Chapter 3

Conics with eccentricity smaller than 1

3.1 Indicatrix of a disc

Let us assume now that with some a > 0,

F=1_

373l
so that
F(x* 4+ §) = 1,02 4£2)<a)-

According to Section A.8.1, we have

so that (2.1.1) holds true. We find in this case,
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so that (note that Fi(a) is real-valued since F is real-valued and thus the operator
Op,, (F(x? + £2)) is self-adjoint), and for a > 0, using the result (A.8.2) in Section
A.8.2, we obtain
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We shall now calculate explicitly both integrals above: let 1 < R be given and let us
consider the closed path (see Figure 3.1)
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Figure 3.1. yg = [-R, R]U {Re'?}o<p<x.
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and we note that, fora > 0,
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since for R > 2,
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by dominated convergence. As a result, we get
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We note that F; belongs to L'(R) as the product of e™ by a polynomial. We have
also that

lim Fi(a) =1 (see Section A.8.3),

a—>—+00

and this yields
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so that
Fr(@) =1—e"?Pr(a), 3.1.2)

with
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We see that Py is a polynomial with leading monomial 21;(‘11( (by a direct computa-

tion) and Py (0) = 1 (since 0 = F;(0) = 1 — Px(0)) and moreover, using Laguerre
polynomials (see, e.g., (A.4.1) in our Section A.4), we obtain

Pe(a) = (—1)k /+°° ot o2t +2a d k{e—zr—za(Za n 2t)k}d[
k' Jo 2dt

+o00
= (—1)k/ e ' L2t + 2a)dt, (3.1.4)
0



Conics with eccentricity smaller than 1 48
and this gives in particular
+00
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Moreover, we have from (3.1.3), for k > 1,

_1\k ptoo k
P,é(a) — ( 1) / ez( d ) {e—ztk(a + l‘)k_l}dt
0

k! dr
—_Dk ptoeo g4 k—1
- / eta(%) {e k(@ + Y
- Jo

(—l)k , d k—1 o B t=+o00
= {[e (E) {e™? k(a + 1)k l}lzo
+o0 d k—1
— [ e (E) {e_Ztk(a + t)k_l}dt}
0

-1 k—1 d k—1
- ((k _) 1! (E) {6_2[(‘1 + t)k_1}|t=0

—1)k—1 ptoo d k—1
+ ((k _) D1 /0 e’(E) {e™ (@ + )k dr

_ (_l)k_l 2t+2a d 1 —2t—2a k—1
= (k __1)!6 E {e (2a + 2t) }|t=0

_1\k—1 p+4oo k—1
+Ek1—)1)!/0 e’(%) (e (a+ )" "dr

= (- L1 (2a) + Pei(a).

so that

Vi =1, Pi(a) = (=D""Li1(2a) + Pror(a) = (=1 Lg(20) + Pr(a).
3.1.5)

This implies for N > 1,
Yo P@- Y D'Liay= )Y P@+ Y (—DFLi(a).

1<k<N 1<k<N 0<k<N-1 0<k<N-1
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yielding
Py@= Po@ = > D'L@a+ ) D LCa),
=1=Lo(a) 1<k<N 0<k<N-1
and
Py@) = Y (-DfLi@a)+ D (-D*Li(a). (3.1.6)
0<k<N 0<k<N-1

Note that the previous formula holds as well for N = 0, since Py = 1 = L.

Although the function R > a — Fy(a) has no monotonicity properties, we prove
below that R > a +— Py (a) is indeed increasing. For that purpose, let us use (3.1.5),
which implies

Pi(a) = (=1 ' Lg12a) + Pry(@), k=1,
Peo1(a) = Pra(@) + (=1L 22a) + (=1 ' Ly1 2a), k=2,
Pi(a) = 2(=1) ' Lg1 Qa) + (=1)* P Li2(20) + Pra(a), k= 2.

We claim that for k > 1,

Pla)y=2 Y (-D'Li(a). (3.17)

0<l<k-—1

That property holds for k = 1 since P;(a) = 1 + 2a: we check P{(a) = 2. Moreover,
we have

Pr (a) = (—l)kLk (2a) + Pr(a) (from the first equation in (3.1.5))
(using 3.1.6)) = (=D LeRa) + > (D'Lia)+ > (=D'Li(2a)

0<i<k 0<l<k-—1

=2 ) (-1'LiQa).

0<i<k
which is the sought formula. As a byproduct we find from (A.4.2)

Va >0, Pl(a)>0,

which implies that for a > 0, Px(a) > P;(0) = 1. We have proven the following
lemma.

Lemma 3.1.1. The polynomial
Pr(a) = e*(1 — Fi(a))

is increasing on R 4,
Pr(0) = 1.
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Let us take a look at the first Pj: we have
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Py(a) = 1 + 242,
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26a®  1484° 4a'° 8all

45 2835 1575 T
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155925°
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We note as well that

Pw= Y Ty 2’(—1)"—’(11‘),

o<m<k  m<I<k
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since from (3.1.3),

_1\k ptoo d k
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which is the sought formula.

Lemma 3.1.2. With the polynomial Py defined by (3.1.4), we have

{ Pe(a) =2 0c1ck1 (1! Li(2a) + (=¥ L (2a),
Pl(a) =2 g<i<1 (D' Li2a).

Proof. We may use the already proven (3.1.6), (3.1.7), but we may also prove this
directly by induction on k. ]

Proposition 3.1.3. Let Fy, be given by (3.1.2) with Py defined by (3.1.3). We have

Fr@a)=1—ePa)<1—e% = Fy(a) fora=>0,
Fi(a) = e™*(Pr(a) — Pi(a)) = e (=D)L (2a).
F/(0) = (1), im F/(a)=04, Fie(0)=0, lim Fe(@)=1-. (3.18)

Proof. We use (3.1.2), (3.1.7), and (3.1.6) for the three first equalities, Lemma 3.1.1
for the first inequality. The fourth equality follows from L (0) = 1, while the fifth is
due to the fact that the leading monomial of (—1)* L (2a) is 2Ka¥ / k!. The two last
equalities are a consequence of the first line. ]

Remark 3.1.4. The zeroes of F ,é on the positive half-line are the positive zeroes of
the Laguerre polynomial L divided by 2. When k is even (resp., odd) the function Fj
is positive increasing (resp., negative decreasing) near 0, then oscillates with changes
of monotonicity at each a such that L (2a) = 0 and when 2a is larger than the largest
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zero of Ly, the function Fy is increasing, smaller than 1, with limit 1 at infinity.
Typically, we have F»;(0) = 0, F,;(0) = +1,

