
Chapter 1

Preliminaries and definitions

1.1 The Wigner distribution

Let u; v be given functions in L2.Rn/. The function �, defined on Rn �Rn by

Rn �Rn 3 .z; x/ 7! u
�
x C

z

2

�
Nv
�
x �

z

2

�
D �.u; v/.x; z/; (1.1.1)

belongs to L2.R2n/ from the identityZ
R2n
j�.u; v/.x; z/j2dxdz D kuk2

L2.Rn/kvk
2
L2.Rn/: (1.1.2)

We have also

sup
x2Rn

Z
Rn
j�.x; z/jdz � 2nkukL2.Rn/kvkL2.Rn/: (1.1.3)

We may then give the following definition (the reader will find some reminders on
the Fourier transformation in Section A.1 of our appendix).

Definition 1.1.1. Let u; v be given functions in L2.Rn/. We define the joint Wigner
distribution W.u; v/ as the partial Fourier transform with respect to z of the function
� defined in (1.1.1). We have for .x; �/ 2 Rnx �Rn

�
, using (1.1.3),

W.u; v/.x; �/ D

Z
Rn
e�2i�z��u

�
x C

z

2

�
Nv
�
x �

z

2

�
dz: (1.1.4)

The Wigner distribution of u is defined as W.u; u/.

N.B. By inverse Fourier transformation we get, in a weak sense,

u.x1/˝ Nv.x2/ D

Z
W.u; v/

�x1 C x2
2

; �
�
e2i�.x1�x2/��d�: (1.1.5)

Lemma 1.1.2. Let u; v be given functions in L2.Rn/. The function W.u; v/ belongs
to L2.R2n/ and we have

kW.u; v/kL2.R2n/ D kukL2.Rn/kvkL2.Rn/: (1.1.6)

We have also
W.u; v/.x; �/ D W.v; u/.x; �/; (1.1.7)

so that W.u; u/ is real-valued.
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Proof. Note that the function W.u; v/ is in L2.R2n/ and satisfies (1.1.6) from (1.1.2)
and the definition of W as the partial Fourier transform of �. Property (1.1.7) is
immediate and entails that W.u; u/ is real-valued.

Remark 1.1.3. We note also that the real-valued function W.u; u/ can take negative
values, choosing, for instance,

u1.x/ D xe
��x2

on the real line, we get

W.u1; u1/.x; �/ D 2
1=2e�2�.x

2C�2/
�
x2 C �2 �

1

4�

�
:

In fact, the real-valued function W.u; u/ will take negative values unless u is a Gaus-
sian function, thanks to a Theorem due to E. Lieb (see [37] and books [16] and [41]).
As a matter of fact, this range of W.u; u/ intersecting R� for most “pulses” u in
L2.Rn/ makes rather weird the qualification of W.u; u/ as a “quasi-probability”
(anyhow the emphasis must be on quasi, not on probability).

Remark 1.1.4. We have also by Fourier inversion formula, say for u 2 S .Rn/,

u
�
x C

z

2

�
Nu
�
x �

z

2

�
D �.x; z/ D

Z
W.u; u/.x; �/e2i�z��d�; (1.1.8)

so that, with z D 2x D y, we get the reconstruction formula,

u.y/ Nu.0/ D

Z
W.u; u/

�y
2
; �
�
e2i�y��d�;

as well as

ju.x/j2 D

Z
W.u; u/.x; �/d�; j Ou.�/j2 D

Z
W.u; u/.x; �/dx; (1.1.9)

the former formula following from (1.1.8) and the latter fromZ
W.u; u/.x; �/dx D

“
e�2i�z�u

�
x C

z

2

�
Nu
�
x �

z

2

�
dzdx

D

“
e�2i��.x1�x2/u.x1/ Nu.x2/dx1dx2 D j Ou.�/j

2:

Lemma 1.1.5. Let u be a function in L2.Rn/ which is even or odd. Then, W.u; u/ is
an even function.

Proof. Using the notation
Lu.x/ D u.�x/; (1.1.10)



Weyl quantization, composition formulas, positive quantizations 5

we check

W.u; v/.�x;��/ D

Z
Rn
e2i�z��u

�
� x C

z

2

�
Nv
�
� x �

z

2

�
dz

D

Z
Rn
e2i�z�� Lu

�
x �

z

2

�
LNv
�
x C

z

2

�
dz

D

Z
Rn
e�2i�z�� Lu

�
x C

z

2

�
NLv
�
x �

z

2

�
dz

D W. Lu; Lv/.x; �/;

so that if Lu D ˙u, we get W.u; u/.�x;��/ D W.u; u/.x; �/.

N.B. This lemma is a very particular case of the symplectic covariance property dis-
played below in (1.2.49).

N.B. In part 1 of volume IV in the collected works [54] of Eugene P. Wigner, we find
the first occurrence of what will be called later on the Wigner distribution along with
a physicist point of view.

It turns out that most of the properties of the Wigner distribution (in particular,
Lemma 1.1.5) are inherited from its links with the Weyl quantization introduced by
H. Weyl in 1926 in the first edition of [53] and our next remarks are devised to stress
that link.

1.2 Weyl quantization, composition formulas, positive quantizations

1.2.1 Weyl quantization

The main goal of Hermann Weyl in his seminal paper [53] was to give a simple for-
mula, also providing symplectic covariance, ensuring that real-valued Hamiltonians
a.x; �/ get quantized by formally self-adjoint operators. The standard way of dealing
with differential operators does not achieve that goal since for instance the standard
quantization of the Hamiltonian x� (indeed real-valued) is the operator xDx , which
is not symmetric (Dx is defined in (A.1.4)); H. Weyl’s choice in that case was

x� should be quantized by the operator
1

2
.xDx CDxx/; (indeed symmetric),

and more generally, say for a2S .R2n/; u2S .Rn/, the quantization of the Hamilto-
nian a.x; �/, denoted by Opw.a/, should be given by the formula

.Opw.a/u/.x/ D

“
e2i�.x�y/��a

�x C y
2

; �
�
u.y/dyd�:
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For v 2 S .Rn/, we may consider

hOpw.a/u; viL2.Rn/ D

•
a.x; �/e�2i�z��u

�
x C

z

2

�
Nv
�
x �

z

2

�
dzdxd�

D

“
Rn�Rn

a.x; �/W.u; v/.x; �/dxd�;

and the latter formula allows us to give the following definition.

Definition 1.2.1. Let a 2 S 0.R2n/. We define the Weyl quantization Opw.a/ of the
Hamiltonian a, by the formula

.Opw.a/u/.x/ D

“
e2i�.x�y/��a

�x C y
2

; �
�
u.y/dyd�;

to be understood weakly as

hOpw.a/u; NviS 0.Rn/;S .Rn/ D ha;W.u; v/iS 0.R2n/;S .R2n/: (1.2.1)

We note that the sesquilinear mapping

S .Rn/ �S .Rn/ 3 .u; v/ 7! W.u; v/ 2 S .R2n/;

is continuous so that the above bracket of duality ha;W.u; v/iS 0.R2n/;S .R2n/ makes
sense. We note as well that a temperate distribution a 2S 0.R2n/ gets quantized by a
continuous operator Opw.a/ from S .Rn/ into S 0.Rn/. This very general framework
is not really useful since we want to compose our operators Opw.a/Opw.b/. A first
step in this direction is to look for sufficient conditions ensuring that the operator
Opw.a/ is bounded on L2.Rn/. Moreover, for a 2 S 0.R2n/ and b a polynomial in
CŒx; ��, we have the composition formula,

Opw.a/Opw.b/ D Opw.a]b/; (1.2.2)

.a]b/.x; �/ D
X
k�0

1

.4i�/k

X
j˛jCjˇ jDk

.�1/jˇ j

˛ŠˇŠ
.@˛� @

ˇ
xa/.x; �/.@

˛
x@
ˇ

�
b/.x; �/; (1.2.3)

which involves here a finite sum. This follows from [33, formula (2.1.26)] where
several generalizations can be found (see in particular in that reference the integral
formula (2.1.18) which can be given a meaning for quite general classes of symbols).
As a consequence of (1.2.3), we get that

.a]b/ D
X
k�0

!k.a; b/; !0.a; b/ D ab; !1.a; b/ D
1

4i�
¹a; bº;

¹a; bº D @�a � @xb � @xa@�b; (1.2.4)

where ¹a; bº is called the Poisson bracket of a and b.
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Proposition 1.2.2. Let a be a tempered distribution on R2n. Then, we have

kOpw.a/kB.L2.Rn// � min
�
2nkakL1.R2n/; k OakL1.R2n/

�
: (1.2.5)

Proof. In fact, we have from (1.2.1), u; v 2 S .Rn/,

hOpw.a/u; viL2.Rn/ D

•
a.x; �/u.2x � y/ Nv.y/e�4i�.x�y/��2ndydxd�;

and we define for .x; �/ 2 R2n the operator �x;� by

.�x;�u/.y/ D u.2x � y/e
�4i�.x�y/�� : (1.2.6)

Claim 1.2.3. The operator �x;� (called phase symmetry, also known as the Grossman–
Royer operator) is unitary and self-adjoint.

Proof of Claim 1.2.3. Indeed, we have

.�2x;�u/.y/ D .�x;�u/.2x � y/e
�4i�.x�y/��

D u.2x � .2x � y//e�4i�.x�.2x�y//��e�4i�.x�y/��

D u.y/; so that �2x;� D Id :

We have also

h��x;�u; viL2.Rn/ D hu; �x;�viL2.Rn/

D W.v; u/.x; �/ D W.u; v/.x; �/

D h�x;�u; viL2.Rn/;

proving that ��
x;�
D �x;� .

We have thus

Opw.a/ D 2
n

“
a.x; �/�x;�dxd�; (1.2.7)

and the previous claim is proving the first estimate of the proposition. As a con-
sequence of (1.2.7), we obtain that

.Opw.a//
�
D Opw. Na/; so that for a real-valued, .Opw.a//

�
D Opw.a/.

