
Chapter 6

Unboundedness is Baire generic
In this section, we show that for plenty of subsets E of the phase space R2n, the
operator Opw.1E / is not bounded on L2.Rn/.

6.1 Preliminaries

6.1.1 Prolegomena

Lemma 6.1.1. Let u; v 2 L2.Rn/ and let W.u; u/, W.v; v/, be their Wigner distri-
butions. Then, we have

kW.u; u/ �W.v; v/kL2.R2n/ � ku � vkL2.Rn/
�
kukL2.Rn/ C kvkL2.Rn/

�
:

As a consequence if a sequence .uk/ is converging in L2.Rn/, then the sequence
.W.uk; uk// converges in L2.R2n/ towards W.u; u/.

Proof. We have by sesquilinearity W.u;u/�W.v;v/DW.u� v;u/CW.v;u� v/,
so that

kW.u; u/ �W.v; v/kL2.R2n/ � kW.u � v; u/kL2.R2n/ C kW.v; u � v/kL2.R2n/

D„ƒ‚…
(1.1.6)

ku � vkL2.Rn/
�
kukL2.Rn/ C kvkL2.Rn/

�
;

proving the lemma.

Lemma 6.1.2. Let .uk/ be a converging sequence in L2.Rn/ with limit u. Let us
assume that there exists C0 � 0 such that

8k 2 N;

“
jW.uk; uk/.x; �/jdxd� � C0:

Then, we have
’
jW.u; u/.x; �/jdxd� � C0.

Proof. Let R > 0 be given. We check“
jxj2Cj�j2�R2

jW.u; u/.x; �/ �W.uk; uk/.x; �/jdxd�

�

“
jxj2Cj�j2�R2

jW.u � uk; u/.x; �/jdxd�

C

“
jxj2Cj�j2�R2

jW.uk; u � uk/.x; �/jdxd�

�

p
jB2njR2n

�
kW.u � uk; u/kL2.R2n/ C kW.uk; u � uk/kL2.R2n/

�
D

p
jB2njR2nku � ukkL2.Rn/

�
kukL2.Rn/ C kukkL2.Rn/

�
;
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and thus“
jxj2Cj�j2�R2

jW.u; u/.x; �/jdxd�

�

“
jxj2Cj�j2�R2

jW.uk; uk/.x; �/jdxd�

C

p
jB2njR2nku � ukkL2.Rn/

�
kukL2.Rn/ C kukkL2.Rn/

�
� C0 C

p
jB2njR2nku � ukkL2.Rn/

�
kukL2.Rn/ C kukkL2.Rn/

�
;

implying for all R > 0,“
jxj2Cj�j2�R2

jW.u; u/.x; �/jdxd� � C0;

and thus the sought result.

6.1.2 An explicit construction

We just calculate in this section W.v0; v0/ for v0 D 1Œ�1=2;1=2�.

Remark 6.1.3. When u is supported in a closed convex set J , we have in the integral
(1.1.4) defining W , x ˙ z

2
2 J ) x 2 J , so that supp W.u; u/ � J �Rn.

We have
W.v0; v0/.x; �/ D

Z
�1=2�xCz=2�1=2
�1=2�x�z=2�1=2

e2i�z�dz;

and the integration domain is

�min.1 � 2x; 1C 2x/ D max.�1 � 2x; 2x � 1/ � z � min.1 � 2x; 1C 2x/;

which is empty unless 1� 2x; 1C 2x � 0, i.e., x 2 Œ�1=2;C1=2�, and moreover we
have the equivalence

