Chapter 4

Parabolas

4.1 Preliminary remarks

We start with a picture, demonstrating that the epigraph of a parabola is an increasing union of ellipses (see Figure 4.1). It is easy to see that the epigraph of a parabola, i.e., the set $\{(x, \xi) \in \mathbb{R}^2, \xi > x^2\}$ is a countable increasing union of ellipses in the sense that

$$\mathcal{P} = \{(x,\xi) \in \mathbb{R}^2, \xi > x^2\} = \bigcup_{k \ge 1} \underbrace{\{(x,\xi) \in \mathbb{R}^2, \xi > x^2 + k^{-2}\xi^2\}}_{\mathcal{E}_k}.$$
 (4.1.1)

Note that for $k \ge 1$ we have $\mathcal{E}_k \subset \mathcal{E}_{k+1} \subset \mathcal{P}$ since $x^2 + k^{-2}\xi^2 \ge x^2 + (k+1)^{-2}\xi^2 > x^2$, from the fact that $\xi > 0$ on \mathcal{E}_k . Moreover, if $\xi > x^2$ and $k > \xi/\sqrt{\xi - x^2}$, we get $(x, \xi) \in \mathcal{E}_k$.

Remark 4.1.1. The ellipse \mathcal{E}_k is symplectically equivalent to a circle with area $\frac{\pi k^3}{4}$ since

$$\begin{aligned} x^2 + k^{-2}\xi^2 - \xi &= x^2 + k^{-2} \left(\xi - \frac{k^2}{2}\right)^2 - \frac{k^2}{4} = (\lambda^{-1}y)^2 + k^{-2} \left(\lambda\eta - \frac{k^2}{2}\right)^2 - \frac{k^2}{4} \\ &= \lambda^{-2}y^2 + \lambda^2 k^{-2} \left(\eta - \frac{k^2}{2\lambda}\right)^2 - \frac{k^2}{4}, \end{aligned}$$

so that choosing λ such that $\lambda^{-2} = \lambda^2 k^{-2}$, e.g., $\lambda = \sqrt{k}$, we get

$$x^{2} + k^{-2}\xi^{2} - \xi = k^{-1}\left(y^{2} + \left(\eta - \frac{k^{2}}{2\lambda}\right)^{2}\right) - \frac{k^{2}}{4},$$

and $\mathcal{E}_k = \{(y, \zeta) \in \mathbb{R}^2, y^2 + \zeta^2 < \frac{k^3}{4}\}$, where (y, ζ) are the affine symplectic coordinates

$$y = xk^{1/2}, \quad \zeta = \xi k^{-1/2} - \frac{k^{3/2}}{2}.$$

Lemma 4.1.2. Let $u \in \mathscr{S}(\mathbb{R})$. Then, W(u, u) belongs to $\mathscr{S}(\mathbb{R}^2)$ and with $\mathscr{E}, \mathscr{E}_k$ defined by (4.1.1), we have

$$\iint_{\xi > x^2} \mathcal{W}(u, u)(x, \xi) dx d\xi = \lim_{k \to +\infty} \iint_{\mathcal{E}_k} \mathcal{W}(u, u)(x, \xi) dx d\xi \le \|u\|_{L^2(\mathbb{R})}^2.$$

Proof. Since W(u, u) belongs to $\mathscr{S}(\mathbb{R}^{2n}) \subset L^1(\mathbb{R}^{2n})$, we may apply the Lebesgue dominated convergence theorem and (4.1.1) to obtain the equality in the lemma. On

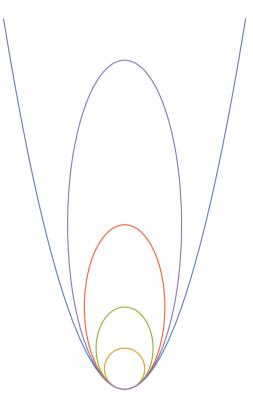


Figure 4.1. The epigraph of a parabola is an increasing union of ellipses.

the other hand, Theorem 3.1.5 and Remark 4.1.1 imply

$$\iint_{\mathcal{E}_k} \mathcal{W}(u,u)(x,\xi) dx d\xi = \langle \operatorname{Op}_{\mathrm{w}}(\mathbf{1}_{\mathcal{E}_k})u, u \rangle \leq \left(1 - e^{-\frac{\pi k^3}{2}}\right) \|u\|_{L^2(\mathbb{R})}^2 \leq \|u\|_{L^2(\mathbb{R})}^2,$$

and the sought result.