To prove the second estimate, we introduce the so-called ambiguity function A.u; v/

as the inverse Fourier transform of the Wigner function W.u; v/, so that for u; v in
the Schwartz class, we have

.A.u; v//.�; y/ D

“
W.u; v/.x; �/e2i�.x��C��y/dxd�;
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i.e.,

.A.u; v//.�; y/ D

Z
u
�
x C

y

2

�
Nv
�
x �

y

2

�
e2i�x��dx; (1.2.8)

which reads as well as

.A.u; v//.�; y/ D

Z
u
�y
2
C
z

2

�
xLv
�y
2
�
z

2

�
e2i�z�

�
2 dz2�n D W.u; Lv/

�y
2
;�
�

2

�
2�n:

(1.2.9)

N.B. The ambiguity function is called the Fourier–Wigner transform in G. B. Fol-
land’s book [15].

Remark 1.2.4. With �.u; v/ defined by (1.1.1), we have

W.u; v/ D F2.�.u; v//; (1.2.10)

where F2 stands for the Fourier transformation with respect to the second variable.
Taking the Fourier transform with respect to the second variable in the previous for-
mula gives, with Fj (resp., F ) standing for the Fourier transform with respect to the
j th variable (resp., all variables),

F2W D C2�; F W D F1C2�; A D CF W D F1C1�;

where C (resp., C1 or C2) stands for the “check” operator C in Rn � Rn given by
(1.1.10) (resp., with respect to the first or second variable), the latter formula being
(1.2.8).

Applying Plancherel formula on (1.2.1), we get

hOpw.a/u; viL2.Rn/ D hOa;A.u; v/iS 0.R2n/;S .R2n/:

We note that a consequence of (1.2.3) is that for a linear form L.x; �/, we have

L]L D L2 and more generally L]N D LN :

As a result, considering for .y; �/ 2 R2n, the linear form L�;y defined by

L�;y.x; �/ D x � �C � � y;

we see that
A.u; v/.�; y/ D hOpw.e

2i�.x��C��y//u; viL2.Rn/;

and thus we get Hermann Weyl’s original formula

Opw.a/ D

“
Oa.�; y/eiOpw.L�;y/dyd�;

which implies the second estimate in the proposition.
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Proposition 1.2.5. Let a 2S 0.R2n/. The distribution kernel ka.x;y/ of the operator
Opw.a/ is

ka.x; y/ D Oa
Œ2�
�x C y

2
; y � x

�
; (1.2.11)

where aŒ2� stands for the Fourier transform of a with respect to the second variable.
Let k 2S 0.R2n/ be the distribution kernel of a continuous operator A from S .Rn/
into S 0.Rn/. Then, the Weyl symbol a of A is

a.x; �/ D

Z
e�2�it ��k

�
x C

t

2
; x �

t

2

�
dt;

where the integral sign means that we take the Fourier transform with respect to t of
the distribution k.x C t

2
; x � t

2
/ on R2n (see Section A.1.1 for the definition of the

Fourier transformation on tempered distributions).

Proof. With u; v 2 S .Rn/, we have defined Opw.a/ via formula (1.2.1) and using
Remark 1.2.4, we get

hOpw.a/u; NviS 0.Rn/;S .Rn/ D
˝
a.x; �/;b�Œ2�.x; �/˛

S 0.R2n/;S .R2n/

D

D
OaŒ2�.t; z/; u

�
t C

z

2

�
Nv
�
t �

z

2

�E
S 0.R2n/;S .R2n/

D

D
OaŒ2�
�x C y

2
; y � x

�
; u.y/ Nv.x/

E
S 0.R2n/;S .R2n/

;

proving (1.2.11). As a consequence, we find that

ka

�
x C

t

2
; x �

t

2

�
D OaŒ2�.x;�t /;

and by Fourier inversion, this entails

a.x; �/ D Fouriert
�
ka

�
x C

t

2
; x �

t

2

��
.�/

D

Z
e�2�it ��ka

�
x C

t

2
; x �

t

2

�
dt; (1.2.12)

where the integral sign means that we perform a Fourier transformation with respect
to the variable t .

A particular case of Segal’s formula (see, e.g., [33, Theorem 2.1.2]) is with F

standing for the Fourier transformation on Rn,

F �Opw.a/F D Opw .a.�;�x//:
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1.2.2 The symplectic group

We define the canonical symplectic form � on Rn �Rn by

h�X; Y i D ŒX; Y � D � � y � � � x with X D .x; �/; Y D .y; �/. (1.2.13)

The symplectic group1 Sp.n;R/ is the subgroup of S 2 Gl.2n;R/ such that

8X; Y 2 R2n; ŒSX; SY � D ŒX; Y �; i.e.; S��S D �; (1.2.14)

where S� is the transpose and

� D

�
0 In
�In 0

�
: (1.2.15)

It is easy to prove directly from (1.2.14) that Sp.1;R/ D Sl.2;R/.

Theorem 1.2.6. Let n be an integer� 1. The group Sp.n;R/ is included in Sl.2n;R/
and generated by the following mappings�

In 0

A In

�
; where A is an n � n symmetric matrix, (1.2.16)�

B�1 0

0 B�

�
; B 2 Gl.n;R/; (1.2.17)�

In �C

0 In

�
; where C is an n � n symmetric matrix. (1.2.18)

For A;B;C as above, the mapping

„A;B;C D

�
B�1 �B�1C

AB�1 B� � AB�1C

�
D

�
In 0

A In

��
B�1 0

0 B�

��
In �C

0 In

�
;

(1.2.19)
belongs to Sp.n;R/. Moreover, we define on Rn � Rn the generating function S of
the symplectic mapping „A;B;C by the identity

S.x;�/D
1

2
.hAx;xiC2hBx;�i C hC�;�i/ so that„

�@S
@�
˚�

�
Dx˚

@S

@x
: (1.2.20)

For a symplectic mapping„, to be of the form (1.2.19) is equivalent to the assumption
that the mapping x 7! �Rn�¹0º„.x˚ 0/ is invertible from Rn to Rn; moreover, if this
mapping is not invertible, the symplectic mapping „ is the product of two mappings
of the type „A;B;C .

1This is obviously a group since for S1; S2 2 Sp.n;R/, the last equation in (1.2.14) implies
that jdetS j D 1 and ŒS1S�12 X;S1S

�1
2
Y �D ŒS�1

2
X;S�1

2
Y �D ŒX;Y �, since ŒS�1

2
X;S�1

2
Y �D

ŒS2S
�1
2
X; S2S

�1
2
Y � D ŒX; Y �. We shall prove below that the determinant of a symplectic

mapping is actually 1.
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Proof. The expression of „ above as well as (1.2.20) follow from a simple direct
computation left to the reader. The inclusion of the symplectic group in the special
linear group follows from the statement on the generators. We consider now „ in
Sp.n;R/: we have

„ D

�
P Q

R S

�
; where P , Q, R, S , are n � n matrices. (1.2.21)

The equation
„��„ D �;

is satisfied with � D
�

0 In
�In 0

�
, which means

P �R D .P �R/
�
; Q�S D .Q�S/

�
; P �S �R�Q D In: (1.2.22)

We can note also that the mapping „ 7! „� is an isomorphism of Sp.n;R/ since
„ 2 Sp.n;R/ means

„��„ D � H) „�1��1.„�/�1 D ��1 H) „�1.���1/.„�/�1 D .���1/;

and since .���1/ D
�

0 In
�In 0

�
, we get that „� 2 Sp.n;R/. As a result,

„ D

�
P Q

R S

�
2 Sp.n;R/; (1.2.23)

is also equivalent to

PQ� D .PQ�/
�
; RS� D .RS�/

�
; PS� �QR� D In: (1.2.24)

Let us assume that the mapping P is invertible, which is the assumption in the last
statement of the theorem. We define then the mappings A, B , C by

A D RP�1; B D P�1; C D �P�1Q;

so that we have

A� D P �
�1
R�PP�1 D P �

�1
P �RP�1 D RP�1 D A;

as well as

C � D �Q�P �
�1
D �P�1PQ�P �

�1
D �P�1QP �P �

�1
D �P�1Q D C;

and

P D B�1; R D AB�1; Q D �B�1C;

S D P �
�1
.In CR

�Q/ D B�.In � B
��1A�B�1C/ D B� � AB�1C:
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We have thus proven that any symplectic matrix „ as above such that P is invertible
is indeed given by the product appearing in Theorem 1.2.6.

Let us now consider the case where a symplectic mapping„ (given by (1.2.23)) is
such that detP D 0; writing RnD kerP ˚N we have that P is an isomorphism from
N onto ranP . Let B1 2 Gl.n;R/ such that B1P is the identity on N (see footnote2).
We have �

B1 0

0 B�1
�1

��
P Q

R S

�
D

�
B1P B1Q

B�1
�1R B�1

�1S

�
: (1.2.25)

If p D dim.kerP /, we have for the n � n matrix B1P the following block decom-
position

B1P D

�
0p;p 0p;n�p
0n�p;p In�p

�
;

where 0r;s stands for an r � s matrix with only 0 as an entry. On the other hand, we
know from (1.2.22) that the mapping

.B1P /
�B�1

�1
R D P �R

is symmetric. Writing B�1
�1R D

�
QRp;p QRp;n�p
QRn�p;p QRn�p;n�p

�
, where QRr;s stands for an r � s

matrix, this gives the symmetry of�
0p;p 0p;n�p
0n�p;p In�p

��
QRp;p QRp;n�p
QRn�p;p QRn�p;n�p

�
D

�
0p;p 0p;n�p
QRn�p;p QRn�p;n�p

�
;

implying that QRn�p;p D 0. The symplectic matrix (1.2.25) is thus equal to0BB@
�
0p;p 0p;n�p
0n�p;p In�p

�
B1Q�

QRp;p QRp;n�p
0n�p;p QRn�p;n�p

�
B�1
�1S

1CCA ; where B1Q and B�1
�1
S are n � n blocks.