1 � 2x � 1C 2x” x � 0;

so that

W.v0; v0/.x; �/

D H.x/

Z 1�2x

�.1�2x/

e2i�z�dz CH.�x/

Z 1C2x

�.1C2x/

e2i�z�dz

D H.x/
e2i��.1�2x/ � e�2i��.1�2x/

2i��
CH.�x/

e2i��.1C2x/ � e�2i��.1C2x/

2i��

D 1Œ0;1=2�.x/
sin.2��.1 � 2x//

��
C 1Œ�1=2;0�

sin.2��.1C 2x//
��

: (6.1.1)
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More generally for a; b; ! real numbers with a < b and

ua;b;!.x/ D .b � a/
�1=21Œa;b�.x/e2i�!x; (6.1.2)

we have

W.ua;b;! ; ua;b;!/.x; �/

D

�
1
Œa;aCb2 �

.x/ sinŒ4�.� � !/.x � a/�C 1
ŒaCb2 ;b�

.x/ sinŒ4�.� � !/.b � x/�
�

.b � a/�.� � !/
:

We check now, using (6.1.1), for N > 0,“
jW.v0; v0/.x; �/jdxd� �

Z
0�x�1=4

Z N

0

ˇ̌̌̌
sin.2��.1 � 2x//

��

ˇ̌̌̌
d�dx

D

Z
0�x�1=4

Z N2�.1�2x/

0

ˇ̌̌̌
sin �
��

ˇ̌̌̌
d�dx

�

Z
0�x�1=4

Z N�

0

ˇ̌̌̌
sin �
��

ˇ̌̌̌
d�dx D

1

4

Z N�

0

ˇ̌̌̌
sin �
��

ˇ̌̌̌
d�;

so that “
jW.v0; v0/.x; �/jdxd� D C1: (6.1.3)

Proposition 6.1.4. Let a; b;! be real numbers with a < b and let us define ua;b;! by
(6.1.2). Then, we have“ ˇ̌

W.ua;b;! ; ua;b;!/.x; �/
ˇ̌
dxd� D C1: (6.1.4)

N.B. Since ua;b;! is a normalized L2.R/ function, we also have from (1.1.6), (1.1.9)
that the real-valued W.ua;b;! ; ua;b;!/ does satisfyZ ˇ̌̌̌ Z

W.ua;b;! ; ua;b;!/.x; �/dx

ˇ̌̌̌
d� D

Z ˇ̌̌̌Z
W.ua;b;! ; ua;b;!/.x; �/d�

ˇ̌̌̌
dx

D kua;b;!k
2
L2.R/ D 1;“

W.ua;b;! ; ua;b;!/.x; �/
2dxd� D kua;b;!k

4
L2.R/ D 1:

We shall see in the next sections that most of the time in the Baire Category sense,
we have for u 2 L2.Rn/,

’
jW.u; u/.x; �/jdxd� D C1.

Proof. The proof is already given above for v0 D u�1=2;1=2;0. Moreover, we have
with

˛ D
1

b � a
; ˇ D

b C a

2.a � b/
;
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the formula

v0.y/ D e
�2i�!.y�ˇ/˛�1ua;b;!..y � ˇ/˛

�1/˛�1=2;

so that ua;b;! DMv0, where M belongs to the group Mpa.n/. (cf. Section 1.2.1) and
the covariance property (1.2.49) shows that the already proven (6.1.3) implies (6.1.4).

6.2 Modulation spaces

In this section, we use the Feichtinger algebra M 1, introduced in [10] (the termin-
ology Feichtinger algebra goes back to the book [44]). The survey article [26] by
M. S. Jakobsen is a good source for recent developments of the theory as well as
Chapter 12 in the K. Gröchenig’s book [16]. We refer the reader to the paper [18] by
K. Gröchenig and M. Leinert as well as to J. Sjöstrand’s article [48] for the use of
modulation spaces to proving a non-commutative Wiener lemma.

6.2.1 Preliminary lemmas

The following lemmas in this subsection are well-known (see, e.g., [16, Theorem
11.2.5]). However, we provide a proof for the self-containedness of our survey.

Lemma 6.2.1. Let �0 be a non-zero function in S .Rn/. For u 2S 0.Rn/ the follow-
ing properties are equivalent.

(i) u 2 S .Rn/.

(ii) W.u; �0/ 2 S .R2n/.

(iii) 8N 2 N; supX2R2n jW.u; �0/.X/j.1C jX j/
N < C1.

