.4]) that E
satisfies a lower g-estimate with constant A if for every {uy}7> ; € R" with pairwise
disjoint supports we have

[ee] % [ee]
(Znukn‘é) SA| D u
k=1 k=1

Note that by (6.14) this always holds with A = 1 if ¢ = oco.

In concrete cases it is often mechanical to evaluate up to universal constant factors
the minimum radius of a Euclidean ball that circumscribes By, but it is always within
a O(+/logn) factor of the expression

Re &  max (ﬂ) (6.120)

oSl \ | Yieseill

More precisely, if E satisfies a lower g-estimate with constant A, then

(6.119)

E

Rg < 0utradius¢g (Bx) < A(logn)%_éRE. (6.121)

' As X,,, is canonically positioned, this holds as an equality, but for the present purposes we
just need the stated inclusion.
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The first inequality in (6.121) is immediate because | Y ;g eillg' ;e ¢ € B if
@ # S Cc{l,...,n}. For a quick justification of the second inequality in (6.121),
note that by homogeneity we may assume without loss of generality that |le;|g = 1
for every i € N. Therefore, using (6.14) we see that if x = (x1,...,X,) € Bg, then
max;e(1,...n) |Xi| < 1. Consequently, if we fix x € Bg and denote for each k € N,

def | . 1 1
Sk:Sk(x)é{l E{l,...,l’l}:z—k<|xl’|§2k—_l}, (6122)

then the sets {Sy }72, are a partition of {1, ...,n} and in particular > e |Sk| = n.
Next,

1
o0 q q
ARg = ARg| x| = RE(Z H Z Xie; ‘E)
k=1 iESk
1 0o q 1
(Z RE ) (Z ) . (6.123)

The second step of (6.123) uses (6.119), the penultimate step of (6.123) uses (6.14)
and (6.122), and the final step of (6.123) uses (6.120). Now, for every 0 < 8 < 1 we
have

N\

> 5

lGSk

00 1
2
Il = (z 5 )

k=1i€Sk

1
oo 2

|Sk|
k=1
1

|8y |1 :
= (Z 22k (1— 9)|S k| 2_2k6)

/A

[\®]
—
Me T
[ R
S~
o
—

N

=2
N~
(8]

[N (*—*)(1 0)
2kqgb
(Z 2" @ (1=0 )
k=1

< (ARp)"n%0~ G, (6.124)

where the second step of (6.124) uses (6.122), the penultimate step of (6.124) uses
trilinear Holder with exponents 1/6, g/(2(1 —6)) and 1/((1 —2/g)(1 — 0)), and the
final step of (6.124) uses (6.123), the fact that

[e.e]
D oISkl =n,
k=1

and elementary calculus. By choosing & = 1/logn in (6.124), we get (6.121).
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By the Lozanovskii factorization theorem [186] there exist wy, ..., w, > 0 such
that
n n 1
Y wiei| =Y —e| = (6.125)
“ — W;
i=1 E i=1 E*

We will call any wy, ..., w, > 0 that satisfy (6.125) Lozanovskii weights for E. They
can be found by maximizing the concave function w +— Y i, log w; over w € Bg
(see also, e.g., [263, Chapter 3]), which can be done efficiently if E is given by an
efficient oracle; their existence can also be established non-constructively using the
Brouwer fixed point theorem [135]. By [285, Lemma 1.2] (note that we are using a
different normalization of the weights than in [285]),

1
vol, (Bg)# = % (6.126)

By combining (6.121) and (6.126), we get the following lemma.

Lemma 168. Fix an integer n = 2 and let E = (R", || - ||[g) be an unconditional
normed space. Suppose that E satisfies a lower q-estimate with constant A for some
q=2and A = 1. Then,

VIST
max@#SQ{l,...,n}(m)

evr(E) < TR A(logn)%_é,
n
for any Lozanovskit weights wy, ..., w, > 0 for E. If the Lowner ellipsoid of E is a
multiple of ng, then
VST
max@#‘gg{l""’”}(ll Yies i ”E) < evi(E)
n wl e wn ~
NN
max T
< fa#SE{lv--’"}(||Z,-ese,»||E)A(logn)%_g'
n wy - wn