The invertibility of (1.2.25) implies that QRp;p is invertible. We consider now the n� n
symmetric matrix

C D

�
Ip;p 0p;n�p
0n�p;p 0n�p;n�p

�
;

2This is indeed possible: choosing a supplement space M for P.N/, we have

Rn D kerP„ƒ‚…
dimp

˚ N„ƒ‚…
dimn�p

D P.N/„ƒ‚…
dimn�p

˚ M„ƒ‚…
dimp

;

and we can define B1 on P.N/ by B1.Px/ D x (without ambiguity since for x1; x2 2 N with
Px1 D Px2 we get x1 � x2 2 kerP \ N D ¹0º) and B1jM W M ! kerP can be chosen as
an isomorphism, so that B1.P.N //C B1.M/ D N C kerP , which implies rankB1 D n.
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and the symplectic mapping�
In C

0 In

��
B1 0

0 B�1
�1

��
P Q

R S

�
D

�
In C

0 In

��
B1P B1Q

B�1
�1R B�1

�1S

�
; (1.2.26)

which is a symplectic mapping
�
P 0 Q0
R0 S 0

�
with

P 0 D B1P C CB
�
1
�1
R

D

�
0p;p 0p;n�p
0n�p;p In�p

�
C

�
Ip;p 0p;n�p
0n�p;p 0n�p;n�p

��
QRp;p QRp;n�p

0n�p;p QRn�p;n�p

�
D

�
QRp;p QRp;n�p

0n�p;p QIn�p

�
;

which is an invertible mapping. From equation (1.2.26) and the first part of our dis-
cussion, we get that�

P 0 Q0

R0 S 0

�
D

�
In 0

A0 In

��
B 0�1 0

0 B 0�

��
In �C 0

0 In

�
;

with A0, C 0 symmetric and B 0 invertible and

„ D

�
B1
�1 0

0 B�1

��
In �C

0 In

��
In 0

A0 In

��
B 0�1 0

0 B 0�

��
In �C 0

0 In

�
;

proving that the „A;B;C generate the symplectic group and more precisely that every
„ in the symplectic group is the product of at most two mappings of type „A;B;C .
This completes the proof of Theorem 1.2.6.

Corollary 1.2.7. We have Sp.n;R/ � Sl.2n;R/.

Proof. Indeed, the symplectic mappings (1.2.16), (1.2.17), and (1.2.18) do have de-
terminants equal to 1 and since Theorem 1.2.6 implies that they generate the sym-
plectic group, this proves the sought result.

Remark 1.2.8. Of course for n � 2, Sp.n;R/ is a proper subgroup of Sl.2n;R/.
Indeed, the following matrix:

M D

0BB@
1 0

0 1

0 0

1 0

0 0

0 0

1 0

0 1

1CCA
has determinant 1 but fails to be symplectic: using notation (1.2.21), we see that the
first and the third equation are satisfied, which is not the case for the second one.
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N.B. Since the matrix �I2n belongs to Sp.n;R/ ((1.2.14) holds trivially), we find
that S 2 Sp.n;R/ is equivalent to �S 2 Sp.n;R/.

Claim 1.2.9. The symplectic group is also generated by the mappings

.x; �/ 7! .B�1x;B��/; B 2 Gl.n;R/;

.x; �/ 7! .�;�x/;

.x; �/ 7! .x; � C Ax/; A 2 Sym.n;R/:

Another set of generators of the symplectic group is given by the mappings

.x; �/ 7! .B�1x;B��/; B 2 Gl.n;R/;

.x; �/ 7! .�;�x/;

.x; �/ 7! .x � C�; �/; C 2 Sym.n;R/:

Proof. Indeed, we have for C � D C a real symmetric n � n matrix�
0 �In
In 0

�
„ ƒ‚ …

��1

�
In �C

0 In

��
0 In
�In 0

�
„ ƒ‚ …

�

D

�
In 0

C In

�
;

proving the claim.

Remark 1.2.10. The symplectic matrix�
0 In
�In 0

�
D 2�1=2

�
In In
�In In

�
2�1=2

�
In In
�In In

�
D „2

�In;21=2In;�In
; (1.2.27)

is not of the form „A;B;C but is the square of such a matrix. It is also the case of all
the mappings .xk; �k/ 7! .�k;�xk/ with the other coordinates fixed. Similarly, the
symplectic matrix �

0 �In
In In

�
D

�
In �In
0 In

��
In 0

In In

�
;

is not of the form „A;B;C but is the product „0;I;I„I;I;0.

1.2.3 The metaplectic group

Proposition 1.2.11. Let A;B;C be as in Theorem 1.2.6, and let S be the generating
function of „A;B;C .cf. (1.2.20)/. We define the operator MA;B;C on S .Rn/ by

.MA;B;Cv/.x/ D

Z
Rn
e2i�S.x;�/ Ov.�/d�.detB/1=2; (1.2.28)
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where .det B/1=2 is a square-root of det B . This operator is an automorphism of
S 0.Rn/ and of S .Rn/ which is unitary on L2.Rn/, and such that, for all a 2
S 0.R2n/,

M �A;B;COpw.a/MA;B;C D Opw.a ı„A;B;C /; (1.2.29)

where „A;B;C is defined in Theorem 1.2.6.

N.B. We have for A;B;C as above,

.MA;I;0v/.x/ D e
i�hAx;xiv.x/; (1.2.30)

.M0;B;0v/.x/ D .detB/1=2v.Bx/; (1.2.31)

.M0;I;Cv/.x/ D
�
ei�hCDx ;Dxiv

�
.x/; (1.2.32)

three operators which are obviously automorphisms of S .Rn/ and of S 0.Rn/ as
well as unitary operators in L2.Rn/.

Proof. Formula (1.2.29) is easily checked for each operator (1.2.30), (1.2.31), and
(1.2.32). Since we have

„A;B;C D „A;I;0 „0;B;0 „0;I;C

and
MA;B;C DMA;I;0 M0;B;0 M0;I;C ; (1.2.33)

we get (1.2.29) and the proposition.

Remark 1.2.12. We define

m.B/ D
arg.detB/

�
D

´
k2�
�
D 2k 2 ¹0; 2º mod 4 for detB > 0;

k2�C�
�
D 2k C 1 2 ¹1; 3º mod 4 for detB < 0;

(1.2.34)
so that

detB D jdetBjei�m.B/; .detB/1=2 2 jdetBj1=2
®
ei
�
2m.B/; ei

�
2 .m.B/C2/

¯
:3

We will considerm.B/ as an element of Z=4Z, so that the functionm.B/ 7!ei
�
2m.B/

is well-defined. For A;B;C as in Proposition 1.2.11, we may define�
M
¹m.B/º
A;B;C v

�
.x/ D e

i�m.B/
2 jdetBj1=2

Z
Rn
ei�.Ax

2C2Bx��CC�2/
Ov.�/d�; 4 (1.2.35)

3This is a synthetic way to write

.detB/1=2 2 ¹.˙1/jdetBj1=2º if detB > 0; .detB/1=2 2 ¹.˙i/jdetBj1=2º if detB < 0:

4We can of course define M ¹mº
A;B;C

for any m, but to stay in the metaplectic group (cf.
Definition 1.2.13), we have to make sure that m 2 ¹m.B/;m.B/C 2º modulo 4.
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but we shall omit the super-script m.B/ when we do not want to distinguish between
the two roots of detB . We note in particular that we have

M
¹0º
0;In;0

D IdL2.Rn/; M
¹2º
0;In;0

D � IdL2.Rn/;

and also with the notation (1.2.6),

M
¹nº
0;�In;0

D e
i�n
2 �0; M

¹nC2º
0;�In;0

D �e
i�n
2 �0:

More generally, we have

for detB > 0, M ¹0ºA;B;CD�M
¹2º
A;B;C ; for detB < 0, M ¹1ºA;B;CD�M

¹3º
A;B;C : (1.2.36)

We note also that for B 2 Gl.n;R/, we have

m.B�/ D m.B/ D m.B�1/;

since detB D detB� and det.B�1/ D .detB/�1 so that

arg.detB/ D arg.detB�1/:

Moreover, we have for B 2 Gl.n;R/,

det.�B/ D .�1/n detB; arg.det.�B// D

´
arg.detB/ if n is even,

arg.detB/C � if n is odd,

so that
m.�B/ D nCm.B/: (1.2.37)

Examples. Let us start with a one-dimensional example: in Remark 1.2.10, we have
seen, in particular, that�

0 1

�1 0

�
D

´
2�1=2

�
1 1

�1 1

�µ2
; 2�1=2

�
1 1

�1 1

�
D „�1;21=2;�1;

where we have used (1.2.19) to get the second equation. We have also with the nota-
tions of Theorem 1.2.6,

.M�1;21=2;�1v/.x/ D

Z
R
e2i�

1
2 .�x

2C23=2x���2/
Ov.�/d�21=4;

so that the kernel k1.x; y/ of the operator M�1;21=2;�1 is

k1.x; y/

D 21=4
Z
ei�.�x

2C23=2x���2/e�2i�y�d� D„ƒ‚…
use (A.1.7)

21=4e�i�=4ei�.x
2Cy2/e�2

3=2i�xy ;
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so that the kernel k2 of the operator .M�1;21=2;�1/
2 is (using again (A.1.7)),

k2.x; y/ D

Z
k1.x; z/k1.z; y/dz

D 21=2e�i�=2ei�.x
2Cy2/

Z
e2i�z

2

e�2i�z2
1=2.xCy/dz D e�i�=4e�2i�xy ;

so that
.M�1;21=2;�1/

2
D e�i�=4F1;

with F1 standing for the 1d Fourier transformation. We get similarly that in n dimen-
sions,

.M�In;21=2In;�In/
2
D e�i�n=4F ; (1.2.38)

with F standing for the Fourier transformation. Similar expressions can be obtained
for Fk , the Fourier transformation with respect to the variable xk in n dimensions,
k 2 J1; nK with

.MAk ;Bk ;Ck /
2
D e�i�=4Fk;

where Bk is the n � n diagonal matrix with diagonal entries equal to 1 except for the
kth equal to 21=2, the n � n diagonal matrices Ak D Ck with diagonal entries equal
to 0, except for the kth equal to �1.

Definition 1.2.13. The metaplectic group Mp.n/ is defined as the subgroup of the
group of unitary operators on L2.Rn/ generated by

MA;I;0;where A is an n � n symmetric matrix, cf. (1.2.30); (1.2.39)

M0;B;0;with B 2 Gl.n;R/, with .detB/
1
2 D jdetBj

1
2 e

i�m.B/
2 , cf. (1.2.34), (1.2.31),

(1.2.40)

M0;I;C ;where C is an n � n symmetric matrix, cf. (1.2.32): (1.2.41)

Claim 1.2.14. If M belongs to Mp.n/, then �M belongs to Mp.n/.

