Chapter 4

Parabolas

4.1 Preliminary remarks

We start with a picture, demonstrating that the epigraph of a parabola is an increasing
union of ellipses (see Figure 4.1). It is easy to see that the epigraph of a parabola, i.e.,
the set {(x, £) € R2, £ > x2} is a countable increasing union of ellipses in the sense
that

P={x.6eRE>x" = J{(x.6§) eR*E> x> +k72) . (41D

k>1

Ek

Note that for k > 1 we have & C &1 C P since x2 + k262> x2 4+ (k + 1) 72£2 >
x2, from the fact that £ > 0 on &;. Moreover, if £ > x? and k > £/+/& — x2, we get
(x,§) € .

k3

Remark 4.1.1. The ellipse & is symplectically equivalent to a circle with area #;—

since

k2 2 k2 kz 2 k2
X2k = X7 +k—2(g—7) -0 = (Fly)2+k‘2(kn——) ~7

4 2 4
k2\?> k2
=222+ A%k np—=—) - =,
o ( 2A) 4

so that choosing A such that A=2 = A2k =2, e.g., A = vk, we get

kK2\?\ k2
2 4 g262 g = 1 42 _ -
X"+ kTTET—E (y +( 2)&)) .

and & = {(y.0) eR2,y2 + (%2 < %}, where (v, ¢) are the affine symplectic coordin-

ates

k3/2
=xk'?, =gV,
y=x {=¢ 3

Lemma 4.1.2. Let u € .Z(R). Then, W(u, u) belongs to . (R?) and with &, &
defined by (4.1.1), we have

I v pavs = tim ] wo s < i,

Proof. Since 'W(u,u) belongs to . (R?") C L'(R?"), we may apply the Lebesgue
dominated convergence theorem and (4.1.1) to obtain the equality in the lemma. On
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Figure 4.1. The epigraph of a parabola is an increasing union of ellipses.

the other hand, Theorem 3.1.5 and Remark 4.1.1 imply
_nk3
/ W) (x. £)dxd§ = (Op, (g u.u) < (15 ) JullZa gy < el -
&k

and the sought result. ]
Remark 4.1.3. Moreover, Theorem 3.1.5 and the expression of Fy(a) =1 —e7¢
imply that with vy defined in (A.1.16), we have
_ 3
/ W0, Yo) (x, £)dxd§ = (Op, (Lg) o, Yo) = [Vol] 2y (1 — ™73,
Ex

so that from Lemma 4.1.2, we have [[, W(o, ¥o)(x,§)dxd§ = |y entail-

ing

2
L2R)

sup // W(p, d)(x,E)dxd& = 1.
‘(i)

q)ey(R),llq)lle(R):l
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Remark 4.1.4. We want to study the operator with Weyl symbol H(§ — x?) (H =

1r, is the Heaviside function) and since § — x2 is a polynomial with degree less than

2, see from (1.2.3) that Op,, (H (§ — x?)) commutes with
D, — X2 = eZnix3/3Dxe—2nix3/3

’

and the latter has (continuous) spectrum R: we expect thus that Op,, (H (& - xz))
should have continuous spectrum and be conjugated to a Fourier multiplier.

4.2 Calculation of the kernel

The Weyl symbol of the operator Op,, (1) is
H(E —x?),

(P is defined in (4.1.1), H is the Heaviside function H = 1gr_ ), corresponding to
the distribution kernel k» (x, y) obtained from Proposition 1.2.5 by (we use freely
integrals meaning only Fourier transform in the distributional sense),

2
kp(x,y) = /eZiﬂ(X—y)éH(g_(x + y) )dé:/eZin(x—y)(S-i—(x;y)Z)H(E)dé

2
_ ezin(x—y)(x'fyyl So(y — x) + ;
2 in(y —x)
Soy —x)  e2imx=nCE?
B 2 2in(y — x)
We have
X+y 2 2 2 3 3 2 2
4(x—y) 5 =@ =y)x+y)=x"—y +x7y—yx
_ 4 3 3 1 3
—3(x y )+3(y x)”,
so that 1 s
_ iZ3(y—x)"
kp(x,y) = ol X So(y = x) €_2 i e_iz%y3’
2 2in(y — x)

and the operator Op,, (1) is unitarily equivalent to the operator with kernel

Sy Sy —x) B0
kx,y) = 2 2in(y —x)

We have proven the following result.
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Lemma 4.2.1. The operator with Weyl symbol R? > (x,§) — 1g L& x?) has the
distribution kernel

‘ _ iZ(y—x)3 .
kp(x,y) = ol X So(y = x) e. ° e_’%y3’
2 2in(y — x)

and is thus unitarily equivalent to

1d ie”in’/6
— + convolution with —————pv—. “4.2.1)
2 2 t

o je—imi3/6
Lemma 4.2.2. The distribution

> pv% has the Fourier transform

1 sinmast + g)

5 ds. a=Q/m)">.
2 s

The operator (4.2.1) is the Fourier multiplier w(D;) with
3
1 1 [T sin(sn + %
w(t) = —(l + —/ Mds), n=243723,
2 T J 0o S