Remark 4.1.3. Moreover, Theorem 3.1.5 and the expression of $F_0(a) = 1 - e^{-a}$ imply that with ψ_0 defined in (A.1.16), we have

$$\iint_{\mathcal{S}_k} \mathcal{W}(\psi_0, \psi_0)(x, \xi) dx d\xi = \langle \operatorname{Op}_{\mathsf{w}}(\mathbf{1}_{\mathcal{S}_k}) \psi_0, \psi_0 \rangle = \|\psi_0\|_{L^2(\mathbb{R})}^2 (1 - e^{-\pi k^3/3}),$$

so that from Lemma 4.1.2, we have $\iint_{\mathcal{P}} \mathcal{W}(\psi_0, \psi_0)(x, \xi) dx d\xi = \|\psi_0\|_{L^2(\mathbb{R})}^2$, entailing

$$\sup_{\phi \in \mathscr{S}(\mathbb{R}), \|\phi\|_{L^{2}(\mathbb{R})} = 1} \iint_{\mathscr{P}} \mathscr{W}(\phi, \phi)(x, \xi) dx d\xi = 1.$$

Remark 4.1.4. We want to study the operator with Weyl symbol $H(\xi - x^2)$ ($H = \mathbf{1}_{\mathbb{R}_+}$ is the Heaviside function) and since $\xi - x^2$ is a polynomial with degree less than 2, see from (1.2.3) that $Op_w(H(\xi - x^2))$ commutes with

$$D_x - x^2 = e^{2\pi i x^3/3} D_x e^{-2\pi i x^3/3},$$

and the latter has (continuous) spectrum \mathbb{R} : we expect thus that $Op_w(H(\xi - x^2))$ should have continuous spectrum and be conjugated to a Fourier multiplier.

4.2 Calculation of the kernel

The Weyl symbol of the operator $Op_w(1_{\mathcal{P}})$ is

$$H(\xi - x^2),$$

(\mathcal{P} is defined in (4.1.1), H is the Heaviside function $H = \mathbf{1}_{\mathbb{R}_+}$), corresponding to the distribution kernel $k_{\mathcal{P}}(x, y)$ obtained from Proposition 1.2.5 by (we use freely integrals meaning only Fourier transform in the distributional sense),

$$\begin{split} k_{\mathcal{P}}(x,y) &= \int e^{2i\pi(x-y)\xi} H\left(\xi - \left(\frac{x+y}{2}\right)^2\right) d\xi = \int e^{2i\pi(x-y)(\xi + (\frac{x+y}{2})^2)} H(\xi) d\xi \\ &= e^{2i\pi(x-y)(\frac{x+y}{2})^2} \frac{1}{2} \left(\delta_0(y-x) + \frac{1}{i\pi(y-x)}\right) \\ &= \frac{\delta_0(y-x)}{2} + \frac{e^{2i\pi(x-y)(\frac{x+y}{2})^2}}{2i\pi(y-x)}. \end{split}$$

We have

$$4(x-y)\left(\frac{x+y}{2}\right)^2 = (x^2 - y^2)(x+y) = x^3 - y^3 + x^2y - y^2x$$
$$= \frac{4}{3}(x^3 - y^3) + \frac{1}{3}(y-x)^3,$$

so that

$$k_{\mathcal{P}}(x,y) = e^{i\frac{2\pi}{3}x^3} \left(\frac{\delta_0(y-x)}{2} + \frac{e^{i\frac{\pi}{2}\frac{1}{3}(y-x)^3}}{2i\pi(y-x)}\right) e^{-i\frac{2\pi}{3}y^3},$$

- 1

and the operator $\operatorname{Op}_{\mathrm{w}}(\mathbf{1}_{\mathscr{P}})$ is unitarily equivalent to the operator with kernel

$$\tilde{k}(x, y) = \frac{\delta_0(y-x)}{2} + \frac{e^{i\frac{\pi}{6}(y-x)^3}}{2i\pi(y-x)}$$

We have proven the following result.