Proof. According to (1.2.36), we have

M
¹2º
0;In;0

D �M
¹0º
0;In;0

D � IdL2.Rn/

so that � IdL2.Rn/ belongs to Mp.n/, proving the claim.

Proposition 1.2.15. The metaplectic group Mp.n/ is generated by

MA;I;0;where A is an n � n symmetric matrix, cf. (1.2.30); (1.2.42)

M0;B;0;with B 2 Gl.n;R/, with .detB/
1
2 D jdetBj

1
2 e

i�m.B/
2 , cf. (1.2.34), (1.2.31),

(1.2.43)

e�
i�n
4 F ;where F is the Fourier transformation. (1.2.44)
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Proof. We check for C symmetric n � n matrix,�
M
¹0º
C;I;0.e

�i�n=4F v/
�
.�/ D e�i�n=4ei�C�

2

Ov.�/;

so that

ei�n=4
�
F �1.e�i�n=4ei�C�

2

Ov.�//
�
.x/ D

Z
e2i�x�ei�C�

2

Ov.�/d� D .M
¹0º
0;I;Cv/.x/;

yielding
ei�n=4F �1M

¹0º
0;I;C e

�i�n=4F DM
¹0º
0;I;C ;

so that the group generated by (1.2.42), (1.2.43), (1.2.44) contains (1.2.39), (1.2.40),
and (1.2.41) and thus contains Mp.n/. Moreover, (1.2.38) shows that (1.2.44) is
included in Mp.n/ so that the group generated by (1.2.42), (1.2.43), and (1.2.44)
is included in Mp.n/, proving the proposition.

Remark 1.2.16. According to (A.1.6) in our appendix and to (1.2.36), we find

.e�i�n=4F /� D ei�n=4F �0 D e
�i�n=4F ei�n=2�0 D e

�i�n=4FM
¹nº
0;�In;0

:

As a consequence, e�i�n=4F ; e�i�n=2�0; ei�n=2�0 belong to the metaplectic group.

Lemma 1.2.17. For Y 2 R2n, we define the linear form LY on R2n by

LY .X/ D h�Y;Xi D ŒY; X�:

For any M 2 Mp.n/ there exists a unique � 2 Sp.n;R/ such that

8Y 2 R2n; M �Opw.LY /M D Opw.L��1Y /: (1.2.45)

Proof. Indeed, thanks to (1.2.29) and Definition 1.2.13, we can find � 2 Sp.n;R/
such that

M �Opw.LY /M D Opw.LY ı �/ D Opw.L��1Y /;

since

.LY ı �/.X/ D h�Y; �Xi D h�
�����1Y;Xi D h���1Y;Xi D L��1Y .X/:

Moreover, if �1; �2 2 Sp.n;R/ are such that for all Y 2 R2n,

0 D Opw.L��1
2
Y � L��1

1
Y / D Opw.L.��1

2
���1

1
/Y /;

we get
L.��1

2
���1

1
/Y D 0;

implying 8Y 2 R2n; .��12 � �
�1
1 /Y D 0, i.e., �1 D �2.
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We can thus define a mapping

‰ W Mp.n/! Sp.n;R/ with ‰.M/ D � satisfying (1.2.45). (1.2.46)

In particular, we have from (1.2.29) in Proposition 1.2.11 and (1.2.38) that

‰.MA;B;C / D „A;B;C ; ‰
�
e�

i�n
4 F

�
D � D

�
0 In
�In 0

�
: (1.2.47)

Theorem 1.2.18. The mapping ‰ defined in (1.2.46) is a surjective homomorphism
of groups with kernel ¹˙ IdL2.Rn/º.

Proof. This mapping is a homomorphism of groups: if M1;M2 belong to Mp.n/, we
have with �j D ‰.Mj /,

.M1M2/
�Opw.LY /M1M2 DM

�
2 Opw.L��1

1
Y /M2

D Opw.L��1
2
��1
1
Y / D Opw.L.�1ı�2/�1Y /;

proving that ‰.M1M2/ D ‰.M1/‰.M2/. Moreover, the homomorphism ‰ is onto,
thanks to (1.2.29) and Theorem 1.2.6. The kernel of‰ is made withM 2Mp.n/ such
that for all Y 2 R2n,

M �Opw.LY /M D Opw.LY /;

i.e.,
ŒOpw.LY /;M � D 0;

so that, thanks to (1.2.3), (1.2.4), if �.x; �/ is the Weyl symbol of M (M is an endo-
morphism of S 0.Rn/ and thus has a distribution kernel as well as a Weyl symbol via
formula (1.2.12)), we get for all .y; �/ 2 R2n,

0 D ¹� � x � y � �; �.x; �/º so that d� D 0,

and � is a constant so that M D c IdL2.Rn/, necessarily with jcj D 1 (since M is
unitary). Applying Theorem A.2.11 gives c 2 ¹˙1º, concluding the proof.

N.B. The proof of Theorem A.2.11 is relegated in our appendix, and requires some
effort.

Corollary 1.2.19. For � 2 Sp.n;R/, the fiber ‰�1¹�º contains exactly two meta-
plectic transformations and more precisely

‰�1¹�º D ¹M;�M º;

where M is a metaplectic transformation.

Proof. This corollary is an immediate consequence of Theorem 1.2.18.



Preliminaries and definitions 20

Theorem 1.2.20 (Symplectic covariance of the Weyl calculus). Let a be in S 0.R2n/
and let � be in Sp.n;R/. Then, for a metaplectic operator M such that ‰.M/ D �,
we have

M �Opw.a/M D Opw.a ı �/: (1.2.48)

For u; v 2 S .Rn/, we have

W .Mu;Mv/ D W.u; v/ ı ��1; (1.2.49)

where W is the Wigner distribution given in (1.1.4).

Proof. The first property follows from (1.2.29) and Definition 1.2.13 whereas (1.2.49)
is a consequence of (1.2.1) and (1.2.48).

We note also that for Y D .y; �/ 2 R2n, the symmetry SY is defined by

SY .X/ D 2Y �X

and is quantized by the phase symmetry �Y as defined by (1.2.6) with the formula

Opw.a ı SY / D �
�
YOpw.a/�Y D �YOpw.a/�Y : (1.2.50)

Similarly, the translation TY is defined on the phase space by

TY .X/ D X C Y

and is quantized by the phase translation �Y ,

.�.y;�/u/.x/ D u.x � y/e
2i�.x�y2 /��; (1.2.51)

and we have
Opw.a ı TY / D �

�
YOpw.a/�Y D ��YOpw.a/�Y :

Remark 1.2.21. Property (1.2.49) can be extended to the affine symplectic group
and we have with the phase translations defined in (1.2.51),

8.X; Y / 2 R2n �R2n; W .�Y u; �Y v/ .X/ D W.u; v/.X � Y /:

We will define the affine group Mpa.n/ as the group of unitary transformations of
L2.Rn/ generated by transformations (1.2.30), (1.2.31), and (1.2.32) and phase trans-
lations given by (1.2.51).

N.B. More information on the metaplectic group is given in J. Leray’s book [31], the
same author’s articles [30,32], as well as A. Weil’s paper [52] (see also V. S. Buslaev’s
article [5], K. Gröchenig’s book [16, Chapter 9], H. Reiter’s lecture notes [43]).

Theorem 1 in E. Lieb’s classical article [37] gives a more precise version of
(1.2.53), (1.2.54), and (1.2.55) below.
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Theorem 1.2.22. Let u; v be in L2.Rn/. Then, W.u; v/ is a uniformly continuous
function belonging toL2.R2n/\L1.R2n/ and using the definitions (1.2.51), (1.2.6)
for the phase translations and phase symmetry, we have

W.u; v/.X/ D 2nh�Xu; viL2.Rn/ D 2
n
h��Xu; �X LviL2.Rn/

D 2nh�0��2Xu; viL2.Rn/; (1.2.52)

kW.u; v/kL2.R2n/ D kukL2.Rn/kvkL2.Rn/; (1.2.53)

8p 2 Œ1;C1�; kW.u; v/kL1.R2n/ � 2
n
kukLp.Rn/kvkLp0 .Rn/: (1.2.54)

More generally, for q � 2 and r 2 Œq0; q�, we have5

kW.u; v/kLq.R2n/ � 2
n.q�2/
q kukLr .Rn/kvkLr0 .Rn/: (1.2.55)

Moreover, we have
lim

R2n3X;jX j!C1

�
W.u; v/.X/

�
D 0:

Proof. We have with Lv.x/ D v.�x/ D .�0v/.x/,

W.u; v/.x; �/ D 2n
Z
u.x C z/ Nv.x � z/e�4i�z�dz

D 2n
Z
u.z � .�x//e2i�.z�

�x
2 /.��/ NLv.z � x/e�2i�.z�

x
2 /�

� e�4i�z�C2i�.z�
�x
2 /�C2i�.z�

x
2 /�dz

D 2n
Z
.�.�x;��/u/.z/.�.x;�/ Lv/.z/dz D 2

n
h��.x;�/u; �.x;�/ LviL2.Rn/;

or for short
W.u; v/.X/ D 2nh��Xu; �X LviL2.Rn/:

As a consequence, we find from (1.2.7) that

hOpw.a/u; vi D

Z
a.X/2nh�0�

�
2Xu; vidX;

and since .�x;�u/.y/ D u.2x � y/e�4i�.x�y/�� , we can verify directly that

�0��2X D �X : (1.2.56)

Indeed, composing the translation of vector �2X in R2n with the symmetry with
respect to 0, we have

Y 7! Y � 2X 7! 2X � Y D Y 0;
1

2
.Y C Y 0/ D X;

5 We use the standard notation: for p 2 Œ1;C1� we define p0 by the equality 1
p
C

1
p0 D 1.
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that is the symmetry with respect to X . Quantifying this equality, we use