Proof. Let us assume (i) holds true; with �.u; �0/ defined in (1.1.1), we find that
�.u; �0/ belongs to S .R2n/, thus as well as its partial Fourier transform W.u; �0/,
proving (ii). We have obviously that (ii) implies (iii). Let us now assume that (iii)
holds true. Using (1.1.5), we find

u.x1/ N�0.x2/ D

Z
W.u; �0/

�
x1 C x2

2
; �

�
e2i�.x1�x2/�d�;

and thus

u.x1/k�0k
2
L2.Rn/ D

“
W.u; �0/

�
x1 C x2

2
; �

�
e2i�.x1�x2/��0.x2/d�dx2

D

“
W.u; �0/.y; �/e

4i�.x1�y/��0.2y � x1/d�dy2
n;

so that the latter equality, the fact that �0 belongs to S .Rn/ imply (i) by differenti-
ation under the integral sign, concluding the proof of the lemma.
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Lemma 6.2.2. Let �0; �1 be non-zero functions inL2.Rn/. Let u 2L2.Rn/ such that
W.u; �0/ belongs to L1.R2n/. Then, W.u; �1/ belongs as well to L1.R2n/.

Proof. According to Lemma 1.2.26 applied to u0 D u; u1 D u2 D �0; u3 D �1, we
have

k�0k
2
L2

W.u; �1/ 2 L
1.R2n/;

since W.u; �0/ belongs to L1.R2n/ as well as W. L�0; �1/.

Lemma 6.2.3. Let u 2 L2.Rn/. The following properties are equivalent.

(i) For all � 2 S .Rn/, we have W.u; �/ 2 L1.R2n/.

(ii) For a non-zero � 2 S .Rn/, we have W.u; �/ 2 L1.R2n/.

(iii) W.u; u/ belongs to L1.R2n/.

Proof. We have obviously (i))(ii) and, conversely, Lemma 6.2.2 yields (ii))(i).
Assuming (i) and using Lemma 1.2.26 with u0 D u3 D u, u1 D u2 D � 2 S .Rn/,
we get

k�k2
L2
jW.u; u/.X/j � 2n

�
jW.u; �/j � jW. L�; u/j

�
.X/;

so that choosing a non-zero � in the Schwartz space, we obtain (iii). Conversely,
assuming (iii) and using again Lemma 1.2.26 with u0 D u2 D u, u3 D � 2 S .Rn/,
u1 D  2 S .Rn/, we find

jh ; uiL2 jjW.u; �/.X/j � 2n
�
jW.u; u/j„ ƒ‚ …
2L1.R2n/

�jW. L ; �/„ ƒ‚ …
2S .R2n/

j
�
.X/: (6.2.1)

Assuming as we may u 6D 0, we can choose  2 S .Rn/ such that

h ; uiL2 6D 0;

so that (6.2.1) implies (i).

Lemma 6.2.4. Let u1; u2; u3 2 L2.Rn/. Then, we have the inversion formula,

Opw .W.u1; u2//u3 D hu3; u2iL2.Rn/u1:

Proof. It is an immediate consequence of Lemma 1.2.25.

6.2.2 The spaceM1.Rn/

Definition 6.2.5. The spaceM 1.Rn/ is defined as the set of u2L2.Rn/ such that, for
all � 2 S .Rn/, W.u; �/ belongs to L1.R2n/. According to Lemma 6.2.3, M 1.Rn/
is also the set of u 2 L2.Rn/ such that W.u; u/ 2 L1.R2n/ as well as the set of
u 2 L2.Rn/ such that, for a non-zero � 2 S .Rn/, W.u; �/ belongs to L1.R2n/.
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Proposition 6.2.6. Let  0 be the standard fundamental state of the harmonic oscil-
lator �.D2

x C x
2/ given by

 0.x/ D 2
n=4e��jxj

2

: (6.2.2)

Then,M 1.Rn/3u 7! kW.u; 0/kL1.R2n/ is a norm onM 1.Rn/. Let be a non-zero
function in S .Rn/: then M 1.Rn/ 3 u 7! kW.u; /kL1.R2n/ is a norm on M 1.Rn/,
equivalent to the previous norm.