Lemma 4.2.1. The operator with Weyl symbol $\mathbb{R}^2 \ni (x, \xi) \mapsto \mathbf{1}_{\mathbb{R}_+}(\xi - x^2)$ has the distribution kernel

$$k_{\mathcal{P}}(x,y) = e^{i\frac{2\pi}{3}x^3} \left(\frac{\delta_0(y-x)}{2} + \frac{e^{i\frac{\pi}{6}(y-x)^3}}{2i\pi(y-x)}\right) e^{-i\frac{2\pi}{3}y^3},$$

and is thus unitarily equivalent to

$$\frac{\mathrm{Id}}{2} + convolution \ with \quad \frac{ie^{-i\pi t^{3}/6}}{2\pi} \mathrm{pv}\frac{1}{t}.$$
(4.2.1)

Lemma 4.2.2. The distribution $\frac{ie^{-i\pi t^3/6}}{2\pi}$ pv $\frac{1}{t}$ has the Fourier transform

$$\frac{1}{2\pi} \int \frac{\sin(2\pi a s \tau + \frac{s^3}{3})}{s} ds, \quad a = (2/\pi)^{1/3}.$$

The operator (4.2.1) is the Fourier multiplier $\omega(D_t)$ with

$$\omega(\tau) = \frac{1}{2} \left(1 + \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\sin(s\eta + \frac{s^3}{3})}{s} ds \right), \quad \eta = 2^{4/3} \pi^{2/3} \tau.$$

Proof. We calculate in the distribution sense $(t = as, a = (2/\pi)^{1/3})$,

$$\int e^{-2i\pi t\tau} i \frac{e^{-i\pi t^3/6}}{2\pi t} dt = \frac{i}{2\pi} \int e^{-2i\pi as\tau} \frac{e^{-i\pi a^3 s^3/6}}{s} ds$$
$$= \frac{i}{2\pi} \int \frac{(-i)\sin(\frac{s^3}{3} + 2\pi as\tau)}{s} ds$$
$$= \frac{1}{2\pi} \int \frac{\sin(2\pi as\tau + \frac{s^3}{3})}{s} ds,$$

so that with $\eta = 2\pi a\tau$, we get

$$\omega(\tau) = \frac{1}{2} \left(1 + \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\sin(s\eta + \frac{s^3}{3})}{s} ds \right) = \frac{1}{2} \left(1 - F(\eta) \right) = G(\eta),$$

proving the lemma.

Lemma 4.2.3. We have, with $\eta = 2^{4/3} \pi^{2/3} \tau$,

$$\omega(\tau) = \frac{1}{2} \left(1 + \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\sin(s\eta + \frac{s^3}{3})}{s} ds \right) = G(\eta), \quad \omega(0) = \frac{2}{3} = G(0), \quad (4.2.2)$$

$$G'(\eta) = \frac{1}{2\pi} \int_{\mathbb{R}} \cos\left(s\eta + \frac{s^3}{3}\right) ds = \operatorname{Re} \frac{1}{2\pi} \int_{\mathbb{R}} \exp i\left(s\eta + \frac{s^3}{3}\right) ds = \operatorname{Ai}(\eta), \ (4.2.3)$$

$$G(\eta) = \frac{2}{3} + \int_0^{\eta} \operatorname{Ai}(\xi) d\xi, \qquad (4.2.4)$$

where Ai is Airy function defined as the inverse Fourier transform of $t \mapsto e^{i(2\pi t)^3/3}$.