The following corollary is a consequence of Lemma 168 because if
E=@®R".[-[e

is a normed space that satisfies the assumptions of Lemma 53 (in particular, E is
unconditional), then by Lemma 152

Jn
ler 4 -+ + enlle

wlzwzz...zwnz

are Lozanovskii weights for E.
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Corollary 169. IfE = (R”, || - ||[g) a normed space that satisfies the assumptions of
Lemma 53, then

||€1+"'+€n||E( \/]; )
ma

Jn ke{1,..,n} |ler + -+ + ex|lE
||e1+---+en||E( vk ) fioan
<evr(E) < max logn.
Jn ke{l,..n} [ler + -+ + ek lE &

Hence, by Corollary 79 we have

N
lex +-~-+en||E( max )

ke{l,..n} |ler + -+ ex|lg

N/

S SEPE) < ller +---t+e hax fog.
(E) < llex ””E(ke{l ..... n} |leq +"‘+ek”E) &

More succinctly, this can be written in the following form, which we already stated in
Corollary 4:

k
SEP(E) = |ley + -+ + en||E( ma vk )n"(l).

X
ke{l,...n} |ler + -+ + ex|lg

By [285, Proposition 2.2], the unitary ideal of any symmetric normed space E =
(R™, || - l|g) satisfies
vr(Sg) < vr(E). (6.127)

This implies that
evr(Sg) =< evr(E), (6.128)

by (1.71) combined with S}, = Sg+, though a straightforward adjustment of the proof
of (6.127) in [285] yields (6.128) directly, without using the much deeper result
(1.71). We therefore have the following corollary.

Corollary 170. IfE = (R",| - ||g) is a symmetric normed space, then

||e1+-~-+en||E( - vk )
N ke{l,..n} ler + -+ + ex|le

k
Sevr(Sg) S ler -+ en”E( max vk )\/logn.

Jn ke{l,..n} |ler + -+ + exlE

Hence, by Corollary 79 we have

max
ke{l,...n} |ler + -+ + exllg

||e1+---+en||E( vk )
JE

< SEP(Sg) Sler +---+e max J/nlogn,
(Sk) < llex ””E(ke{lr-"”} llex + - +€k”E) ¢
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More succinctly, this can be written in the following form, which we already stated in
Corollary 4:

— vk 3+o(1)
SEP(Sg) = [ler + -+ en ”E(ke?;?in} T ek”E)n2 :
Remark 171. In the above discussion, as well as in the ensuing treatment of ten-
sor products, we prefer to consider square matrices rather than rectangular matrices
because the setting of square matrices exhibits all of the key issues while being nota-
tionally simpler. Nevertheless, there are two places in which we do need to work
with rectangular matrices, namely the above proof of Proposition 164 and the proof
of the first inequality in (1.117). For the latter, fix p = 1 and n, m € N. As in the
proof of Theorem 77, denote the Schatten—von Neumann trace class on the n-by-m
real matrices Myxn, (R) by S77™; recall (1.118). The following asymptotic identity
implies (1.119) (recall that in the setting of (1.119) we have r € {1,...,n})

evr(Sme) = (min{n, m})maX{%_%’O}. (6.129)

Volumes of unit balls of Schatten—von Neumann trace classes have been satisfacto-
rily estimated in the literature, starting with [293] and the comprehensive work [285],
through the more precise asymptotics in [146,277]. Unfortunately, all of these works
dealt only with square matrices. Nevertheless, these references could be mechani-
cally adjusted to treat rectangular matrices as well. Since (6.129) does not seem to
have been stated in the literature, we will next sketch its derivation by mimicking the
reasoning of [285], though the more precise statements of [146,277] could be derived
as well via similarly straightforward modifications of the known proofs for square
matrices. We claim that

VOlnm(Bng’")ﬁ = ! . (6.130)

(min{n,m})? \/max{n,m}

(6.130) gives (6.129) since S;‘,X’” is canonically positioned, so by Holder’s inequality
its Lowner ellipsoid is

S =

Lszxm = (min{n,m})max{%_%’o} Bst21><m.