Proof. The homogeneity and triangle inequality are immediate, let us check the sep-
aration: let u 2 L2.Rn/ such that W.u;  / D 0. Then, we have

0 D hOpw.W.u;  // ; uiL2.Rn/ D kuk
2
L2.Rn/k k

2
L2.Rn/;

proving the sought result. Let  be a non-zero function in S .Rn/; according to
Lemma 1.2.26 applied to u0 D u; u1 D u2 D  0; u3 D  , we find

jW.u;  /.X/j � 2n
�
jW.u;  0/j � jW. 0;  /j

�
.X/;

so that we have

kW.u;  /kL1.R2n/ � 2
n
kW. 0;  /kL1.R2n/kW.u;  0/kL1.R2n/; (6.2.3)

kW.u;  0/kL1.R2n/ � 2
n
kW. ;  0/kL1.R2n/kW.u;  /kL1.R2n/;

proving the equivalence of norms.

Proposition 6.2.7. The space M 1.Rn/, equipped with the equivalent norms of Pro-
position 6.2.6, is a Banach space. The space S .Rn/ is dense in M 1.Rn/.

Proof. Let .uk/k�1 be a Cauchy sequence inM 1.Rn/: it means that .W.uk; 0//k�1
is a Cauchy sequence in L1.R2n/, thus such that

lim
k

W.uk;  0/ D U in L1.R2n/. (6.2.4)

On the other hand, from Lemma 1.2.25, we have uk�ulDOpw .W.uk�ul ;  0// 0,
so that

kuk � ulkL2.Rn/

� kOpw .W.uk � ul ;  0//kB.L2.Rn// �„ƒ‚…
cf. (1.2.5)

2nkW.uk � ul ;  0/kL1.R2n/;

implying that .uk/k�1 is a Cauchy sequence in L2.Rn/, thus converging towards
a function u in L2.Rn/. Since from (1.1.6), we have kW.uk � u;  0/kL2.R2n/ D

kuk � ukL2.Rn/, we obtain as well that

lim
k

W.uk;  0/ D W.u;  0/ in L2.R2n/;
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and this implies along with (6.2.4) that U D W.u;  0/ in S 0.R2n/. As a result, we
have W.u;  0/ 2 L

1.R2n/, so that u 2M 1.Rn/ and

lim
k

W.uk;  0/ D W.u;  0/ in L1.R2n/;

entailing convergence towards u for the sequence .uk/k�1 inM 1.Rn/ and the sought
completeness. We are left with the density question and we start with a calculation.

Claim 6.2.8. With the phase symmetry �y;� given by (1.2.6) and  0 by (6.2.2) we
have for X; Y 2 R2n,

W.�Y 0;  0/.X/ D 2
ne�2�jX�Y j

2

e�4i�ŒX;Y �; (6.2.5)

where the symplectic form is given in (1.2.13).

Proof of the Claim. We have indeed

W.�y;� 0;  0/.x; �/ D

Z
.�y;� 0/

�
x C

z

2

�
 0

�
x �

z

2

�
e�2i�z��dz

D

Z
 0

�
2y � x �

z

2

�
e4i���.xC

z
2�y/ 0

�
x �

z

2

�
e�2i�z��dz

D 2n=2
Z
e��.j2y�x�

z
2 j
2Cjx� z2 j

2/e2i�z�.���/dze4i���.x�y/

D 2n=2e4i���.x�y/
Z
e�

�
2 .j2y�zj

2Cj2.y�x/j2/e2i�z�.���/dz

D 2n=2e4i���.x�y/e�2�jy�xj
2

e4i�y�.���/2n=2e�2�j���j
2

;

which is the sought formula.