0<ayp <az <---<dag—12 <dazp, thezeroesof Ly (2a), 3.1.9)
F5; vanishes simply at bp = 0 and at bj € (a;,a;41) for 1 < j <2/ —1, also at

ba; > asy: 21 + 1 zeroes with a positive (resp., negative) derivative at by, ba, . . ., by

(resp., at by, b3, ..., by;—1). Moreover, we have F5;11(0) = 0, F2’l+1(0) =—1,

0<ayppi+r <aspry1 <---<api+1 <az+1,2+1, the zeroes of Lojy1(2a),

(3.1.10)

F141 vanishes simply at bo =0 and atb; € (a;,a;41) for 1 < j <2/, alsoatby; 11 >

az4+1: 21 + 2 zeroes with a positive (resp., negative) derivative at by, b3, ..., byy41
(resp., at by, ba, ..., by).

We note as well that a consequence of the previous remark is that
min Fy;(a) = min {Fy;(as; ,
min 21(a) 15;‘51{ 21(azj00)}
min F a) = min { F Aoy i ,
min 21+1(a) Osjsl{ 2041(@2j 11,2041) )

where (ap 1) 1<p<k are defined in (3.1.9), (3.1.10).

Theorem 3.1.5. Let a > 0 be given and let

Dy = {(x,é) eR*x?+£% < i}. (3.1.11)
2
Lo}
0.8F
0.6
] — 1
0.4:- Fs
0.2 Fg
_ 5 {0 15
—0.2f

Figure 3.2. Functions Fs, Fg.
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Then, we have

Op,(Ip,) = Y Fi(@)Pr <1—e™“.
k>0

Proof. An immediate consequence of (3.1.1), (3.1.8). Note that the inequality in the
above theorem is due to P. Flandrin in [13] (see also the related references [20], [14]).
[ ]

Curves. Let us display some curves of Ry 3 a — Fr(a) =1 —e % Pr(a).

1.0’-

— 1
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Fo
0.6 — R
0.4 —
—
0.2
— >3
— Faq
40 50 60
F>s
0.2

Figure 3.3. Functions Fy.

3.2 Indicatrix of a Euclidean ball
The following result displays an explicit spectral decomposition on the Hermite basis
for the Weyl quantization of the characteristic function of Euclidean balls.
Theorem 3.2.1. Let a > 0 be given and let
Qan = Op, ({27 (|x|* + [£%) < a}),

be the Weyl quantization of the characteristic function of the Euclidean ball of R*"
with center 0 and radius \/a/(2r). Then, we have

cza,n = Z Fk;n (a)]P)k;n,
k>0

With Py = 3 yenn jo|=k Pa> Where Py is the orthogonal projection onto Wy (defined
in (A.1.18)), with || = 3, _;, & = k and

sinat (1 +it)k
kin(@) /R rt (1—ir)ktn ¢
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The spectral decomposition of the previous theorem allows a simple recovery of
the result of the article [39] by E. Lieb and Y. Ostrover.

Theorem 3.2.2. Leta > 0, @45, Fk.n be defined above. Then, we have

1 +o0 r
Frn(a) <1— / etnlgr =1 L9 (3.2.1)
I'n) J, I'(n)
and thus we have r( )
n,a
Qan=<1- -, 322
an = T () ( )

where the incomplete Gamma function U (-, ) is defined in (A.8.3).

Proof of Theorems 3.2.1 and 3.2.2. We use the results of (the previous) Section 3.1:
Let us assume now that with some a > 0,

F=1rg.51
so that
F(x]* + |£]*) = 127n(|x|> + |§1%) < a).

According to Section A.8.1, we have ﬁ(r) = Sifr%, so that (2.1.1) holds true. We find
in this case, following the results of Lemma 2.2.2,

Op,, (F(|x|2 + |‘§|2)) = Z Fien(@)Pi;n,  Prn = Z Py,

k>0 aeN" |a|=k

sinat (14 i7)k
Fr.n(a) = dr, 3.2.3
kin () /1; nt (1 —ir)k+r ‘ (3.2.3)

where P, is the orthogonal projection onto W, (defined in (A.1.18)), with
ol = > o=k
1<j=zn

This completes the proof of Theorem 3.2.1.
We postpone the proof of Theorem 3.2.2 until after settling a couple of lemmas.

Lemma 3.2.3. Let (k,n) € N x N*. With Fy.,(a) given by (3.2.3), we have

Frp(a) =1—e “Pry(a), where Py, is the polynomial
(_1)k+n—1 /+OO » . d n+k—1 v
Prp(a) = ——— e 't +a)" et — she™s dt,
" (k+n—1)' 0 ds [ ] |s=2¢+2a
(3.2.4)

(_1)k+n—1 +o00 . d n+k—1 B
Pk;n(a) = (k T 1)'2n_1 /0 (l +a) let (E) {(l +a)ke ZZ}dl‘.
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Proof of Lemma 3.2.3. The lemma holds true for n = 1 from Proposition 3.1.3. We
have fora > 0, n > 2,

1 (1 +in)k
/ _
Fk;n(a)— ;/};COSGdeT
_ U e (LFiDF de s L[ gar (1—it)k .
27 Jr (1 —it)ktn 27 Jr (1 +it)ktn
L ikt —i)k LI o (—i)k(zr +i)* i
2im Jr© (—i)kFn(r 4 i)kEn 2im Jr ikt (r i)k
so that
. e THDF
F,é;n(a) =i n(—l)kReS(emrm;l
DR (N
“Gramil) e
and thus

, ll_n(—l)k d k+n—1 ue. & k
Fy.,(a) = (k—l-n—l)!("l;ds) {e G +l;+l) }|€=0

. 1—n k n— k+n—1
_ i (=1)kgn1 (d) {e_a_8(2a+e)k}

i~k +n—1)!\de le=0
= a(—l)k+”_1an_l d fnt —2a—2¢ k
= k=0 \2de (€727 2a +20)%} .

that is

, (_1)k+n—1 . d k+n—1 ok
Fk,n(t) = (k +n— 1)'ett ! % {e S }|S=21

_)k+n—1 4\ k1
— (ki ) 1)'2n_1 ettn—l (E) {€_2ttk}.
n—1!

