Chapter 2

Quantization of radial functions and Mehler’s formula

This section and the following are essentially based upon the author’s paper [36].

2.1 Basic formulas in one dimension

In this section, we work in one dimension and consider a function F in the Schwartz
class of R. We want to calculate somewhat explicitly the Weyl quantization of F(x2+
£2) and also extend that computation to the case where F is merely L>°(R). We have,
say for F in the Wiener algebra % (R) = Fourier(L'(R)),

OpW(F(XZ_i_%-Z)):/Rﬁ(r)opw(eZiﬂf(xz-f—fz))dt’

as an absolutely converging integral of a function defined on R (equipped with the
Lebesgue measure) valued in B(L?(R)) (bounded endomorphisms of L2?(R)). In
fact, applying Mehler’s formula (A.3.1), we find

Op (eZiJT‘E(X2+E2)) — cos(arctan _[) eZin(arctanr)Opw(xz-i-Ez)
w s

operator with Weyl symbol exponential elM
p2imt(x2+£2) with M self-adjoint operator
=27 (arctan T)Op,, (x2+£2)

so that, using the spectral decomposition (A.1.17) of the harmonic oscillator
Op, (7 (x* + £%)),
we get,
dt
Vit

~ 1 dt
— F(T)ezt(k-i-z)arctant ]P;k’
g[l;{ V1412

OPW(F(x2 + 52)) — /R ﬁ(‘[) Z eZi(arctanr)(k.g-%)Pk
k>0

where the use of Fubini theorem is justified by

<400, Pr=0, Y Pr=Id.
k>0

/ Py -
R V1412

‘We have
dt

Vit
= / ﬁ(f)(COS(aI'Ctan 7) + i sin(arctan ‘E))2k+1
R

/ ﬁ(r)e2i(k+%) arctan T
R

dt
V1412
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and, using Section A.8.1, we get

~ : 1
F(_L,)EZI(k-‘rj)a.rctanr
/]R 1+ 12

We have proven the following lemma.

dt

/ F('L')(l + lf)2k+lm.

Lemma 2.1.1. Let F be a tempered distribution on R such that F is locally integ-

rable and such that
/lﬁ(r)l T oo @.1.1)
R V1+12 ‘ o

Then, the operator Op,, (F (x% + 52)) has the spectral decomposition

- \2k
Op,, (F(x* + £%)) = Z/ Fo( +iv? e,

k
Sl A+
F() (1 +it)k
= T APy,
,2/ (iR

where the orthogonal projections Py are defined in (A.1.17).

2.2 Higher-dimensional questions

We work now in n dimensions and consider a function F' in the Schwartz class of
R. We want to calculate somewhat explicitly the Weyl quantization of F (D, <j<n i
(x7 + &7)), where the j; are positive parameters, denoted by

on (F( X wei+8) | autwr= 2w+

1<j=n 1<j=<n

and also extend that computation to the case where F is merely L°°(R). We have,
say for F in the Wiener algebra # (R) = Fourier(L!(R)),

Op,, (F(qu(x.8))) = /R F(x)0p, (X7 21=rzn s CFHED Yar,

as an absolutely converging integral of a function defined on R (equipped with the
Lebesgue measure) valued in 8(L?(R")) (bounded endomorphisms of LZ(R")). In
fact, applying Mehler’s formula (A.3.1), we find by tensorisation,

Op (eZintzlsjgnM_j(ij-i-S})) — l—[ Cos(arctan(fﬂj))eZiﬂ(arCtan(tp,j))Opw(sz--i-éjz)
w b

<j< i
l=j=n exponential elMJ s
with M self-adjoint operator
=271(arctan(‘cu_,~))Opw(sz»-i-éjz)

(2.2.1)

operator with Weyl symbol
e2imTqu(x.8)
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so that, using the spectral decomposition (A.1.19) of the harmonic oscillator, we get

Op,, (F(qu(x.§)))

1
F(e 21 (arctan(zie;)) (et + 2)[[1) —d-[
=[fo = 1 SEaomE

aeN” 1<j<n

1
Z F(‘L’) 1_[ e21(ocj )arctan(rp,j) d‘L'IPa,
aEN"/ 1<j<n Vv 1 +(‘E/"Lj)

where the use of Fubini theorem is justified by
/|F(‘L’)| = < +o0, Py =0, Y Py =1d.
o

We have

~ 1 1
F(‘L’) €2l(a/ 5) arctan(T ;) dt
/R 1_[ V1t (tp)?

1<j=n

f Fo) ] (costaretan(pe; ) + i sin(arctan(u, 7)) ' ——

—dr,
1<j<n V14t (IM]')Z

and, using Section A.8.1, we get

1 1
F(‘E) 1_[ eZz(a, 5) arctan(T ;) dt
/ 1<j<n \% 1+ (T/'Lj)2

. 1 20 +1 1
=/F(r)l_[ At impy) ™ dr
R 1<jen (L+ (Tu)H T2 1+ (tp))?
We have proven the following lemma.

Lemma 2.2.1. Let F be a tempered distribution on R such that Fis locally integ-
rable and such that

~ dt
FT —<+OO
/R' Ol =

Then, the operator Opw(F Q1< j<n i (sz + 5;‘]2))) has the spectral decomposition

: 20 +1
OpW(F( Z /Lj(sz'i‘sjz))) = Z / F(7) l_[ ((ll—iltle:;)aﬁ” dtPy

1<j<n aeN” 1<j<n
A +itp)%
= Z [ F( ) l_[ Wd'ﬂpa,
aeNn 1<j<n K

where Py is the rank-one orthogonal projection onto Wy given by (A.1.18).
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Lemma 2.2.2. Let F be as in Lemma 2.2.2 and let us assume that all the |1; are
equal to u (positive). Then

k
on,(F(u ¥ 2+6))) = X [ Forg e,

1<j=<n k>0

with

IP)k;nz E IP)oe,
aeN"
la|=k

where Py is the rank-one orthogonal projection onto Wy given by (A.1.18).

Proof. With all the u; equal to u > 0, we find

(I +itp;)% (1 4+itp)% (1 4 itp)le!
[ e - -

(=it +t = =iz ¥ (1 —izp)lel+n’

1<j=<n 1<j=<n

which depends only on |«/|, so that applying the previous lemma gives
) (L itp)*
Fle Y 02 +8) Z/ e,
oy (l—l‘L’ Yk+n

giving the sought result. |