.�.�2x;�2�/u/.z/ D u.z C 2x/e
2i�.z��2x2 /.�2�/

D u.z C 2x/e�4i�.zCx/� ;

so that we obtain

�0.�.�2x;�2�/u/.z/ D u.�z C 2x/e
�4i�.�zCx/�

D .�x;�u/.z/;

which proves (1.2.56) and thus (1.2.52). Formula (1.2.53) is already proven in (1.1.6)
and (1.2.54) follows from (1.2.52), Hölder’s inequality and the fact that �X is an
endomorphism ofLp.Rn/with norm 1 (cf. the expression (1.2.51)). To prove (1.2.55)
we note that from the expression (1.2.10), the Hausdorff–Young’s inequality implies

kW.u; v/kLq˝Lq � k�.u; v/kLq˝Lq0 � kjuj
q0
� jvjq

0
k
1=q0
Lq=q

02
n q�2q ; (1.2.57)

and since Young’s inequality6 gives

kjujq
0
� jvjq

0
kLq=q0 � kjuj

q0
kLa=q0kjvj

q0
kLb=q0 ;

a; b � q0 with

1 �
q0

q
D 1 �

q0

a
C 1 �

q0

b
;

i.e.,

q0
�
1

a
C
1

b

�
D 1C

q0

q
;

that is
1

a
C
1

b
D 1;

so that
kjujq

0
� jvjq

0
kLq=q0 � kuk

q0
Lakvk

q0
Lb
;

in such a way that (1.2.57) yields

kW.u; v/kLq˝Lq � 2
n q�2q kukLakvkLb ; a; b � q0;

1

a
C
1

b
D 1;

which is (1.2.55). We are left with the proof of uniform continuity of W.u; v/. We
have for X; Y 2 R2n,

W.u; v/.Y / �W.u; v/.X/ D 2nh.�Y � �X /u; viL2.Rn/;

and since �2Y D Id (see Claim 1.2.3), we find

W.u; v/.Y / �W.u; v/.X/ D 2nh.�Y �X � Id/�Xu; viL2.Rn/

D 2nh�Xu; .�X�Y � Id/viL2.Rn/:

6For p; q; r 2 Œ1;C1� with 1
p0 C

1
q0 D

1
r 0 , we have, kf � gkLr � kf kLpkgkLq .
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According to [33, formula (2.1.16)], we have

�X�Y D �2X�2Y e
4i�ŒY;X�;

and this implies

jW.u; v/.Y / �W.u; v/.X/j � 2nkukL2.Rn/k�2.X�Y /vkL2.Rn/: (1.2.58)

We have from (1.2.50),

�z;�v.x/ � v.x/ D v.x � z/e
2i�.x� z2 /� � v.x/

D
�
v.x � z/ � v.x/

�
e2i�.x�

z
2 /� C v.x/

�
e2i�.x�

z
2 /� � 1

�
;

and thus

k�Zv � vkL2.Rn/

�

�Z
jv.x � z/ � v.x/j2dx

�1=2
C

�Z
jv.x/j2je2i�.x�

z
2 /� � 1j2dx

�1=2
:

We have the classical result, due to the density in L2 of continuous compactly sup-
ported functions,

lim
Rn3z!0

Z
jv.x � z/ � v.x/j2dx D 0;

and moreover the Lebesgue dominated convergence theorem implies

lim
.z;�/!.0;0/

Z
jv.x/j2„ ƒ‚ …
2L1.Rn/

je2i�.x�
z
2 /� � 1j2„ ƒ‚ …
�4

dx D 0;

so that
lim

R2n3Z!0
k�Zv � vkL2.Rn/ D 0:

As a consequence, (1.2.58) implies the uniform continuity of W.u; v/. Moreover, we
have, for �; 2 S .Rn/,

W.u; v/ D W.u � �; v/CW.�; v �  /CW.�;  /;

so that

jW.u; v/.x; �/j �

Z ˇ̌̌
.u � �/

�
x C

z

2

�ˇ̌̌ˇ̌̌
v
�
x �

z

2

�ˇ̌̌
dz

C

“ ˇ̌̌
.v �  /

�
x �

z

2

�ˇ̌̌ˇ̌̌
�
�
x C

z

2

�ˇ̌̌
dz C jW.�;  /.x; �/j

� 2nku � �kL2.Rn/kvkL2.Rn/ C 2
n
kv �  kL2.Rn/k�kL2.Rn/

C jW.�;  /.x; �/j:
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We choose now sequences .�k/; . k/ of S .Rn/ converging respectively in L2.Rn/
towards u; v. We obtain for all k 2 N,

jW.u; v/.x; �/j � 2nku � �kkL2.Rn/kvkL2.Rn/ C 2
n
kv �  kkL2.Rn/k�kkL2.Rn/

C jW.�k;  k/.x; �/j;

so that using that W.�k;  k/ belongs to S .R2n/, we get

lim sup
R2n3X;jX j!C1

�
jW.u; v/.X/j

�
� 2nku � �kkL2.Rn/kvkL2.Rn/ C 2

n
kv �  kkL2.Rn/k�kkL2.Rn/;

and thus, taking the limit when k !C1, we obtain

lim
R2n3X;jX j!C1

�
jW.u; v/.X/j

�
D 0;

completing the proof of Theorem 1.2.22.

Remark 1.2.23. Let u be in L2.Rn/ be an even function. We then have

W.u; u/.0; 0/ D 2nkuk2
L2.Rn/ D kW.u; u/kL1.R2n/:

On the other hand, if u is odd, we have

W.u; u/.0; 0/ D �2nkuk2
L2.Rn/ D �kW.u; u/kL1.R2n/;

showing that for odd functions the minimum of the Wigner distribution is negative
(we assume u 6D 0 in L2.Rn/) and attained at 0. Let us check for instance the (odd)
function u1 of Remark 1.1.3. We have

2ku1k
2
L2.R/ D 2

Z
x2e�2�x

2

dx D 4

Z C1
0

t

2�
e�t .2�/�1=2

1

2
t�1=2dt

D
2�.3=2/

.2�/3=2
D
�.1=2/

.2�/3=2
D

1

23=2�
D �W.u1; u1/.0; 0/:

1.2.4 On weak versions of the Wigner distribution

Let u; v be in the space S 0.Rn/ of tempered distributions. Then, we can define as
above the tempered distribution �.u; v/ in R2n: we set

h�.u; v/.x; z/; ˆ.x; z/iS 0.R2n/;S .R2n/

D

D
u.x1/˝ Nv.x2/; ˆ

�x1 C x2
2

; x1 � x2

�E
S 0.R2n/;S .R2n/

;
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and then we define the Wigner distribution W.u; v/ as the Fourier transform with
respect to z of �.u; v/, meaning that

hW.u; v/;‰iS 0.R2n/;S .R2n/ D h�.u; v/;F2‰iS 0.R2n/;S .R2n/;

where
.F2‰/.x; �/ D

Z
Rn
e�2i�z��‰.x; z/dz:

Of course, W.u; v/ is only a tempered distribution on R2n and we have the inversion
formula, using the notations of Remark 1.2.4,

�.u; v/ D F2C2W.u; v/:

The above remarks show that there is no difficulty to extend the definition of the joint
Wigner distribution W.u; v/ to the case where u; v are both tempered distributions
on Rn. Some properties are surviving from the L2 theory, in particular the inversion
formula, but one should be reasonably cautious at avoiding writing brackets of duality
as integrals. Theorem 2 in [37] gives a more complete version of the following result.

Theorem 1.2.24. Let u 2 L2.Rn/ such that W.u; u/ 2 L1.R2n/. Then, u belongs to
Lp.Rn/ for all p 2 Œ1;C1� and we have

kukL1.Rn/kukL1.Rn/ � 2
n
kW.u; u/kL1.R2n/:

N.B. We refer the reader to our Section 6.3 and, in particular, Theorem 6.3.3 showing
that the set of u in L2.Rn/ such that W.u; u/ belongs to L1.R2n/ is meager.

Proof. Thanks to Theorem 1.2.22, we have W.u; u/ 2 Lp.R2n/ for all p 2 Œ1;C1�
and we have in a weak sense,

u
�
x C

z

2

�
Nu
�
x �

z

2

�
D

Z
e2i�z��W.u; u/.x; �/d�;

so that
u.x1/ Nu.x2/ D

Z
e2i�.x1�x2/��W.u; u/

�x1 C x2
2

; �
�
d�;

and thus we getZ
ju.x1/jju.x2/jdx1 �

“ ˇ̌̌
W.u; u/

�x1 C x2
2

; �
�ˇ̌̌
d�dx1 D 2

n
kW.u; u/kL1.R2n/;

i.e.,
kukL1.Rn/kukL1.Rn/ � 2

n
kW.u; u/kL1.R2n/;

proving the lemma.
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1.2.5 Composition formulas

The following lemma is classical (see, e.g., [19], [46]); however we shall provide a
proof for the convenience of the reader.

Lemma 1.2.25. Let u; v; f; g be in L2.Rn/. Then

hu; giL2.Rn/hf; viL2.Rn/ D

“
W.u; v/.x; �/W.f; g/.x; �/dxd�: (1.2.59)

In other words, the Weyl symbol of the rank-one operator u 7! hu; giL2.Rn/f is
W.f; g/. In particular, if f D g is a unit vector in L2.Rn/ we find that W.f; f /

is the Weyl symbol of the orthogonal projection onto Cf .

Proof. Both functions W.u; v/;W.f; g/ belong to L2.R2n/, so that the integral on
the right-hand side of (1.2.59) actually makes sense. Also, W.u; v/ is the partial
Fourier transform with respect to the variable z of .x; z/ 7! u.x C z=2/ Nv.x � z=2/,
thus applying Plancherel formula7, we obtain that“

W.u; v/.x; �/W.f; g/.x; �/dxd�

D

“
u.x C z=2/ Nv.x � z=2/f .x � z=2/ Ng.x C z=2/dxdz

D hu; giL2.Rn/hf; viL2.Rn/:

The last property follows from (1.2.1).