We have also that lim, s 4o Fg;n(a) = 1 (following the arguments of Section 3.1)
and this yields

—1)ktn—1 +o0 d k+n—1
Fk;n(a) — 1 _ ( ) / ettn—l( ) {e—ZItk}dt

(k +n — 1)12n—1 dt
_ 1k+n—1
e D)
(k +n—1)12n1
X /0 (t + a)”_le’(a) {e72(t + a)¥}dt,

concluding the proof of the lemma. |
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Let us go back to formula (3.2.4), written as

_ k+n— [e.e] n—
( 1) tn—l /+ e—t{(zt + 2(1) ! (_ _ 1)n+k_1[(8 + 2t + 2a)k]} dt
0

-1 — 1!
on k+n-1)! =0
(_1)k+n—1 +o0
= Prpla) = zn—_l/ _th—i-n 12t + 2a)dt, (3.2.5)
0

where the generalized Laguerre polynomial L}er'; _, is defined by (A.4.5) (note that
1 —n 4+ k + n — 1 = k which is not negative).

Lemma 3.2.4. Letn € N*, k € N and let Py, be the polynomial defined in Lemma
3.2.3 (and thus in (3.2.5)). Then, we have

(_1)k+n 1
Pk;n(X) - P]é;n(X) = 2,,—_1 k+n 1(2X) Pk;n(o) =1, (3.2.6)
forn =2, Pl, = Pru_i. (3.2.7)

Proof. From (3.2.5), we find

(_1)k+n—1 +o00
Pin(@) = T/O e 2Ly (2t + 2a)dt
(_1)k+n—1 oo +o00
et {[ _t(Lk+" D@21 +2a)]t 0 +/0 _th+n 1(2t—|—2a)dt}
( l)k-l-n
= 5 Lith120) + P (@),

and since 0 = Fy.,(0) = 1 — Pg.,(0), this proves (3.2.6). Using now (3.2.5) and
(A.4.7), we find that

(_1)k+n +o00 d
Penta) = [ e @+ 200
(_l)k—i-n B oo
ol [ Lo 2t +20)],
+o00
[ el oyen+ 2a>dt}
(—1)k+n +00
T ond { k+n 1(2a)+/ t2(Lk+n 2)(2t+2a)dt}
0
(_1)k+” 1 ( 1)k+n—2 +oo
= onl L 1(20)+T/0 e 'Ly (21 + 2a)dt,
Prn (a)_Plé:n () Py:p—1(a)
from (3.2.6) from (3.2.5)

so that forn > 2, k € N, we obtain (3.2.7), completing the proof of the lemma. [
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Lemma 3.2.5. Let k,n, Py., be as in Lemma 3.2.4. Then, we have

d

j
d_X) Pin = Pron—j- (3.2.8)

vjefo,n—1], (

Moreover, foralla > 0 and all k € N,

JL(n,a)

Pk;n(a) = PO;n(a) = I'(n) '

+00
/ e lt+a)" ldt=e (3.2.9)
0

(n—1)!
Proof. Formula (3.2.8) follows immediately by induction from (3.2.7) since the latter
is proving (3.2.8) for j = 1,n > 2,k € N. Assuming that (3.2.8) holds true for some
1 <j <mn,all k € N, we have P,E’n) = Py ,—; and if j + 1 < n, we obtain from
(3.2.7) that

’

_ p/ _ pU+D
Pk,n—j—l = Pk,n—j - Pk'n

proving (3.2.8). The property (3.2.9) holds true for n=1. From (3.2.7), P.,+1(0)=1,
we find that Py, 41(a) = 1+ f(;l Py, (s)ds and assuming that (3.2.9) holds true for
n, we obtain for a > 0,

a

+00
e It 4+ 5)" Vdrds
= )

+o00 t ns=a
=1+/ e_’[( +5) } dt
0 n! s=0

1 —+o00 1 +o0
=1+ _/ et +a)" —tMdt = —/ e (1 +a)'dt,
n! 0 n! 0

Pemsr(@) = 1+ /

completing the proof of the lemma. ]
We can now prove Theorem 3.2.2, since
Frn(a) =1—e ™ Pru(a)
the estimate (3.2.8) implies indeed

I'(n,a)
I'(n) ’

Fk;n (a) <

concluding the proof. ]

Remark 3.2.6. Our methods of proof in one and more dimensions are quite similar.

* Using Mehler’s formula, we diagonalise in the Hermite basis the quantization of
the indicatrix of the Euclidean ball

Dan = {(x,8) € R 27 (|x|? + [£[?) < a).
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*  Once we get the diagonalisation

Opw(lDa;n) = Z Fk;n(a)Pk;n9
keN

we study explicitly the functions F., and prove that
Fk;n (a)=1- e Pk;n (a),

where Py, is a polynomial given in terms of the generalized Laguerre polynomi-
als

(_1)k+n—1 +o00
Pen(a) = — —— / e Ly (21 + 2a)dt.
0

* Following the Flandrin paper [13], we use Feldheim inequality in [12] to tackle
the case n = 1, and next we use an induction on n, made possible by the rela-
tionship between the standard and the generalized Laguerre polynomials. It is
interesting to note that the functions Fj., have no monotonicity properties: with
value 0 at 0, they have an oscillatory behavior for a < ag_, and for a large enough,
increase monotonically to 1 (see for instance Figures 3.2 and 3.3 in the 1D case);
the inequality

Fk;n(a) <l-e™

holds true for all @ > 0 in all dimensions. On the other hand, the polynomials
Py, are increasing and larger than 1 on the positive half-line.

The key ingredients are thus Mehler’s formula and Feldheim inequality, but it
should be pointed out that the arguments proving Feldheim inequality (formula (6.8)
and Theorem 12) in the R. Askey and G. Gasper’s article [2] are also based upon a ver-
sion of Mehler’s formula which appears thus as the basic result for our investigation.
The paper [39] by E. Lieb and Y. Ostrover has a slightly different line of arguments
and takes advantage of symmetry properties of the sphere. We shall go back to this in
a situation where the symmetry is absent, such as for some general ellipsoids.

3.3 Ellipsoids in the phase space

3.3.1 Preliminaries

We provide below a couple of remarks on ellipsoids in higher dimensions. Let us first
recall a particular case of in [24, Theorem 21.5.3].