To prove (6.130), note first that it follows from its special case p = oo. Indeed, as
ST = (SK™)*, by the Blaschke—Santal6 inequality [39,278] and the Bourgain—
Milman inequality [50] the case p = 1 of (6.130) follows from its case p = co. Now,
(6.130) follows in full generality since by Holder’s inequality:

1 _1
Bsggm - Bsgxm - (min{n,m})l szrllxm.

S =

(min{n, m})
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The upper bound vol,, ,, (Bsggm)l/ (nm) <1/, /max{n, m} follows from the inclusion

Bgnxm C y/min{n, m}BSi21><m. To justify the matching lower bound, if {&;;}; jen are
i.i.d. Bernoulli random variables, then by [35, Theorem 1],

n m
IE|: ZZsijei ®e; :| < vmax{n,m},
S8

i=1,=1
This implies the lower bound voly,,, (Bsgoxm)l/ (nm) > 1/ /max{n, m} by an applica-
tion of [285, Lemma 1.5].

Proof of Lemma 54. By [285, equation (2.2)] we have

1 1
vol > (Bs; ) "* = . (6.131)
2 (Bsr) llex + -+ enlle/n
In particular,
4 1
Vg =1, vol,2(Bgn)n? =< ——. (6.132)
nzta

Because S7 is canonically positioned (it belongs to the class of spaces in Example 40),
and hence it is in its minimum surface area position, by combining [104, Proposi-
tion 3.1] and (1.55) we see that

voi2-1(9Bgy) _ nMaxProj(Bsy) 10 a4t pes 6
vol,,2 (Bsg) vol,,2 (Bsg)

Consequently,

VOlnz_l(aBSg) 1

lq(BSg) = V01n2 (BSZ) n2

V01n2 (Bsg)
3.1
6.13)A6.133) n27a vmin{g,n} -
= n%+é = n+/min{q,n}. (6.134)
Because by (6.14) we have
Vx eR", |x[e < llex +-- +enlellxlle,.

every matrix A € M, (R) satisfies

[Allsg < llex + -+ enllelAllsn, < llex + -+ enllelAllsy-

q

Consequently,

1
Ben C Bs,.. 6.135
e (6.135)
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Moreover,

. 1 . (6.134) .

i Bsn | =1q(Bgr) =< n+/min{qg,n

q(Ile1 +-+enlr S“) a(Bs;) g}
and

; 2 (Bs, )"
1 n2 (6.132 1 6.131) VO
VOIZ( Bq) (©132) __euy 2(lsE)
lex + -+ enle ler + -+ enllgn2™a nia

By choosing ¢ = logn we get (1.80) for the normed space Y whose unit ball is the
left-hand side of (6.135). ]

Remark 172. An inspection of the proof of Lemma 54 reveals that if Conjecture 49
holds for S%_, then also Conjecture 49 holds for Sg for any symmetric normed space
= (R", | - ||g). Indeed, we would then take Y = (M, (R), || - ||y’) to be the normed
space whose unit ball is
1 1

By = ChS" = S,
ler + -+ + enllE 7 g + e+ enllg X0

where we recall Corollary 43. If Conjecture 49 holds for S7_, then we would have
n =< iq(Ch S%,) = iq(Byr), and also

1 (6. 132) 1
1,2(Ch SZ)»% < vol,2(SZ —
vol, > (C S ) vol, > (S ) \/ﬁ’

from which we see that

e
vol,2 (Ch SZ) 2 1 6.131)

1 1
vol.o(Bv/)nZ = = =< " vol,2(Bsg) .
B = e el et T enlev (B

This proves Conjecture 49 for Sg. Note in passing that this also implies that

1 (6.131) 1
— =< vol2(S oy "2 = .
2 (Seez.) ler + -+ + enllyen /1

Jn

Hence, if Conjecture 49 holds for S, then we would have [le; + - + eu| e, < 1.
More generally, by mimicking the above reasoning we deduce that if Conjecture 49
holds for Sg, then |[ey + -+ + e, ||y& =< |le1 + -+ + e, |k, which would be a modest
step towards Problem 44.