Proof. We have

$$\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\sin(\frac{s^3}{3})}{s} ds = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\sin(\sigma)}{3^{1/3} \sigma^{1/3}} 3^{1/3} \frac{1}{3} \sigma^{-2/3} d\sigma = \frac{1}{3\pi} \int_{-\infty}^{+\infty} \frac{\sin\sigma}{\sigma} d\sigma = \frac{1}{3},$$
(4.2.5)

proving (4.2.2). We have also

$$G(\eta) = \frac{1}{2} + \operatorname{Im}\left[\operatorname{Inverse Fourier Transform}\left\{y \mapsto e^{i(2\pi y)^3/3} \operatorname{pv}\left(\frac{1}{2\pi y}\right)\right\}\right],$$

and thus

$$G'(\eta) = \operatorname{Im}\left[\operatorname{Inverse Fourier Transform}\left\{y \mapsto e^{i(2\pi y)^3/3}i\right\}\right]$$
$$= \operatorname{Im}\left(\int e^{2i\pi y\eta} e^{i(2\pi y)^3/3}i\,dy\right) = \operatorname{Im}\left(\frac{1}{2\pi}\int e^{it\eta} e^{it^3/3}i\,dt\right) = \operatorname{Ai}(\eta),$$

which is (4.2.3), implying (4.2.4).

Lemma 4.2.4. With G defined in Lemma 4.2.3, we get that G is an entire function, real-valued on the real line such that

$$\lim_{\eta \to +\infty} G(\eta) = 1, \quad \lim_{\eta \to -\infty} G(\eta) = 0, \tag{4.2.6}$$

and moreover with η_0 the largest zero of the Airy function ($\eta_0 \approx -2.33811$), the function G has an absolute minimum at η_0 with $G(\eta_0) \approx -0.274352$,

$$\forall \eta \in \mathbb{R}, \quad G(\eta_0) \le G(\eta) < 1. \tag{4.2.7}$$

Proof. The first statements follow from Lemma 4.2.3 and (4.2.6) is implied by (4.2.4) and (A.7.18), (A.7.22). The strict inequality in (4.2.7) follows for $\eta \ge 0$ from (4.2.3) since Ai is positive on $[0, +\infty)$ so that G is strictly increasing there from G(0) = 2/3 to $G(+\infty) = 1$. The other statements are proven in Section A.7 of the appendix.

4.3 The main result

Collecting the results of Lemmas 4.2.1, 4.2.2, 4.2.3, 4.2.4, and of Section A.7 in the appendix, we have proven the following theorem.

Theorem 4.3.1. Let $H(\xi - x^2) = \mathbf{1}\{(x, \xi) \in \mathbb{R}^2, \xi \ge x^2\}$ be the indicatrix of the epigraph of the parabola with equation $\xi = x^2$. Then, the operator with Weyl symbol $H(\xi - x^2)$ is unitary equivalent to the Fourier multiplier $G(2^{4/3}\pi^{2/3}\tau)$, where

$$G(\eta) = \frac{2}{3} + \int_0^{\eta} \operatorname{Ai}(\xi) d\xi = \int_{-\infty}^{\eta} \operatorname{Ai}(\xi) d\xi, \quad (\text{Ai is the Airy function}).$$

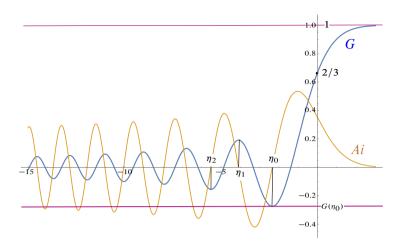


Figure 4.2. The function *G* and its derivative Ai. More details on *G* are given in Appendix A.7, Figure A.1.

The function G is entire on \mathbb{C} , real-valued on the real line (see Figure 4.2) and such that

$$G(\mathbb{R}) = [G(\eta_0), 1),$$

where η_0 is the largest zero of the Airy function. We have

$$\eta_0 \approx -2.338107410,$$

 $G(\eta_0) \approx -0.2743520591.$

The operator with Weyl symbol $H(\xi - x^2)$ is self-adjoint bounded on $L^2(\mathbb{R})$ with norm 1, with spectrum equal to $[G(\eta_0), 1]$ (continuous spectrum) and

$$\forall u \in L^2(\mathbb{R}), \quad G(\eta_0) \|u\|_{L^2(\mathbb{R})}^2 \leq \iint_{\xi \geq x^2} \mathcal{W}(u, u)(x, \xi) dx d\xi \leq \|u\|_{L^2(\mathbb{R})}^2.$$

4.4 Paraboloids, a conjecture

We are interested now in multi-dimensional versions of the previous results, namely, we would like to find a bound for integrals of the Wigner distribution on paraboloids of \mathbb{R}^{2n} for $n \ge 2$. Let us start with recalling in [24, Theorem 21.5.3], a version of which was given in our Theorem 3.3.1 in the positive-definite case.