Theorem 3.3.1 (Symplectic reduction of quadratic forms). Let g be a positive-definite
quadratic form on R" x R" equipped with the canonical symplectic form (1.2.13).
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Then, there exists S in the symplectic group Sp(n,R) of R?" and ji1, . .., j, positive
such that for all X = (x,§&) € R" x R",

q(SX) = > ui(x}+EM. (3.3.1)

1<j=<n

Note that an interesting consequence of this theorem is that, considering a general
ellipsoid in R?" (with center of gravity at 0),

E={X e R* ¢q(X) <1},

where ¢ is a positive definite quadratic form, we are able to find symplectic coordin-
ates such that g is given by (3.3.1). Note however that no further simplification is
possible and that the j1; are symplectic invariants of E. Note that the volume of E is
given by

n,n

[Eloy = ————.
nULL - fn

3.3.2 Spectral decomposition for the quantization of the characteristic function

of the ellipsoid
Let ay, ..., a, be positive numbers. We consider the ellipsoid E(ay, ..., a,) given
by
x? + &2
E(a) = E(ai,...,ay) = {(x,g:) eR"xR"2r Y —“L—L <1, (332
1<j=<n 4

We define on R” the function

2

2
F(Xy,....Xp) = 1[_1’1](a1 Xy +--+ —Xn).

Aan

Theorem 3.3.2. Let a = (aj)1<j<n be positive numbers and let E(a) be defined by
(3.3.2). Then, we have

Op,(le@) = Y, Fu(a)Py,

aeN”?

where Py is defined in (A.1.19) and Fy(a) = 1 — Ky (a), with

K@ = [y 0O T 07 Ly 333
;>0 I<jzn

Remark 3.3.3. For all « € N”, the functions Fy, K, are holomorphic on

U ={a e C",Vj € [l,n],Rea; > 0}. (3.3.4)
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Indeed, let K be a compact subset of U; there exists p > 0 such that

Y(ay,...,ay) € K, min Rea; > p,
1<j=<n

and as a result for a € K, we have for s € R’jr

em(@sitetansn) T (—1)% Ly, azs;)| < e PO Cr g (1 4 I,

1<j=<n
so that
/Zsjzl suI[; e~(@isittansn) H (=D)% Lo, (2a;s;)|ds
5;20 € 1<j<n
< fryog € PO C (1 Is])ds
=

$; =0

< CK,a/ e PonsI(1 + |s])llds < +oo0.
Rn
Since we have

Ka(a) = s e_(alsl-’r«..—l—llnsn) 1_[ (_l)Olj Laj (2ajS])dS ai---ay,
=

$;>0 1<j<n
this proves the sought holomorphy.
Proof of Theorem 3.3.2. We have
Op,(1g@) = Opy (F(T + &, x5 +£7))
= / F(1)0p,, (eZi” VA (x12'+§/2))dr

A (1+ig)*+!
= Z/ F(‘L’) 1_[ W(ZT}P}‘

aeN” 1<j<n
~ 1 1T )%
=¥ [ PO T Gorsmdrbe
aeN” R” lsjsn( _”j)j

where P, is defined in (A.1.19). On the other hand, we have

~ . 2 2
F(T) — /E—Zln‘pxl[_l’l](_ﬂ:xl + .-+ _”xn)dxl ...dxn
a

An

=a1---an(2n)_”/e_izf ’-"“-’yfl[—l,u(zyj)dy,

60
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so that, with M} defined in (A.4.3), using (A.4.4), we get
Opy, (1E ()

R Z / e TI2T Y Tiaj V) 1[_1,1](Zyj)dy

aeNn VYRR

(1 4+i2m7;)%
———d 1P,
15/1_'1511 (1—i2pgy)u 17"
=day---dy Z/ / e—iZJTZjTjajyjl[_l,l](Zyj)dy l_[ éaj(fj)dTPa
aeN” R® JR” 1<j<n
=dap--an Z/ 110D y) [[ Ges(ajyjdyPa
aeN” R7 1<j<n
= Z/ (Y t/a) [ D% H()e™ Lo, (247)d1 P,
aeN” R 1<j<n
with
Fo(a) = /R ) (1—1[1,+oo](2t_,~/a_,~)) [ D% H@)e™ Lo, (217)d1

1<j=<n

=1 /Rn 1[1,+w1(2fj/aj) l_[ (=D* H(t;)e™ Lo, (2tj)d1, (3.3.5)

1<j=n
where we have used that

Pr.1(0) =1 (cf. Lemma3.1.1),

so that setting

Ka(a) - /th/ajzl e—(t1+...+tn) l_[ (_1)0{}- Lozj (2[j)dt,
tj>0 1<j=<n

we have Fy(a) = 1 — K4(a), concluding the proof of the theorem. ]

Remark 3.3.4. We have from (3.3.5)

Fa(al,...,an):/Rn 1[0,1]( Z Sj) l_[ (—l)afH(Sj)e_ajsjLaj(Zaij)ade,

1<j=<n 1<j=n
and since the set
n
{SER+, Z §;j < 1}
1<j=<n

is compact, we obtain that F,, is an entire function, as well as K, which is indeed
given by (3.3.3) on the open subset U defined in (3.3.4).
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Lemma 3.3.5. With the notations of Theorem 3.3.2, we have with u; = 1/aj,

. ' ﬂ (aj +it)%
F“(")‘( [l “’)/R m( [1 (a,-—m“f“)d’

1<j<n 1<j=n
. L
:/ T (At im)™ (3.3.6)
R T (= i)

1<j=<n
Proof. Mehler’s formula implies in one dimension that
Opw(ez”i’(xz’ng)) =1+ exp [27i(arctan 7)(x* + D2)],
and a simple tensorisation gives
Opw(ez’”r Y (x_/2-+$_/2))
= 1_[(1 + (r,uj)z)_l/2 exp [Zﬂi Z(arctan(ruj))(sz + chj_)],
J J

so that we have

Op, (F(X 3 +8)))
J
= [ F@0p, (20T ae
R

/ ﬁ(r) 1_[(1 + (T/Lj)z)_l/2 exp [Zni Z:(arc'[an(ruj))(xj2 + Dij)]dr
R

J J
Z / F(‘L’)(H(l-ﬁ-(‘[[t] 2~ l/zexp[2z(arctan(tuj))(oej ;)])dﬂP’a
aeN”
-> [ F(r)(l'[(w(mj L

aeNn (1+ (zp)2)%i+s

(1 + ity
% [ Fo( IT gl )ares

aeN” 1<j<n

and for F(t) = 1[—1,1)(2¢), we find F(r) = snt - and the sought result. [

Remark 3.3.6. It is also possible to provide a direct checking for the above lemma,
since with the notations (A.4.3), (A.4.4), we have

(1 + itp))™

m = é\;\j(fﬂj/(zﬂ)),
J
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and thus

Fa(a)=/]RI3(I)HC/}YO;(IMj/(2n))dr
J
= /R F(1) /}R ]:[(—1)%‘ L, (2t))H(tj)e " ¥ 75/ CM gt d

=/ [[D% Lq, (2tj)H(t,~)e"fF(§ ujzj/zn)dz.
n ] ]
Now, since we have
F(§ :Mﬂj/h) = 1[—1,1]( » Mjfj)»
J J

this fits with the expression of Fy in Theorem 3.3.2.