Fix n € N and p,g = 1. We claim that the volume ratio of the projective tensor
product £}, ®€Z satisfies
vi(£p®¢E) < ©p (), (6.136)



204  Volume computations

where

—

S
D=
|
[N

S

def
Dpq(n) =

D= Q=
D= R

S

S
S |-
|

if1<p,q<2,

(6.137)

Assuming (6.137) for the moment, by substituting it into Theorem 3 we get that

SEP(EI';QVMZ) >n Vr((ZZéZZ)*) =n Vr(@Z* @@;*)

n if p,g = 2,
1 1
7+7 . q
ne’?2 lqusp§2$q’
3.1 . g
n2 d ifps F<2<q,
1 1
- ) L+l e P
= n®px gx(n) = { na™2 if 255 <gs2<p,
3_1 . »
nz r 1f6]$ﬁ§2§17,
. 1,13
< = <=2
n 1fp,q\2andp+q\2,
1 1 1
Lyl 1l o7 1.3
nr'a 2 lf;+525
Since for any two normed spaces X = (R”, || - [[x) and Y = (R”, | - |ly) the space

of operators from X* to Y is isometric to the injective tensor product X*®Y (see,

e.g., [87]), we get from this that

SEP(My (R). || - [len—e2) = SEP (7. ®¢7)

Vv

ifp<2<q,

if2<p<y,

— Q= =

if2<q<p,

+

ifp<q<2, (6.138)

N= R= W NI

+
(ST

ifg <p<2,

. 2P
if 743

3 2p
< =&
lfq\ 3.

<g<2<p,

S 8 S S 2 = S
N =

Q=
+

N~

Note that the rightmost quantity in (6.138) coincides with the right-hand side of
(1.14). Since £7 @KZ belongs to the class of spaces in Example 40, a positive answer
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to Conjecture 11 for E;’,@Vbﬁg would imply the following asymptotic evaluation of
SEP(¢}, (EVQEZ), which is equivalent to (1.14):

n if p,g =2,
1,1
n§+f 1quTl§p$2$q,
n2"a ifp< 3 <2<gq,
n3oon\ _ l+l p

SEP({,&®¢y) = n2ta if 2y <qg<2<p,
n2"7r ifg <y <2<p,
n 1fp,q$2and%+é$%,
Lyl-Ll o1 1.3
netya 1f;+—/5.

Furthermore, by Theorem 80 the leftmost quantity in (6.138) is bounded from above
by O(logn) times the rightmost quantity in (6.138), thus implying the fourth bullet
point of Corollary 4.

The asymptotic evaluation (6.136) of vr({}, @Zg) was proved in [285] up to con-
stant factors that depend on p, ¢, namely [285, Theorem 3.1] states that

Vp.g > 1, vi((h®¢E)) <pq Ppy(n). (6.139)

If 2 € {p, g} and also min{p, ¢} < 2, then (6.139) is due to Szarek and Tomczak-
Jaegermann [293]. More recently, Defant and Michels [84] generalized (6.139) to
projective tensor products of symmetric normed spaces that are either 2-convex or 2-
concave. The proof of (6.139) in [285] yields constants that degenerate as min{p, ¢}
tends to 1. We will therefore next improve the reasoning in [285] to get (6.136).

Lemma 173. Fixn € N and p,q = 1. Let {¢ij }i je1,...ny be i.i.d. Bernoulli random
variables (namely, they are independent and each of them is uniformly distributed
over {—1, 1}). Then,

n n
E|: ZZsijei ® ej

i=1j=1
Citing the work [79] of Chevet, a version of Lemma 173 appears as [285, Lemma
2.3], except that in [285, Lemma 2.3] the implicit constants in (6.140) depend on p, ¢q.
An inspection of the proof of (6.139) in [285] reveals that this is the only source of
the dependence of the constants on p, g (in fact, for this purpose [285] only needs
half of (6.140), namely to bound from above its left-hand side by its right-hand side).
Specifically, all of the steps within [285] incur only a loss of a universal constant

] — BP9
e

1o1_1 .
e pla 2 ,qr <2,
&ef { " if max{p. g} (6.140)

nwra if max{p.q} = 2.
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factor, and the proof of (6.139) in [285] also appeals to inequalities in the earlier
work [284] of Schiitt, as well a classical inequality of Hardy and Littlewood [127];
all of the constants in these cited inequalities are universal. Therefore, (6.136) will be
established after we prove Lemma 173.