Using [33, Section 2.1.5], we obtain that for a; b 2 S .R2n/

Opw.a/Opw.b/ D

“
R2n�R2n

a.Y /b.Z/22n�Y �ZdYdZ:

We get
Opw.a/Opw.b/ D Opw.a]b/; (1.2.60)

7We refer of course to the formula

h Ou; OviL2.Rn/ D hu; viL2.Rn/;

when using the complex Hilbert space L2.Rn/. Note however that formula (A.1.3) is using the
real duality between S .Rn/ and S 0.Rn/ so that to check, with S �.RN / standing for the
anti-dual of S .RN / (i.e., continuous anti-linear forms on S .RN /), we have also

h yT ; y�iS �.RN /;S .RN / D h
yT ;
xy�iS 0.RN /;S .RN / D hT;

yxy�iS 0.RN /;S .RN /

D hT; x�iS 0.RN /;S .RN / D hT; �iS �.RN /;S .RN /:
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with

.a]b/.X/ D 22n
“

R2n�R2n
e�4i�ŒX�Y;X�Z�a.Y /b.Z/dYdZ (1.2.61)

D

“
R2n�R2n

e�2i�h„;Zia

�
X C

��1„

2

�
b.Z CX/d„dZ (1.2.62)

D

Z
R2n

e2i�hX;„ia

�
X C

��1„

2

�
Ob.„/d„; (1.2.63)

where Œ�; �� is the symplectic form (1.2.13) and � is (1.2.15). Formula (1.2.62) is
interesting since very close to the group J t defined in [33, formula (4.1.14)].

Lemma 1.2.26. Let u0; u1; u2; u3 be in L2.Rn/. Then, we have for all X 2 R2n,

jhu1; u2iL2 jjW.u0; u3/.X/j � 2
n
�
jW.u0; u2/j � jW. Lu1; u3/j

�
.X/:

Proof. According to Lemma 1.2.25, we have for v 2 L2.Rn/,

Opw.W.u0; u2//Opw.W.u1; u3//v D Opw.W.u0; u2//
�
hv; u3iL2.Rn/u1

�
D hv; u3iL2.Rn/hu1; u2iL2.Rn/u0

D hu1; u2iL2.Rn/Opw.W.u0; u3//v;

so that with the notation (1.2.60), we get

W.u0; u2/]W.u1; u3/ D hu1; u2iL2.Rn/W.u0; u3/; (1.2.64)

and using (1.2.63), we get�
W.u0; u2/]W.u1; u3/

�
.x; �/

D

“
e2i�.x��C��y/W.u0; u2/

�
x �

y

2
; � C

�

2

� A.u1;u3/.��;�y/‚ …„ ƒ
F
�
W.u1; u3/

�
.�; y/ dyd�;

where F stands for the Fourier transformation and A for the ambiguity function (cf.
(1.2.8)). With formula (1.2.9), we obtain�

W.u0; u2/]W.u1; u3/
�
.x; �/

D

“
e4i�.�x��C��y/W.u0; u2/.x � y; � � �/W. Lu1; u3/.y; �/dyd�2

n;

yielding from (1.2.64) for any X 2 R2n,

hu1; u2iL2W.u0; u3/.X/ D

Z
R2n

e4i�ŒX;Y �W.u0; u2/.X � Y /W. Lu1; u3/.Y /dY 2
n;

which implies the lemma.
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1.2.6 L2-boundedness

Theorem 1.2.27. Let a be a semi-classical symbol on R2n, i.e., a smooth function of
.x; �/ depending on h 2 .0; 1� such that

8l 2 N; pl.a/ D sup
.x;�/2R2n;h2.0;1�
j˛jCjˇ j�l

j.@˛x@
ˇ

�
a/.x; �; h/jh�

j˛jCjˇj
2 < C1: (1.2.65)

Then, the operator Opw.a.x; �; h// is bounded on L2.Rn/ and such that

kOpw.a.x; �; h//kB.L2.Rn// � cnp`n.a/;

where cn and `n depend only on n.

Proof. Theorem 1.2 in A. Boulkhemair’s article [3] is providing that result (and more)
with

`n D Œn=2�C 1:

Note also that [33, Theorem 1.1.4] is providing an elementary proof of the above
result for the ordinary quantization of a given by

.Op0.a/u/.x/ D
Z
e2i�x��a.x; �; h/ Ou.�/d�

D

“
e2i�.x�y/��a.x; �; h/u.y/dyd�:

N.B. Formula (1.2.63) appears as

.a]b/.X/ D

�
Op0

�
a
�
X �

�„

2

��
b

�
.X/;

where Op0.�/ stands for the ordinary quantization in 2n dimensions.

The following classical result is a consequence of Theorem 1.2.27.

Theorem 1.2.28. Let C1
b
.R2n/ be the set of bounded smooth complex-valued func-

tions on R2n such that all derivatives are bounded and let a be in C1
b
.R2n/. Then,

the operator Opw.a/ is bounded on L2.Rn/ and the B.L2.Rn// norm of Opw.a/ is
bounded above by a fixed semi-norm of a in the Fréchet space C1

b
.R2n/.

1.2.7 On the Heisenberg Uncertainty Relations

Let u 2 S .R/. We have, using the notations (A.1.4),

2RehDxu; ixuiL2.R/ D hŒDx; ix�u; uiL2.R/ D
1

2�
kuk2

L2.R/; (1.2.66)
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implying, in particular,

kDxukL2.R/kxukL2.R/ �
1

4�
kuk2

L2.R/;

which is an equality for u.x/ D e��x
2
; moreover we infer also from (1.2.66) that

h�.D2
x C x

2/u; ui �
1

2
kuk2

L2.R/;

and for
q�.x; �/ D

X
1�j�n

�j .x
2
j C �

2
j /; 0 � �1 � � � � � �n;

the inequality

hOpw

�
�q�.x; �/

�
u; uiL2.Rn/ � kuk

2
L2.Rn/

1

2

X
1�j�n

�j„ ƒ‚ …
defined as

traceC.q�/

; (1.2.67)

which is an equality for u.x/ D e��jxj
2
. Note that the above (optimal) inequality can

be reformulated as“
R2n

�q�.x; �/W.u; u/.x; �/dxd� � kuk2
L2.Rn/

1

2
traceC.q�/:

Note also that with the symplectic matrix � defined by (1.2.15), the so-called funda-
mental matrix of q� is defined by

Fq�D�
�1Q�D

�
0 �I

I 0

��
M 0

0 M

�
D

�
0 �M

M 0

�
with MDdiag.�1; : : : ;�n/

so that

SpectrumFq� D ¹˙i�j º1�j�n; traceC.q�/ D
X

� eigenvalue of Fq�
with Im�>0

�=i:

With the notations ´
Cj D Dxj C ixj ; creation operators;

C �j D Dxj � ixj ; annihilation operators;

we see that
�ŒC �j ; Cj � D �ŒDxj � ixj ;Dxj C ixj � D I;

and
Opw.q�/ D �

X
1�j�n

�jCjC
�
j C

1

2
traceC.q�/;

which provides another proof of (1.2.67).
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Lemma 1.2.29 (Quantum Mechanics must deal with unbounded operators8). Let H
be a Hilbert space and let J;K 2 B.H/; then the commutator ŒJ;K� 6D Id.

Proof. Let J;K be bounded operators with ŒJ;K�DId. Then, for allN 2N�, we have

ŒJ;KN � D NKN�1: (1.2.68)

Indeed, this is true for N D 1 and if it holds for some N � 1, we find that

ŒJ;KNC1� D JKNK �KNC1J D ŒJ;KN �K CKNJK �KNC1J

D ŒJ;KN �K CKN .JK �KJ/ D ŒJ;KN �K CKN D .N C 1/KN :

Note that (1.2.68) implies that for all N 2 N�, we have KN 6D 0: of course K 6D 0
since ŒJ; K� D Id and if we had KN D 0 for some N � 2, (1.2.68) would imply
KN�1 D 0 and eventually K D 0. As a consequence, we get from (1.2.68) that for
all N � 2,

N kKN�1kB.H/ � 2kJ kB.H/kK
N
kB.H/ � 2kJ kB.H/kKkB.H/kK

N�1
kB.H/;

implying since kKN�1kB.H/ > 0, that

8N � 2; N � 2kJ kkKk;

which is impossible and proves the lemma.

Lemma 1.2.30 (Hardy’s inequality: the study of non-self-adjoint operators may be
useful to determine lowerbounds of self-adjoint operators). Let n 2 N; n � 3; let u
in L2.Rn/ such that ru 2 L2.Rn/; jxj�1u 2 L2.Rn/. Then, we have

kruk2
L2.Rn/ �

�
n � 2

2

�2
kjxj�1uk2

L2.Rn/:

Proof. We write firstX
1�j�n

k.Dxj � i�j /uk
2
L2.Rn/

D hjDj2u; uiL2.Rn/ C hj�j
2u; uiL2.Rn/ �

1

2�
h.div�/u; uiL2.Rn/;

so that with �.x/ D �x
2�jxj2

, we get the operator inequality

jDj2 C
�2

4�2jxj2
�
�.n � 2/

4�2jxj2
; so that �� � jxj�2 �.n � 2 � �/„ ƒ‚ …

largest at �D.n�2/=2

;

proving the lemma.

8Thus, QM must involve infinite-dimensional Hilbert spaces and unbounded operators on
them.
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N.B. A modern approach to the Heisenberg uncertainty principle should certainly
begin with reading C. Fefferman’s article [8] as well as E. Lieb’s book [38].

1.2.8 Non-negative quantizations formulas

Lemma 1.2.31. Let � be an even function in S .R2n/ with L2.R2n/ norm equal to
1. We define

�� D N�]�: (1.2.69)

Then, the function �� belongs to S .R2n/, is real-valued even and is such thatZ
R2n

��.X/dX D 1:

Let u be in L2.Rn/. Then, the convolution W.u; u/ � �� is non-negative. As a result,
the operator with Weyl symbol a � �� is a non-negative operator whenever a is a
non-negative function.