Remark 3.3.7. Another interesting remark is that the expression (3.3.6) depends
obviously only on |a| and @ = a; = --- = a, in the case where all the a; are equal:
indeed, in that case, we have with u = 1/a,

I (I+itp)® (I +itu)!
(=it ™+t (1 —izp)latn’

1<j=n

and this gives another (a posteriori) justification of our calculations in the isotropic
case of Section 3.2. On the other hand, we get also the identity

sin T . _
Foyn(ay, ... ap) = —Re( 1_[ (I—itpy) l)d‘f,

T
R 1<j=n

where the explicit expression (3.3.7) is given for the left-hand side.

Lemma 3.3.8. With the notations of Theorem 3.3.2, the function K, .. a,(a1, ...,

ay) is symmetric in the variables («1,ay, ..., 0y, ay), ie., for a permutation w of
{1,...,n}, we have
Kan(l),...,an(m (aﬂf(l)’ R a][(l’l)) = K(X],...,C(n (al’ ceey an)-

Proof. Formula (3.3.3) yields
Ko@) = fo, 0 [T €109 L, Cays)ds.
5,20 1<j=n

and the domain of integration is invariant by permutation of the variables, entailing
the sought result. |
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Lemma 3.3.9. With the notations of Theorem 3.3.2, we have

Kal,...,ocn (611, ce ,an) =e Pan (an)

=e Pan (an)
1
+ / (_1)otn La” (2an9)e_0an Kal,...,ozn_l (al(l - 9)’ cee an—l(l - 9))d9(1n
0

Proof. The domain of integration is the disjoint union

t t t 3 z
{—‘+ - ”1zl—l,tj20,0§—”fl}u{—”>1,tj20,1§jfn—l},
ai Apn—1 an 7% Aan
so that
Ktxl,...,an (ai.....an) = e Py, (an)

+ / (—=1)*" Lg, (2t,)e ™ Kai,.oan— (al(l—tn/an), o ,an_l(l—tn/an))dtn
0
=e 9 Py, (an)
1
+/ (—=1)% Ly, (2a,0)e =% Ka,.an_y (@1(1=0),....an—1(1 — 0))dbay,
0

which is the sought result. =

Lemma 3.3.10. With the notations of Theorem 3.3.2, we have, assuming that the
(aj)1<j<n are positive distinct numbers,

[Txz) ax

Ko, oai,....an) = o4 Ik#E T
" 2 [k @k — aj)

1<j<n

(3.3.7)

Proof. The latter formula is true for n = 1 since we have
Ko(ay) = e 1.

‘We have also

1

Koenn(ay,...,ap) = e_“”+an/ e_O“"KOGanl(al(l—O),...,an_1(1—9))d9
0

1 .
= e_a” —+ ay / e—@an Z e_a-f(l_e) Hk#] dk d@
0 [T (ax — aj)

1<j=<n-1

1
nk#] Ak e—@ane—aj(l—e)de

=e % 4 q,
1<j<n—1 [Tkzj(ax —aj) Jo
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1
An nk#] Ak e—a_/' / ee(aj—an)dg
1<j<n—1 [Tirj(ax —a;) 0

an nk;éj 4 e% ™4 —1

1<j<n—1 Hk;éj(ak —aj) aj —dn

e 9

an nkyéj ap e % — 79

1<j<n—1 Hk;&](ak _aj) (a] _an)

dnp nkyéj ag 1 )

= e_an 1+
( 1§j§l—1 [Tirjlax —a;) (a; —an)

(237 Hk#] aj e 4j

+

We need to prove that

(1 + Y
1<j=<n-1

That is

[ a= ] @-an

1<l<n-1

which is

1<j<n—1 Hk#;(ak —aj) (an — aj)'

1<l<n-—1

- Hk#j,ls}csn_l o ! = H1515n—1 aj
nk#j,lsksn—l(ak —aj) (aj _ an)

nlslsn—l (a1 —an)

(1+ Z an Hk;éj,lsksn—1 ak 1

1<j<n-1

[ a= ] @-an

1<l<n-—1

1.€.,

M -

1<l<n—1

1<l<n-1

+

1<y Hiziaskesn— (@ —ap) (aj

1<l<n—1

an Hk;éj,lsksn—l Ak 1_[1515”_1(611 - an)

[] @-an+ >

—ap)

[lkzj1<k<n—1l@ar—ay) (a; —an))’

’

an [ xstj1<k<n—1 9k (ax — an)

1<j<n-1

Hk;éj,lsksn—l (ax —aj)

(3.3.8)

Let us reformulate (3.3.8) as an equality between polynomials (to be proven) with

[] @-x+ >

1<l<n-1

1<j<n-1

X [kt j1<k<n—1 9k (ax — X) B

Hk;éj,lsksn—l (ak —aj)

[T a

1<l<n—1
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and let us assume that the (a;)1<;<n—1 are distinct and different from 0. The polyno-
mial @ on the left-hand side has degree less than n — 1 and we have

QO0)=0 Vje[l.n—1],

aj [krj1<k<n—1 @k (ak — a;)
- [l a=o

Qa;) =
’ nk;éj,lsksn—l(ak —aj)

1<i<n-—1

so that @ has degree less than n — 1 with n distinct roots and this proves the identity
(3.3.9) when the (a;)1<;<n—1 are distinct and all different from 0, proving (3.3.7) in
that case; of course we may assume that all a; are positive and noting from (3.3.3)
that K, is continuous on (IR% )", we get formula (3.3.7) in all cases where all the a;
are positive, concluding the proof of the lemma. |

Lemma 3.3.11. With the notations of Theorem 3.3.2, we have, assuming 0 < a; <
-+ < ay, the inequality

Faj .
—aj 1_[15[<] > e Mil<j<n@j — pgx e—aj.