4.4.1 On non-negative quadratic forms

Theorem 4.4.1 (Symplectic reduction of quadratic forms, [24, Theorem 21.5.3]). Let q be a non-negative quadratic form on $\mathbb{R}^n \times \mathbb{R}^n$ equipped with the canonical symplectic form (1.2.13). Then, there exists S in symplectic group $Sp(n, \mathbb{R})$ of \mathbb{R}^{2n} ,

$$r \in \{0, \ldots, n\}, \mu_1, \ldots, \mu_r$$
 positive, and $s \in \mathbb{N}$ such that $r + s \leq n$,

so that for all $X = (x, \xi) \in \mathbb{R}^n \times \mathbb{R}^n$,

$$q(SX) = \sum_{1 \le j \le r} \mu_j (x_j^2 + \xi_j^2) + \sum_{r+1 \le j \le r+s} x_j^2$$

Definition 4.4.2. Let $n \in \mathbb{N}^*$ and let \mathbb{R}^{2n} be equipped with the canonical symplectic form (1.2.13). Let q be a non-negative quadratic form on \mathbb{R}^{2n} with rank 2n - 1 and T be a non-zero vector in \mathbb{R}^{2n} such that $q(\sigma T) = 0$. A paraboloid \mathcal{P} of \mathbb{R}^{2n} with vertex 0 and shape (q, T) is defined by

$$\mathcal{P} = \left\{ X \in \mathbb{R}^{2n}, q(X) \le [X, T] \right\}.$$

A paraboloid Q with vertex $m \in \mathbb{R}^{2n}$ and shape (q, T) is defined as

$$\mathcal{Q}=\mathcal{P}+m,$$

where \mathcal{P} is a paraboloid with vertex 0 and shape (q, T).

Remark 4.4.3. We can find some symplectic coordinates such that

$$q(X) - [X, T] = \sum_{1 \le j \le r} \mu_j (x_j^2 + \xi_j^2) + \sum_{r+1 \le j \le r+s} x_j^2 + \sum_{1 \le j \le n} (x_j \tau_j - \xi_j t_j),$$

with 2r + s = 2n - 1. We can get rid of the linear terms $x_j \tau_j - \xi_j t_j$ when $1 \le j \le r$ by writing

$$\mu_j(x_j^2 + \xi_j^2) + x_j \tau_j - \xi_j t_j = \mu_j \left(x_j + \frac{\tau_j}{2\mu_j} \right)^2 + \mu_j \left(\xi_j - \frac{t_j}{2\mu_j} \right)^2 - \frac{1}{4\mu_j} (t_j^2 + \tau_j^2),$$

and also of $x_j \tau_j$ for $r + 1 \le j \le r + s$, since

$$x_j^2 + x_j \tau_j = \left(x_j + \frac{\tau_j}{2}\right)^2 - \frac{\tau_j^2}{4}.$$

We are left with using affine symplectic coordinates (y, η) so that

$$q(X) - [X, T] = \sum_{1 \le j \le r} \mu_j (y_j^2 + \eta_j^2) + \sum_{r+1 \le j \le r+s} y_j^2 - \sum_{r+1 \le j \le r+s} \eta_j t_j + \sum_{r+s+1 \le j \le n} (y_j \tau_j - \eta_j t_j) - a.$$

Since we have 2r + s = 2n - 1, we get r + s + 1 = 2n - r: we cannot have $r + s + 1 \le n$ since it would imply that $2n - r \le n$ and thus $r \ge n$, which is incompatible

with 2r + s = 2n - 1, $r, s \ge 0$. We get then that s = 2l + 1, r = n - 1 - l and since $r + s \le n, 1 \le s$, we have l = 0, s = 1, r = n - 1, and

$$q(X) - [X, T] = \sum_{1 \le j \le n-1} \mu_j (y_j^2 + \eta_j^2) + y_n^2 - \eta_n t_n - a,$$

and $t_n \in \mathbb{R}^*$. With $y_n = t^{1/3} \tilde{y}_n$, $\eta_n = t^{-1/3} \tilde{\eta}_n$, we get

$$q(X) - [X, T] = \sum_{1 \le j \le n-1} \mu_j (y_j^2 + \eta_j^2) + t^{2/3} (\tilde{y}_n^2 - \tilde{\eta}_n - at^{-2/3}),$$

and the inequality $q(X) - [X, T] \le 0$ is equivalent to

$$\sum_{1 \le j \le n-1} t^{-2/3} \mu_j (y_j^2 + \eta_j^2) + \tilde{y}_n^2 \le \tilde{\eta}_n + a t^{-2/3}$$

We can thus assume *ab initio* that our paraboloid is given by the inequality

$$\sum_{1 \le j \le n-1} \nu_j (x_j^2 + \xi_j^2) + x_n^2 \le \xi_n.$$

4.4.2 On the kernel for the paraboloid

We shall consider the paraboloid

$$\mathcal{P}_n = \left\{ (x,\xi) \in \mathbb{R}^{2n}, x_n^2 + \sum_{1 \le j \le n-1} (x_j^2 + \xi_j^2) \le \xi_n \right\}.$$

We have with $X' = (x'; \xi') = (x_1, \dots, x_{n-1}; \xi_1, \dots, \xi_{n-1}),$

$$\begin{split} P &= \operatorname{Op}_{w} \left(H(\xi_{n} - x_{n}^{2} - |X'|^{2}) \right) = \int_{\mathbb{R}} \hat{H}(\tau) \operatorname{Op}_{w}(e^{2i\pi\tau(\xi_{n} - x_{n}^{2})}) \operatorname{Op}_{w}(e^{-2i\pi\tau|X'|^{2}}) d\tau \\ &= \sum_{k \geq 0} \int_{\mathbb{R}} \hat{H}(\tau) \mathbb{P}_{k;n-1} \otimes \operatorname{Op}_{w}(e^{2i\pi\tau(\xi_{n} - x_{n}^{2})}) e^{-i(\arctan\tau)(2k+n-1)} (1+\tau^{2})^{-\frac{(n-1)}{2}} d\tau \\ &= \frac{1}{2} \operatorname{Id} + \frac{1}{2i\pi} \sum_{k \geq 0} \mathbb{P}_{k;n-1} \\ &\otimes \int_{\mathbb{R}} \operatorname{Op}_{w}(e^{2i\pi\tau(\xi_{n} - x_{n}^{2})}) \frac{1}{\tau} \left(\frac{1-i\tau}{(1+\tau^{2})^{1/2}} \right)^{2k+n-1} (1+\tau^{2})^{-\frac{(n-1)}{2}} d\tau \\ &= \frac{1}{2} \operatorname{Id} + \frac{1}{2} \sum_{k \geq 0} \mathbb{P}_{k;n-1} \otimes \int_{\mathbb{R}} \operatorname{Op}_{w}(e^{2i\pi\tau(\xi_{n} - x_{n}^{2})}) \frac{(1-i\tau)^{k}}{i\pi\tau(1+i\tau)^{k+n-1}} d\tau. \end{split}$$

Let $k(x_n, y_n)$ be the kernel of the operator in the integral, we have

$$k(x_n, y_n) = e^{\frac{2i\pi}{3}(x_n^3 - y_n^3)} e^{-\frac{i\pi}{6}(x_n - y_n)^3} \frac{i}{\pi(x_n - y_n)} \frac{(1 + i(x_n - y_n))^k}{(1 - i(x_n - y_n))^{k+n-1}}.$$

As a result, we find that P is unitarily equivalent to \tilde{P} , with

$$2\tilde{P} = \sum_{k\geq 0} \mathbb{P}_{k;n-1} \otimes \left(I_n + \text{convolution with } \frac{ie^{-\frac{i\pi}{6}x_n^3}}{\pi x_n} \frac{(1+ix_n)^k}{(1-ix_n)^{k+n-1}} \right)$$

We define

$$\begin{split} \omega_{k,n-1}(\tau) &= \frac{1}{2} + \int \frac{ie^{-\frac{i\pi}{6}t^3}}{2\pi t} \frac{(1+it)^k}{(1-it)^{k+n-1}} e^{-2i\pi t\tau} dt \\ &= \frac{1}{2} + \int \frac{e^{\frac{i\pi}{6}t^3}}{2i\pi t} \frac{(1-it)^k}{(1+it)^{k+n-1}} e^{2i\pi t\tau} dt, \end{split}$$

and we get that

$$\tilde{P} = \sum_{k\geq 0} \mathbb{P}_{k;n-1} \otimes \omega_{k,n-1}(D_{x_n}).$$

We note that for n = 1, the sum is reduced to k = 0 with $\mathbb{P}_{0;0} = I$, so that we recover formula (4.2.2) with $\omega_{0,0} = \omega$. We find also that

$$\omega_{k,n-1}'(\tau) = \int e^{\frac{i\pi}{6}t^3} \frac{(1-it)^k}{(1+it)^{k+n-1}} e^{2i\pi t\tau} dt, \qquad (4.4.1)$$

in the sense that the inverse Fourier transform of $t \mapsto e^{\frac{i\pi}{6}t^3} \frac{(1-it)^k}{(1+it)^{k+n-1}}$ is the distribution derivative of $\omega_{k,n-1}$. Going back to the normalization of Lemma 4.2.3, we have, with $\eta = 2^{4/3} \pi^{2/3} \tau$,

$$\begin{aligned} G_{k,n-1}(\eta) &= \omega_{k,n-1}(\tau), \\ G'_{k,n-1}(\eta) &= 2^{-4/3} \pi^{-2/3} \int e^{\frac{i\pi}{6}t^3} \frac{(1-it)^k}{(1+it)^{k+n-1}} e^{2^{-\frac{1}{3}}i\pi^{\frac{1}{3}}t\eta} dt, \\ &= \underbrace{1}_{t=\pi^{-\frac{1}{3}}2^{\frac{1}{3}}s} \frac{1}{2\pi} \int e^{\frac{is^3}{3}} \frac{(1-i\pi^{-1/3}2^{1/3}s)^k}{(1+i\pi^{-1/3}2^{1/3}s)^{k+n-1}} e^{is\eta} ds := A_{k,n-1}(\eta). \end{aligned}$$

We have $A_{0,0} = Ai$ and $A_{k,n-1}$ is an entire function, real-valued on the real line; we have

$$G_{k,n-1}(\eta) = \int_{-\infty}^{\eta} A_{k,n-1}(\xi) d\xi, \quad G_{k,n-1}(+\infty) = 1.$$

Remark 4.4.4. We claim that the asymptotic properties of the functions $A_{k,n-1}$ are analogous to the properties of the standard Airy function and we have indeed from (4.4.1),

$$\omega'_{k,n-1}(\tau) = (1-iD)^k (1+iD)^{-k-n+1} \mathcal{F}^{-1}\left(e^{\frac{i\pi}{6}t^3}\right).$$

We claim as well that

$$-\frac{1}{2} < \inf_{k \ge 0, \eta \in \mathbb{R}} G(\eta) < 0, \quad \sup_{k \ge 0, \eta \in \mathbb{R}} G(\eta) = 1,$$

so that \tilde{P} is bounded on $L^2(\mathbb{R}^n)$ and

$$\int_{\xi_n \ge x_n^2 + \sum_{1 \le j \le n-1} (x_j^2 + \xi_j^2)} \mathcal{W}(u, u)(x, \xi) dx d\xi \le \|u\|_{L^2(\mathbb{R}^n)}^2.$$