Proof. We calculate in the distribution sense (t = as,a = (2/ n)l/ 3,

) e—int3/6 i . —inma3s3/6
/e—Zzntti dt = — e—21nast ds
2t 27 )
3
i —i)sin(%- + 2wast
_ i [ CDsing )
2 Ky
3
1 sinRrast + &
_ b ( ) ds.
2 s

so that with n = 2wat, we get

1 /+°° sin(sn + %)d

wm:%0+; Qzéu—ﬂmzcw,

00 N

proving the lemma. |

Lemma 4.2.3. We have, with n = 24/372/3¢,

+00 ¢j d
() = 1(1+l/ sm(sz—+3)ds)=c(n), a)(O):ng(O), 4.22)

2 o
, 1 53 1 ) $3 .
G'(n) = E/ cos (sn+?)ds=Reg/Rexpz (Sﬂ—f—?)dS:Al(T}), (4.2.3)
R
2 n
G(n) = 3 —|—/(; Ai(§)dE, (4.2.4)

o . . . ; 3
where Ai is Airy function defined as the inverse Fourier transform of t + e!?™") /3,
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Proof. We have

T L i i [
< 313 3 ) O :
(4.2.5)

proving (4.2.2). We have also

1 1
Gn) == + Im [Inverse Fourier Transform{ y > el @7y »?*/ 3pv(z—) }:|
ny

and thus

G'(n) = Im[Inverse Fourier Transform{y > ei@ny)*/3; }]

_ Im(/ezmynei(Zny)3/3l-dy)  Im (%/eimeiﬁmidl) — ai(n),
T

which is (4.2.3), implying (4.2.4). n

Lemma 4.2.4. With G defined in Lemma 4.2.3, we get that G is an entire function,
real-valued on the real line such that

lim G(n) =1, lim G(n) =0, (4.2.6)
n——00

n—-+00

and moreover with 1o the largest zero of the Airy function (1o ~ —2.33811), the
Sfunction G has an absolute minimum at ng with G(n9) ~ —0.274352,

VneR, G(n) <G <1. 4.2.7)

Proof. The first statements follow from Lemma 4.2.3 and (4.2.6) is implied by (4.2.4)
and (A.7.18), (A.7.22). The strict inequality in (4.2.7) follows for n > 0 from (4.2.3)
since Ai is positive on [0, +-00) so that G is strictly increasing there from G(0) = 2/3
to G(400) = 1. The other statements are proven in Section A.7 of the appendix. m

4.3 The main result

Collecting the results of Lemmas 4.2.1, 4.2.2, 4.2.3, 4.2.4, and of Section A.7 in the
appendix, we have proven the following theorem.

Theorem 4.3.1. Let H(§ — x?) = 1{(x,£) € R%, £ > x?2} be the indicatrix of the
epigraph of the parabola with equation § = x>. Then, the operator with Weyl symbol
H (& — x?) is unitary equivalent to the Fourier multiplier G(2*/32/31), where

G(n) = % + /nAi(S)dS = /Tl Ai(&)dE, (Al is the Airy function).
0 —00
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Figure 4.2. The function G and its derivative Ai. More details on G are given in Appendix A.7,
Figure A.1.

The function G is entire on C, real-valued on the real line (see Figure 4.2) and such
that
G(R) = [G(no). D).

where 1y is the largest zero of the Airy function. We have

o ~ —2.338107410,
G(no) ~ —0.2743520591.

The operator with Weyl symbol H(§ — x?) is self-adjoint bounded on L*(R) with
norm 1, with spectrum equal to (G (1), 1] (continuous spectrum) and

Vu € L*(R), G(no)llulliz(R) S/ , W, u)(x,§)dxdt < IIMIIiZ(R)-
E>x

4.4 Paraboloids, a conjecture

We are interested now in multi-dimensional versions of the previous results, namely,
we would like to find a bound for integrals of the Wigner distribution on paraboloids
of R?” for n > 2. Let us start with recalling in [24, Theorem 21.5.3], a version of
which was given in our Theorem 3.3.1 in the positive-definite case.

4.4.1 On non-negative quadratic forms

Theorem 4.4.1 (Symplectic reduction of quadratic forms, [24, Theorem 21.5.3]).
Let q be a non-negative quadratic form on R" x R" equipped with the canonical



Paraboloids, a conjecture 83

symplectic form (1.2.13). Then, there exists S in symplectic group Sp(n,R) of R?",
ref{0,....n}, u1,..., Uy positive, and s € N such thatr + s < n,
so that forall X = (x,§) € R" x R”,

¢(SX)= ) wiGi+EH+ Y

1<j<r r+l1<j<r+s

Definition 4.4.2. Letn € N* and let R?” be equipped with the canonical symplectic
form (1.2.13). Let ¢ be a non-negative quadratic form on R?” with rank 2n — 1 and
T be a non-zero vector in R?” such that g(6T) = 0. A paraboloid $# of R?" with
vertex 0 and shape (¢, T') is defined by

P ={X eR* ¢q(X) <[X.T]}.
A paraboloid @ with vertex m € R?" and shape (g, T') is defined as
Q=P +m,
where # is a paraboloid with vertex 0 and shape (¢, T).