Let u be a function in M 1.Rn/. For " > 0 we define

u".x/ D

Z
R2n

W.u;  0/.Y /e
�"jY j22n.�Y 0/.x/dY;

and we have

W.u";  0/.X/ D

Z
R2n

W.u;  0/.Y /e
�"jY j22nW.�Y 0;  0/.X/dY;

so that Lemma 6.2.1 and (6.2.5) imply readily that u" belongs to the Schwartz space.
Moreover, we have

u D Opw.W.u;  0// 0;

from Lemma 6.2.4 and thus

W.u;  0/.X/ D

Z
R2n

W.u;  0/.Y /2
nW.�Y 0;  0/.X/dY;
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so thatZ
R2n
jW.u";  0/.X/ �W.u;  0/.X/jdX

� 2n
“

R2n�R2n
jW.u;  0/.Y /jjW.�Y 0;  0/.X/j„ ƒ‚ …
2L1.R4n/ from (6.2.5) and u 2M 1.Rn/

�
1 � e�"jY j

2�„ ƒ‚ …
2Œ0;1�

dYdX:

The Lebesgue dominated convergence theorem shows that the integral above tends
to 0 when "! 0C, proving the convergence in M 1.Rn/ of the sequence .u"/, which
completes the proof of the density.

Theorem 6.2.9. Let M be an element of the metaplectic group Mp.n/ (Definition
1.2.13). Then, M is an isomorphism of M 1.Rn/ and we have for u 2 M 1.Rn/, � 2
S .Rn/,

W.Mu;M�/ D W.u; �/ ı S�1; (6.2.6)

where M is in the fiber of the symplectic transformation S . In particular, the space
M 1.Rn/ is invariant by the Fourier transformation and partial Fourier transforma-
tions, by the rescaling (1.2.31), by the transformations (1.2.30), (1.2.32) and also by
the phase translations (1.2.51) and phase symmetries (1.2.6).

Proof. Formula (6.2.6) follows readily from (1.2.49) and if u belongs to M 1.Rn/,
we find that

W.Mu; M 0„ƒ‚…
2S .Rn/

/ D W.u;  0/„ ƒ‚ …
2L1.R2n/

ıS�1;

and since detS D 1, we have

kW.Mu;M 0/kL1.R2n/ D kW.u;  0/kL1.R2n/;

implying that W.Mu;M 0/ belongs to L1.R2n/ so that, thanks to Definition 6.2.5,
we get that Mu belongs to M 1.Rn/. The same properties are true for M�1.

Remark 6.2.10. From Definition 6.2.5, we see that, for u 2M 1.Rn/, we have

W.u; u/ 2 L1.R2n/;

and this implies, thanks to Theorem 1.2.24, that M 1.Rn/ � L1.Rn/. Moreover, we
have

F
�
M 1.Rn/

�
�M 1.Rn/;

since for u 2M 1.Rn/, we have

W. Ou; 0/ D W. Ou; O 0/
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and thanks to (6.2.6),

kW. Ou; O 0/kL1.R2n/ D kW.u;  0/kL1.R2n/:

As a consequence we find

F
�
M 1.Rn/

�
�M 1.Rn/ D F 2C.M 1.Rn// D F 2.M 1.Rn// � F

�
M 1.Rn/

�
;

and consequently

M 1.Rn/ D F .M 1.Rn// � F .L1.Rn// � C.0/.R
n/;

where the latter inclusion is due to the Riemann–Lebesgue lemma with C.0/.Rn/
standing for the space of continuous functions with limit 0 at infinity. Moreover, for
u 2M 1.Rn/ and  0 given by (6.2.2), we get from (1.1.5),

u.x1/ N 0.x2/ D

Z
W.u;  0/

�
x1 C x2

2
; �

�
e2i�.x1�x2/��d�;

so that

u.x1/ D

“
W.u;  0/.y; �/e

4i�.x1�y/�� N 0.2y � x1/dyd�2
n;

implying
kukL1.Rn/ � kW.u;  0/kL1.R2n/2

5n
4 ; (6.2.7)

and similarly for p 2 Œ1;C1�,

kukLp.Rn/ � kW.u;  0/kL1.R2n/2
5n
4 p�

n
2p ;

yielding the continuous injection of M 1.Rn/ into Lp.Rn/.