n >
KOEN (a17 ’an) sl Z e (] — 1)' il 1< <n

1<j=n

Remark 3.3.12. The above estimate is sharp in the sense that when all the a; are
equal to the same a > 0, we have proven in (3.2.1) that

—a

e +o0 3 .
Ko(a) = (n—l)!/o e(s+a)"ds
a al
=e T
¢ Z n—1-Dl (n=1)
0o<l<n-—1
vy fee y
=e¢ — =
0o<l<n-—1 I 1<j<n (J o l)'

- Z e 1_[151<jal
(j _1)! lay==ay=a

1<j=n

Proof. The property is true for n = 1 since Ko(a1) = e %!. We check the case n = 2
with a1 < a,, and we find

ai

—a —t1 ,—ax(1—t1/a
K0 (ai,az) = e 1+/ eTema2mn/an) gy,
0
ax—ay _ az—ay _
_ € 1 _ _ e 1
=e M te R —Y——=e¢"" te R

o az —ai

>e 4 4 e %2,
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Let us consider for somen > 3,0 < a; < --- < a, and inductively,

KOGNn(ala CECI 7an)
ai

= 4 Po(ar) + / e KOGN"_1 (612(1 — tl/al), o an(l = tl/al))dtl
0

1
=e “ Po(ar) +a / ™% Koenn-1 (a2(1 = 0)......an(1 = 6))d?
0

> @ —i—a1/ —a6 Z o~ (1= 9)H2<I<J (1—e)f—2d9

|
2<j<n 2)
1
=e % + Z e_“f'(al l_[ al)/ e@i—an) — '(1—0)1 —2d6
2<j=n 2<l<j 0 ( )
N’
1_[1<k<j ak

> e % 4 Z g—“j(

2<j=n

————(1-6)/72d0
1<k<j )/ ( 2)'
1

e

2<j=n 1<k<j
concluding the proof of the lemma. ]
Remark 3.3.13. The reader may have noticed that it is not obvious on formula (3.3.7)

]_[kyé i Ak
Ko..olar,....an) = e—aj—l’
" 2. [k (@ —a))

1<j=n

that Ky is an entire function. Let us start with taking a look at

Ko,o(ai,az)
e ay e a;  axe —aje?
a—ay a4y —az a —a
a1 an _ay aj
_ta) are 272 —qje 2+9
= e 2
dy —dy
_tagtay a(cosh 254 4 sinh 254 — g, (cosh 41592 + sinh 41592
= e 2 - —_—
dy —dy
r . ar—aj
—lata) a —ai (az + ay) sinh(%%5=1L)
=e 2 cosh( ) + 2 ]
B az —daj
[ 1 inh(%&=4
_M dy —day i(a2—|—a1)81n ( > )
=e 2 _cosh + T
_teptar)r a —ai 1 ar —ay
= e 3 [eosh (Z57) + S+ anshe (5 . (3.3.10)
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where shc stands for the even entire function defined by
sinh ¢
shet = .
We have also from Lemma 3.3.5
. | it )%
R = [ —S“”( | PR +.”“’3<+1)dr,
R T\ 2, (I—itp;)%
and defining the function F,(a, A) as the absolutely converging integral,
sin(A7) (1 +itp;)%
Fatay = [ ST O an R = Futa,
R (I —itp;)%
1<j=<n
we get
0Fy 1+ l‘E[L])a/
a—/\(a,)t) = —/ cos(/\r)( l_[ (—icn, )a,+1 dt
1<j=<n
1 : 14+itu;)%
= — elh( 1_[ A o)™ —i_.lrujz,il)df
27 Jr 1<jzn (LTI
L[ (1 - itp)”
+— ezkr( . J : dt
2 15]1_'[5n (1 +itp,)%t!
1 . 1 | ALY 1— j
= or elh( [ ( —I—'”MJJH"' [ ( ltﬂjz +1)d
21 Jr 1<j<n (I —itp;)% 1<j<n (I +itp;)%
_ i (U—it)™
=1 Z Res(e K 1_[ W,T—l/l/«]—lw
1<j=<n 1<j=<n
. lMJ) (laj-i-f)"" . )
=1 Res ;T =14
1 o 4ia; + )%
= P Z Res(e l_[ G (c—ia, )%_H,r =ia;j
1<j=<n 1<j=n

so that assuming that the a; are positive and distinct, we get

e =TT w) ¥ o

1<k<n 1<j<n

d

I1<k=<nk#j

x (E)“" (ei“(_l)af Gaj+0% ] (D™ —(ff"i ;c)?kil)lmia;

68
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:inl—l( L1 “") 2 o

1<k<n 1<j=n

L | | . © o
% ( ) (e—ka(_l)a./ (la] + iU)aj l_[ (_1)0!1( M)W:ty

ido (ioc —iay)*+1

1<k<n,k#j
1
_ (_1\n—1+]a] o
—cor( T a) ¥ o
1<k<n 1<j<n 7
d \oj g
x (d_) ! (e'k"(aj +0)% 1_[ (ak +03k+1)
o Lk k] (0 —ayg) lo=a;
(=%
(M) ¥ 5
1<k<n 1<j<n J*
d \oj ag
() (e [T etOR)
o R C ) lo=a,

Since Fy(a, +00) = 1, thanks to Lemma A.1.7, we find eventually that

1 OF,
Fy(a) = Fy(a, 1) = / — (@, M)dA+1=1-Ky(a),
400 oA
—1)%
Kala) = ( I ak) ch
1<k<n 1<j<n 7

o0 d . o
X / (d_)a, (e_’w(aj +0)% l_[ (@ + o)™ 03k+1) dA
1 o I<k<nk#j (ax —0) lo=a,
oy e
O(j!

I<j=<n

too o d @ . (ax + 0)*ay,

x/ erar (L _y, ((aj +oa; ] —a) da
1 (dg ) \<k<n k] (ax — o) Kt lo=a;

_ Z (=%

— .

1<j<n Y
+o00 d o (a +O‘)ak
~hay (L5 ( 4 o) k—) dx
X/l ¢ (d(f ) (@ +0) 1_[ (ax =) F1 )15y,

1<k<n,k#j
_ (=)@
o Z O(j!

