
Chapter 2

Quantization of radial functions and Mehler’s formula

This section and the following are essentially based upon the author’s paper [36].

2.1 Basic formulas in one dimension

In this section, we work in one dimension and consider a function F in the Schwartz
class of R. We want to calculate somewhat explicitly the Weyl quantization ofF.x2C
�2/ and also extend that computation to the case where F is merelyL1.R/. We have,
say for F in the Wiener algebra W .R/ D Fourier.L1.R//,
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so that, using the spectral decomposition (A.1.17) of the harmonic oscillator
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and, using Section A.8.1, we getZ
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We have proven the following lemma.

Lemma 2.1.1. Let F be a tempered distribution on R such that yF is locally integ-
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Then, the operator Opw
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where the orthogonal projections Pk are defined in (A.1.17).

2.2 Higher-dimensional questions

We work now in n dimensions and consider a function F in the Schwartz class of
R. We want to calculate somewhat explicitly the Weyl quantization of F.
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and also extend that computation to the case where F is merely L1.R/. We have,
say for F in the Wiener algebra W .R/ D Fourier.L1.R//,
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as an absolutely converging integral of a function defined on R (equipped with the
Lebesgue measure) valued in B.L2.Rn// (bounded endomorphisms of L2.Rn/). In
fact, applying Mehler’s formula (A.3.1), we find by tensorisation,
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so that, using the spectral decomposition (A.1.19) of the harmonic oscillator, we get
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We have proven the following lemma.

Lemma 2.2.1. Let F be a tempered distribution on R such that yF is locally integ-
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where P˛ is the rank-one orthogonal projection onto ‰˛ given by (A.1.18).
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Lemma 2.2.2. Let F be as in Lemma 2.2.2 and let us assume that all the �j are
equal to � (positive). Then
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where P˛ is the rank-one orthogonal projection onto ‰˛ given by (A.1.18).
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giving the sought result.