Proof of Lemma 173. We will denote the random matrix whose (i, j) entry is &;; by
& € M, (R). Then, the goal is

E[||5||e;*—>zg] = nfPD, (6.141)

In fact, the lower bound on the expected norm in (6.141) holds always, i.e., for a
universal constant ¢ > 0,

vAeM(=L 1)), [ Allen, ep = enPPD, (6.142)

A justification of (6.142) appears in the proof of Proposition 3.2 of Bennett’s work
[34] (specifically, see the reasoning immediately after [34, inequality (15)]), where it
is explained that we can take ¢ = 1 if min{p*, ¢} = 2 or max{p*, ¢} < 2, and that
we can take ¢ = 1/+/2 otherwise.

Next, let {g;j}i,jeq1,..,ny be ii.d. standard Gaussian random variables. By [79,
Lemme 3.1],

n n
E[ S g w6,

i=1j=1

1 1

XI’lmaX{%—Fé_j’F}ﬁ+anX{%+é_%’$}«/q-
0

(6.143)
Consequently,
n n P n n
IE|: ZZeljei@ej 5 :|$\/;E|: Zzgij€i®€j 5 j|
i=1j=1 e i=1j=1 Y%
< nP@D /max{p, q}, (6.144)

where the first step of (6.144) is a standard comparison between Rademacher and
Gaussian averages (a quick consequence of Jensen’s inequality; e.g., [204]) and the
final step of (6.144) uses (6.143). This proves the desired bound (6.140) when

max{p,q} <2,

so suppose from now on that max{p, ¢} = 2.
It suffices to treat the case p = 2. Indeed, if p <2, then g = 2 since max{p,q} =2,
so by the duality

1Ellen, —en = €% Ngn, e,
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and the fact that the transpose £* has the same distribution as &, the case p < 2
follows from the case p = 2. It also suffices to treat the case ¢ < p because if ¢ = p,
then || - [lgz < || - |l¢ point-wise, and therefore

IE€ller, —ez < NEllen, —e3-

Consequently, since 8(p,q) = B(p, p) when g = p, the case g = p follows from the
case g = p.
So, suppose from now that p = 2 and ¢ < p. If we denote

rd:efQ(P—2)
P—9q

’

with the convention r = oo if ¢ = p, thenr = 1 and

1 1-6

q - r

6 )
+ 5. where L2 o1 (6.145)
P

Hence, by the Riesz—Thorin interpolation theorem [272,301] we have

0
1ENen, ey < IENEE o €Ny e

= (, max [eei ) T IEN Loy =n T 1Ny

By taking expectations of this inequality, we get that

1

%]
[||6||§?gﬁeg] <n 7 (E[lElasea])
9
7

= ni = pfPD, (6.146)

6

Efll€]len, ~ep] < n

A

n r

where the second step of (6.146) uses Jensen’s inequality, the third step of (6.146)
uses the classical fact that the expectation of the operator norm from £} to £5 of an
n x n matrix whose entries are i.i.d. symmetric Bernoulli random variables is O(/n)
(this follows from (6.144), though it is older; see, e.g., [35]), the penultimate step
of (6.146) uses (6.145), and the last step of (6.146) uses the definition of B(p, q)
in (6.140) while recalling that we are now treating the case p = 2 and g < p. ]

A substitution of Lemma 173 into the proof of [285, Lemma 3.2] yields the fol-
lowing asymptotic evaluations of the n2-roots of volumes of the unit balls of injective
and projective tensor products; the statement of [285, Lemma 3.2] is identical, except
that the constant factors depend on p, g, but that is due only to the dependence of the
constants on p, ¢ in [285, Lemma 2.3], which Lemma 173 removes

1 1 * ok
vol,2 (Byngen) ™2 = n PP and vol,2 (Bygen)n? < nPPT1072 (6.147)
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Since ZZ @)ZZ belongs to the class of spaces in Example 40, its Lowner ellipsoid
is the minimal multiple of the standard Euclidean ball Bsg that superscribes the unit
ball of £7®{7, namely