1<j=n

+oo d £\ ar(ay + a;s)*
X/ el (d_ — L) 4 ((aj +ajs)°‘f 1_[ k(k—](xk)-i-l) dtj
aj ajs  aj I<k<nkj (ax —ajs) ls=1
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Foo d o ar(ax +ajs)*
« (L, (Hsaj kk—,) dt
[a,— (ds ) (1+5) [ (ak —a;)*+1 )1y

l<k=<nk#j

Foo d o ax(ax +ajs/t)*
x e l(——1 (l—i—s“-/ Rk T ) drt
[a,- (ds ) +s) I (ax —ajs/0)%+1 ],

l<k<n.k#j
1)%/
-y = /

1<j<n
d e o ta (t(ax — a;) + a; (s + )%
X(d<s+r> 1) ((’“) [ (r(ak+a_/)—a_,-(s+r))ak+l)W:z[d’

l<k=n.k#j
+oo
= X e e

1<j=<n

d aj (5% tag (t(ar —a;j 5) %k
(7_1) ’(Lj' 1—[ ay (t(ak a,)—}-afxs)_H) dt
ds o;! |k =n kot (t(ax +aj)—a;s)% ls=21

= Y (e aj/+°°e—t

1<j<n

X(i_l)“f(so‘;' 1 (t +aj)ax((t +aj)ax —a;) +a;5)”

) k
ds ;! . , )kt ) - dr.
T \<k=n k) ((t +aj)ax +aj) —ajs) ls=2t+2a;

We have also to deal with

I (t +aj)ar((t +aj)ak —aj) +a;s)™*
)ak+l

I<k<n.k+#j ((t +aj)ax +aj)—ajs
and

((t+aj)ax+a;)—a;2t+2a;)) = a;(ax +aj)_2a_/2-+l(ak —aj)=(t+aj)(ax—a;)
(t +aj)ax +aj)—ajs = (t +aj)ax —aj) +a;Q2t+2a; —s)

so that
+o00
Ko(a) = Z (-)% e~ aj/ ot
1<j<n
% (i _ 1)% (ﬂ (t+a,-)ak((z+a,-)(ak+a,-)+a,-(s—zz—zaj))ak)
s U | ckznkts ((t+aj)(ag—aj)—aj(s—21=2a;))%H ls=2+2a;

(3.3.11)
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3.4 A conjecture on integrals of products of Laguerre polynomials

We formulate in this section a conjecture on the behaviour of the functions Ky (a);
as displayed in the previous sections, we know several useful elements for the ana-
lysis of these functions, including some quite explicit expression. However, in the
non-isotropic case, we were not able to prove the estimate Fy(a) < 1, equivalent to
Kq(a) = 0, except for the case o« = 0. We are thus reduced to conjectural statements.

Conjecture 3.4.1. Letn > 1 be an integer and let « = (¢1,...,a,) € N*. Fora =
(ai,...,an) € (0,4+00)", we define
Ka(@ = [icytemy €7 [T D% Lo, @1p)ar,
215_/§ntj/llj21 1<j=<n

where Ly stands for the classical Laguerre polynomial

k vk
Lk(X)=(d 1) X

dx ) kU
Then, we conjecture that, assuming 0 < a; < --- < a,, we have
Ko(a)= Y e gy a1 (3.4.1)
o (j —D!

Remark 3.4.2. A slightly stronger and more symmetrical version of the above con-
jecture is that for n, o, a, Ky as above, we have

Ky(a) = Ko(a). (3.4.2)

It is indeed stronger since we have proven in Lemma 3.3.11 that Ko (a) is greater than
the right-hand side of (3.4.1).

Theorem 3.4.3. The previous conjecture is a proven theorem in the following cases.

(1) Whenn = 1.

(2) Foralln > 1, when all the a; are equal.

(3) Foralln > 1, when a = Onn.

(4) When n = 2 and min(oy, o) = 0.
Proof. (1) When n = 1, we have proven above (in Proposition 3.1.3) that for @ € N,
a >0,

Ky(a) = e % Py(a) > e,
which is indeed (3.4.2) in that case. With the notations of Theorem 3.1.5 (and in
particular where D, is defined in (3.1.11)) this implies
Op,(1p,) <1—e7",

an inequality due to P. Flandrin in 1988 paper [13].
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(2) Assuming that all the a; are equal to a > 0, we have proven in Theorem 3.2.2
that fora € N”, |o| = 3" i, ),

I'(n, _ J=1
Ky(a,...,a) > I(‘}En;l)ze a Z h:Ko(a,...,a),

1<j=<n
since from (3.3.3), we have

Ko(a,...,a) e~ itttn) gy

I OMTEY
tj =0

a
:/ e_(tl+"'+tn)dt+/ e_lnf e_(tl+"'+tn—l)dt
th=>a
thO 0 thza_tn

: : - ¢t —(a—t (a _tn)j_l
(inductively) =e™“ +/ etne=(@=tn) Z ————dly
0 l<ien—1 (j —D!
<jsn
— —a 1 _ — —a ,
’ ( +1§j§1—1 .!) ’ 15]2n (= D!
proving (3.4.2) in that case. With
2 2
D(a) = {(x,i-') S Rzn’ZnM 5 1}’
a
this implies that
( I
Op,(p) =1—e" : :
@ (j—D!

1<j=n
an inequality proven in the 2010 article [39] by E. Lieb and Y. Ostrover.
(3) When o = Onn, we have proven (3.4.1) in Lemma 3.3.11.
(4) When n = 2, from the case n = 1 we have Ky, (a2) = e™%2 Py, (a2), so that
from Lemma 3.3.9, we obtain

Kal,az(al,aZ)
1
= e M Py, (a1) + a / e~far=U=0ax g (20ay) Py, (az(1 — 0))db,
0

and if «1=0, it means that

1
Koy (1. a2) = e +ay / =000 p (4 (1 6))d6
0

1
>e N —i—al/ e a==0a2 49 — K, o(ay,as).
0

and the reasoning is identical for ap = 0, concluding the proof of the theorem. |
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We are interested in the Weyl quantization of the indicatrix of

x}-i—éjz

Dal,m,an = {(va) € RZH’ZJT Z .

1<j<n J

fl}, aj>0,

and we have a weaker conjecture.

Conjecture 3.4.4 (A weak form of Conjecture 3.4.1). With n, o, a, K, as in Conjec-
ture 3.4.1, we conjecture that
Ky(a) = 0. (3.4.3)

Note that inequality (3.4.3) is equivalent to

an) = L.

Remark 3.4.5. In the first place, although the second conjecture is much weaker
than the first, there is no reason to believe that the weak conjecture should be easier
to prove than the first: in particular, in the known cases, it is indeed the proof of the
precise statement (3.4.1) which leads to (3.4.3) and we are not aware of a direct proof
of (3.4.3), even in one dimension.