Theorem 6.2.11. The space M 1.Rn/ is a Banach algebra for convolution and for
pointwise multiplication.

Proof. Let u; v 2 M 1.Rn/; then the convolution u � v makes sense and belongs to
all Lp.Rn/ for p 2 Œ1;C1�, since we have u 2 L1.Rn/. We calculate

W.u � v;  0/.x; �/ D

Z
Rn
u.y/W.�yv;  0/.x; �/dy; .�yv/.x/ D v.x � y/;

so that

kW.u � v;  0/kL1.R2n/ �

Z
Rn
ju.y/jkW.�yv;  0/kL1.R2n/dy;

and since we have

W.�yv;  0/.x; �/ D W.v; �y 0/.x; �/e
�4i�y�� ;
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we get

kW.u � v;  0/kL1.R2n/ �

Z
Rn
ju.y/jkW.v; �y 0/kL1.R2n/dy;

so that using (6.2.3), we obtain

kW.u � v;  0/kL1.R2n/

�

Z
Rn
ju.y/j2nkW. 0; �y 0/kL1.R2n/dykW.v;  0/kL1.R2n/:

We can check now that

W. 0; �y 0/.x; �/ D 2
ne�2�.�

2C.x�y2 /
2/e2i��y ;

so that

kW.u � v;  0/kL1.R2n/ � 2
n
kukL1.Rn/kW.v;  0/kL1.R2n/

�„ƒ‚…
(6.2.7)

2
9n
4 kW.u;  0/kL1.R2n/kW.v;  0/kL1.R2n/; (6.2.8)

proving that M 1.Rn/ is a Banach algebra for convolution when equipped with the
norm

N.u/ D 2
9n
4 kW.u;  0/kL1.R2n/: (6.2.9)

On the other hand, for u; v 2 M 1.Rn/, the pointwise product u � v makes sense and
belongs to L1.Rn/ (since both functions are in L2.Rn/) and we have

u � v D CF . Ou � Ov/;

so that

W.u � v;  0/.x; �/ D W.CF . Ou � Ov/;  0/.x; �/ D W.F . Ou � Ov/; L 0/.�x;��/;

and since  0 D O 0 is also even, we get

kW.u � v;  0/kL1.R2n/ D kW.F . Ou � Ov/;F  0/kL1.R2n/

D„ƒ‚…
cf. (1.2.49)

kW
�
Ou � Ov;  0

�
kL1.R2n/

�„ƒ‚…
(6.2.8)

2
9n
4 kW. Ou; O 0/kL1.R2n/kW. Ov; O 0/kL1.R2n/

D 2
9n
4 kW.u;  0/kL1.R2n/kW.v;  0/kL1.R2n/;

proving as well that M 1.Rn/ is a Banach algebra for pointwise multiplication with
the norm (6.2.9).
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6.3 Most pulses give rise to a non-integrable Wigner distribution

In the sequel, n is an integer � 1.

Lemma 6.3.1. We have with  0 given by (6.2.2),

M 1.Rn/ D

²
u 2 L2.Rn/;

“
R2n
jW.u;  0/.x; �/jdxd� < C1

³
:

Then, M 1.Rn/ is an F� of L2.Rn/ with empty interior.