L(%@[Z = R(}’l, P,‘])Bsg,
where, since Beg e 1s the convex hull of BEZ ® B@Z,
R(n.p.q) = max |x ® ylsy
XEB[%

€B
y gg

1 1 1 1
= ( max ||x max = pmadz =5 0mad3 2.0 (6 148
(amg ) mg 1) (6.148)

By combining (6.147) and (6.148) we get that

vr(en@en) L eve(e2@en)

vol,2(Bgz) ) pel

max{}—2,0}+max{ 1 —1,0}—B(p*.¢*)+1

=R(n,p,q)(

=n

(6.140) { ﬁ if max{p,q} =2,

mo (6.149)
nmax{p.qay if maX{P, q} < 2.

A substitution of (6.149) into Theorem 3 gives

3

n2 if max{p,q} = 2,

(6.150)
alt

SEP({"®L") >
( »® q) ~ { wra if max{p,q} < 2.

Furthermore, if Conjecture 11 holds for ZZ (EA{)KZ, then (6.150) is sharp, namely (1.15)
holds. Also, by Theorem 80 the left-hand side of (6.150) is bounded from above by
O(logn) times the right-hand side of (6.150), thus implying the fifth bullet point of
Corollary 4.

Remark 174. The above results imply clustering statements (and impossibility
thereof) for norms that have significance to algorithms and complexity theory. For
example, the cut norm [101] on M, (R) is O(1)-equivalent [6] to the operator norm
from {7 to £7. So, by (1.13) the separation modulus of the cut norm on M, (R) is
predicted to be bounded above and below by universal constant multiples of n3/2,
and by Theorem 80 we know that it is at least a universal constant multiple of 1n3/2
and at most a universal constant multiple of n3/2 log n. As another notable example,
we proved that

SEP(L2,®0%) 2 n3.
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Moreover, if Conjecture 11 holds for £ ®¢™_, then SEP(£” &™) =< n>/? and by
Theorem 80 we have ,
SEP({5,®05,) < nlogn.

Grothendieck’s inequality [121] implies that

VA€M (R), [ Allgn gen = v, *(A), (6.151)

where yzl_’°° (A) is the factorization-through-£, norm (see [261]) of A as an operator
from {7 to €7, i.e.,

1 def .
v (A = min IX ez —en IY llen—en
A=XY
= min max |[row; (X)|[¢z [[column; (Y) | ¢z

XY eMu(R)i,jell,....n}
=XY
Above, fori, j €{l1,...,n}and M € M, (R) we denote by row; (M) and column; (M)
the ith row and jth column of M, respectively. See [183] for the justification of
(6.151), as well as the importance of the factorization norm y, ~ to complexity the-
ory (see [38,202] for further algorithmic significance of factorization norms). Thanks
to the above discussion, we know that

ns < SEP(M,,(R),)/ZI_"X’) < n3 logn,

and that SEP (M, (R), y1 =) < 1n3/2 assuming Conjecture 11. To check that this does
not follow from the previously known bounds (1.2), we need to know the asymptotic
growth rate of the Banach-Mazur distance between €7 &®¢" and each of the spaces
K’fz, Egz. However, these Banach—Mazur distances do not appear in the literature. In
response to our inquiry, Carsten Schiitt answered this question, by showing that

A (€27 0, R07) = dpw (€77, 2. BL7) < n. (6.152)
More generally, Schiitt succeeded to evaluate the asymptotic growth rate of the
Banach-Mazur distance between £} @)Eg and 6:‘,(}562 to each of 5’1’2, Zgz for every
P.q € [1,00] (this is a substantial matter that Schiitt communicated to us privately
and he will publish it elsewhere). Due to (6.152), an application of (1.2) only gives the
bounds n < SEP(£2, @Z’o’o) < n?, which hold for every n-dimensional normed space.
More generally, Schiitt’s result shows that (1.13) and (1.15) do not follow from (1.2).

The volume computations of this section are only an indication of the available
information. The literature contains many more volume estimates that could be sub-
stituted into Theorem 3 and Conjecture 6 to yield new results (and conjectures) on
separation moduli of various spaces; examples of further pertinent results appear
in [20, 85, 88,104,110, 115-117, 145, 146,285].