A summary of our knowledge on the functions K. As proven in Remarks 3.3.3
and 3.3.4, the functions K, are entire functions given on the open subset (3.3.4)
by formula (3.3.3) (see also formula (3.3.10)). Moreover, the function Fy(a) = 1 —
Ky (a) can be expressed as a simple integral for a; > 0,

_ [ sint (I +itp;)% 1
Fa(al,...,an)—/R?< 1_[ —(1—i‘[/,bj)aj+l dT’ Mj _;7

I<j=n J

and we have an explicit expression of the function K, as a sum of simple integ-
rals in (3.3.11). However, having an explicit expression does not mean much and for
instance, we do have several explicit expressions for the Laguerre polynomials but
inequality (A.4.2) remains very hard work, requiring a deep understanding of these
polynomials. We have also an induction formula in Lemma 3.3.9. As a further remark,
we have the following

Lemma 3.4.6. Letn, o, a, Ky as in Conjecture 3.4.1. Then, we have

lim Koi,.0n_1,0n (@i,....an—1,a,) = Kq,,.., Oln_l(a17"‘9an—1)7(3'4‘4)
anp—+00
lim Ko\ as,..0n(@1.02,....a,) = 1. (3.4.5)
a1—>04

Proof. Formula (3.3.3) and the Lebesgue dominated convergence theorem imply the
first equality (3.4.4). Lemma 3.3.9, in which we may swap the variables a; and a;
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gives fora; > 0

Ka],az,...,an (ai,az,....an) = e Pa1 (a1)

and since Py, is a polynomial such that Py, (0) = 1, we get (3.4.5). ]

Reasons to believe in the conjecture. This is true in one dimension, also in n
dimensions for spheres and it is a quadratic problem in the sense that ellipsoids are
convex subsets of R2” characterized by an inequality

{X e R*, p(X) <0},

where p is a polynomial of degree 2 with a positive-definite quadratic part. We shall
see below in this memoir that convexity of a set A does not guarantee that the quant-
ization Op,,(14) is smaller than 1 as an operator and that Flandrin’s conjecture is
not true, but it is hard to believe that such a phenomenon could occur for ellips-
oids. We must point out a specific feature of anisotropy related to Mehler’s formula
(2.2.1):if all the p; are equal to the same p > O (this is the isotropic case), then, with

qu(x. &) = p(x|* +[§]?), we have

Op (e2i7rrqu(x,§')) — (]5(T[L)€2i arctan(Ti) 1< j<n n(sz»-‘rDjz)
W ,

where ¢ (T ) is a scalar quantity. As a consequence, if we quantize F (g, (x,£)), we
get

2i arctan(T (L)

Opy, (F(QM(sz))) :Aﬁ(f)¢(tu)e T’TOPW(QM)dT,

and thus
Opy, (F(g,u(x.€)) = F(Opy(g).  F() = /R F)p(xuye?™ 5 2 g,

and Op,, (F (qu(x, 3;‘))) appears as a function of the self-adjoint operator Op,,(¢,,).
Following the same route in the anisotropic case, we get, with

Q&) = Y i +8),
1<j=zn
u.rctun(ruj)

Opw (F(QIL(X’ S))) = /]R F\(r)(p(ru)eﬁr: Zlf./’fn( 7

)“/(x12'+D12‘)dr

and since % arctan(r ;) does depend on w; (and not only on 1), the operator Op,,
(F(qu(x,§))) is not a function of the self-adjoint operator Op,, (q.).
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As a final comment on the strongest form of the Conjecture (3.4.2), we would say
that it could be seen as a property of the Laguerre polynomials, known in the case
n = 1, where it stands as follows: we define for k € N, the polynomial Py by

+o0
Pr(x) = /(; e_t(—l)kLk(Zx + 2t)dt,

and we have P (0) = 1 from (A.4.4). Moreover, we have the inequality (equivalent
to (3.4.2) forn = 1)
Vx >0, Pr(x)> Pr(0). (3.4.6)

We note that e™* P (x) = fx+°° e~ (—=1)K L (25)ds, so that the unique solution Py

of the Initial Value Problem for the ODE
Pe(x) = PL(x) = (=1)FLi(2x),  P(0) =1,
does satisfy (3.4.6). We note that from Lemma 3.1.2, we have

Pi(X)=2 ) (-D'Li@2X),

o<l<k

so that (3.4.6) is a consequence of Feldheim inequality (A.4.2). Let us reformulate
(3.4.2), using the polynomials Py: fora; > 0,

i ¢
Ka(a)=/t=(t,,...,zn>ew+ [1 5T Py (1)1
Sizjzati/ajz115i=n

0 ..
> Ko(a) =/t=(tl """ <R 1_[ T{—e ’J}dt,

. t
Yi<jntjla;=11<j=sn 7

which is equivalent to

2
[H(l_ 2 S/‘) [T He)gA=e Poyaysp)ds
J

1<jsn / 1<j=n
S/H(l— E sj) l_[ a;H(sj)e %%/ ds,
I<j=<n l<j<n

where H = 1, (Heaviside function). This is equivalent to

o)

1<j=n

f/H(l— Z 57) 1—[ ajH(sj)e % ds,

1<j<n 1<j=n

ad
l_[ H(sj)e %% (aj — T){Paj (ajs;)}ds
5j

1<j=n
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i.e., to

/H(l— > sj) [] H(sje

1<j=n 1<j=<n
0
X ( l_[ aj — H (aj - g){Paj (ajsj)})ds > 0.
1<j<n 1<j<n 7

Note that for n = 1, it means for a > 0,
1
/ e~ (a —aPx(as) + aPj(as))ds
0

1
d
— 1 __p,a . —asP
e+ /0 75 {e k(as)}
=1-e+e“Prla) — Pr(0) = e “(Pr(a) — 1) > 0,
which holds true from (3.4.6).

Remark 3.4.7. There are several classical results on products of Laguerre polyno-
mials, in particular, the article [7], On some expansions in Laguerre polynomials by
A. Erdélyi and also the paper [40], Linearization of the products of the generalized
Lauricella polynomials and the multivariate Laguerre polynomials via their integral
representations by Shuoh-Jung Liu, Shy-Der Lin, Han-Chun Lu and H. M. Srivast-
ava. However, it seems that the non-negativity of the polynomials Py, Po’(;l, do not
suffice to tackle the conjecture in two dimensions and more.