Proof. Following the book [33], the composition formula (1.2.61) is bilinear continu-
ous from S .R2n/2 into S .R2n/ and we have also

a]b D Nb] Na:

So that �� is indeed real-valued. Moreover, we haveZ
R2n

��.X/dX D 2
2n

•
.R2n/3

e�4i�ŒX�Y;Y�Z� N�.Y /�.Z/dYdZdX

D

Z
j�.Y /j2dY D 1;

and

��.�X/ D 2
2n

“
R2n�R2n

e�4i�Œ�X�Y;�X�Z� N�.Y /�.Z/dYdZ

D 22n
“

R2n�R2n
e�4i�Œ�XCY;�XCZ� N�.Y /�.Z/dYdZ D ��.X/:

We have also�
W.u; u/ � ��

�
.Y /

D

Z
R2n

W.u; u/.Y �X/��.X/dX D

Z
R2n

W.u; u/.Y CX/��.X/dX

D

Z
R2n

W.u; u/.TY .X//��.X/dX D

Z
R2n

W.��Y u; ��Y u/.X/��.X/dX

D

Z
R2n

W.��Y u; ��Y u/.X/. N�]�/.X/dX

D hOpw. N�]�/��Y u; ��Y uiL2.Rn/ D kOpw.�/��Y uk
2
L2.Rn/ � 0;
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proving the first statement of non-negativity. Let a be a non-negative function, say in
L1.R2n/; we have

Opw.a � ��/

D 2n
“

a.Y /��.X � Y /�XdYdX D

Z
a.Y /

Z
. N�]�/.X � Y /2n�XdXdY

D

Z
a.Y /

Z
. N�]�/.T�Y .X//2

n�XdXdY D

Z
a.Y /�YOpw. N�]�/��Y dY

D

Z
a.Y /�YOpw. N�/Opw.�/��Y dY

D

Z
a.Y / ŒOpw.�/��Y �

�ŒOpw.�/��Y �„ ƒ‚ …
non-negative operator

dY � 0;

if a.Y / � 0 for all Y 2 R2n and this concludes the proof.
We can write as well

Opw.a � ��/ D

Z
R2n

a.Y /
�
�YOpw.�/��Y

���
�YOpw.�/��Y

�
dY

D

Z
R2n

a.Y /†�.Y /dY; (1.2.70)

with

†�.Y / D Œ�YOpw.�/��Y �
�Œ�YOpw.�/��Y � D

�
Opw.�.� � Y //

��Opw.�.� � Y //:

(1.2.71)
Remark 1.2.32. The Gaussian case in the previous lemma gives rise to the standard
non-negativity properties of coherent states. In fact, choosing �.X/ D 2ne�2�jX j

2
,

we see that � is even, belongs to the Schwartz space and

k�k2
L2.R2n/ D 2

2n

Z
R2n

e�4�jX j
2

dX D 22n4�2n=2 D 1:

We have also9

��.X/ D 2
4n

“
.R2n/2

e�4i�ŒX�Y;X�Z�e�2�.jY j
2CjZj2/dYdZ

D 23n
Z

R2n
e4i�ŒY;X�e�2�.jXCY j

2CjY j2/dY

D 23n
Z

R2n
e4i�ŒY;X�e�2�.jYC

X
2 j
2CjY�X2 j

2
/dY

D 23ne��jX j
2

Z
R2n

e4i�ŒY;X�e�4�jY j
2

dY D23ne��jX j
2

4�ne��jX j
2

D �.X/:

9 [33, Proposition 4.1.1] is useful to compute the Fourier transform of Gaussian functions
and is a notable asset of the Fourier normalization given in Section A.1.1.
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In that case we find that Opw.�/ is a rank-one orthogonal projection on the funda-
mental state ‰0 of the harmonic oscillator �.jDxj2 C jxj2/. According to (A.1.16)
the one-dimensional kth Hermite function is

 k.x/ D
.�1/k

2k
p
kŠ
21=4e�x

2

�
d

p
�dx

�k
.e�2�x

2

/; (1.2.72)

so that ‰0.x/ D 2n=4e��jxj
2
. We calculate

�.x; �/ D W.‰0; ‰0/.x; �/ D 2
n=2

Z
Rn
e��.jxCz=2j

2Cjx�z=2j2/e�2i�z�dz

D 2n=2e�2�jxj
2

Z
Rn
e��z

2=2e�2i�z�dz D 2ne�2�jxj
2

e�2�j�j
2

D �.x; �/:

The anti-Wick quantization of a symbol a is defined as (see, e.g., M. Shubin’s
book [47])

Opaw.a/ D
Z

R2n
a.Y /†Y dY; (1.2.73)

where †Y is the rank-one orthogonal projection given by

†y;�u D hu; �y;�‰0i�y;�‰0:

Remark 1.2.33. It is interesting to notice that to produce non-negativity of the oper-
ator with Weyl symbol a � �� when a is a non-negative function, we do not use the
non-negativity of �� as a function, which by the way does not always hold (except in
the Gaussian cases), but we use the fact that the quantization of �� is non-negative,
as it is defined as Opw. N�]�/ D .Opw.�//

� Opw.�/.

Remark 1.2.34. Another important remark is concerned with the Taylor expansion
of a � ��, we have

.a � ��/.X/ D
Z

a.X � Y /��.Y /dY D
Z

a.X C Y /��.Y /dY

D

Z �
a.X/C a0.X/Y C

Z 1

0

.1 � �/a00.X C �Y /Y 2
�
��.Y /dY

D a.X/C
“ 1

0

.1 � �/a00.X C �Y /Y 2��.Y /dY:

As a result the difference .a � ��/ � a depends only on the second derivative of a. If
for instance a is a semi-classical symbol, i.e., a smooth function of .x; �/ depending
on h 2 .0; 1� such that

8.˛;ˇ/ 2Nn
�Nn; sup

.x;�/2R2n;h2.0;1�

j.@˛x@
ˇ

�
a/.x; �;h/jh�

j˛jCjˇj
2 <C1; (1.2.74)
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then the difference Opaw.a/�Opw.a/ is bounded on L2.Rn/ with anO.h/ operator-
norm, so that if a happens also to be non-negative, we find

Opw.a/ D Opw.a/ � Opw.a � ��/„ ƒ‚ …
O.h/

as an operator,
cf. Theorem 1.2.27

COpw.a � ��/„ ƒ‚ …
�0

as an operator

;

and we obtain a version of the so-called Sharp Gårding inequality,

Opw.a/C Ch � 0 (as an operator):

Theorem 1.2.35. Let � be an even function in the Schwartz space S .R2n/ with
L2.R2n/ norm equal to 1 and let �� be given by (1.2.69). For a 2 L1.R2n/, we
define

Op.�; a/ D Opw.a � ��/:

Then, Op.�; a/ is a bounded operator in L2.Rn/ and we have

kOp.�; a/kB.L2.Rn// � kakL1.R2n/: (1.2.75)

Moreover, if a is valued in some interval J of the real line, we have the operator
inequalities

infJ � Op.�; a/ � supJ: (1.2.76)

In particular, if a.x; �/ � 0 for all .x; �/ 2 R2n, we have the operator-inequality
Op.�; a/ � 0.

N.B. The non-negativity of the anti-Wick quantization (1.2.73) and its avatars Husimi
[25], Coherent States, Gabor wavelets (see, e.g., [11]), are particular cases of the
above theorem. More information on this topic is available in Section 2.4 of the
book [33]. Another remark is that this result can easily be extended to matrix-valued
symbols as in Remark 2 page 79 of L. Hörmander’s [24] and even to symbols valued
in B.H/, where H is a Hilbert space.

Proof. We start with Formulas (1.2.70), (1.2.71), entailing

Op.�; a/ D
Z

R2n
a.Y /†�.Y /dY;

with †�.Y / D ŒOpw.�.� � Y //�
�Opw.�.� � Y // D �YOpw. N�]�/��Y . We note that

Op.�; 1/ D
Z

R2n
�YOpw. N�]�/��Y dY;

so has Weyl symbol X 7!
R

R2n ��.X � Y /dY D 1 from Lemma 1.2.31 and thus
Op.�; 1/ D Id. We infer that for u; v 2 S .Rn/,

hOp.�; a/u; viL2.Rn/ D
Z

R2n
a.Y /hOpw.�.� � Y //u;Opw.�.� � Y //vidY;
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so that with any � > 0,

jhOp.�; a/u; viL2.Rn/j

�kakL1.R2n/

Z
R2n

1

2

�
�kOpw.�.��Y //uk

2
L2.Rn/C�

�1
kOpw.�.��Y //vk

2
L2.Rn/

�
dY

D kakL1.R2n/
1

2

�
�hOp.�; 1/u; uiL2.Rn/ C �

�1
hOp.�; 1/v; viL2.Rn/

�
D kakL1.R2n/

1

2

�
�kuk2

L2.Rn/ C �
�1
kvk2

L2.Rn/

�
;

and taking the infimum of the right-hand side with respect to �, we obtain

jhOp.�; a/u; viL2.Rn/j � kakL1.R2n/kukL2.Rn/kvkL2.Rn/;

proving (1.2.75). To prove (1.2.76), it is enough to prove the last statement in the
theorem which follows immediately from (1.2.70), (1.2.71) since each operator †Y
is non-negative. The proof of the theorem is complete.

It is nice to have examples of non-negative quantizations, but somehow more
importantly, it is crucial to relate these quantizations to the mainstream quantization,
that is to the Weyl quantization. This is what we do in the next theorem, dealing with
semi-classical symbols.

Theorem 1.2.36 (Sharp Gårding inequality). Let a be a function defined on Rn �
Rn � .0; 1� such that a.x; �; h/ is smooth for all h 2 .0; 1� and such that

8.˛;ˇ/ 2Nn
�Nn; sup

.x;�;h/2Rn�Rn�.0;1�
j.@˛x@

ˇ

�
a/.x; �; h/jh�jˇ j <C1: (1.2.77)

Let us assume that the function a is valued in RC. Then, there exists a constant C
such that

Opw.a/C Ch � 0:

Proof. We have given a proof of this result in Remark 1.2.34 but with a differ-
ent definition for a semi-classical symbol (see (1.2.74)). Starting with our definition
above in (1.2.77), we define

b.x; �; h/ D a.h1=2x; h�1=2�; h/;

and we see that b satisfies the estimates (1.2.74) and is a non-negative function so
that, applying Remark 1.2.34, we can find a constant C such that

Opw.b/C Ch � 0:

We note now that Segal’s formula (1.2.48) applied to the symplectic mapping

.x; �/ 7! .h1=2x; h�1=2�/;

shows that Opw.b/ is unitarily equivalent to Opw.a/, providing the sought result.
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N.B. Several versions of the above theorem can be found in the literature, in par-
ticular, [24, Theorem 18.1.14]. The first proof of this result was given in 1966 by
L. Hörmander in [21] for scalar-valued symbols and a proof for systems was given
by P. Lax and L. Nirenberg in [28] on the same year. Far-reaching refinements of that
inequality were given by C. Fefferman and D. H. Phong, who proved in [9] in 1978
that, under the same assumption as in Theorem 1.2.36 for scalar-valued symbols, they
obtain the much stronger

Opw.a/C Ch
2
� 0: (1.2.78)

A thorough discussion of these questions is given in [24, Section 18.6] and in [33,
Section 2.5] (see also [1]).