Proof. We have M 1.Rn/ D
S
N2N ˆN with

ˆN D

²
u 2 L2.Rn/;

“
R2n
jW.u;  0/.x; �/jdxd� � N

³
:

The set ˆN is a closed subset of L2.Rn/ since if .uk/k�1 is a sequence in ˆN which
converges in L2.Rn/ with limit u, we get for R � 0,“

j.x;�/j�R

jW.u;  0/.x; �/jdxd�

�

“
j.x;�/j�R

jW.u � uk;  0/.x; �/jdxd� C

“
j.x;�/j�R

jW.uk;  0/.x; �/jdxd�

� ku � ukkL2.Rn/.jB
2n
jR2n/1=2 CN;

implying
’
j.x;�/j�R

jW.u; 0/.x; �/jdxd� �N , and this for anyR, so that we obtain
u 2 ˆN . The interior of ˆN is empty, since if it were not the case, as ˆN is also
convex and symmetric, 0 would be an interior point of ˆN in L2.Rn/ and we would
find �0 > 0 such that

kukL2.Rn/ � �0 H)

“
R2n
jW.u;  0/.x; �/jdxd� � N;

and thus for any non-zero u 2 L2.Rn/, we would have“
R2n
jW.u;  0/.x; �/jdxd�kuk

�1
L2.Rn/�0 � N

and thus
kukM1.Rn/ � N�

�1
0 kukL2.Rn/;

implying as well L2.Rn/ D M 1.Rn/ which is untrue, thanks to the examples of
Section 6.1.2, e.g., (6.1.3), and this proves that the interior of ˆN is actually empty.
Now the Baire Category Theorem implies that the F� set M 1.Rn/ is a subset of
L2.Rn/ with empty interior.
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Let us give another decomposition of the space M 1.Rn/.

Lemma 6.3.2. According to Lemma 6.2.3, we have

M 1.Rn/ D

²
u 2 L2.Rn/;

“
Rn�Rn

jW.u; u/.x; �/jdxd� < C1

³
:

Then, defining

FN D

²
u 2 L2.Rn/;

“
Rn�Rn

jW.u; u/.x; �/jdxd� � N

³
; (6.3.1)

each FN is a closed subset of L2.Rn/ with empty interior.

Proof. We have F D M 1.Rn/ D
S
N2N FN . The set FN is a closed subset of

L2.Rn/ since if .uk/k�1 is a sequence in FN which converges in L2.Rn/ with limit
u, we have

8k � 1;

“
Rn�Rn

jW.uk; uk/.x; �/jdxd� � N;

so that we may apply Lemma 6.1.2 with C0 D N , and readily get that u belongs to
FN . We have also that interiorL2.Rn/.FN / � interiorL2.Rn/.M 1.Rn// D ;.

Theorem 6.3.3. Defining

G D

²
u 2 L2.Rn/;

“
Rn�Rn

jW.u; u/.x; �/jdxd� D C1

³
D L2.Rn/nM 1.Rn/;

(6.3.2)
we obtain that the set G is a dense Gı subset of L2.Rn/.

Proof. It follows immediately from Lemma 6.3.2 and formula
®
VA
¯c
D Ac , yielding

for FN defined in (6.3.1), L2.Rn/ D
®
interior.

S
N FN /

¯c
D
T

N F c
N .

Remark 6.3.4. It is interesting to note that the space M 1.Rn/ is not reflexive, as
it can be identified to `1 via Wilson bases, but it is a dual space. It turns out that
both properties are linked to the fact that M 1.Rn/ is an F� of L2.Rn/ as proven by
Lemmas 6.3.1 and 6.3.2: if X is a reflexive Banach space continuously included in a
Hilbert space H, it is always an F� of H, since we may write

X D
[
N2N

NBX;

where BX is the closed unit ball of X andNBX is H-closed since it is weakly compact
(for the topology �.H;H/); we cannot use that abstract argument in the case of the
non-reflexive M 1.Rn/, so we produced a direct elementary proof above. Also, it can
be proven that if X is a Banach space continuously included in a Hilbert space H, so
that X is an F� of H, then X must have a predual. As a result, the fact that M 1.Rn/
has a predual appears as a consequence of the fact that M 1.Rn/ is an F� of L2.Rn/.
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6.4 Consequences on integrals of the Wigner distribution

Lemma 6.4.1. Let G be defined in (6.3.2) and let u 2 G . Then, the positive and
negative part of the real-valued W.u; u/ are such that“