Remark 4.4.3. We can find some symplectic coordinates such that

gX)—[X.T)= Y wGl+EH+ Y. x2+ > (55 —§&t).

1<j<r r+1<j<r+s l<j<n

with 2r + 5 = 2n — 1. We can get rid of the linear terms x; 7; — £;¢; when1 < j <r
by writing

2 2
T; 1 1
;L~(x2+5-2)+x¢~—$~t~=,u-(x~+—1) -HL‘(E'—;) —— (7 +1}),
T\ J J J o J\ M 2,U«j J\ 5/ 2;“«]' 4“’]’ J J

and also of x;7; forr +1 < j <r + s, since

T; 2 72
2 J J
X; + x;1; = (Xj—i-E) —T.
We are left with using affine symplectic coordinates (y, 1) so that

gqX)=[X.Tl= > wOi+n)+ > yi— > ny

1<j<r r+l1<j<r+s r+l1<j<r+s

+ ) Wy —a

r+s+1<j<n

Since we have 2r + s =2n — 1, we getr + s + 1 = 2n —r: we cannot have r + s +
1 < n since it would imply that 2n — r < n and thus r > n, which is incompatible
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with2r +5s=2n—1,r,s > 0. We get thenthats = 2/ + 1,r = n — 1 — [ and since
r+s<n,1<s,wehavel =0,s =1,r =n—1,and

qX)=[X.TI= > w7 +n)+ys—inln—a.

1<j=<n—1
and 1, € R*. With y, = tY/35,,n, = t~/37,, we get

gX) = (XTI = 3 0} + )+ 023G — i — at ™),

1<j<n-1

and the inequality ¢(X) — [X, T] < 0 is equivalent to

SO Pui G+ ) + Fp < e+ at T

1<j=n-1

We can thus assume ab initio that our paraboloid is given by the inequality

Z l)j(sz +Sj2) +x2 <&,

1<j<n-—1

4.4.2 On the kernel for the paraboloid

We shall consider the paraboloid

p=lopernigs T ofrezal

1<j=<n—1

We have with X’ = (x; &) = (x1, ..., Xn—1: 61, ..., En—1),

P = Op,, (H(én —x3—|X/|2)) :/ [fl(.[)Opw(eZinr(én—x%))opw(e_zmrlelz)df

_ Z/ (1) Pyt @0p, (€27 ¥ En—30)) i areum ) @ktn—1) (| |
k>0
1

1

= —Id+— P..,

2 +2i7rZ kin—1
k>0

zln--((g:n_x 1—it 2k+n—1

= lId += ZIF’k-n—l ®/ Op,, (e2/7en= i) (=i
2 20477 int(l + it)ktn-1

D
dt

Let k(x,, y») be the kernel of the operator in the integral, we have

i (I +i(xn — yn))k
7T(xn = yn) (1 —i(xn — yn))k+n_l '

2im

k(xn’yn) —e 3 n J’n) - (xn_Yn)3
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As aresult, we find that P is unitarily equivalent to 13, with

ie= & (14 ix,)¥
wxn, (1 —ixp)ktn=1]

2P = ZPk;n—l ® (]n + convolution with
k>0

We define

1 =T 4k .
Phn-1(T) = 5+ / wr ik

(1—in)k

1 e 2imtt
= - dt,
2 +/ 2iwt (1 +it)ktn-1

and we get that

P = ZPk;n_l ® Wi p—1(Dx,).
k>0

We note that for n = 1, the sum is reduced to k& = 0 with [Py,o = 7, so that we recover
formula (4.2.2) with wg,0 = w. We find also that

P VK
’ . i3 (l—lt) 2intt
Op p1(7) = /e = dt, (4.4.1)

. . . img3 (1—ir)k
6 _ 7
in the sense that the inverse Fourier transform of 7 — e rinkrn=T

tribution derivative of wy ,_;. Going back to the normalization of Lemma 4.2.3, we
have, with n = 24/3n2/3r,

is the dis-

Gk,n—l (7’) = Wk,n—1 (T)’

- - in,3 (1—it)k 1.1
a0 = 7452 [0 G g
1 is3 1—1 _1/321/3 k .
= JE— eT ( . %4 S) elsrlds = Akn—l(’])-
~—  2m (1 + im—1/321/35)k+n—1 ,
1

We have Ao = Ai and Ay ,— is an entire function, real-valued on the real line; we
have

n
Gronr(n) = /_ An1 (E)IE.  Grpet (+00) = 1.

Remark 4.4.4. We claim that the asymptotic properties of the functions Ay ,_; are
analogous to the properties of the standard Airy function and we have indeed from
(4.4.1), _

Wy (©) = (1= iD)*(1 +iD) * "1 F 1 (e T0),



We claim as well that
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1
-5 < inf  G(n) <0, sup G(n) =1,

k>0,neR

so that P is bounded on L2(R") and

*/;n Z%%"'Zlﬁj =n—1 (x12+£:12)

k>0,neR

fw(u’ u)(x’ E)dng S ”u”22(Rn)

86



