
Chapter 4

Parabolas

4.1 Preliminary remarks

We start with a picture, demonstrating that the epigraph of a parabola is an increasing
union of ellipses (see Figure 4.1). It is easy to see that the epigraph of a parabola, i.e.,
the set ¹.x; �/ 2 R2; � > x2º is a countable increasing union of ellipses in the sense
that
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so that choosing � such that ��2 D �2k�2, e.g., � D
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and Ek D ¹.y; �/ 2R2;y2C �2 < k3

4
º, where .y; �/ are the affine symplectic coordin-

ates

y D xk1=2; � D �k�1=2 �
k3=2

2
:

Lemma 4.1.2. Let u 2 S .R/. Then, W.u; u/ belongs to S .R2/ and with E; Ek
defined by (4.1.1), we have“

�>x2
W.u; u/.x; �/dxd� D lim

k!C1

“
Ek

W.u; u/.x; �/dxd� � kuk2
L2.R/:

Proof. Since W.u; u/ belongs to S .R2n/ � L1.R2n/, we may apply the Lebesgue
dominated convergence theorem and (4.1.1) to obtain the equality in the lemma. On
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Figure 4.1. The epigraph of a parabola is an increasing union of ellipses.

the other hand, Theorem 3.1.5 and Remark 4.1.1 imply“
Ek

W.u; u/.x; �/dxd� D hOpw.1Ek /u; ui �
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and the sought result.

Remark 4.1.3. Moreover, Theorem 3.1.5 and the expression of F0.a/ D 1 � e�a

imply that with  0 defined in (A.1.16), we have“
Ek
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so that from Lemma 4.1.2, we have
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Remark 4.1.4. We want to study the operator with Weyl symbol H.� � x2/ (H D
1RC is the Heaviside function) and since � � x2 is a polynomial with degree less than
2, see from (1.2.3) that Opw

�
H.� � x2/

�
commutes with

Dx � x
2
D e2�ix

3=3Dxe
�2�ix3=3;

and the latter has (continuous) spectrum R: we expect thus that Opw

�
H.� � x2/

�
should have continuous spectrum and be conjugated to a Fourier multiplier.

4.2 Calculation of the kernel

The Weyl symbol of the operator Opw.1P / is

H.� � x2/;

(P is defined in (4.1.1), H is the Heaviside function H D 1RC), corresponding to
the distribution kernel kP .x; y/ obtained from Proposition 1.2.5 by (we use freely
integrals meaning only Fourier transform in the distributional sense),

kP .x; y/ D

Z
e2i�.x�y/�H

�
��

�
x C y

2

�2�
d�D

Z
e2i�.x�y/.�C.

xCy
2 /2/H.�/d�

D e2i�.x�y/.
xCy
2 /2 1

2

�
ı0.y � x/C

1

i�.y � x/

�
D
ı0.y � x/

2
C
e2i�.x�y/.

xCy
2 /2

2i�.y � x/
:

We have

4.x � y/

�
x C y

2

�2
D .x2 � y2/.x C y/ D x3 � y3 C x2y � y2x

D
4

3
.x3 � y3/C

1

3
.y � x/3;

so that

kP .x; y/ D e
i 2�3 x

3

�
ı0.y � x/

2
C
ei
�
2
1
3 .y�x/

3

2i�.y � x/

�
e�i

2�
3 y

3

;

and the operator Opw.1P / is unitarily equivalent to the operator with kernel
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2
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�
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:

We have proven the following result.
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Lemma 4.2.1. The operator with Weyl symbol R2 3 .x; �/ 7! 1RC.� � x
2/ has the

distribution kernel
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and is thus unitarily equivalent to

Id
2
C convolution with

ie�i�t
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2�
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t
: (4.2.1)

Lemma 4.2.2. The distribution ie�i�t3=6
2�

pv1
t

has the Fourier transform
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The operator (4.2.1) is the Fourier multiplier !.Dt / with
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Proof. We calculate in the distribution sense (t D as; a D .2=�/1=3),Z
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so that with � D 2�a� , we get
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proving the lemma.

Lemma 4.2.3. We have, with � D 24=3�2=3� ,
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G.�/ D
2

3
C

Z �

0

Ai.�/d�; (4.2.4)

where Ai is Airy function defined as the inverse Fourier transform of t 7! ei.2�t/
3=3.
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Proof. We have
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(4.2.5)
proving (4.2.2). We have also
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and thus
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�
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which is (4.2.3), implying (4.2.4).

Lemma 4.2.4. With G defined in Lemma 4.2.3, we get that G is an entire function,
real-valued on the real line such that

lim
�!C1

G.�/ D 1; lim
�!�1

G.�/ D 0; (4.2.6)

and moreover with �0 the largest zero of the Airy function (�0 � �2:33811), the
function G has an absolute minimum at �0 with G.�0/ � �0:274352,

8� 2 R; G.�0/ � G.�/ < 1: (4.2.7)

Proof. The first statements follow from Lemma 4.2.3 and (4.2.6) is implied by (4.2.4)
and (A.7.18), (A.7.22). The strict inequality in (4.2.7) follows for � � 0 from (4.2.3)
since Ai is positive on Œ0;C1/ so thatG is strictly increasing there fromG.0/D 2=3

to G.C1/ D 1. The other statements are proven in Section A.7 of the appendix.

4.3 The main result

Collecting the results of Lemmas 4.2.1, 4.2.2, 4.2.3, 4.2.4, and of Section A.7 in the
appendix, we have proven the following theorem.

Theorem 4.3.1. Let H.� � x2/ D 1¹.x; �/ 2 R2; � � x2º be the indicatrix of the
epigraph of the parabola with equation � D x2. Then, the operator with Weyl symbol
H.� � x2/ is unitary equivalent to the Fourier multiplier G.24=3�2=3�/, where

G.�/ D
2

3
C

Z �

0

Ai.�/d� D
Z �

�1

Ai.�/d�; (Ai is the Airy function):
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Figure 4.2. The functionG and its derivative Ai. More details onG are given in Appendix A.7,
Figure A.1.

The function G is entire on C, real-valued on the real line (see Figure 4.2) and such
that

G.R/ D ŒG.�0/; 1/;

where �0 is the largest zero of the Airy function. We have

�0 � �2:338107410;

G.�0/ � �0:2743520591:

The operator with Weyl symbol H.� � x2/ is self-adjoint bounded on L2.R/ with
norm 1, with spectrum equal to ŒG.�0/; 1� (continuous spectrum) and

8u 2 L2.R/; G.�0/kuk
2
L2.R/ �

“
��x2

W.u; u/.x; �/dxd� � kuk2
L2.R/:

4.4 Paraboloids, a conjecture

We are interested now in multi-dimensional versions of the previous results, namely,
we would like to find a bound for integrals of the Wigner distribution on paraboloids
of R2n for n � 2. Let us start with recalling in [24, Theorem 21.5.3], a version of
which was given in our Theorem 3.3.1 in the positive-definite case.

4.4.1 On non-negative quadratic forms

Theorem 4.4.1 (Symplectic reduction of quadratic forms, [24, Theorem 21.5.3]).
Let q be a non-negative quadratic form on Rn � Rn equipped with the canonical
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symplectic form (1.2.13). Then, there exists S in symplectic group Sp.n;R/ of R2n,

r 2 ¹0; : : : ; nº, �1; : : : ; �r positive, and s 2 N such that r C s � n,

so that for all X D .x; �/ 2 Rn �Rn,

q.SX/ D
X
1�j�r

�j .x
2
j C �

2
j /C

X
rC1�j�rCs

x2j :

Definition 4.4.2. Let n 2 N� and let R2n be equipped with the canonical symplectic
form (1.2.13). Let q be a non-negative quadratic form on R2n with rank 2n � 1 and
T be a non-zero vector in R2n such that q.�T / D 0. A paraboloid P of R2n with
vertex 0 and shape .q; T / is defined by

P D
®
X 2 R2n; q.X/ � ŒX; T �

¯
:

A paraboloid Q with vertex m 2 R2n and shape .q; T / is defined as

Q D P Cm;

where P is a paraboloid with vertex 0 and shape .q; T /.

Remark 4.4.3. We can find some symplectic coordinates such that

q.X/ � ŒX; T � D
X
1�j�r

�j .x
2
j C �

2
j /C

X
rC1�j�rCs

x2j C
X
1�j�n

.xj �j � �j tj /;

with 2r C s D 2n� 1. We can get rid of the linear terms xj �j � �j tj when 1 � j � r
by writing

�j .x
2
j C �

2
j /C xj �j � �j tj D�j

�
xj C

�j

2�j

�2
C�j

�
�j �

tj

2�j

�2
�

1

4�j
.t2j C �

2
j /;

and also of xj �j for r C 1 � j � r C s, since

x2j C xj �j D

�
xj C

�j

2

�2
�
�2j

4
:

We are left with using affine symplectic coordinates .y; �/ so that

q.X/ � ŒX; T � D
X
1�j�r

�j .y
2
j C �

2
j /C

X
rC1�j�rCs

y2j �
X

rC1�j�rCs

�j tj

C

X
rCsC1�j�n

.yj �j � �j tj / � a:

Since we have 2r C s D 2n� 1, we get r C sC 1D 2n� r : we cannot have r C sC
1 � n since it would imply that 2n � r � n and thus r � n, which is incompatible
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with 2r C s D 2n� 1; r; s � 0. We get then that s D 2l C 1; r D n� 1� l and since
r C s � n; 1 � s, we have l D 0, s D 1, r D n � 1, and

q.X/ � ŒX; T � D
X

1�j�n�1

�j .y
2
j C �

2
j /C y

2
n � �ntn � a;

and tn 2 R�. With yn D t1=3 Qyn; �n D t�1=3 Q�n, we get

q.X/ � ŒX; T � D
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1�j�n�1

�j .y
2
j C �

2
j /C t

2=3. Qy2n � Q�n � at
�2=3/;

and the inequality q.X/ � ŒX; T � � 0 is equivalent toX
1�j�n�1

t�2=3�j .y
2
j C �

2
j /C Qy

2
n � Q�n C at

�2=3:

We can thus assume ab initio that our paraboloid is given by the inequalityX
1�j�n�1

�j .x
2
j C �

2
j /C x

2
n � �n:

4.4.2 On the kernel for the paraboloid

We shall consider the paraboloid

Pn D

²
.x; �/ 2 R2n; x2n C

X
1�j�n�1

.x2j C �
2
j / � �n

³
:

We have with X 0 D .x0I � 0/ D .x1; : : : ; xn�1I �1; : : : ; �n�1/,
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2i��.�n�x

2
n//Opw.e

�2i�� jX 0j2/d�

D

X
k�0

Z
R

yH.�/PkIn�1˝Opw.e
2i��.�n�x

2
n//e�i.arctan �/.2kCn�1/.1C�2/�

.n�1/
2 d�

D
1

2
IdC

1

2i�

X
k�0

PkIn�1

˝

Z
R

Opw.e
2i��.�n�x

2
n//
1

�

�
1 � i�

.1C �2/1=2

�2kCn�1
.1C �2/�

.n�1/
2 d�

D
1

2
IdC

1

2

X
k�0

PkIn�1 ˝

Z
R

Opw.e
2i��.�n�x

2
n//
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Let k.xn; yn/ be the kernel of the operator in the integral, we have

k.xn; yn/ D e
2i�
3 .x3n�y

3
n/e�

i�
6 .xn�yn/

3 i

�.xn � yn/

.1C i.xn � yn//
k

.1 � i.xn � yn//kCn�1
:
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As a result, we find that P is unitarily equivalent to QP , with

2 QP D
X
k�0

PkIn�1 ˝

 
In C convolution with

ie�
i�
6 x

3
n

�xn

.1C ixn/
k

.1 � ixn/kCn�1

!
:

We define
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2
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Z
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i�
6 t
3

2�t

.1C i t/k

.1 � i t/kCn�1
e�2i�t�dt

D
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2
C

Z
e
i�
6 t
3

2i�t

.1 � i t/k

.1C i t/kCn�1
e2i�t�dt;

and we get that
QP D

X
k�0

PkIn�1 ˝ !k;n�1.Dxn/:

We note that for nD 1, the sum is reduced to k D 0 with P0I0 D I , so that we recover
formula (4.2.2) with !0;0 D !. We find also that

!0k;n�1.�/ D

Z
e
i�
6 t
3 .1 � i t/k

.1C i t/kCn�1
e2i�t�dt; (4.4.1)

in the sense that the inverse Fourier transform of t 7! e
i�
6 t
3 .1�it/k

.1Cit/kCn�1 is the dis-
tribution derivative of !k;n�1. Going back to the normalization of Lemma 4.2.3, we
have, with � D 24=3�2=3� ,

Gk;n�1.�/ D !k;n�1.�/;

G0k;n�1.�/ D 2
�4=3��2=3

Z
e
i�
6 t
3 .1 � i t/k

.1C i t/kCn�1
e2
� 1
3 i�

1
3 t�dt;

D„ƒ‚…
tD�
� 1
3 2

1
3 s

1

2�

Z
e
is3

3
.1 � i��1=321=3s/k

.1C i��1=321=3s/kCn�1
eis�ds WD Ak;n�1.�/:

We have A0;0 D Ai and Ak;n�1 is an entire function, real-valued on the real line; we
have

Gk;n�1.�/ D

Z �

�1

Ak;n�1.�/d�; Gk;n�1.C1/ D 1:

Remark 4.4.4. We claim that the asymptotic properties of the functions Ak;n�1 are
analogous to the properties of the standard Airy function and we have indeed from
(4.4.1),

!0k;n�1.�/ D .1 � iD/
k.1C iD/�k�nC1F �1

�
e
i�
6 t
3�
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We claim as well that

�
1

2
< inf
k�0;�2R

G.�/ < 0; sup
k�0;�2R

G.�/ D 1;

so that QP is bounded on L2.Rn/ andZ
�n�x

2
nC

P
1�j�n�1.x2jC�2j /

W.u; u/.x; �/dxd� � kuk2
L2.Rn/:


