
Chapter 5

Conics with eccentricity greater than 1

We want to consider now integrals of the Wigner distribution on “hyperbolic” convex
subsets of the plane such as

C� D
®
.x; �/ 2 R2; x� � �; x � 0

¯
; (5.0.1)

where � is a non-negative parameter. It is convenient to start with the limit-case where
� D 0 and C0 D ¹.x; �/ 2 R2; x � 0; � � 0º (we will label C0 as the quarter-plane).
The indicator function of C0 isH.x/H.�/whereH D 1RC is the Heaviside function.

N.B. The reader will see a great similarity between our calculations below in this
section and the J. G. Wood and A. J. Bracken paper [55] (see also [4]). This article
is very important for the problem at stake – Integrating the Wigner distribution on
subsets of the phase space – and was a wealthy source of information for us, although
as a mathematician, the author has a quite rigid relationship with calculations, and
feels the need to justify formal manipulations; for instance, we may point out that the
test functions used in [55] are homogeneous distributions of type

x
� 12Ci!

˙
; ! 2 R;

which are not in L2.R/ (not even in L2loc), a situation which raises some difficulties,
first when you try to normalize in L2 these test functions and also when trying
to give a non-formal meaning to their images under the operator with Weyl sym-
bol H.x/H.�/, images which are not clearly defined. In our joint paper [6] with
B. Delourme and T. Duyckaerts, proving that Flandrin’s conjecture is not true, we
followed numerical arguments which were quite apart from the arguments of [55].
However, in this memoir, we do follow many of the arguments of [55], along with
avoiding formal calculations.

5.1 The quarter-plane, a counterexample to Flandrin’s conjecture

5.1.1 Preliminaries

We study in this section the operator

A0 D Opw .H.x/H.�//; (5.1.1)

where H D 1RC , that is the Weyl quantization of the characteristic function of the
first quarter of the plane.
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Lemma 5.1.1. The operator A0 given by (5.1.1) is bounded self-adjoint on L2.R/.

Proof. Since the Weyl symbol of A0 is real-valued, A0 is formally self-adjoint and
it is enough to prove that A0 is bounded on L2.R/. Let us start with recalling the
classical formulas

yH.t/ D
ı0.t/

2
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2i�
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bsign D
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pv
�
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;

useful below. The kernel1 of A0 is

k0.x; y/ D H.x C y/ yH.y � x/ D H.x C y/
1

2

�
ı0.y � x/C

1

i�
pv

1

y � x

�
:

(5.1.2)
For � > 0, we define A0;� D

�
H.x/1Œ0;��.�/

�w , whose distribution-kernel is the
L1.R2n/ function

k0;�.x; y/ D H.x C y/e
i�.x�y/� sin.�.x � y/�/

�.x � y/
:

We can thus notice that

k0;�.x; y/ D

k[
0;�
.x;y/‚ …„ ƒ

H.x/H.y/ei�.x�y/�
sin.�.x � y/�/
�.x � y/

CH.x C y/
�
H.�x/H.y/CH.x/H.�y/

�sin.�.x � y/�/
�.x � y/

ei�.x�y/�„ ƒ‚ …
k
]

0;�
.x;y/

;

and the operator with distribution-kernel k[
0;�

is

HOpw.1Œ0;��.�//H; that is H1Œ0;��.D/H ,

1There is no difficulty at defining the product S
�
.x C y/=2

�
T .x � y/ for S; T tempered

distributions on the real line since we may use the tensor product withD
S

�
x C y

2

�
T .x � y/;ˆ.x; y/

E
S 0.R2/;S .R2/

D

D
S.x1/˝ T .x2/; ˆ

�
x1 C

x2

2
; x1 �

x2

2

�E
S 0.R2/;S .R2/

:

However, we shall not use directly formula (5.1.2), since want to avoid formal manipulation
involving for instance meaningless products such as H.x/H.y/k0.x; y/. We refer the reader
to Remark 5.1.2 for more details on this matter.
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where H stands for the operator of multiplication by the Heaviside function H . On
the other hand, the operator with distribution kernel k]

0;�
is such that

jk
]

0;�
.x; y/j � H.x C y/

H.�x/H.y/CH.x/H.�y/

�jx � yj

D H.x C y/
H.�x/H.y/

�.y � x/
CH.x C y/

H.x/H.�y/

�.x � y/
:

According to Proposition A.5.1 in Appendix A.7, the Hardy operator and the modified
Hardy operators are bounded on L2.R/ and we obtain that, for �; 2 S .Rn/, with
H D H.x/; {H D H.�x/,ˇ̌̌̌ “

H.x/1Œ0;��.�/W.�;  /.x; �/dxd�
ˇ̌̌̌

� kH�kL2.R/kH kL2.R/C
1

2
kH�kL2.R/k {H kL2.R/C

1

2
k {H�kL2.R/kH kL2.R/

so that

jhA0�; iS �.R/;S .R/j

D

ˇ̌̌̌ “
H.x/H.�/

2S .R2/‚ …„ ƒ
W.�; /.x; �/ dxd�

ˇ̌̌̌
D lim
�!C1

ˇ̌̌̌ “
H.x/1Œ0;��.�/W.�;  /.x; �/dxd�

ˇ̌̌̌
� kH�kL2.R/kH kL2.R/ C

1

2
kH�kL2.R/k {H kL2.R/

C
1

2
k {H�kL2.R/kH kL2.R/; (5.1.3)

yielding the L2-boundedness of the operator A0, and this concludes the proof of the
lemma.

Remark 5.1.2. That cumbersome detour with the operator A0;� is useful to ensure
that the operator A is indeed bounded on L2.R/. The kernel k0 of A0 is a distribution
of order 1 and the product H.x/H.y/k0.x; y/ is not a priori meaningful, even when
k is a Radon measure.

Even a wave-front-set approach, which would allow the product H.x/pv.1=.y �
x//, does not offer a meaning for the product H.x/H.y/pv.1=.y � x// since the
wave-front-set of pv.1=.y � x// is located on the conormal of the first diagonal (i.e.,
¹.x; xI �;��/ºx2R;�2R�), whereas the wave-front set at .0; 0/ of H.x/H.y/ contains
all directions and in particular is antipodal to the conormal of the diagonal at .0; 0/.

However, with the proven L2-boundedness of A0, then the products of operators
HA0H , {HA0H , HA0 {H , {HA0 {H make sense and for instance we may approximate
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in the strong-operator-topology the operator HA0H by the operator �.�="/A�.�="/;
where � is a smooth function supported in Œ1;C1/ and equal to 1 on Œ2;C1/. We
have indeed

HAH D .H � �.�="//AH C �.�="/A.H � �.�="//C �.�="/A�.�="/;

so that for u 2 L2.R/,HAHuD lim"!0C �.�="/A�.�="/u. The operator with kernel

H.x C y/�.x="/�.y="/pv
1

i�.y � x/
D �.x="/�.y="/pv

1

i�.y � x/
;

converges strongly towards the operator H.signD/H .

Proposition 5.1.3. Let A0 D Opw .H.x/H.�// be the operator with Weyl symbol
H.x/H.�/, a priori sending S .R/ into S 0.R/. Then, A0 can be uniquely extended
to a self-adjoint bounded operator on L2.R/ with

kA0kB.L2.R// �
1C
p
2

2
� 1:207 (5.1.4)

N.B. The bound above can be significantly improved (see Proposition 5.4.4 for opti-
mal bounds) and moreover we will show below that the spectrum of A0 actually
intersects .1;C1/. In fact, it is easier to start with the information that A0 is indeed
bounded on L2.R/.

Proof. The L2.R/-boundedness of A0 is given by Lemma 5.1.1. We are left with
proving the bound (5.1.4): we note that (5.1.3) implies

jhA0u; uiL2.R/j � kHuk
2
L2.R/ C kHukL2.R/k

{HukL2.R/;

proving the proposition, since the eigenvalues of the quadratic form R2 3 .x1; x2/ 7!
x21 C x1x2 are .1˙

p
2/=2.

We can do much better and actually diagonalise the operator A0, using as in
Proposition A.5.1 logarithmic coordinates on each half-line. We state a lemma on
“diagonal” terms whose proof is already given above.

Lemma 5.1.4 (Diagonal terms). LetA0 be the operator with Weyl symbolH.x/H.�/.
With H standing as well for the operator of multiplication by H.x/, we have

HA0H D HH.D/H D H
.IdC signD/

2
H:

Lemma 5.1.5 (Off-diagonal terms). Let B0 D 2 Re {HA0H D {HA0H C HA0 {H .
Then, we have for all u 2 L2.R/,

jhB0u; uiL2.R/j �
1

2
kHukL2.R/k {HukL2.R/: (5.1.5)
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Proof of Lemma 5.1.5. For u 2 S .R/ such that 0 … suppu, we define for t 2 R,

�1.t/ D u.e
t /et=2; �2.t/ D u.�e

t /et=2; (5.1.6)

so that

kHuk2
L2.R/ D k�1k

2
L2.R/;

k {Huk2
L2.R/ D k�2k

2
L2.R/:

We have

hB0u; uiL2.R/ D

“
H.x C y/. {H.x/H.y/CH.x/ {H.y//

2i�.y � x/
u.y/ Nu.x/dydx

D

“
H.�es C et /e

sCt
2

2i�.et C es/
�1.t/ N�2.s/dsdt

�

“
H.es � et /e

sCt
2

2i�.et C es/
�2.t/ N�1.s/dsdt

D

“
H.t � s/

4i� cosh. s�t
2
/
�1.t/ N�2.s/dsdt

�

“
H.s � t /

4i� cosh. s�t
2
/
�2.t/ N�1.s/dsdt;

so that
hB0u; uiL2.R/ D h QS0 � �1; �2iL2.R/ C hS0 � �2; �1iL2.R/

and

QS0.t/ D
{H.t/

4i� cosh.t=2/
; S0.t/ D

iH.t/

4� cosh.t=2/
: (5.1.7)

We calculateZ C1
0

dt

4� cosh.t=2/
D

1

2�
Œarctan.sinh.t=2//�C10 D

1

4
D

Z 0

�1

dt

4� cosh.t=2/
;

so that

jhB0u; uiL2.R/j �
1

2
k�1kL2.R/k�2kL2.R/ D

1

2
kHukL2.R/k {HukL2.R/;

proving the estimate of the lemma for u 2 S .R/ such that 0 … supp u. We use now
that we already know that B0 is a bounded self-adjoint operator on L2.R/: let u be
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a function in L2.R/ and let .�k/k�1 be a sequence2 in S .R/ such that each �k
vanishes in a neighborhood of 0 so that limk �k D u in L2.R/. We find that

jhB0u; uiL2.R/j

� jhB0.u � �k/; uiL2.R/j C jhB0�k; u � �kiL2.R/j C jhB0�k; �kiL2.R/j

� kB0kB.L2.R//
�
ku � �kkL2.R/kukL2.R/ C ku � �kkL2.R/k�kkL2.R/

�
C
1

2
kH�kkL2.R/k {H�kkL2.R/;

providing readily the result of the lemma since the multiplication by H and {H are
bounded operators on L2.R/.

Remark 5.1.6. The estimate (5.1.5) and Lemma 5.1.4 are already improving (5.1.4),
since the eigenvalues of the quadratic form R2 3 .x1; x2/ 7! x21 C

1
2
x1x2 are .2˙

p
5/=4, so that the right-hand side of (5.1.4) can be replaced by .2C

p
5/=4� 1:059.

Anyhow, we shall provide below a diagonalisation of A0 and optimal bounds.

N.B. We shall be a little faster in the sequel on the “cumbersome” detours to avoid
formal multiplication of kernels by Heaviside functions but the reader should keep
in mind that it is an important point to secure L2.R/-boundedness before any further
manipulation of the kernels.

5.1.2 An isometric isomorphism

Remark 5.1.7. The mapping ‰ defined by

‰WL2.R/! L2.RIC2/

u 7!
�
.Hu/.et /et=2; . {Hu/.�et /et=2

�
(5.1.8)

is an isometric isomorphism of Hilbert spaces: indeed, we have

kuk2
L2.R/ D

Z
R
ju.et /j2etdt C

Z
R
ju.�et /j2etdt:

Moreover, if .�1; �2/ 2 L2.RIC2/, we may define for x 2 R�

u.x/ D H.x/�1.ln x/x�1=2 C {H.x/�2.ln jxj/jxj�1=2;

and we have
‰.u/.t/ D

�
�1.t/; �2.t/

�
:

2Such a sequence is easy to find: a first step is to find a sequence . Q�k/k�1 in the Schwartz
space converging in L2.R/ towards u, then consider with a given ! 2 C1.RI Œ0; 1�/ such that
!.t/ D 0 for jt j � 1 and !.t/ D 1 for jt j � 2, �k.x/ D !.kx/ Q�k.x/.
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Remark 5.1.8. Using Lemma 5.1.4 and notations (5.1.6) we see that

hHA0Hu; uiL2.R/ D
1

2
k�1k

2
L2.R/ C

“
1

2i�
pv
e.sCt/=2

et � es
�1.t/ N�1.s/dsdt

D
1

2
k�1k

2
L2.R/ C

“
1

4i�
pv

1

sinh. t�s
2
/
�1.t/ N�1.s/dsdt

D

Z
R
j O�1.�/j

2

�
1

2
C yT0.�/

�
d�;

with
T0.t/ D

t

4 sinh.t=2/
pv

i

�t
: (5.1.9)

We have

yT0 D sign��0 with �0.�/ D
Z

t

4 sinh.t=2/
e�2i�t�dt; (5.1.10)

and we note that the function �0 belongs to S .R/, as the Fourier transform of a
function in S .R/. Also, we haveZ

�0.�/d� D O�0.0/ D
1

2
;

and this yields with d
d�
¹
1
2
C yT0º D 2�0 (which follows from (5.1.10)) and

1

2
C yT0.�/ D 1 �

Z C1
�

2�0.�
0/d� 0; (5.1.11)

since

d

d�

²
1

2
C yT0 C

Z C1
�

2�0.�
0/d� 0

³
D 0 and lim

�!C1
.sign��0/.�/ D

1

2
:

Theorem 5.1.9. Let A0 be the operator with Weyl symbol H.x/H.�/. The operator
A0 is bounded self-adjoint on L2.R/ so that we may define, with‰ defined in (5.1.8),

zA0 D ‰A0‰
�1:

The operator zA0 is the Fourier multiplier on L2.RIC2/ given by the matrix

M0.�/ D

 
1
2
C yT0.�/ yS0.�/

yS0.�/ 0

!
; (5.1.12)

where T0; S0 are defined respectively in (5.1.9), (5.1.7). In particular, we have with
ˆ D .�1; �2/ 2 L

2.RIC2/,

h zA0ˆ;ˆiL2.RIC2/ D

Z
R
e2i�t� hM0.�/ Ô .�/; Ô .�/iC2d�:
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Remark 5.1.10. As a consequence of Theorem 5.1.9, we find that the spectrum of
the self-adjoint bounded operator A0 is the closure of the set of eigenvalues of the
matrices M0.�/ when � runs on the real line.

Proof. The proof follows readily from Remarks 5.1.7, 5.1.8 and Lemmas 5.1.4, 5.1.5.

Lemma 5.1.11. Let N be a 2 � 2 Hermitian matrix

N D

�
a11 a12
a12 0

�
:

Then, the eigenvalues �� � �C of N are such that

�� < 0 < 1 < �C; (5.1.13)

if and only if
a12 6D 0 and ja12j

2 > 1 � a11: (5.1.14)

Proof. The characteristic polynomial of N is p.�/ D �2 � a11� � ja12j2 and since
a11 is real-valued, has two real roots �� � �C. If (5.1.14) holds true, the roots are
distinct and

p.0/ D �ja12j
2 < 0; p.1/ D 1 � a11 � ja12j

2 < 0;

implying (5.1.13). Conversely, if (5.1.13) is satisfied, then p.0/; p.1/ are both negat-
ive, implying (5.1.14), completing the proof of the lemma.

Lemma 5.1.12. Let us define for ! 2 R,

I.!/ D
1

4�

Z C1
0

sin.t!/
cosh.t=2/

dt:

Then, we have

I.!/ D
1

4�!
CO.!�3/; j!j ! C1:

Proof. Indeed, we have for ! 2 R�,

I.!/ D �
1

4�!

Z C1
0

d
dt

cos.t!/
cosh.t=2/

dt

D
1

4�!

�
1 �

Z C1
0

cos.t!/
.cosh.t=2//2

1

2
sinh.t=2/dt

�
D

1

4�!
.1C g.!//;
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with

g.!/ D �

Z C1
0

d

!dt
¹sin.t!/ºsech.t=2/

1

2
tanh.t=2/dt

D
1

2!

Z C1
0

sin.t!/
d

dt

®
sech.t=2/ tanh.t=2/

¯
dt

D �
1

2!2

Z C1
0

d

dt

®
cos.t!/

¯ d
dt

®
sech.t=2/ tanh.t=2/

¯
dt

D
1

2!2

²Z C1
0

cos.t!/
d2

dt2

®
sech.t=2/ tanh.t=2/

¯
dt C

1

2

³
D O.!�2/;

proving the lemma.

Proposition 5.1.13. The matrix M0.�/ defined in (5.1.12) is equal to

M0.�/ D

�
a11.�/ a12.�/

a12.�/ 0

�
; (5.1.15)

with

1 � a11.�/ D

Z C1
�

2�0.�
0/d� 0; a12.�/ D

i

4�

Z C1
0

e�2i�� t

cosh.t=2/
dt: (5.1.16)

We have

1 � a11.�/ D O.�
�N / for any N when � !C1; (5.1.17)

Re.a12.�// D
1

8�2�
CO.��3/ when � !C1. (5.1.18)

Proof. Formulas (5.1.15), (5.1.16) follow from Theorem 5.1.9, (5.1.11), and (5.1.7).
The estimates (5.1.17) follow from the fact that �0 belongs to the Schwartz class and
(5.1.18) is a reformulation of Lemma 5.1.12.

Theorem 5.1.14. Let A0 be the operator with Weyl symbol H.x/H.�/, where H is
the Heaviside function. Then, A0 is a bounded self-adjoint operator on L2.R/ such
that

inf
�
spectrum.A0/

�
< 0 < 1 < sup

�
spectrum.A0/

�
: (5.1.19)

Proof. Using Remark 5.1.10 and Proposition 5.1.13 we find that for � large enough,
Conditions (5.1.14) are satisfied, proving readily (5.1.19).

Corollary 5.1.15 (A counterexample to Flandrin’s conjecture). There exists a func-
tion �0 2 S .R/, with L2.R/ norm equal to 1 such that“

x�0;��0

W.�0; �0/.x; �/dxd� > 1:

There exists a > 0 such that
’
0�x�a;0���a

W.�0; �0/.x; �/dxd� > 1.
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Remark 5.1.16. In [13, page 2178], we find the sentence “it is conjectured that

8u 2 L2.R/;

“
C

W.u; u/.x; �/dxd� � kuk2
L2.R/; (5.1.20)

is true for any convex domain C”, a quite mild commitment for the validity of
(5.1.20), although that statement was referred to later on as Flandrin’s conjecture
in the literature. The second part of the above corollary is providing a disproof of that
conjecture based upon an “abstract” argument used in the proof of Theorem 5.1.14;
the result of that corollary was already known via a numerical analysis argument after
our joint work [6] with B. Delourme and T. Duyckaerts.

Proof. From Theorem 5.1.14, we find u0 2 L2.R/ such that

ku0k
2
L2.R/ < hA0u0; u0i:

Let  2 S .R/: we have

jhA0u0; u0i � hA0 ; ij D jhA0.u0 �  /; u0i C hA0 ; u0 �  ij

� kA0kB.L2.R//ku0 �  kL2.R/
�
ku0kL2.R/ C k kL2.R/

�
;

and thus if . k/k�1 is a sequence of S .R/ converging towards u0 in L2.R/, we get

ku0k
2
L2.R/ < hA0u0; u0i

� hA0 k;  ki C kA0kB.L2.R//ku0 �  kkL2.R/
�
ku0kL2.R/ C k kkL2.R/

�„ ƒ‚ …
D�k ; goes to 0 when k!C1.

:

There exists k0 � 1 such that for k � k0, we have

0 � �k �
1

2

�
hA0u0; u0i � ku0k

2
L2.R/

�
D
"0

2
; "0 > 0:

We obtain that for k � k0,

ku0k
2
L2.R/ < hA0u0; u0i � hA0 k;  ki C

"0

2
;

and thus

k kk
2
L2.R/ D k kk

2
L2.R/ � ku0k

2
L2.R/„ ƒ‚ …

D�k ; goes to 0 when k!C1

Cku0k
2
L2.R/

D �k C hA0u0; u0i � "0 � �k C hA0 k;  ki C
"0

2
� "0

D hA0 k;  ki C �k �
"0

2
:
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Choosing now k � k0 and k large enough to have �k < "0=4, we get

k kk
2
L2.R/ � hA0 k;  ki �

"0

4
< hA0 k;  ki;

and since for Q� D  k , the Wigner distribution W. Q�; Q�/ belongs to S .R2/, we have

k Q�k2
L2.R/ < hA0

Q�; Q�i D

“
H.x/H.�/W. Q�; Q�/.x; �/dxd�;

and noting that this strict inequality above implies that Q� 6D 0, we may set �0D Q�=k Q�k
and get the first statement in the corollary.

N.B. The proof above is complicated by the fact that the identity

hawu; uiL2.Rn/ D

“
R2n

a.x; �/W.u; u/.x; �/dxd�;

is valid a priori for u 2 S .Rn/ (and in that case W.u; u/ belongs to S .R2n/), but
could be meaningless as a Lebesgue integral even for Opw.a/ bounded on L2.Rn/
and u 2 L2.Rn/, since we shall have W.u; u/ 2 L2.R2n/ but not in L1.R2n/ (we
shall see in Chapter 6 that generically the Wigner distribution of a pulse u in L2.Rn/
does not belong to L1.R2n/).

Since W.�; �/ belongs to the Schwartz space of R2, the Lebesgue dominated
convergence theorem provides the last statement in the corollary.

N.B. The reader will notice that the results of the incoming Section 5.2 in the special
case � D 0 imply the results of Section 5.1, which could be then erased, say at the
second reading. However, as far as the first – and maybe only – reading is concerned,
we checked that most of the computational arguments in the next section are much
more involved and it seemed worthwhile to the author to avoid unnecessary complic-
ations for the disproof of Flandrin’s conjecture via the quarter-plane example and set
apart the more involved examples of the hyperbolic regions tackled in Section 5.2.

5.2 Hyperbolic regions

We consider in this section the (5.0.1) set C� with a non-negative � .

5.2.1 A preliminary observation

We want to consider the operator A� with Weyl symbol H.x/H.x� � �/ and as in
Section 5.1.1, we would like to secure the fact that A� is bounded on L2.R/.
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Claim 5.2.1. For all � � 0 the operator A� is bounded self-adjoint on L2.R/.

Proof of the claim. Let us choose

�0 2 C
1.RI Œ0; 1�/ with

´
�0.t/ D 0 for t � 1;

�0.t/ D 1 for t � 2:
(5.2.1)

For �; 2 S .R/, we have

h.A0 � A� /�;  iS �.R/;S .R/

D

“
H.x/H.�/H.� � x�/W.�;  /.x; �/„ ƒ‚ …

2S .R2/

dxd�

D lim
"!0C

“
�0.x="/H.�/H.� � x�/W.�;  /.x; �/dxd�: (5.2.2)

The kernel k�;" of the operator with Weyl symbol �0.x="/H.�/H.� � x�/ is

`�;".x; y/ D �0

�
x C y

2"

�
e2i��

x�y
xCy

sin.2��.x�y/
xCy

/

�.x � y/
;

and we have“
`�;".x; y/�.y/ N .x/dydx

D

“
�0

�
x C y

2"

�
e2i��

x�y
xCy

sin.2��.x�y/
xCy

/

�.x � y/
�.y/ N .x/dxdy

D

“
�0

�
x C y

2

�
e2i��

x�y
xCy

sin.2��.x�y/
xCy

/

�".x � y/
�."y/ N ."x/"2dxdy

D

“
�0

�
x C y

2

�
e2i��

x�y
xCy

sin.2��.x�y/
xCy

/

�.x � y/„ ƒ‚ …
m� .x;y/

�."y/"1=2„ ƒ‚ …
�".y/

N ."x/"1=2„ ƒ‚ …
N ".x/

dydx: (5.2.3)

We note that, assuming as we may that � > 0,

jm� .x; y/H.x/H.y/j

D �0

�
x C y

2

�ˇ̌̌̌sin.2��.x�y/
xCy

/

2��.x�y/
xCy

ˇ̌̌̌
2�H.x/H.y/

x C y
�
2�H.x/H.y/

x C y
; (5.2.4)

and

jm� .x; y/ {H.x/H.y/j D �0

�
x C y

2

�ˇ̌̌̌sin.2��.x�y/
xCy

/

�.x � y/

ˇ̌̌̌
{H.x/H.y/ �

{H.x/H.y/

�.y � x/
;

(5.2.5)
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as well as

jm� .x; y/ {H.y/H.x/j D �0

�
x C y

2

�ˇ̌̌̌sin.2��.x�y/
xCy

/

�.x � y/

ˇ̌̌̌
{H.y/H.x/ �

{H.y/H.x/

�.x � y/
:

(5.2.6)
As a consequence, since we have also m� .x; y/ {H.x/ {H.y/ � 0; the inequalities
(5.2.4), (5.2.5), (5.2.6), the identities (5.2.3), (5.2.2) and Proposition A.5.1 imply that

jh.A0 � A� /�;  iS �.R/;S .R/j � 2�� kH�"kL2.R/„ ƒ‚ …
kH�k

L2.R/

kH "kL2.R/

C k {H�"kL2.R/„ ƒ‚ …
k {H�k

L2.R/

kH "kL2.R/ C kH�"kL2.R/k {H "kL2.R/;

proving that A0 � A� is bounded on L2.R/; with Proposition 5.1.3, this implies that
A� is also bounded on L2.R/, proving the claim.

N.B. With that important piece of information in Claim 5.2.1, we shall be less strict in
manipulations of kernels and accept below some abuse of language in these matters.

The Weyl quantization of 1C� has the kernel

k� .x; y/ D H.x C y/e
4i��. x�y

xCy / 1
2

�
ı0.y � x/C

1

i�
pv

1

y � x

�
; (5.2.7)

a formula to be compared to (5.1.2). Using the Schwartz function �0 of Corollary
5.1.15, we get from Lebesgue dominated convergence theorem that for � small enough

hOpw.1C� /�0; �0iL2.R/ D

“
x���;x>0

W.�0; �0/.x; �/dxd� > 1:

However, this argument does not work for large positive � and we must go back to a
direct calculation.

5.2.2 Diagonal terms

Denoting byA� the operator with kernel (5.2.7) (and Weyl symbolH.x� � �/H.x/),
we find that for u 2 S .R/, uC D Hu, we have

hA�Hu;HuiL2.R/

D

“
e4i��.

x�y
xCy / 1

2

�
ı0.y � x/C

1

i�
pv

1

y � x

�
uC.y/ NuC.x/dydx

D
1

2
kuCk

2
L2.RC/ C

“
R2
e
4i��. e

s�et
esCet / 1

2i�
pv

1

et � es
uC.e

t / NuC.e
s/esCtdsdt

D
1

2
kuCk

2
L2.RC/ C

“
R2
e4i�� tanh. s�t2 / 1

2i�
pv
e.sCt/=2

et � es
�1.t/ N�1.s/dsdt;
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with
�1.t/ D uC.e

t /et=2;

so that
k�1kL2.R/ D kuCkL2.RC/:

We get

hA�Hu;HuiL2.R/ D
1

2
kuk2

L2.RC/ C
1

4i�

“
R2

e4i�� tanh. s�t2 /

sinh. t�s
2
/
�.t/ N�.s/dsdt;

and noting that sinh x D xC.x/, with C even such that 1=C 2 S .R/, we find

hA�Hu;HuiL2.R/ D
1

2
k�1k

2
L2.R/ �

1

2i�

“
R2

e4i�� tanh. s�t2 /

.s � t /C. s�t
2
/
�.t/ N�.s/dsdt

D
1

2
k�1k

2
L2.R/ C hT� � �1; �1iL2.R/

D

Z
R
j O�1.�/j

2

�
1

2
C yT� .�/

�
d�; (5.2.8)

with

T� .t/ D
1

4

te4i�� tanh. t2 /

sinh.t=2/
pv

i

�t
: (5.2.9)

We note that
yT� .�/ D sign��� ;

with

�� .�/ D
1

4

Z
te4i�� tanh. t2 /

sinh.t=2/
e�2i�t�dt; �� 2 S .R/; (5.2.10)

since the function

R 3 t 7!
te4i�� tanh. t2 /

sinh.t=2/

belongs to the Schwartz space3. Note also that the function �� is real-valued on the
real line. This entails that

d

d�

²
1

2
C yT�

³
D 2�� ; (5.2.11)

and since

�� .�/ D
1

4
F

²
t 7!

te4i�� tanh.t=2/

sinh.t=2/

³
;

3Indeed, the iterated derivatives of tanh are polynomials of tanh (check this by induction on
the order of derivatives) and thus bounded on the real line; since the function t 7! t= sinh.t=2/
belongs to the Schwartz space, this proves that the above product is in S .R/.
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implying Z
R
�� .�/d� D

1

2
;

we get that

lim
�!˙1

yT� .�/ D ˙
1

2
: (5.2.12)

This yields that

1

2
C yT� .�/ � 1 D

Z �

C1

2�� .�
0/d� 0 D �1C

Z �

�1

2�� .�
0/d� 0;

where the last equality follows from (5.2.12): indeed, we have for �>0, from (5.2.11),

1

2
C yT� .�/ � 1 D

Z �

C1

2�� .�
0/d� 0 D �1C

Z �

�1

2�� .�
0/d� 0; (5.2.13)

and for � < 0,

1

2
C yT� .�/ D

Z �

�1

2�� .�
0/d� 0 D 1C

Z �

C1

2�� .�
0/d� 0:

We note that

8N 2 N; sup
�2R
j� jN

ˇ̌̌̌
1

2
C yT� .�/ �H.�/

ˇ̌̌̌
< C1: (5.2.14)

Indeed, for � > 0, we have, using �� 2 S .R/,ˇ̌̌̌
�N

Z �

C1

�� .�
0/d� 0

ˇ̌̌̌
�

Z C1
�

j�� .�
0/j� 0

N
d� 0 �

Z C1
0

j�� .�
0/j� 0

N
d� < C1:

Also, for � < 0, we haveˇ̌̌̌
�N

Z �

�1

�� .�
0/d� 0

ˇ̌̌̌
�

Z �

�1

j�� .�
0/jj� 0jNd� 0 �

Z 0

�1

j�� .�
0/jj� 0jNd� < C1:

This means that the Fourier multiplier 1
2
C yT� .�/ is somehow “exponentially close”

to H.�/ for large values of j� j and in particular close to 1 for large positive values of
� . We have also

yT� .�/ D
i

4�

Z
R
e�2i�� t

e4i�� tanh. t2 /

sinh.t=2/
dt

D
1

2�

Z C1
0

sin.2�t� � 4�� tanh.t=2//
sinh.t=2/

dt: (5.2.15)

The next lemma provides more precise estimates than (5.2.14).
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Lemma 5.2.2. Let � > 0;� � 0. Defining a11.�; �/D 1
2
C yT� .�/ as given by (5.2.9),

we have
j1 � a11.�; �/j � 2e

��2�e4�� : (5.2.16)

Proof. Using (5.2.13) and Lemma A.6.3, we find that for � > 0,

j1 � a11.�; �/j � 2

Z C1
�

j�� .�
0/jd� 0

� 2

Z C1
�

j�� .�
0/jd� 0

� 12e4��
Z C1
�

e��
2� 0d� 0

D e4��
12

�2
e��

2� ;

entailing the sought result.

5.2.3 Off-diagonal terms

We want now to check the off-diagonal terms: we have with u 2 S .R/,

uC D Hu; u� D {Hu;

�1.t/ D uC.e
t /et=2; �2.t/ D u�.�e

t /et=2;

and

hA� {Hu;HuiL2.R/

D

“
e4i��.

x�y
xCy /H.x C y/

{H.y/H.x/

2i�
pv

1

y � x
u�.y/ NuC.x/dydx

D

“
e
4i��. e

sCet
es�et /

H.es � et /

2i�
pv

1

�et � es
�2.t/ N�1.s/e

tCs
2 dtds

D

“
e4i��coth. s�t2 / iH.s � t /

4�

1

cosh. t�s
2
/
�2.t/ N�1.s/dtds

D
i

4�

“
e4i��coth. s�t2 /H.s � t /

1

cosh. s�t
2
/
�2.t/ N�1.s/dtds

D hS� � �2; �1iL2.R/; (5.2.17)

with

S� .t/ D
i

4�
H.t/

e4i��coth. t2 /

cosh. t
2
/
: (5.2.18)
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We have also that

yS� .�/ D
i

4�

Z
H.t/

e4i��coth. t2 /

cosh. t
2
/
e�2i�t�dt

D
i

4�

Z C1
0

cos.4�� coth.t=2/ � 2�t�/
cosh. t

2
/

dt

�
1

4�

Z C1
0

sin.4�� coth.t=2/ � 2�t�/
cosh. t

2
/

dt

D
i

4�

Z C1
0

cos.2�t� � 4�� coth.t=2//
cosh. t

2
/

dt

C
1

4�

Z C1
0

sin.2�t� � 4�� coth.t=2//
cosh.t=2/

dt: (5.2.19)

Note that from (5.2.9), (5.2.10), we have

yT� .�/ D
i

4�

Z
e4i�� tanh. t2 /

sinh.t=2/
e�2i�t�dtD

1

2�

Z C1
0

sin.2�t� � 4�� tanh.t=2//
sinh.t=2/

dt:

5.2.4 An isometric isomorphism

Theorem 5.2.3. Let � � 0 be given, let C� be the set defined by (5.0.1) and let A� be
the operator with Weyl symbol 1C� , (whose kernel is given by (5.2.7)). The operator
A� is bounded self-adjoint on L2.R/ so that we may define, with‰ defined in (5.1.8),

zA� D ‰A�‰
�1:

The operator zA� is the Fourier multiplier on L2.RIC2/ given by the matrix

M� .�/ D

 
1
2
C yT� .�/ yS� .�/

yS� .�/ 0

!
; (5.2.20)

where T� ; S� are defined respectively in (5.2.9), (5.2.15), (5.2.18). In particular, we
have with ˆ D .�1; �2/ 2 L2.RIC2/,

h zA�ˆ;ˆiL2.RIC2/ D

Z
R
e2i�t� hM� .�/ Ô .�/; Ô .�/iC2d�: (5.2.21)

Proof. We have

kernel.HA�H/ D e4i��
x�y
xCyH.x/H.y/ yH.y � x/;

kernel. {HA�H CHA� {H/

D e4i��
x�y
xCyH.x C y/

�
{H.x/H.y/CH.x/ {H.y/

� 1

2i�.y � x/
;

{HA� {H D 0:
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Proposition A.5.1 in Appendix A.7 is readily giving the L2-boundedness (and self-
adjointness) of

{HA�H CHA� {H:

We find also that HA�H � H
2

has kernel

e4i��
x�y
xCyH.x/H.y/

1

2i�.y � x/
;

and thus it is enough to study the operator with kernel

e
4i�� e

s�et
esCet e

sCt
2

2i�.et � es/
D e4i�� tanh. s�t2 / 1

4i� sinh. t�s
2
/
;

which is a convolution operator by

T� .t/ D e
4i�� tanh. t2 /

t

4 sinh. t
2
/
pv

i

�t
;

given by (5.2.9). Formula (5.2.10) implies in particular that yT� is bounded (and real-
valued) on the real line, entailing eventually the boundedness and self-adjointness of
A� . Formulas (5.2.8), (5.2.17), and (5.2.18) are providing (5.2.21), completing the
proof of the theorem.

5.2.5 The main result on hyperbolic regions

Theorem 5.2.4. Let � � 0 be given and let A� be the operator defined in Theorem
5.2.3. Then, A� is a bounded self-adjoint operator on L2.R/ such that

inf
�
spectrum.A� /

�
< 0 < 1 < sup

�
spectrum.A� /

�
:

The spectrum of A� is the closure of the set of eigenvalues of M� .�/ for � running
on the real line.

Remark 5.2.5. It is enough to prove that, with a given � � 0, there exists � 2 R such
that M� .�/ satisfies (5.1.14).

Proof. We have from (5.2.20), (5.2.15), and (5.2.19),

M� .�/ D

0B@1
2
C

1
2�

R C1
0

sin.2�t��4�� tanh.t=2//
sinh.t=2/ dt � i

4�

R C1
0

e
�2i�.t�� 2�

tanh.t=2/ /

cosh.t=2/ dt

1
4i�

R C1
0

e
2i�.t�� 2�

tanh.t=2/ /

cosh.t=2/ dt � 0

1CA
D

�
a11.�; �/ a12.�; �/

a21.�; �/ a22.�; �/

�
: (5.2.22)
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On the other hand, we have

a12 D a21 D
1

4i�

Z C1
0

e2i�.t��
2�

tanh.t=2/ /

cosh.t=2/
dt; (5.2.23)

so that

Re a12.�; �/ D
1

4�

Z C1
0

sinŒ2�.t� � 2�

tanh. t2 /
/�

cosh. t
2
/

dt: (5.2.24)

We note that the function

t 7!
e2i�.t��

2�
tanh.t=2/ /

cosh.t=2/
;

is holomorphic on Cni�Z, with simple poles at .2ZC 1/i� (zeroes of cosh.t=2/)
and essential singularities at 2Zi� (zeroes of sinh.t=2/). We shall need a more expli-
cit quantitative expression for a21 to obtain a precise asymptotic result which could
be compared to the estimate (5.2.16). The next lemma is proven in [55]; we provide
a proof here for the convenience of the reader.

Lemma 5.2.6. Let � > 0; � � 0 be given and let a21.�; �/ be given by (5.2.23). We
have

Re a21.�; �/ D
e�2�

2�

4�

´Z �

0

�e2�.t��2� tan.t=2// � 1

sin.t=2/
C

sinh.t=2/ � sin.t=2/
sinh.t=2/ sin.t=2/

�
dt

C

Z �

0

1 � cos 2�.t� � 2� tanh.t=2//
sinh.t=2/

dt

�

Z C1
�

cos 2�.t� � 2� tanh.t=2//
sinh.t=2/

dt

µ
: (5.2.25)

Proof of Lemma 5.2.6. Let 0 < " < �=2 < � < R be given. We consider the closed
path 
";R of Cni�Z with index
";R.i�Z/ � 0,


";R D Œ"; R� [ ŒR;RC i�� [ ŒRC i�; "C i�� (5.2.26)

[ ¹i� C "ei�º0�����=2 [ i Œ� � "; "� [ ¹"e
i�
º�=2���0;

and we have I

";R

e2i�.z��
2�

tanh.z=2/ /

cosh.z=2/
dz D 0: (5.2.27)

We note as well that

I2 D

I
ŒR;RCi��

e2i�.z��
2�

tanh.z=2/ /

cosh.z=2/
dz D i

Z �

0

e
2i�..RCit/�� 2�

tanh.RCit
2

/
/

cosh.RCit
2
/

dt

D ie2i�R�
Z �

0

e�2�t�e
�4i�� 1Ce�R�it

1�e�R�it
2dt

e
RCit
2 .1C e�R�it /

; (5.2.28)
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so that

jI2j � 2e
�R=2

Z �

0

e
4�� Im

�
1Ce�R�it
1�e�R�it

�
dt

j1 � e�Rj
;

and since

Im
�
1C e�R�it

1 � e�R�it

�
D Im

.1C e�R�it /.1 � e�RCit /

j1 � e�R�it j2
D
�2e�R sin t
j1 � e�R�it j2

� 0;

we get

jI2j � e
�R=2 2�

1 � e�R
; where I2 is defined in (5.2.28): (5.2.29)

We note for future reference the standard formulas,

cosh
�
i�

2
C z

�
D i sinh z; sinh

�
i�

2
C z

�
D i cosh z; tanh

�
i�

2
C z

�
D coth z;

(5.2.30)
and we check now

I4 D �

Z 0

��=2

e2i�..i�C"e
i� /��2�coth. i�C"ei�2 //

cosh i�C"ei�

2

i"ei�d�

D �e�2�
2�

Z 0

��=2

e2i�."e
i� ��2� tanh. "e

i�

2 //

i sinh "ei�

2

i"ei�d�; (5.2.31)

and sinceˇ̌̌̌
e2i�."e

i� ��2� tanh. "e
i�

2 //

i sinh "ei�

2

i"ei�
ˇ̌̌̌
� 2 max

jzj��=2

ˇ̌̌̌
z

sinh z

ˇ̌̌̌
e�

2�e4�� supjzj��=4
ˇ̌

sinhz
coshz

ˇ̌
;

the Lebesgue dominated convergence theorem gives

lim
"!0C

I4 D ��e
�2�2� : (5.2.32)

Defining now

I6 D �

Z �=2

0

e2i�."e
i� ��2�coth. "e

i�

2 //

cosh "ei�

2

i"ei�d�; (5.2.33)

and noting that

4�� Im coth
�
"ei�

2

�
D 4�� Im

1C e�"e
i�

1 � e�"e
i�
D 4�� Im

.1C e�"e
i�
/.1 � e�"e

�i�
/

j1 � e�"e
i�
j2

D 4�� Im
e�"e

i�
� e�"e

�i�

j1 � e�"e
i�
j2
D 4�� Im

e�" cos � .e�i" sin � � ei" sin � /

j1 � e�"e
i�
j2

D 4��e�" cos � Im
.�2i/ sin." sin �/

j1 � e�"e
i�
j2
D �4��e�" cos � 2 sin." sin �/

j1 � e�"e
i�
j2
� 0;
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we get that

jI6j �

Z �=2

0

e�2�"� sin �

minjzj��=4 j cosh zj
d�" � "

�=2

minjzj��=4 j cosh zj
;

entailing
lim
"!0C

I6 D 0: (5.2.34)

With

I1 D

I
Œ";R�

e2i�.z��
2�

tanh.z=2/ /

cosh.z=2/
dz; (5.2.35)

we have from (5.2.23)
lim
"!0C
R!C1

I1 D 4i�a21: (5.2.36)

We define now

I5 D �

I
Œi";i.��"/�

e2i�.z��
2�

tanh.z=2/ /

cosh.z=2/
dz D �

Z ��"

"

e2i�.it��
2�

tanh.it=2/ /

cosh.i t=2/
idt

D �

Z ��"

"

e�2�t�
e
�4i��
i tan.t=2/

cos.t=2/
idt D �i

Z ��"

"

e�2�t�
e
�4��

tan.t=2/

cos.t=2/
dt

D �i

Z ��"

"

e�2�.��s/�
e�

4��
tan..��s/=2/

cos..� � s/=2/
ds

D �ie�2�
2�

Z ��"

"

e2�s�
e�

4�� sin.s=2/
cos.s=2/

sin.s=2/
ds;

so that

I5 D �ie
�2�2�

Z ��"

"

e2�s�
e�4�� tan.s=2/

sin.s=2/
ds: (5.2.37)

We have also

I3 D

I
ŒRCi�;"Ci��

e2i�.z��
2�

tanh.z=2/ /

cosh.z=2/
dz

D �

Z R

"

e2i�..tCi�/��
2�

tanh..tCi�/=2/ /

cosh..t C i�/=2/
dt; (5.2.38)

so that using Formulas (5.2.30), we get

I3 D �e
�2�2�

Z R

"

e2i�.t��2� tanh.t=2//

i sinh.t=2/
dt;
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and

I3 C I5 D ie
�2�2�

�Z R

"

e2i�.t��2� tanh.t=2//

sinh.t=2/
dt �

Z ��"

"

e2�t�
e�4�� tan.t=2/

sin.t=2/
dt

�
D ie�2�

2�

²Z ��"

"

�
e2i�.t��2� tanh.t=2//

sinh.t=2/
�
e2�.t��2� tan.t=2//

sin.t=2/

�
dt

C

Z R

��"

e2i�.t��2� tanh.t=2//

sinh.t=2/
dt

³
: (5.2.39)

From (5.2.27), (5.2.26), (5.2.28), (5.2.31), (5.2.33), (5.2.35), and (5.2.37), (5.2.38),
we find that

I1 D �I2 � .I3 C I5/ � I4 � I6;

so that taking the limit of both sides4 when " ! 0C; R ! C1 we get, thanks to
(5.2.36), (5.2.29), (5.2.39), (5.2.32), and (5.2.34),

4i�a21 D �ie
�2�2�

²Z �

0

�
e2i�.t��2� tanh.t=2//

sinh.t=2/
�
e2�.t��2� tan.t=2//

sin.t=2/

�
dt

C

Z C1
�

e2i�.t��2� tanh.t=2//

sinh.t=2/
dt

³
C �e�2�

2� ;

implying that

a21 D
e�2�

2�

4�

²Z �

0

�
�
e2i�.t��2� tanh.t=2//

sinh.t=2/
C
e2�.t��2� tan.t=2//

sin.t=2/

�
dt

�

Z C1
�

e2i�.t��2� tanh.t=2//

sinh.t=2/
dt

³
�
i

4
e�2�

2�

that is

a21 D
e�2�

2�

4�

Z �

0

�
e2�.t��2� tan.t=2//

sin.t=2/
�

cos 2�.t� � 2� tanh.t=2//
sinh.t=2/

�
dt

�
e�2�

2�

4�

Z C1
�

cos 2�.t� � 2� tanh.t=2//
sinh.t=2/

dt

� i
e�2�

2�

4�

Z �

0

sin 2�.t� � 2� tanh.t=2//
sinh.t=2/

dt �
i

4
e�2�

2�

� i
e�2�

2�

4�

Z C1
�

sin 2�.t� � 2� tanh.t=2//
sinh.t=2/

dt; (5.2.40)

4I1; I2; I4; I6; I3 C I5 do have limits when "! 0C; R!C1.
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yielding

Re a21 D
e�2�

2�

4�

Z �

0

�
e2�.t��2� tan.t=2//

sin.t=2/
�

cos 2�.t� � 2� tanh.t=2//
sinh.t=2/

�
dt

�
e�2�

2�

4�

Z C1
�

cos 2�.t� � 2� tanh.t=2//
sinh.t=2/

dt;

completing the proof of Lemma 5.2.6.

Remark 5.2.7. Formula (5.2.40) also yields

Im a12 D � Im a21 D
e�2�

2�

4�

²Z �

0

sin 2�.t� � 2� tanh.t=2//
sinh.t=2/

dt C �

C

Z C1
�

sin 2�.t� � 2� tanh.t=2//
sinh.t=2/

dt

³
;

and since from (5.2.22), we have

a11 D
1

2
C

1

2�

Z C1
0

sin.2�t� � 4�� tanh.t=2//
sinh.t=2/

dt;

this gives

Im a12 D
e�2�

2�

4�

�
2�

�
a11 �

1

2

�
C �

�
D
e�2�

2�

2
a11: (5.2.41)

To complete the proof of Theorem 5.2.4, it will be enough, according to Lemma
5.1.11, to prove that, for � !C1, ja12j2 � 1 � a11: To achieve that, we note from
(5.2.41) that the imaginary part of a12 is useless and we shall prove simply that

.Re a12/2 � 1 � a11:

To get this we are going to use (5.2.16) and a precise asymptotic behavior for .Re a12/2

displayed in the next lemma and issued from the explicit formula (5.2.25).

Lemma 5.2.8. Let � � 1; � � 0 be given and let a21.�; �/ be given by (5.2.23). We
have then

Re a21.�; �/ �
e�8�

p
�
p
�

8�3�
�

1

2�
e�2�

2� : (5.2.42)

Proof of Lemma 5.2.8. Since for t � 0we have sinh.t=2/� sin.t=2/� 0, we get from
(5.2.25),

Re a21.�; �/ �
e�2�

2�

4�

²Z �

0

e2�.t��2� tan.t=2// � 1

sin.t=2/
dt �

Z C1
�

1

sinh.t=2/
dt

³
D
e�2�

2�

4�

Z �

0

e2�.t��2� tan.t=2// � 1

sin.t=2/
dt �

e�2�
2�

2�
ln
�

coth
�

4

�
:
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Let us define

! D 2��; � D 2��; � D �1=2!�1=2; ��.s/ D s � �
2 tan s: (5.2.43)

We have

2�
�
t� � 2� tan.t=2//D 2��.t � 2�2 tan.t=2//D 4��

�
t

2
� �2 tan

t

2

�
D 2!��.t=2/:

We have thus

Re a21.�; �/ �
e��!

2�

Z �=2

0

e2!��.s/ � 1

sin s
ds �

e��!

2�
ln
�

coth
�

4

�
„ ƒ‚ …
�0:421908

: (5.2.44)

Defining

 �.!/ D
e��!

2�

Z �=2

0

e2!��.s/ � 1

sin s
ds; (5.2.45)

we can use (5.2.43), (5.2.44), and (A.6.13) to get whenever � > 0,

2� Re a21.�; �/ �
e�8�

p
�
p
�

�2�

�
1

2
�
1

4�

�
� e�2�

2� ;

so that for � � 1 we find

2� Re a21.�; �/ �
e�8�

p
�
p
�

4�2�
� e�2�

2� ;

yielding the lemma.

We eventually go back to the proof of Theorem 5.2.4: let � > 0 be given. From
Lemma 5.2.8 and (5.2.16), we have for � � 1,

j1 � a11.�; �/j � 2e
��2�e4�� ;

Re a21.�; �/ �
e�8�

p
�
p
�

8�3�
�

1

2�
e�2�

2�
D
e�8�

p
�
p
�

8�3�

�
1 �

4�2�e8�
p
�
p
�

e2�
2�

�
:

This entails that for � � �0.�/, we have

Re a21.�; �/ �
e�8�

p
�
p
�

16�3�
; (5.2.46)

and thus a21 6D 0 and

ja21.�; �/j
2
�
e�16�

p
�
p
�

28�6�2
> j1 � a11.�; �/j; (5.2.47)
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where the last inequality above holds true (thanks to (5.2.16)) whenever

2e��
2�e4�� <

e�16�
p
�
p
�

28�6�2
;

which is indeed true for � � �1.�/. As a result for � � max.4�; 4; �0.�/; �1.�//, we
obtain that (5.2.47) is satisfied so that Remark 5.2.5 implies the result of Theorem
5.2.4, completing our proof.

Remark 5.2.9. The functions �0.�/; �1.�/ can be determined rather easily, the first
one by the condition

� � �0.�/ H)
4�2�e8�

p
�
p
�

e2�
2�

�
1

2
;

whereas the second one should satisfy

� � �1.�/ H) e4��29�6�2e16�
p
�
p
� < e�

2� :

5.3 Comments and further results

5.3.1 Qualitative explanations on the various computations

We would like to go back to our proofs that

ja12.�; �/j
2
� j1 � a11.�; �/j; � !C1; (5.3.1)

which is our key argument via Lemma 5.1.11 and give a couple of qualitative explan-
ations which may enlighten the calculations. It is of course much simpler to begin
with the case � D 0: in that case, according to Proposition 5.1.13 and (5.1.10), we
have

1 � a11.�; 0/ D

Z C1
�

2�0.�
0/d�; 2�0.�/ D

Z �
t=2

sinh.t=2/

�
„ ƒ‚ …
Df0.t/; f0 2S .R/

holomorphic
on j Im t j < 2� .

e�2i�t�ds;

so that 2�0.�/D Of0.�/. We get thus readily that �0 belongs to the Schwartz space, as
the Fourier transform of a function in the Schwartz space and this implies in particular
that 1 � a11.�; 0/ has fast decay towards 0 when � !C1, as proven in Proposition
5.1.13. We note also that (5.2.41) gives Im a12.�; 0/

2 D e�4�
2�a11.�; 0/

2=4; and
since the limit of a11 is 1, we do not expect any help from the imaginary part of a12
to proving (5.3.1). Turning our attention to Re a12 in (5.1.18), we have

4� Re a21.�; 0/ D
Z C1
0

sin .2�t�/
cosh.t=2/

dt; (5.3.2)
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which is the sine-Fourier transform of the function t 7! H.t/ sech.t=2/ D g0.t/,
which has a singularity at t D 0: as a consequence, thanks to Lemma A.1.1, the
Fourier transform bg0 cannot be rapidly decreasing, cannot even belong to L1.R/
(that would imply that g0 is continuous). Moreover, the sine-Fourier transform above
is the Fourier transform of the odd part of g0, godd.t/D sech.t=2/ sign t , which is also
singular at 0, thus bgodd cannot be rapidly decreasing and is an odd function, which
is enough to prove, without more calculations, that (5.3.1) holds true. In Section 5.1,
we used a more explicit argument, with providing an equivalent of (5.3.2) equal to
1=.2��/ nearC1. Summing-up, (5.3.1) in the case � D 0 follows from the existence
of a singularity of the function g0 above, which is discontinuous at 0.

Let us now take a look at the case � > 0, which turns out to be more computa-
tionally involved. We have from (5.2.23)

4�ia21.�; �/ D

Z
R
H.t/ sech.t=2/e�i4�� coth.t=2/e2i�t�dt D {cg� .�/;

g� .t/ D H.t/ sech.t=2/e�i4�� coth.t=2/:

The single discontinuity at t D 0 of g� when � > 0 is much wilder than for � D 0:
in the latter case, we had only a jump discontinuity with different limits on both
sides, whereas when � > 0, we have an essential discontinuity with an oscillatory
behaviour in .�1;C1/ when t ! 0C for the real and imaginary parts of a12. How-
ever, g� belongs to all Lp.R/; p 2 Œ1;C1�, so that its Fourier transform belongs
to Lp.R/; p 2 Œ2;C1�: we expect then that both sides of (5.3.1) have limit 0 for
� !C1 and we must prove that 1 � a11 decays much faster than a12. Looking at a
slightly simplified model and using the notations (5.2.43), we define for !;� positive,
a function ˛ presumably close to 4�ia21, given by

˛.!; �/ D

Z C1
0

ei2!��.s/ sech.s/ds; ��.s/ D s �
�2

s
; �0�.s/ D 1C

�2

s2
:

Trying our hand with the stationary phase method, we look at

˛.!; �/ D
1

2i!

Z C1
0

d

ds

®
ei2!��.s/

¯sech.s/
�0�.s/

ds

D
1

2i!

Z C1
0

d

ds

®
ei2!��.s/

¯s2 sech.s/
s2 C �2

ds

D
i

2!

Z C1
0

ei2!��.s/
d

ds

²
s2 sech.s/
s2 C �2

³
;

since the boundary term vanishes. Iterating that computation shows that ˛.!; �/ D
O� .!

�N / for all N when ! ! C1, meaning that the information of fast decay for
1� a11 will not suffice to get (5.3.1). Also, it is worth noticing that no fast decay of the
function ˛ occurs when ! ! �1, otherwise Lemma A.1.1 would give smoothness
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for the function s 7! e�2i�=sH.s/ sech s: in fact, we see also that for � > 0, � D ��,
� > 0, we have

2�ia21.��; �/ D

Z C1
0

sech.s/e�i4�� coth.s/e�4i�s�ds;

and the phase function is Q�.s/ D �4i�.s�C � coth.s// and we have

d

ds

®
s�C � coth.s/

¯
D � �

�.1 � tanh2 s/
tanh2 s

D
.�C �/ tanh2 s � �

tanh2 s
;

which does vanish at tanh s D �=.�C �/. As a result we could say that, for � > 0,
the C1 wave-front-set (see, e.g., [23, Section 8.1]) of the function g� is reduced to
¹0º � .�1; 0/. It turns out that we can show that the Gevrey-2 wave-front-set of g� is
¹0º �R�, and it is expressed via the lowerbound estimate (5.2.42); the route that we
took for proving this was an explicit calculation of Re a12, following the paper [55].
Finally, the upper bound (5.2.16) can be improved as

j1 � a11.�; �/j � C�;"e
�.��"/2�� ; " > 0;

and is expressing the fact that function

t 7!
te4i�� tanh. t2 /

sinh. t
2
/

is analytic on the real line, with a radius of convergence on the real line bounded
below by � (cf. Proposition A.1.2).

5.3.2 More results and examples: `p balls, corners

For a; �0 like in Corollary 5.1.15, defining

�p D

²
.x; �/ 2 R2;

ˇ̌̌̌
x �

a

2

ˇ̌̌̌p
C

ˇ̌̌̌
� �

a

2

ˇ̌̌̌p
<

�
a

2

�p³
;

since W.�0; �0/ 2 S .R2/, we get

lim
p!C1

“
�p

W.�0; �0/.x; �/dxd� D

“
Œ0;a�2

W.�0; �0/.x; �/dxd� > k�0k
2
L2.R/;

proving that the spectrum of Opw.1�p / intersects .1;C1/ for p large enough, show-
ing that a counterexample to Flandrin’s conjecture can be a convex analytic open
bounded set. Moreover, defining

Qa D
®
.x; �/ 2 R2; jxj C j�j � a=

p
2
¯
;
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we note that Qa is obtained by rotation and translation of Œ0; a�2 so that we can find
�1 in the Schwartz space such that“

Qa

W.�1; �1/.x; �/dxd� > k�1k
2
L2.R/:

Since we have

lim
p!1

“
jxjpCj�jp�.a=

p
2/p

W.�1; �1/.x; �/dxd�

D

“
Qa

W.�1; �1/.x; �/dxd� > k�1k
2
L2.R/;

we get that for p � 1 small enough we have“
jxjpCj�jp�.a=

p
2/p
W.�1; �1/.x; �/dxd� > k�1k

2
L2.R/;

proving that `p balls are counterexamples to Flandrin’s conjecture for p � 1 or 1=p
small enough.

Convex affine cones with aperture strictly less than � of R2 are translations and
rotations of

†�0 D
®
.x; �/ 2 R2n.R� � ¹0º/; arg.x C i�/ 2 .0; �0/

¯
for some �0 2 .0; �/.

(5.3.3)
The vertex of †�0 and its rotations is defined as 0 and the vertex of the translation of
vector T0 of †�0 is defined as T0. We note that all convex affine cones with aperture
strictly less than � are symplectically equivalent in R2, since †�0 is symplectically
equivalent to (the interior of) the quarter plane †�=2: indeed, let �0 be in .0; �/; the
symplectic matrix M�0 defined by

M�0 D

�
1 � cotan �0
0 1

�
;

is such that M�0

�
1
0

�
D
�
1
0

�
, M�0

�
cos �0
sin �0

�
D
�

0
sin �0

�
, proving that

M�0†�0 D †�=2:

The next result follows from [6, Theorem 1.3] and shows that many counterexamples
to Flandrin’s conjecture can be obtained.

Theorem 5.3.1. LetK be a subset of the closure of a convex affine cone with aperture
strictly less than � and vertex X0 such that K contains a neighborhood of the vertex
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in the cone5. Then, there exists � > 0 such that, with

K� D X0 C �.K �X0/;

there exists � 2 S .R/ such that“
K�

W.�; �/.x; �/dxd� > k�k2
L2.R/: (5.3.4)

N.B. Note that (5.3.4) implies that � is not the zero function. Also, taking K con-
vex produces another counterexample to Flandrin’s conjecture since K� will be then
convex, but we do not need that assumption to proving the result.

Proof. There is no loss of generality at assuming X0 D 0 and

Œ0; �0�
2
� K � †�=2; �0 > 0:

Using Corollary 5.1.15, we find �0 2S .R/ (so that W.�0; �0/ 2S .R2/) such that

lim
�!C1

“
K�

W.�0; �0/.x; �/dxd� D

“
†�=2

W.�0; �0/.x; �/dxd� > k�0k
2
L2.R/;

implying for � large enough that
’
K�

W.�0; �0/.x; �/dxd� > k�0k
2
L2.R/

, which is
the sought result.

5.4 Numerics

Definition 5.4.1. Let � � 0 be given. With the 2 � 2 Hermitian matrix M� given by
(5.2.22), we define for � 2 R,

�C.�; �/ D
1

2

�
a11.�; �/C

q
a211.�; �/C 4ja12.�; �/j

2
�
;

��.�; �/ D
1

2

�
a11.�; �/ �

q
a211.�; �/C 4ja12.�; �/j

2
�
:

Remark 5.4.2. According to (5.2.41), we have

�C.�; �/ D
1

2

�
a11.�; �/C

q
a211.�; �/.1C e

�4�2� /C 4.Re a12.�; �//2
�
; (5.4.1)

��.�; �/ D
1

2

�
a11.�; �/ �

q
a211.�; �/

�
1C e�4�

2�
�
C 4.Re a12.�; �//2

�
; (5.4.2)

so that the knowledge of a11 and Re a12 suffices for expressing �˙.

5We shall say that the set K has a corner.
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An immediate consequence of Theorem 5.2.4 is the following theorem.

Theorem 5.4.3. Let � � 0 be given and let A� be the self-adjoint operator bounded
in L2.R/ defined in Theorem 5.2.4. With the notations of Definition 5.4.1, we have

M� WD sup¹spectrum.A� /º D sup
�2R

�C.�; �/; (5.4.3)

m� WD inf¹spectrum.A� /º D inf
�2R

��.�; �/: (5.4.4)

Moreover, for all � � 0 we have

m� < 0 < 1 < M� :

5.4.1 The quarter-plane: � D 0

Of course, as shown by the respective calculations of Sections 5.1 and 5.2, the case
� D 0, dealing with the quarter-plane is much simpler than the cases where � >
0. Nonetheless, we know explicitly a spectral decomposition of the operator with
Weyl symbolH.x/H.�/ from Theorem 5.2.3, but we can calculate without difficulty
numerical expressions of M0; m0 as defined in (5.4.3), (5.4.4).

Proposition 5.4.4. We have from (A.6.22), (5.2.24),

a11.�; 0/ D
1

1C e�4�
2�
; Re a12.�; 0/ D

1

4�

Z C1
0

sin.2�t�/ sech.t=2/dt;

1:005

1:000

0:995

0:10 0:15 0:20 0:25 0:30

�C.�; 0/

Figure 5.1. The function � 7! �C.�; 0/ near its maximum, well above 1.
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1:0

0:8

0:6

0:4

0:2

�0:2

�0:3 �0:2 �0:1 0:1 0:2 0:3

�C.�; 0/

�

��.�; 0/

Figure 5.2. The functions � 7! �C.�; 0/; ��.�; 0/.

and we can use these formulas and (5.4.1), (5.4.2), (5.4.3), and (5.4.4) to calculate
numerically

M0� 1:00767997007003; .�C.�; 0/ at � � 0:138815397930141/;

m0 � �0:155939843191243; .��.�; 0/ at � � �0:0566304954736227/:

5.4.2 On hyperbolic regions

We want now to tackle the case � > 0. In order to use the expressions (A.6.22),
(5.2.25) respectively for a11 and a12, we need first to evaluate the residue term in
(A.6.22). The mapping z 7! tanh z is a biholomorphism of neighborhoods of 0 in the
complex plane, so that we have for z near the origin,

� D tanh z; d� D .1 � �2/dz; z D arcth � D
1

2
ln
�
1C �

1 � �

�
;

e2i!z�2i� coth z

cosh z
dz D

�
1C �

1 � �

�i!
e�2i

�
�

2�
1C�
1��

�1=2
C
�
1��
1C�

�1=2 d�

.1 � �2/

D .1C �/�
1
2Ci!.1 � �/�

1
2�i!e�2i

�
� d�;

so that

Res
�
e2i!z�2i� coth z

cosh z
; 0

�
D Res..1C �/�

1
2Ci!.1 � �/�

1
2�i!e�2i

�
� ; 0/: (5.4.5)
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Proposition 5.4.5. Let � � 0 be given. Then, for any � 2 R, using the notations,
! D 2�� , � D 2�� , we have, for any � 2 .0; 1/,

a11.�; �/ D
1

1C e�2�!
C

e��!

1C e�2�!
�

2�

� Im
²Z �

��

exp
�
i! Log

�
1C �ei�

1 � �ei�

��
e�

2i�e�i�
� ei�p

1 � �2e2i�
d�

³
: (5.4.6)

Re a21.�; �/ D
e��!

2�

²
2

Z �=2

0

e.s!�� tan s/ sinh.s! � � tan s/
sin s

ds C ln
�

coth
�

4

�
C 2

Z �=2

0

sin2.s! � � tanh s/
sinh s

ds

�

Z C1
�=2

cos 2.s! � � tanh s/
sinh s

ds

³
; (5.4.7)

Im a12.�; �/ D
e��!

2
a11.�; �/: (5.4.8)

Proof. Formula (5.4.6) follows from (5.4.5) and (A.6.22) whereas (5.4.7) is (5.2.25)
after a change of variable t D 2s, where the second integral term inside the brackets
is evaluated (cf. Lemma A.6.1); formula (5.4.8) is a reminder of (5.2.41).

N.B. Our choice for � in the numerical calculations of (5.4.6) is � D 3=4, which
is a good compromise between using a value of � clearly away from 1 (to avoid
singularities coming from small denominators in the Log term) and minimize the
oscillations and size coming from the term exp.�2i���1e�i� /; note that the modulus
of the latter is

exp.�2���1 sin �/;

which is a smooth function of � (flat at 0) when � 2 Œ0; ��, but is unbounded for
� ! 0C when � 2 .��; 0/. There is no surprise here since although the residue
does not depend on the choice of � 2 .0; 1/, we cannot get the value of that residue
by letting � go to 0 because of the part of the path in the lower half-plane. The
argument of exp.�2i���1e�i� / is �2���1 cos � and taking � too small would be de-
vastating for the calculations because of the strong oscillations triggered by the term
exp.�2i���1 cos �/ all over the circle. Of course for the evaluation of Log

�
1C�ei�

1��ei�

�
is easier for � small, but we have to take into account the constraints in that direction
mentioned above.

Remark 5.4.6. It seems easier numerically for the evaluation of a11 to use (5.4.6)
rather than any other expression (see, e.g., Lemma 5.2.2, (5.2.22), (A.6.14)). How-
ever, the following formula could be interesting, theoretically and numerically: recall-
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Figure 5.3. Functions �C.�; �=2�/ with � D 1; 2; 3: their maxima are strictly greater than 1.

ing that sinc x D sinx
x

, we have from (5.2.22)

a11.�; �/ D
1

2
C
2!

�

Z C1
0

sinc.2!s/
s

sinh s
cos.2� tanh s/ds

�
2�

�

Z C1
0

sinc.2�s/
1

cosh s
cos.2!s/ds; (5.4.9)

but it turns out that numerical calculations involving (5.4.9) seem to be less reliable
than the methods using (5.4.6).

We can also take a look at the following curves.

Remark 5.4.7. In the above figure, in order to put the three curves on the same
picture, we have used three different logarithmic scales on the vertical axis, namely,
we have drawn

� 7! 1C j̨ Log.�C.�; �j //; 1� j � 3; �j D j=2�;˛1 D 20;˛2 D 100;˛3 D 500:

Of course, we have

1C j̨ Log.�C.�; �j // > 1” Log.�C.�; �j // > 0” �C.�; �j / > 1;

so that the piece of curves in Figure 5.3 which are above 1 are indeed corresponding
to curves of � 7! �C.�; �j / which go strictly above the threshold 1. We have also

max
�
�C.�; �1/ � 1C 55 � 10

�5 at � � 0:402030,

max
�
�C.�; �2/ � 1C 8 � 10

�5 at � � 0:613262,

max
�
�C.�; �3/ � 1C 10

�5 at � � 0:854746.
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We are glad to have a theoretical proof of Theorem 5.2.4 since the numerical analysis
of cases where � is large, say larger than 10, seems to be very difficult to achieve, at
least through a standard use of Mathematica. The reason for that is quite clear since
using our Lemma 5.1.11, we did study the function ˇ defined by

ˇ.�; �/ D ja12.�; �/j
2
C a11.�; �/ � 1; (5.4.10)

and proved that for each � � 0 there exists T0.�/ such that for all � � T0.�/ we have
ˇ.�; �/ > 0 and a12.�; �/ 6D 0. Thanks to Lemma 5.2.2 and (5.2.46) we knew that for
� � T0.�/, we had

j1 � a11j � 2e
��2�e4�� �

e�16�
p
�
p
�

28�6�2
� .Re a21/2 � ja12j2;

where the second inequality � is in fact comparing for � fixed two exponential
decays. The numerical analysis of that inequality is certainly quite difficult when
� and � are large since both sides are converging to zero quite fast for � fixed
and � ! C1; of course taking the logarithm of both sides looks quite reasonable,
but in practice does not seem really easy numerically. When � D 0, the situation
is much better, since we had to compare (cf. Section 5.3.1) an exponential decay
j1 � a11j � 2e

��2� to a polynomial decay

jRe a12j2 �
1

26�4�2
; � !C1;

and this could be an a posteriori explanation for which our numerical argument in [6]
worked smoothly to disprove Flandrin’s conjecture. So to pick up the quarter-plane
((5.0.1) with � D 0) to produce a counterexample to that conjecture was indeed a
very wise choice: if you choose instead C� for � large, our Theorem 5.2.4 shows
that it is also a counterexample to Flandrin’s conjecture6, but we have a theoretical
proof for that Theorem and if we depended on a numerical analysis, it is quite likely
that checking numerically the positivity of the function ˇ defined in (5.4.10) could be
rather difficult, even say for � D 10.

6As a convex subset of the plane on which the integral of the Wigner distribution of some
normalized pulse is strictly larger than 1.