1.3 Examples

1.3.1 Hermite functions

We can easily calculate the Wigner distribution of Hermite functions and since the
Wigner distributions respect tensor products as partial Fourier transforms, it is enough
to do in one dimension. With k given in (1.2.72), the Wigner distribution W. k;  k/

appears as the Weyl symbol of PkI1 D Pk as defined in (A.1.17). We find that the
Weyl symbol of P0In, following (A.3.2), is

2ne�2�.jxj
2Cj�j2/:

More generally, the paper [27] provides in one dimension

W. k;  k/.x; �/ D .�1/
k2e�2�.x

2C�2/Lk.4�.x
2
C �2//; (1.3.1)

where Lk is the standard Laguerre polynomial with degree k (see (A.4.1)). As a
result, the Weyl symbol of PkIn is equal to �k;n.x; �/ with

�k;n.x; �/ D .�1/
k2ne�2�.jxj

2Cj�j2/
X

˛2Nn;j˛jDk

Y
1�j�n

L
j̨
.4�.x2j C �

2
j //:

Note that the leading term in the polynomial .�1/kLk.t/ is tk=kŠ and this implies
that the set ®

.x; �/ 2 R2;W. k;  k/.x; �/ < 0
¯
;

where W. k;  k/ is given by (1.3.1) is a relatively compact open subset of R2.
Indeed, we have

W. k;  k/.X/ D 2e
�2�jX j2

²
.4�jX j2/k

kŠ

³�
1C

X
0�l�k�1

al.4�jX j
2/�.k�l/

�
„ ƒ‚ …

�1=2 for jX j � R0
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which implies that®
X 2 R2; jX j � max.R0; 1/

¯
�
®
X 2 R2; W. k;  k/.X/ > 0

¯
;

and thus ®
W. k;  k/.X/ � 0

¯
�
®
jX j < max.R0; 1/

¯
:

1.3.2 One-sided exponentials

Let us define for a > 0, fa.t/ D H.t/a1=2e�at=2. We have

W.fa; fa/.x; �/ D aH.x/

Z
jzj�2x

e�2i�z�e�
a
2 .xCz=2/e�

a
2 .x�z=2/dz

D aH.x/e�xa
Z
jzj�2x

e�2i�z�dz

D 2aH.x/e�xa
Z 2x

0

cos.z2��/dz

D aH.x/e�xa
sin.4�x�/

��
:

We can check“
W.fa; fa/.x; �/dxd� D

a

�

Z C1
xD0

e�ax
Z

sin.4�x�/
�

d�dx D 1 D kfak
2
L2.R/;

and since Z
R

sin2 t
t2

dt D �;

we verify (see Lemma 1.2.25 and (1.1.4)),“
W.fa; fa/.x; �/

2dxd�D
a2

�2

Z C1
xD0

e�2ax
Z

sin2.4�x�/
�2

d�dxD1Dkfak
4
L2.R/:

On the other hand, the ambiguity function A.fa; fa/ is the inverse Fourier transform
of W and we have

A.fa; fa/.�; y/ D
a

�

“
H.x/e�x.a�2i��/

sin �
�
e2i�

y
4�x �dxd�

D a

Z C1
jyj=2

e�x.a�2i��/dx D
ae�

1
2 jyj.a�2i��/

a � 2i��
;

which corresponds to [17, formula (9)] noting that with our notations, we have

A.f; f /.�; y/ D zA.f; f /.y;��/;
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where zA.f; f / is the normalization chosen in [17]. Going back to the Wigner distri-
bution, that simple example is interesting since we have®

.x; �/;W.fa; fa/.x; �/ < 0
¯

D

[
k2N

²
.x; �/ 2 .0;C1/ �R�;

k

2
C
1

4
< xj�j <

k

2
C
1

2

³
;

and we see that the Lebesgue measure of

Ek D

²
.x; �/ 2 .0;C1/ �R�;

k

2
C
1

4
< xj�j <

k

2
C
1

2

³
;

is infinite since

jEkj D 2

Z C1
0

dx

4x
D C1:

Moreover, the function W.fa; fa/.x; �/ does not belong to L1.R2/ since“
H.x/e�xa

ˇ̌̌̌
sin .4�x�/

��

ˇ̌̌̌
dxd� �

“
.0;C1/2

e�xa
ˇ̌̌̌
sin �
��

ˇ̌̌̌
dxd� D C1:

As a consequence, we have, using the notation for ˛ 2 R,

˛˙ D max.˙˛; 0/;“ �
W.fa; fa/.x; �/

�
C
dxd� D

“ �
W.fa; fa/.x; �/

�
�
dxd� D C1;

since the real-valued function W.fa; fa/ does not belong to L1.R2/ and is such that“
W.fa; fa/.x; �/dxd� D kfak

2
L2.R/ D 1:

We will see in Section 6.4 several important consequences of that phenomenon for
the quantization of the indicatrix of some subsets of R2, such as

E˙ D
®
.x; �/;˙W.fa; fa/.x; �/ > 0

¯
:

1.3.3 Box functions

We start with ˇ0.t/ D 1Œ� 12 ; 12 �.t/; for which a straightforward calculation gives

W.ˇ0; ˇ0/.x; �/ D 1Œ� 12 ; 12 �.x/
sin.2�.1 � 2jxj/�/

��
:

More generally, for real parameters a � b, defining

ˇ.t/ D .b � a/�1=21Œa;b�.t/e2i�!t ;
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we find

W.ˇ; ˇ/.x; �/ D Œ.b � a/�.� � !/��1

�

�
1
Œa;aCb2 �

.x/ sinŒ4�.� � !/.x � a/�C 1
ŒaCb2 ;b�

.x/ sinŒ4�.� � !/.b � x/�
�
:

Checking now ˇ1.t/ D 1Œ� 12 ; 12 �.t/ sign t , we find after a simple (but this time a bit
tedious) calculation,

W.ˇ1; ˇ1/.x; �/ D 1
�
jxj �

1

4

�
2 sin.4�jxj�/ � sin

�
2�.1 � 2jxj/�

�
��

C 1
�
1

4
� jxj �

1

2

�
sin.2�.1 � 2jxj/�/

��
:

1.4 Integrals of the Wigner distribution on subsets of the phase space

Lemma 1.4.1. Let E be a measurable subset with finite Lebesgue measure of the
phase space Rn � Rn and let 1E be the indicator function of the set E. Then, the
operator with Weyl symbol 1E is bounded self-adjoint on L2.Rn/ and for any u 2
L2.Rn/, we have

hOpw.1E /u; uiL2.Rn/ D
“
E

W.u; u/.x; �/dxd�: (1.4.1)

Proof. It follows immediately from (1.2.1) and (1.2.5).

Remark 1.4.2. A consequence of the above formula is that a spectral analysis of the
operator Opw.1E / would display interesting extremalization properties for the right-
hand side of (1.4.1); for instance, if

�� D inf
�
spectrum.Opw.1E //

�
; �C D sup

�
spectrum.Opw.1E //

�
;

we obtain that for u normalized in L2.Rn/, we have

�� �

“
E

W.u; u/.x; �/dxd� � �C:

In particular, if �� is an eigenvalue related to a normalized eigenfunction u�, (resp.,
if �C is an eigenvalue related to a normalized eigenfunction uC), we get for all u
normalized in L2.Rn/,“
E

W.u�;u�/.x; �/dxd��

“
E

W.u;u/.x; �/dxd��

“
E

W.uC;uC/.x; �/dxd�:
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We shall see below several examples where the operator Opw.1E / is bounded on
L2.Rn/ with an E having infinite Lebesgue measure. We may note in particular that

Opw.1R2n/ D Id;

and for a given non-zero linear form L.x; �/ on R2n and

E D
®
.x; �/ 2 R2n; L.x; �/ 2 J

¯
; where J is a subset of R; (1.4.2)

we may find affine symplectic coordinates .y; �/ on R2n such that L.x; �/ D y1,
implying with (1.2.48) that Opw.1E / is unitarily equivalent to the orthogonal projec-
tion u 7! u.y/1J .y1/. Although in that case, the quantization of the indicatrix of E
given by (1.4.2) is trivial, we shall see below that in many cases, including some rather
explicit ones, the Weyl quantization of the rough Hamiltonian 1E .x; �/ could be far
from a projection and may have a rather complicated spectrum with a supremum
which could be strictly larger than 1 and an infimum which could be negative.

In some sense, although we have the trivial identity 1E .x; �/2 D 1E .x; �/, we
shall see that the quantization process by the Weyl formula is destroying that prop-
erty; to understand integrals of the Wigner distribution on subsets of the phase space,
formula (1.4.1) forces us to consider the Weyl quantization of the function 1E .x; �/
and the Heisenberg Uncertainty Principle shows that non-commutation properties are
governing operators and these properties are of course distorting the classical identit-
ies satisfied by classical Hamiltonians.

We must point out as well that we do not have here at our disposal a semi-classical
version of our quantization which could ensure some bridge between classical proper-
ties and operator-theoretic results as it is the case for the quantization of nice smooth
semi-classical symbols depending on a small parameter h such as a C1 function
a.x; �;h/ satisfying (1.2.77). In particular, for a symbol a satisfying (1.2.77), we have
the following result: if for all .x; �; h/ 2 Rn � Rn � .0; 1� we have a.x; �; h/ � 1,
then there exists a semi-norm C of the symbol a such that

Id�Opw.a/C Ch
2
� 0;

i.e.,
Opw.a/ � IdCCh2;

an inequality following from the Fefferman–Phong inequality (cf. (1.2.78)) which
implies as well the following lemma.

Lemma 1.4.3. Let a be a semi-classical symbol of order 0, i.e., a smooth function sat-
isfying (1.2.77) such that for all .x; �; h/ 2Rn �Rn � .0; 1� we have 0� a.x; �; h/�
1. Then, there exists a semi-norm C of the symbol a such that

�Ch2 � Opw.a/ � IdCCh2:


