Chapter 6

Unboundedness is Baire generic

In this section, we show that for plenty of subsets E of the phase space \mathbb{R}^{2n} , the operator $Op_w(1_E)$ is not bounded on $L^2(\mathbb{R}^n)$.

6.1 Preliminaries

6.1.1 Prolegomena

Lemma 6.1.1. Let $u, v \in L^2(\mathbb{R}^n)$ and let $W(u, u)$, $W(v, v)$, be their Wigner distri*butions. Then, we have*

$$
||\mathcal{W}(u,u)-\mathcal{W}(v,v)||_{L^2(\mathbb{R}^{2n})}\leq ||u-v||_{L^2(\mathbb{R}^n)}(||u||_{L^2(\mathbb{R}^n)}+||v||_{L^2(\mathbb{R}^n)}).
$$

As a consequence if a sequence (u_k) is converging in $L^2(\mathbb{R}^n)$, then the sequence $(W(u_k, u_k))$ converges in $L^2(\mathbb{R}^{2n})$ towards $W(u, u)$.

Proof. We have by sesquilinearity $W(u, u) - W(v, v) = W(u - v, u) + W(v, u - v)$, so that

$$
\|W(u, u) - W(v, v)\|_{L^2(\mathbb{R}^{2n})} \le \|W(u - v, u)\|_{L^2(\mathbb{R}^{2n})} + \|W(v, u - v)\|_{L^2(\mathbb{R}^{2n})}
$$

= $||u - v||_{L^2(\mathbb{R}^n)} (||u||_{L^2(\mathbb{R}^n)} + ||v||_{L^2(\mathbb{R}^n)}),$
(1.1.6)

proving the lemma.

Lemma 6.1.2. Let (u_k) be a converging sequence in $L^2(\mathbb{R}^n)$ with limit u. Let us *assume that there exists* $C_0 \geq 0$ *such that*

$$
\forall k \in \mathbb{N}, \quad \iint |\mathcal{W}(u_k, u_k)(x, \xi)| dx d\xi \leq C_0.
$$

Then, we have $\iint |\mathbf{W}(u, u)(x, \xi)| dx d\xi \leq C_0$ *.*

Proof. Let $R > 0$ be given. We check

$$
\iint_{|x|^2+|\xi|^2\leq R^2} |\mathcal{W}(u,u)(x,\xi)-\mathcal{W}(u_k,u_k)(x,\xi)|dx d\xi
$$
\n
$$
\leq \iint_{|x|^2+|\xi|^2\leq R^2} |\mathcal{W}(u-u_k,u)(x,\xi)|dx d\xi
$$
\n
$$
+ \iint_{|x|^2+|\xi|^2\leq R^2} |\mathcal{W}(u_k,u-u_k)(x,\xi)|dx d\xi
$$
\n
$$
\leq \sqrt{|\mathbb{B}^{2n}|R^{2n}} (\|\mathcal{W}(u-u_k,u)\|_{L^2(\mathbb{R}^{2n})} + \|\mathcal{W}(u_k,u-u_k)\|_{L^2(\mathbb{R}^{2n})})
$$
\n
$$
= \sqrt{|\mathbb{B}^{2n}|R^{2n}} \|u-u_k\|_{L^2(\mathbb{R}^n)} (\|u\|_{L^2(\mathbb{R}^n)} + \|u_k\|_{L^2(\mathbb{R}^n)}),
$$

 \blacksquare

and thus

$$
\iint_{|x|^2+|\xi|^2\leq R^2} |W(u,u)(x,\xi)|dxd\xi
$$
\n
$$
\leq \iint_{|x|^2+|\xi|^2\leq R^2} |W(u_k,u_k)(x,\xi)|dxd\xi
$$
\n
$$
+ \sqrt{|\mathbb{B}^{2n}|R^{2n}} \|u-u_k\|_{L^2(\mathbb{R}^n)} (\|u\|_{L^2(\mathbb{R}^n)} + \|u_k\|_{L^2(\mathbb{R}^n)})
$$
\n
$$
\leq C_0 + \sqrt{|\mathbb{B}^{2n}|R^{2n}} \|u-u_k\|_{L^2(\mathbb{R}^n)} (\|u\|_{L^2(\mathbb{R}^n)} + \|u_k\|_{L^2(\mathbb{R}^n)}),
$$

implying for all $R > 0$,

$$
\iint_{|x|^2+|\xi|^2\leq R^2} |\mathcal{W}(u,u)(x,\xi)| dx d\xi \leq C_0,
$$

and thus the sought result.

6.1.2 An explicit construction

We just calculate in this section $W(v_0, v_0)$ for $v_0 = 1_{[-1/2,1/2]}$.

Remark 6.1.3. When u is supported in a closed convex set J , we have in the integral [\(1.1.4\)](#page--1-1) defining $W, x \pm \frac{z}{2} \in J \Rightarrow x \in J$, so that supp $W(u, u) \subset J \times \mathbb{R}^n$.

We have

$$
\mathcal{W}(v_0, v_0)(x, \xi) = \int_{\substack{-1/2 \le x + z/2 \le 1/2 \\ -1/2 \le x - z/2 \le 1/2}} e^{2i\pi z \xi} dz,
$$

and the integration domain is

$$
-\min(1-2x, 1+2x) = \max(-1-2x, 2x-1) \le z \le \min(1-2x, 1+2x),
$$

which is empty unless $1 - 2x$, $1 + 2x \ge 0$, i.e., $x \in [-1/2, +1/2]$, and moreover we have the equivalence

$$
1 - 2x \le 1 + 2x \Longleftrightarrow x \ge 0,
$$

so that

$$
\mathcal{W}(v_0, v_0)(x, \xi)
$$
\n
$$
= H(x) \int_{-(1-2x)}^{1-2x} e^{2i\pi z \xi} dz + H(-x) \int_{-(1+2x)}^{1+2x} e^{2i\pi z \xi} dz
$$
\n
$$
= H(x) \frac{e^{2i\pi \xi (1-2x)} - e^{-2i\pi \xi (1-2x)}}{2i\pi \xi} + H(-x) \frac{e^{2i\pi \xi (1+2x)} - e^{-2i\pi \xi (1+2x)}}{2i\pi \xi}
$$
\n
$$
= \mathbf{1}_{[0,1/2]}(x) \frac{\sin(2\pi \xi (1-2x))}{\pi \xi} + \mathbf{1}_{[-1/2,0]} \frac{\sin(2\pi \xi (1+2x))}{\pi \xi}.
$$
\n(6.1.1)

More generally for a, b, ω real numbers with $a < b$ and

$$
u_{a,b,\omega}(x) = (b-a)^{-1/2} \mathbf{1}_{[a,b]}(x) e^{2i\pi\omega x},
$$
\n(6.1.2)

we have

$$
\mathcal{W}(u_{a,b,\omega}, u_{a,b,\omega})(x,\xi) = \frac{\left(\mathbf{1}_{[a,\frac{a+b}{2}]}(x)\sin[4\pi(\xi-\omega)(x-a)] + \mathbf{1}_{[\frac{a+b}{2},b]}(x)\sin[4\pi(\xi-\omega)(b-x)]\right)}{(b-a)\pi(\xi-\omega)}.
$$

We check now, using $(6.1.1)$, for $N > 0$,

$$
\iint |\mathcal{W}(v_0, v_0)(x, \xi)| dx d\xi \ge \int_{0 \le x \le 1/4} \int_0^N \left| \frac{\sin(2\pi \xi (1 - 2x))}{\pi \xi} \right| d\xi dx
$$

=
$$
\int_{0 \le x \le 1/4} \int_0^{N2\pi (1 - 2x)} \left| \frac{\sin \eta}{\pi \eta} \right| d\eta dx
$$

$$
\ge \int_{0 \le x \le 1/4} \int_0^{N\pi} \left| \frac{\sin \eta}{\pi \eta} \right| d\eta dx = \frac{1}{4} \int_0^{N\pi} \left| \frac{\sin \eta}{\pi \eta} \right| d\eta,
$$

so that

$$
\iint |\mathcal{W}(v_0, v_0)(x, \xi)| dx d\xi = +\infty.
$$
 (6.1.3)

Proposition 6.1.4. *Let* a, b, ω *be real numbers with* $a < b$ *and let us define* $u_{a,b,\omega}$ *by* [\(6.1.2\)](#page-2-0)*. Then, we have*

$$
\iint |\mathcal{W}(u_{a,b,\omega}, u_{a,b,\omega})(x,\xi)| dx d\xi = +\infty.
$$
 (6.1.4)

N.B. Since $u_{a,b,\omega}$ is a normalized $L^2(\mathbb{R})$ function, we also have from [\(1.1.6\)](#page--1-0), [\(1.1.9\)](#page--1-2) that the real-valued $W(u_{a,b,\omega}, u_{a,b,\omega})$ does satisfy

$$
\int \left| \int \mathcal{W}(u_{a,b,\omega}, u_{a,b,\omega})(x,\xi) dx \right| d\xi = \int \left| \int \mathcal{W}(u_{a,b,\omega}, u_{a,b,\omega})(x,\xi) d\xi \right| dx
$$

= $||u_{a,b,\omega}||_{L^2(\mathbb{R})}^2 = 1$,

$$
\iint \mathcal{W}(u_{a,b,\omega}, u_{a,b,\omega})(x,\xi)^2 dx d\xi = ||u_{a,b,\omega}||_{L^2(\mathbb{R})}^4 = 1.
$$

We shall see in the next sections that most of the time in the Baire Category sense, we have for $u \in L^2(\mathbb{R}^n)$, $\iint |\mathcal{W}(u, u)(x, \xi)| dx d\xi = +\infty$.

Proof. The proof is already given above for $v_0 = u_{-1/2,1/2,0}$. Moreover, we have with

$$
\alpha = \frac{1}{b-a}, \quad \beta = \frac{b+a}{2(a-b)},
$$

the formula

$$
v_0(y) = e^{-2i\pi\omega(y-\beta)\alpha^{-1}}u_{a,b,\omega}((y-\beta)\alpha^{-1})\alpha^{-1/2},
$$

so that $u_{a,b,\omega} = Mv_0$, where M belongs to the group $Mp_a(n)$. (cf. Section [1.2.1\)](#page--1-3) and the covariance property $(1.2.49)$ shows that the already proven $(6.1.3)$ implies $(6.1.4)$.

6.2 Modulation spaces

In this section, we use the Feichtinger algebra $M¹$, introduced in [\[10\]](#page--1-5) (the terminology *Feichtinger algebra* goes back to the book [\[44\]](#page--1-6)). The survey article [\[26\]](#page--1-7) by M. S. Jakobsen is a good source for recent developments of the theory as well as Chapter 12 in the K. Gröchenig's book [\[16\]](#page--1-8). We refer the reader to the paper [\[18\]](#page--1-9) by K. Gröchenig and M. Leinert as well as to J. Sjöstrand's article [\[48\]](#page--1-10) for the use of modulation spaces to proving a non-commutative Wiener lemma.

6.2.1 Preliminary lemmas

The following lemmas in this subsection are well-known (see, e.g., [\[16,](#page--1-8) Theorem 11.2.5]). However, we provide a proof for the self-containedness of our survey.

Lemma 6.2.1. Let ϕ_0 be a non-zero function in $\mathscr{S}(\mathbb{R}^n)$. For $u \in \mathscr{S}'(\mathbb{R}^n)$ the follow*ing properties are equivalent.*

(i)
$$
u \in \mathscr{S}(\mathbb{R}^n)
$$
.

(ii)
$$
\mathcal{W}(u, \phi_0) \in \mathcal{S}(\mathbb{R}^{2n}).
$$

(iii) $\forall N \in \mathbb{N}, \sup_{X \in \mathbb{R}^{2n}} |\mathcal{W}(u, \phi_0)(X)| (1 + |X|)^N < +\infty.$

Proof. Let us assume (i) holds true; with $\Omega(u, \phi_0)$ defined in [\(1.1.1\)](#page--1-11), we find that $\Omega(u, \phi_0)$ belongs to $\mathscr{S}(\mathbb{R}^{2n})$, thus as well as its partial Fourier transform $W(u, \phi_0)$. proving (ii). We have obviously that (ii) implies (iii). Let us now assume that (iii) holds true. Using $(1.1.5)$, we find

$$
u(x_1)\bar{\phi}_0(x_2) = \int \mathcal{W}(u,\phi_0) \bigg(\frac{x_1 + x_2}{2}, \xi\bigg) e^{2i\pi(x_1 - x_2)\xi} d\xi,
$$

and thus

$$
u(x_1) \|\phi_0\|_{L^2(\mathbb{R}^n)}^2 = \iint \mathcal{W}(u, \phi_0) \left(\frac{x_1 + x_2}{2}, \xi\right) e^{2i\pi(x_1 - x_2)\xi} \phi_0(x_2) d\xi dx_2
$$

=
$$
\iint \mathcal{W}(u, \phi_0)(y, \xi) e^{4i\pi(x_1 - y)\xi} \phi_0(2y - x_1) d\xi dy 2^n,
$$

so that the latter equality, the fact that ϕ_0 belongs to $\mathscr{S}(\mathbb{R}^n)$ imply (i) by differentiation under the integral sign, concluding the proof of the lemma.

Lemma 6.2.2. Let ϕ_0, ϕ_1 be non-zero functions in $L^2(\mathbb{R}^n)$. Let $u \in L^2(\mathbb{R}^n)$ such that $W(u, \phi_0)$ belongs to $L^1(\mathbb{R}^{2n})$. Then, $W(u, \phi_1)$ belongs as well to $L^1(\mathbb{R}^{2n})$.

Proof. According to Lemma [1.2.26](#page--1-13) applied to $u_0 = u$, $u_1 = u_2 = \phi_0$, $u_3 = \phi_1$, we have

$$
\|\phi_0\|_{L^2}^2 W(u,\phi_1) \in L^1(\mathbb{R}^{2n}),
$$

since $W(u, \phi_0)$ belongs to $L^1(\mathbb{R}^{2n})$ as well as $W(\check{\phi}_0, \phi_1)$.

Lemma 6.2.3. Let $u \in L^2(\mathbb{R}^n)$. The following properties are equivalent.

- (i) *For all* $\phi \in \mathscr{S}(\mathbb{R}^n)$ *, we have* $W(u, \phi) \in L^1(\mathbb{R}^{2n})$ *.*
- (ii) *For a non-zero* $\phi \in \mathscr{S}(\mathbb{R}^n)$ *, we have* $W(u, \phi) \in L^1(\mathbb{R}^{2n})$ *.*
- (iii) $W(u, u)$ *belongs to* $L^1(\mathbb{R}^{2n})$ *.*

Proof. We have obviously (i) \Rightarrow (ii) and, conversely, Lemma [6.2.2](#page-4-0) yields (ii) \Rightarrow (i). Assuming (i) and using Lemma [1.2.26](#page--1-13) with $u_0 = u_3 = u$, $u_1 = u_2 = \phi \in \mathcal{S}(\mathbb{R}^n)$, we get

$$
\|\phi\|_{L^2}^2|\mathcal{W}(u,u)(X)|\leq 2^n\big(\|\mathcal{W}(u,\phi)\|*|\mathcal{W}(\check{\phi},u)|\big)(X),
$$

so that choosing a non-zero ϕ in the Schwartz space, we obtain (iii). Conversely, assuming (iii) and using again Lemma [1.2.26](#page--1-13) with $u_0 = u_2 = u$, $u_3 = \phi \in \mathcal{S}(\mathbb{R}^n)$, $u_1 = \psi \in \mathscr{S}(\mathbb{R}^n)$, we find

$$
|\langle \psi, u \rangle_{L^2}||\mathcal{W}(u, \phi)(X)| \le 2^n \underbrace{(|\mathcal{W}(u, u)|}_{\in L^1(\mathbb{R}^{2n})} * |\underbrace{\mathcal{W}(\check{\psi}, \phi)}_{\in \mathcal{S}(\mathbb{R}^{2n})}|)(X).
$$
 (6.2.1)

Assuming as we may $u \neq 0$, we can choose $\psi \in \mathscr{S}(\mathbb{R}^n)$ such that

$$
\langle \psi, u \rangle_{L^2} \neq 0,
$$

so that $(6.2.1)$ implies (i).

Lemma 6.2.4. Let $u_1, u_2, u_3 \in L^2(\mathbb{R}^n)$. Then, we have the inversion formula,

$$
\mathrm{Op}_{w} \left(\mathcal{W}(u_1, u_2) \right) u_3 = \langle u_3, u_2 \rangle_{L^2(\mathbb{R}^n)} u_1.
$$

Proof. It is an immediate consequence of Lemma [1.2.25.](#page--1-14)

6.2.2 The space $M^1(\mathbb{R}^n)$

Definition 6.2.5. The space $M^1(\mathbb{R}^n)$ is defined as the set of $u \in L^2(\mathbb{R}^n)$ such that, for all $\phi \in \mathscr{S}(\mathbb{R}^n)$, $W(u, \phi)$ belongs to $L^1(\mathbb{R}^{2n})$. According to Lemma [6.2.3,](#page-4-2) $M^1(\mathbb{R}^n)$ is also the set of $u \in L^2(\mathbb{R}^n)$ such that $W(u, u) \in L^1(\mathbb{R}^{2n})$ as well as the set of $u \in L^2(\mathbb{R}^n)$ such that, for a non-zero $\phi \in \mathscr{S}(\mathbb{R}^n)$, $W(u, \phi)$ belongs to $L^1(\mathbb{R}^{2n})$.

 \blacksquare

 \blacksquare

п

Proposition 6.2.6. Let ψ_0 be the standard fundamental state of the harmonic oscil*lator* $\pi(D_x^2 + x^2)$ given by

$$
\psi_0(x) = 2^{n/4} e^{-\pi |x|^2}.
$$
\n(6.2.2)

Then, $M^1(\mathbb{R}^n) \ni u \mapsto \| W(u, \psi_0) \|_{L^1(\mathbb{R}^{2n})}$ is a norm on $M^1(\mathbb{R}^n)$. Let ψ be a non-zero function in $\mathscr{S}(\mathbb{R}^n)$: then $M^1(\mathbb{R}^n) \ni u \mapsto \|W(u,\psi)\|_{L^1(\mathbb{R}^{2n})}$ is a norm on $M^1(\mathbb{R}^n)$, *equivalent to the previous norm.*

Proof. The homogeneity and triangle inequality are immediate, let us check the separation: let $u \in L^2(\mathbb{R}^n)$ such that $W(u, \psi) = 0$. Then, we have

$$
0 = \langle \text{Op}_{w}(\mathcal{W}(u, \psi))\psi, u \rangle_{L^{2}(\mathbb{R}^{n})} = \|u\|_{L^{2}(\mathbb{R}^{n})}^{2} \|\psi\|_{L^{2}(\mathbb{R}^{n})}^{2},
$$

proving the sought result. Let ψ be a non-zero function in $\mathscr{S}(\mathbb{R}^n)$; according to Lemma [1.2.26](#page--1-13) applied to $u_0 = u$, $u_1 = u_2 = \psi_0$, $u_3 = \psi$, we find

$$
|\mathcal{W}(u, \psi)(X)| \le 2^{n} (|\mathcal{W}(u, \psi_0)| * |\mathcal{W}(\psi_0, \psi)|)(X),
$$

so that we have

$$
\|W(u,\psi)\|_{L^1(\mathbb{R}^{2n})} \le 2^n \|W(\psi_0,\psi)\|_{L^1(\mathbb{R}^{2n})} \|W(u,\psi_0)\|_{L^1(\mathbb{R}^{2n})}, \quad (6.2.3)
$$

$$
\|W(u,\psi_0)\|_{L^1(\mathbb{R}^{2n})} \le 2^n \|W(\psi,\psi_0)\|_{L^1(\mathbb{R}^{2n})} \|W(u,\psi)\|_{L^1(\mathbb{R}^{2n})},
$$

proving the equivalence of norms.

Proposition 6.2.7. The space $M^1(\mathbb{R}^n)$, equipped with the equivalent norms of Pro-position [6.2.6](#page-5-0), is a Banach space. The space $\mathscr{S}(\mathbb{R}^n)$ is dense in $M^1(\mathbb{R}^n)$.

Proof. Let $(u_k)_{k\geq 1}$ be a Cauchy sequence in $M^1(\mathbb{R}^n)$: it means that $(\mathcal{W}(u_k, \psi_0))_{k\geq 1}$ is a Cauchy sequence in $L^1(\mathbb{R}^{2n})$, thus such that

$$
\lim_{k} W(u_k, \psi_0) = U \quad \text{in } L^1(\mathbb{R}^{2n}). \tag{6.2.4}
$$

On the other hand, from Lemma [1.2.25,](#page--1-14) we have $u_k - u_l = \text{Op}_w (\mathcal{W}(u_k - u_l, \psi_0)) \psi_0$, so that

$$
||u_k - u_l||_{L^2(\mathbb{R}^n)} \le ||\mathrm{Op}_{w} \left(\mathcal{W}(u_k - u_l, \psi_0)\right)||_{\mathcal{B}(L^2(\mathbb{R}^n))} \leq 2^n ||\mathcal{W}(u_k - u_l, \psi_0)||_{L^1(\mathbb{R}^{2n})},
$$
\ncf. (1.2.5)

implying that $(u_k)_{k\geq 1}$ is a Cauchy sequence in $L^2(\mathbb{R}^n)$, thus converging towards a function u in $L^2(\mathbb{R}^n)$. Since from [\(1.1.6\)](#page--1-0), we have $\|\mathcal{W}(u_k - u, \psi_0)\|_{L^2(\mathbb{R}^{2n})} =$ $||u_k - u||_{L^2(\mathbb{R}^n)}$, we obtain as well that

$$
\lim_k W(u_k, \psi_0) = W(u, \psi_0) \quad \text{in } L^2(\mathbb{R}^{2n}),
$$

 \blacksquare

and this implies along with [\(6.2.4\)](#page-5-1) that $U = W(u, \psi_0)$ in $\mathscr{S}'(\mathbb{R}^{2n})$. As a result, we have $W(u, \psi_0) \in L^1(\mathbb{R}^{2n})$, so that $u \in M^1(\mathbb{R}^n)$ and

$$
\lim_{k} \mathcal{W}(u_k, \psi_0) = \mathcal{W}(u, \psi_0) \quad \text{in } L^1(\mathbb{R}^{2n}),
$$

entailing convergence towards u for the sequence $(u_k)_{k\geq 1}$ in $M^1(\mathbb{R}^n)$ and the sought completeness. We are left with the density question and we start with a calculation.

Claim 6.2.8. With the phase symmetry $\sigma_{y,\eta}$ given by [\(1.2.6\)](#page--1-16) and ψ_0 by [\(6.2.2\)](#page-5-2) we have for $X, Y \in \mathbb{R}^{2n}$,

$$
\mathcal{W}(\sigma_Y \psi_0, \psi_0)(X) = 2^n e^{-2\pi |X - Y|^2} e^{-4i\pi [X, Y]}, \tag{6.2.5}
$$

where the symplectic form is given in $(1.2.13)$.

Proof of the Claim. We have indeed

$$
\mathcal{W}(\sigma_{y,\eta}\psi_0,\psi_0)(x,\xi) = \int (\sigma_{y,\eta}\psi_0) \left(x + \frac{z}{2}\right) \psi_0 \left(x - \frac{z}{2}\right) e^{-2i\pi z \cdot \xi} dz
$$

\n
$$
= \int \psi_0 \left(2y - x - \frac{z}{2}\right) e^{4i\pi \eta \cdot (x + \frac{z}{2} - y)} \psi_0 \left(x - \frac{z}{2}\right) e^{-2i\pi z \cdot \xi} dz
$$

\n
$$
= 2^{n/2} \int e^{-\pi(|2y - x - \frac{z}{2}|^2 + |x - \frac{z}{2}|^2)} e^{2i\pi z \cdot (\eta - \xi)} dz e^{4i\pi \eta \cdot (x - y)}
$$

\n
$$
= 2^{n/2} e^{4i\pi \eta \cdot (x - y)} \int e^{-\frac{\pi}{2}(|2y - z|^2 + |2(y - x)|^2)} e^{2i\pi z \cdot (\eta - \xi)} dz
$$

\n
$$
= 2^{n/2} e^{4i\pi \eta \cdot (x - y)} e^{-2\pi |y - x|^2} e^{4i\pi y \cdot (\eta - \xi)} 2^{n/2} e^{-2\pi |y - \xi|^2},
$$

which is the sought formula.

Let *u* be a function in $M^1(\mathbb{R}^n)$. For $\varepsilon > 0$ we define

$$
u_{\varepsilon}(x) = \int_{\mathbb{R}^{2n}} W(u, \psi_0)(Y) e^{-\varepsilon |Y|^2} 2^n (\sigma_Y \psi_0)(x) dY,
$$

and we have

$$
\mathcal{W}(u_{\varepsilon},\psi_0)(X) = \int_{\mathbb{R}^{2n}} \mathcal{W}(u,\psi_0)(Y) e^{-\varepsilon|Y|^2} 2^n \mathcal{W}(\sigma_Y \psi_0,\psi_0)(X) dY,
$$

so that Lemma [6.2.1](#page-3-0) and [\(6.2.5\)](#page-6-0) imply readily that u_{ε} belongs to the Schwartz space. Moreover, we have

 $u = \text{Op}_{w}(\mathcal{W}(u, \psi_0))\psi_0,$

from Lemma [6.2.4](#page-4-3) and thus

$$
\mathcal{W}(u, \psi_0)(X) = \int_{\mathbb{R}^{2n}} \mathcal{W}(u, \psi_0)(Y) 2^n \mathcal{W}(\sigma_Y \psi_0, \psi_0)(X) dY,
$$

so that

$$
\int_{\mathbb{R}^{2n}} |\mathcal{W}(u_{\varepsilon}, \psi_0)(X) - \mathcal{W}(u, \psi_0)(X)| dX
$$
\n
$$
\leq 2^n \iint_{\mathbb{R}^{2n} \times \mathbb{R}^{2n}} \underbrace{|\mathcal{W}(u, \psi_0)(Y)| |\mathcal{W}(\sigma_Y \psi_0, \psi_0)(X)|}_{\in L^1(\mathbb{R}^{4n}) \text{ from } (6.2.5) \text{ and } u \in M^1(\mathbb{R}^n)} \underbrace{(1 - e^{-\varepsilon|Y|^2}) dY dX}_{\in [0,1]} dY dX.
$$

The Lebesgue dominated convergence theorem shows that the integral above tends to 0 when $\varepsilon \to 0_+$, proving the convergence in $M^1(\mathbb{R}^n)$ of the sequence (u_ε) , which completes the proof of the density.

Theorem 6.2.9. Let M be an element of the metaplectic group $Mp(n)$ (Definition [1.2.13](#page--1-18)). Then, *M* is an isomorphism of $M^1(\mathbb{R}^n)$ and we have for $u \in M^1(\mathbb{R}^n)$, $\phi \in$ $\mathscr{S}(\mathbb{R}^n)$,

$$
\mathcal{W}(\mathcal{M}u, \mathcal{M}\phi) = \mathcal{W}(u, \phi) \circ S^{-1}, \tag{6.2.6}
$$

where M *is in the fiber of the symplectic transformation* S*. In particular, the space* $M^1(\mathbb{R}^n)$ is invariant by the Fourier transformation and partial Fourier transforma*tions, by the rescaling* [\(1.2.31\)](#page--1-19)*, by the transformations* [\(1.2.30\)](#page--1-20)*,* [\(1.2.32\)](#page--1-21) *and also by the phase translations* [\(1.2.51\)](#page--1-22) *and phase symmetries* [\(1.2.6\)](#page--1-16)*.*

Proof. Formula [\(6.2.6\)](#page-7-0) follows readily from [\(1.2.49\)](#page--1-4) and if u belongs to $M^1(\mathbb{R}^n)$, we find that

$$
W(\mathcal{M}u, \underbrace{\mathcal{M}\psi_0}_{\in \mathscr{S}(\mathbb{R}^n)}) = \underbrace{W(u, \psi_0)}_{\in L^1(\mathbb{R}^{2n})} \circ S^{-1},
$$

and since det $S = 1$, we have

$$
||\mathcal{W}(\mathcal{M}u, \mathcal{M}\psi_0)||_{L^1(\mathbb{R}^{2n})} = ||\mathcal{W}(u, \psi_0)||_{L^1(\mathbb{R}^{2n})},
$$

implying that $W(\mathcal{M}u, \mathcal{M}\psi_0)$ belongs to $L^1(\mathbb{R}^{2n})$ so that, thanks to Definition [6.2.5,](#page-4-4) we get that $\mathcal{M}u$ belongs to $M^1(\mathbb{R}^n)$. The same properties are true for \mathcal{M}^{-1} .

Remark 6.2.10. From Definition [6.2.5,](#page-4-4) we see that, for $u \in M^1(\mathbb{R}^n)$, we have

$$
\mathcal{W}(u,u) \in L^1(\mathbb{R}^{2n}),
$$

and this implies, thanks to Theorem [1.2.24,](#page--1-23) that $M^1(\mathbb{R}^n) \subset L^1(\mathbb{R}^n)$. Moreover, we have

$$
\mathcal{F}(M^1(\mathbb{R}^n)) \subset M^1(\mathbb{R}^n),
$$

since for $u \in M^1(\mathbb{R}^n)$, we have

$$
W(\hat{u},\psi_0) = W(\hat{u},\hat{\psi}_0)
$$

and thanks to [\(6.2.6\)](#page-7-0),

$$
\|\mathcal{W}(\hat{u},\hat{\psi}_0)\|_{L^1(\mathbb{R}^{2n})}=\|\mathcal{W}(u,\psi_0)\|_{L^1(\mathbb{R}^{2n})}.
$$

As a consequence we find

$$
\mathcal{F}\big(M^1(\mathbb{R}^n)\big)\subset M^1(\mathbb{R}^n)=\mathcal{F}^2\mathcal{C}(M^1(\mathbb{R}^n))=\mathcal{F}^2(M^1(\mathbb{R}^n))\subset \mathcal{F}\big(M^1(\mathbb{R}^n)\big),
$$

and consequently

$$
M^1(\mathbb{R}^n) = \mathcal{F}(M^1(\mathbb{R}^n)) \subset \mathcal{F}(L^1(\mathbb{R}^n)) \subset C_{(0)}(\mathbb{R}^n),
$$

where the latter inclusion is due to the Riemann–Lebesgue lemma with $C_{(0)}(\mathbb{R}^n)$ standing for the space of continuous functions with limit 0 at infinity. Moreover, for $u \in M^1(\mathbb{R}^n)$ and ψ_0 given by [\(6.2.2\)](#page-5-2), we get from [\(1.1.5\)](#page--1-12),

$$
u(x_1)\bar{\psi}_0(x_2) = \int \mathcal{W}(u,\psi_0)\bigg(\frac{x_1+x_2}{2},\xi\bigg)e^{2i\pi(x_1-x_2)\cdot\xi}d\xi,
$$

so that

$$
u(x_1) = \iint \mathcal{W}(u, \psi_0)(y, \eta) e^{4i\pi(x_1 - y)\cdot\eta} \bar{\psi}_0(2y - x_1) dy d\eta 2^n,
$$

implying

$$
||u||_{L^{1}(\mathbb{R}^{n})} \leq ||W(u, \psi_{0})||_{L^{1}(\mathbb{R}^{2n})} 2^{\frac{5n}{4}}, \qquad (6.2.7)
$$

and similarly for $p \in [1, +\infty]$,

$$
||u||_{L^p(\mathbb{R}^n)} \leq ||W(u,\psi_0)||_{L^1(\mathbb{R}^{2n})} 2^{\frac{5n}{4}} p^{-\frac{n}{2p}},
$$

yielding the continuous injection of $M^1(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$.

Theorem 6.2.11. The space $M^1(\mathbb{R}^n)$ is a Banach algebra for convolution and for *pointwise multiplication.*

Proof. Let $u, v \in M^1(\mathbb{R}^n)$; then the convolution $u * v$ makes sense and belongs to all $L^p(\mathbb{R}^n)$ for $p \in [1, +\infty]$, since we have $u \in L^1(\mathbb{R}^n)$. We calculate

$$
\mathcal{W}(u * v, \psi_0)(x, \xi) = \int_{\mathbb{R}^n} u(y) \mathcal{W}(\tau_y v, \psi_0)(x, \xi) dy, \quad (\tau_y v)(x) = v(x - y),
$$

so that

$$
\|\mathcal{W}(u * v, \psi_0)\|_{L^1(\mathbb{R}^{2n})} \leq \int_{\mathbb{R}^n} |u(y)| \|\mathcal{W}(\tau_y v, \psi_0)\|_{L^1(\mathbb{R}^{2n})} dy,
$$

and since we have

$$
\mathcal{W}(\tau_y v, \psi_0)(x, \xi) = \mathcal{W}(v, \tau_y \psi_0)(x, \xi) e^{-4i\pi y \cdot \xi},
$$

we get

$$
||\mathcal{W}(u * v, \psi_0)||_{L^1(\mathbb{R}^{2n})} \leq \int_{\mathbb{R}^n} |u(y)| ||\mathcal{W}(v, \tau_y \psi_0)||_{L^1(\mathbb{R}^{2n})} dy,
$$

so that using $(6.2.3)$, we obtain

$$
\begin{aligned} ||\mathcal{W}(u*v,\psi_0)||_{L^1(\mathbb{R}^{2n})} \\ &\leq \int_{\mathbb{R}^n} |u(y)| 2^n ||\mathcal{W}(\psi_0,\tau_y\psi_0)||_{L^1(\mathbb{R}^{2n})} dy ||\mathcal{W}(v,\psi_0)||_{L^1(\mathbb{R}^{2n})} .\end{aligned}
$$

We can check now that

$$
\mathcal{W}(\psi_0, \tau_y \psi_0)(x, \xi) = 2^n e^{-2\pi (\xi^2 + (x - \frac{y}{2})^2)} e^{2i\pi \xi y},
$$

so that

$$
\|\mathcal{W}(u*v,\psi_0)\|_{L^1(\mathbb{R}^{2n})} \le 2^n \|u\|_{L^1(\mathbb{R}^n)} \|\mathcal{W}(v,\psi_0)\|_{L^1(\mathbb{R}^{2n})}
$$

$$
\le 2^{\frac{9n}{4}} \|\mathcal{W}(u,\psi_0)\|_{L^1(\mathbb{R}^{2n})} \|\mathcal{W}(v,\psi_0)\|_{L^1(\mathbb{R}^{2n})},
$$
 (6.2.8)

proving that $M^1(\mathbb{R}^n)$ is a Banach algebra for convolution when equipped with the norm \mathbf{o}

$$
N(u) = 2^{\frac{9n}{4}} \|W(u, \psi_0)\|_{L^1(\mathbb{R}^{2n})}.
$$
\n(6.2.9)

On the other hand, for $u, v \in M^1(\mathbb{R}^n)$, the pointwise product $u \cdot v$ makes sense and belongs to $L^1(\mathbb{R}^n)$ (since both functions are in $L^2(\mathbb{R}^n)$) and we have

$$
u \cdot v = \mathcal{CF}(\hat{u} * \hat{v}),
$$

so that

$$
\mathcal{W}(u\cdot v,\psi_0)(x,\xi)=\mathcal{W}(\mathcal{CF}(\hat{u}*\hat{v}),\psi_0)(x,\xi)=\mathcal{W}(\mathcal{F}(\hat{u}*\hat{v}),\check{\psi}_0)(-x,-\xi),
$$

and since $\psi_0 = \hat{\psi}_0$ is also even, we get

$$
\begin{aligned} \|\mathcal{W}(u \cdot v, \psi_0)\|_{L^1(\mathbb{R}^{2n})} &= \|\mathcal{W}(\mathcal{F}(\hat{u} * \hat{v}), \mathcal{F}\psi_0)\|_{L^1(\mathbb{R}^{2n})} \\ &= \|\mathcal{W}(\hat{u} * \hat{v}, \psi_0)\|_{L^1(\mathbb{R}^{2n})} \\ &\leq 2^{\frac{9n}{4}} \|\mathcal{W}(\hat{u}, \hat{\psi}_0)\|_{L^1(\mathbb{R}^{2n})} \|\mathcal{W}(\hat{v}, \hat{\psi}_0)\|_{L^1(\mathbb{R}^{2n})} \\ &= 2^{\frac{9n}{4}} \|\mathcal{W}(u, \psi_0)\|_{L^1(\mathbb{R}^{2n})} \|\mathcal{W}(v, \psi_0)\|_{L^1(\mathbb{R}^{2n})}, \end{aligned}
$$

proving as well that $M^1(\mathbb{R}^n)$ is a Banach algebra for pointwise multiplication with the norm $(6.2.9)$. \blacksquare

6.3 Most pulses give rise to a non-integrable Wigner distribution

In the sequel, *n* is an integer > 1 .

Lemma 6.3.1. We have with ψ_0 given by [\(6.2.2\)](#page-5-2),

$$
M^1(\mathbb{R}^n)=\bigg\{u\in L^2(\mathbb{R}^n),\iint_{\mathbb{R}^{2n}}|\mathcal{W}(u,\psi_0)(x,\xi)|dx\,d\xi<+\infty\bigg\}.
$$

Then, $M^1(\mathbb{R}^n)$ *is an* F_σ *of* $L^2(\mathbb{R}^n)$ *with empty interior.*

Proof. We have $M^1(\mathbb{R}^n) = \bigcup_{N \in \mathbb{N}} \Phi_N$ with

$$
\Phi_N = \bigg\{ u \in L^2(\mathbb{R}^n), \iint_{\mathbb{R}^{2n}} |\mathcal{W}(u, \psi_0)(x, \xi)| dx d\xi \le N \bigg\}.
$$

The set Φ_N is a closed subset of $L^2(\mathbb{R}^n)$ since if $(u_k)_{k\geq 1}$ is a sequence in Φ_N which converges in $L^2(\mathbb{R}^n)$ with limit u, we get for $R \geq 0$,

$$
\iint_{|(x,\xi)|\leq R} |W(u,\psi_0)(x,\xi)| dx d\xi
$$
\n
$$
\leq \iint_{|(x,\xi)|\leq R} |W(u-u_k,\psi_0)(x,\xi)| dx d\xi + \iint_{|(x,\xi)|\leq R} |W(u_k,\psi_0)(x,\xi)| dx d\xi
$$
\n
$$
\leq ||u-u_k||_{L^2(\mathbb{R}^n)} (|\mathbb{B}^{2n}|R^{2n})^{1/2} + N,
$$

implying $\iint_{|(x,\xi)|\leq R} |\mathcal{W}(u,\psi_0)(x,\xi)| dx d\xi \leq N$, and this for any R, so that we obtain $u \in \Phi_N$. The interior of Φ_N is empty, since if it were not the case, as Φ_N is also convex and symmetric, 0 would be an interior point of Φ_N in $L^2(\mathbb{R}^n)$ and we would find $\rho_0 > 0$ such that

$$
||u||_{L^2(\mathbb{R}^n)} \le \rho_0 \Longrightarrow \iint_{\mathbb{R}^{2n}} |\mathcal{W}(u,\psi_0)(x,\xi)| dx d\xi \le N,
$$

and thus for any non-zero $u \in L^2(\mathbb{R}^n)$, we would have

$$
\iint_{\mathbb{R}^{2n}} |\mathcal{W}(u,\psi_0)(x,\xi)| dx d\xi \|u\|_{L^2(\mathbb{R}^n)}^{-1} \rho_0 \le N
$$

and thus

$$
||u||_{M^1(\mathbb{R}^n)} \leq N \rho_0^{-1} ||u||_{L^2(\mathbb{R}^n)},
$$

implying as well $L^2(\mathbb{R}^n) = M^1(\mathbb{R}^n)$ which is untrue, thanks to the examples of Section [6.1.2,](#page-1-1) e.g., [\(6.1.3\)](#page-2-1), and this proves that the interior of Φ_N is actually empty. Now the Baire Category Theorem implies that the F_{σ} set $M^1(\mathbb{R}^n)$ is a subset of $L^2(\mathbb{R}^n)$ with empty interior. Н Let us give another decomposition of the space $M^1(\mathbb{R}^n)$.

Lemma 6.3.2. *According to Lemma* [6.2.3](#page-4-2)*, we have*

$$
M^{1}(\mathbb{R}^{n}) = \left\{ u \in L^{2}(\mathbb{R}^{n}), \iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} |\mathcal{W}(u, u)(x, \xi)| dx d\xi < +\infty \right\}.
$$

Then, defining

$$
\mathcal{F}_N = \left\{ u \in L^2(\mathbb{R}^n), \iint_{\mathbb{R}^n \times \mathbb{R}^n} |\mathcal{W}(u, u)(x, \xi)| dx d\xi \le N \right\},\tag{6.3.1}
$$

each \mathcal{F}_N is a closed subset of $L^2(\mathbb{R}^n)$ with empty interior.

Proof. We have $\mathscr{F} = M^1(\mathbb{R}^n) = \bigcup_{N \in \mathbb{N}} \mathscr{F}_N$. The set \mathscr{F}_N is a closed subset of $L^2(\mathbb{R}^n)$ since if $(u_k)_{k\geq 1}$ is a sequence in \mathcal{F}_N which converges in $L^2(\mathbb{R}^n)$ with limit u , we have

$$
\forall k \ge 1, \quad \iint_{\mathbb{R}^n \times \mathbb{R}^n} |\mathcal{W}(u_k, u_k)(x, \xi)| dx d\xi \le N,
$$

so that we may apply Lemma [6.1.2](#page-0-0) with $C_0 = N$, and readily get that u belongs to \mathcal{F}_N . We have also that interior $L^2(\mathbb{R}^n)(\mathcal{F}_N) \subset \text{interior}_{L^2(\mathbb{R}^n)}(M^1(\mathbb{R}^n)) = \emptyset$.

Theorem 6.3.3. *Defining*

$$
\mathcal{G} = \left\{ u \in L^{2}(\mathbb{R}^{n}), \iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} |\mathcal{W}(u, u)(x, \xi)| dx d\xi = +\infty \right\} = L^{2}(\mathbb{R}^{n}) \backslash M^{1}(\mathbb{R}^{n}),
$$
\n(6.3.2)

we obtain that the set $\mathscr G$ is a dense G_δ subset of $L^2(\mathbb R^n)$.

Proof. It follows immediately from Lemma [6.3.2](#page-11-0) and formula $\{\hat{A}\}^c = \overline{A^c}$, yielding for \mathcal{F}_N defined in [\(6.3.1\)](#page-11-1), $L^2(\mathbb{R}^n) = \left\{ \text{interior}(\bigcup_{N} \mathcal{F}_N) \right\}^c = \overline{\bigcap_N \mathcal{F}_N^c}$.

Remark 6.3.4. It is interesting to note that the space $M^1(\mathbb{R}^n)$ is not reflexive, as it can be identified to ℓ^1 via Wilson bases, but it is a dual space. It turns out that both properties are linked to the fact that $M^1(\mathbb{R}^n)$ is an F_{σ} of $L^2(\mathbb{R}^n)$ as proven by Lemmas $6.3.1$ and $6.3.2$: if X is a reflexive Banach space continuously included in a Hilbert space \mathbb{H} , it is always an F_{σ} of \mathbb{H} , since we may write

$$
\mathbb{X} = \bigcup_{N \in \mathbb{N}} N \mathbf{B}_{\mathbb{X}},
$$

where $B_{\mathbb{X}}$ is the closed unit ball of \mathbb{X} and $N B_{\mathbb{X}}$ is H-closed since it is weakly compact (for the topology $\sigma(\mathbb{H}, \mathbb{H})$); we cannot use that abstract argument in the case of the non-reflexive $M^1(\mathbb{R}^n)$, so we produced a direct elementary proof above. Also, it can be proven that if X is a Banach space continuously included in a Hilbert space \mathbb{H} , so that X is an F_{σ} of H, then X must have a predual. As a result, the fact that $M^1(\mathbb{R}^n)$ has a predual appears as a consequence of the fact that $M^1(\mathbb{R}^n)$ is an F_{σ} of $L^2(\mathbb{R}^n)$.

6.4 Consequences on integrals of the Wigner distribution

Lemma 6.4.1. Let $\mathscr G$ be defined in [\(6.3.2\)](#page-11-2) and let $u \in \mathscr G$. Then, the positive and *negative part of the real-valued* $W(u, u)$ *are such that*

$$
\iint \mathcal{W}(u,u)_+(x,\xi)dx d\xi = \iint \mathcal{W}(u,u)_-(x,\xi)dx d\xi = +\infty.
$$

Proof. For $h \in (0, 1]$, we define the symbol

$$
a(x, \xi, h) = e^{-h(x^2 + \xi^2)},
$$

and we see that it is a semi-classical symbol in the sense [\(1.2.65\)](#page--1-24). Let us start a *reductio ad absurdum* and assume $\iint w(u, u) = (x, \xi) dx d\xi < +\infty$, (which implies since $u \in \mathcal{G}$, $\iint \mathcal{W}(u, u)_+(x, \xi) dx d\xi = +\infty$). We note that

$$
\langle \operatorname{Op}_w(a(x,\xi,h))u, u \rangle_{L^2(\mathbb{R}^n)} = \iint \underbrace{a(x,\xi,h)}_{\in L^2(\mathbb{R}^{2n})} \underbrace{\mathcal{W}(u,u)(x,\xi)}_{\in L^2(\mathbb{R}^{2n})} dx d\xi,
$$

and thanks to Theorem [1.2.27,](#page--1-25) we have also

$$
\sup_{h\in(0,1]}|\langle \operatorname{Op}_w(a(x,\xi,h))u,u\rangle_{L^2(\mathbb{R}^n)}|\leq \sigma_n||u||^2_{L^2(\mathbb{R}^n)},
$$

so that

$$
\iint e^{-h(x^2 + \xi^2)} W(u, u)(x, \xi) dx d\xi + \iint e^{-h(x^2 + \xi^2)} W(u, u) = (x, \xi) dx d\xi
$$

=
$$
\iint e^{-h(x^2 + \xi^2)} W(u, u) + (x, \xi) dx d\xi,
$$

and thus with $\theta_h \in [-1, 1]$, we have

$$
\theta_h \sigma_n \|u\|_{L^2(\mathbb{R}^n)}^2 + \iint e^{-h(x^2 + \xi^2)} W(u, u) - (x, \xi) dx d\xi
$$

=
$$
\iint e^{-h(x^2 + \xi^2)} W(u, u) + (x, \xi) dx d\xi.
$$
 (6.4.1)

Choosing $h = 1/m, m \in \mathbb{N}^*$, we note that

$$
e^{-\frac{1}{m}(x^2+\xi^2)}W(u,u)_+(x,\xi) \leq e^{-\frac{1}{m+1}(x^2+\xi^2)}W(u,u)_+(x,\xi).
$$

From the Beppo–Levi Theorem (see, e.g., [\[34,](#page--1-26) Theorem 1.6.1]), we get that

$$
\lim_{m \to +\infty} \iint e^{-\frac{1}{m}(x^2 + \xi^2)} W(u, u)_+(x, \xi) dx d\xi = \iint W(u, u)_+(x, \xi) dx d\xi = +\infty.
$$

However, the left-hand side of [\(6.4.1\)](#page-12-0) is bounded above by

$$
\sigma_n \|u\|_{L^2(\mathbb{R}^n)}^2 + \iint \mathcal{W}(u, u) = (x, \xi) dx d\xi, \quad \text{which is finite,}
$$

triggering a contradiction. We may now study the case where

$$
\iint \mathcal{W}(u,u)_+(x,\xi)dx d\xi < +\infty, \quad \iint \mathcal{W}(u,u)_-(x,\xi)dx d\xi = +\infty.
$$

The identity [\(6.4.1\)](#page-12-0) still holds true with a left-hand side going to $+\infty$ when h goes to 0 whereas the right-hand side is bounded. This concludes the proof of the lemma. \blacksquare

N.B. A shorter *heuristic* argument would be that the identity

$$
\iint \mathcal{W}(u, u)(x, \xi) dx d\xi = \|u\|_{L^2(\mathbb{R}^n)}^2 \quad \text{and} \quad \iint |\mathcal{W}(u, u)(x, \xi)| dx d\xi = +\infty
$$

should imply the lemma, but the former integral is not absolutely converging, so that argument fails to be completely convincing since we need to give a meaning to the first integral.

Theorem 6.4.2. Defining $\mathscr{G} = L^2(\mathbb{R}^n) \backslash M^1(\mathbb{R}^n)$ (cf. [\(6.3.2\)](#page-11-2)) we find that the set \mathscr{G} is a dense G_{δ} set in $L^2(\mathbb{R}^n)$ and for all $u \in \mathscr{G}$, we have^{[1](#page-13-0)}

$$
\iint \mathcal{W}(u,u)_+(x,\xi)dx d\xi = \iint \mathcal{W}(u,u)_-(x,\xi)dx d\xi = +\infty, \qquad (6.4.2)
$$

Defining[2](#page-13-1)

$$
E_{\pm}(u) = \{(x, \xi) \in \mathbb{R}^{2n}, \pm \mathcal{W}(u, u)(x, \xi) > 0\},\tag{6.4.3}
$$

we have for all $u \in \mathscr{G}$,

$$
\iint_{E_{\pm}(u)} \mathcal{W}(u, u)(x, \xi) dx d\xi = \pm \infty, \tag{6.4.4}
$$

and both sets $E_{\pm}(u)$ are open subsets of \mathbb{R}^{2n} with infinite Lebesgue measure.

Proof. The first statements follow from Theorem [6.3.3](#page-11-3) and Lemma [6.4.1.](#page-12-1) As far as [\(6.4.4\)](#page-13-2) is concerned, we note that $W(u, u) > 0$ (resp., < 0) on $E_+(u)$ (resp., $E_-(u)$, so that Theorem [6.3.3](#page-11-3) implies [\(6.4.4\)](#page-13-2). Moreover, $E_{\pm}(u)$ are open subsets of \mathbb{R}^{2n} since, thanks to Theorem [1.2.22,](#page--1-27) the function $W(u, u)$ is continuous; also, both subsets have infinite Lebesgue measure from $(6.4.2)$ since $W(u, u)$ belongs to $L^2(\mathbb{R}^{2n})$. \blacksquare

¹Note that $W(u, u)$ is real-valued.

²Thanks to Theorem [1.2.22,](#page--1-27) the function $W(u, u)$ is a continuous function, so it makes sense to consider its pointwise values.

Remark 6.4.3. There are many other interesting properties and generalizations of the space $M¹$ and in particular a close link between the Bargmann transform, the Fock spaces and modulation spaces: we refer the reader to Remark 5 on page 243 in Section 11.4 of [\[16\]](#page--1-8), to our Section [1.2.8](#page--1-28) in this memoir and to Section 2.4 of [\[33\]](#page--1-29).

Remark 6.4.4. As a consequence of the previous theorem, we could say that for any *generic u* in $L^2(\mathbb{R}^n)$ (i.e., any $u \in \mathscr{G} = L^2(\mathbb{R}^n) \setminus M^1(\mathbb{R}^n)$), we can find open sets E_{+} , E_{-} such that the real-valued $\pm W(u, u)$ is positive on E_{+} and

$$
\iint_{E_{\pm}} W(u,u)(x,\xi)dx d\xi = \pm \infty.
$$

We shall see in the next section some results on polygons in the plane and for instance, we shall be able to prove that there exists a "universal number" $\mu_3^+ > 1$ such that for any triangle^{[3](#page-14-0)} $\mathcal T$ in the plane, we have

$$
\forall u \in L^{2}(\mathbb{R}), \quad \iint_{\mathcal{T}} W(u, u)(x, \xi) dx d\xi \le \mu_{3}^{+} \|u\|_{L^{2}(\mathbb{R})}^{2}.
$$
 (6.4.5)

Note in particular that we will show that $(6.4.5)$ holds true regardless of the area of the triangle (which could be infinite according to our definition of a triangle). Although that type of result may look pretty weak, it gets enhanced by Theorem [6.4.2](#page-13-4) which proves that no triangle in the plane could be a set $E_{+}(u)$ (cf. [\(6.4.3\)](#page-13-5)) for a generic u in $L^2(\mathbb{R})$.

³We define a triangle as the intersection of three half-planes, which includes of course the convex envelope of three points, but also the set with infinite area $\{(x,\xi) \in \mathbb{R}^2, x \geq 0, \xi \geq 0\}$ $0, x + \xi \geq \lambda$ for some $\lambda > 0$.