W.u; u/C.x; �/dxd� D

“
W.u; u/�.x; �/dxd� D C1:

Proof. For h 2 .0; 1�, we define the symbol

a.x; �; h/ D e�h.x
2C�2/;

and we see that it is a semi-classical symbol in the sense (1.2.65). Let us start a
reductio ad absurdum and assume

’
W.u; u/�.x; �/dxd� < C1, (which implies

since u 2 G ,
’

W.u; u/C.x; �/dxd� D C1). We note that

hOpw.a.x; �; h//u; uiL2.Rn/ D

“
a.x; �; h/„ ƒ‚ …
2L2.R2n/

W.u; u/.x; �/„ ƒ‚ …
2L2.R2n/

dxd�;

and thanks to Theorem 1.2.27, we have also

sup
h2.0;1�

jhOpw.a.x; �; h//u; uiL2.Rn/j � �nkuk
2
L2.Rn/;

so that“
e�h.x

2C�2/W.u; u/.x; �/dxd� C

“
e�h.x

2C�2/W.u; u/�.x; �/dxd�

D

“
e�h.x

2C�2/W.u; u/C.x; �/dxd�;

and thus with �h 2 Œ�1; 1�, we have

�h�nkuk
2
L2.Rn/ C

“
e�h.x

2C�2/W.u; u/�.x; �/dxd�

D

“
e�h.x

2C�2/W.u; u/C.x; �/dxd�: (6.4.1)

Choosing h D 1=m;m 2 N�, we note that

e�
1
m .x

2C�2/W.u; u/C.x; �/ � e
� 1
mC1 .x2C�2/W.u; u/C.x; �/:

From the Beppo–Levi Theorem (see, e.g., [34, Theorem 1.6.1]), we get that

lim
m!C1

“
e�

1
m .x

2C�2/W.u; u/C.x; �/dxd� D

“
W.u; u/C.x; �/dxd� D C1:
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However, the left-hand side of (6.4.1) is bounded above by

�nkuk
2
L2.Rn/ C

“
W.u; u/�.x; �/dxd�; which is finite,

triggering a contradiction. We may now study the case where“
W.u; u/C.x; �/dxd� < C1;

“
W.u; u/�.x; �/dxd� D C1:

The identity (6.4.1) still holds true with a left-hand side going toC1 when h goes to
0 whereas the right-hand side is bounded. This concludes the proof of the lemma.

N.B. A shorter heuristic argument would be that the identity“
W.u; u/.x; �/dxd� D kuk2

L2.Rn/ and
“
jW.u; u/.x; �/jdxd� D C1

should imply the lemma, but the former integral is not absolutely converging, so that
argument fails to be completely convincing since we need to give a meaning to the
first integral.

Theorem 6.4.2. Defining G D L2.Rn/nM 1.Rn/ (cf. (6.3.2)) we find that the set G
is a dense Gı set in L2.Rn/ and for all u 2 G , we have1“

W.u; u/C.x; �/dxd� D

“
W.u; u/�.x; �/dxd� D C1; (6.4.2)

Defining2

E˙.u/ D
®
.x; �/ 2 R2n;˙W.u; u/.x; �/ > 0

¯
; (6.4.3)

we have for all u 2 G , “
E˙.u/

W.u; u/.x; �/dxd� D ˙1; (6.4.4)

and both sets E˙.u/ are open subsets of R2n with infinite Lebesgue measure.

Proof. The first statements follow from Theorem 6.3.3 and Lemma 6.4.1. As far
as (6.4.4) is concerned, we note that W.u; u/ > 0 (resp., < 0) on EC.u/ (resp.,
E�.u/), so that Theorem 6.3.3 implies (6.4.4). Moreover, E˙.u/ are open subsets
of R2n since, thanks to Theorem 1.2.22, the function W.u; u/ is continuous; also,
both subsets have infinite Lebesgue measure from (6.4.2) since W.u; u/ belongs to
L2.R2n/.

1Note that W.u; u/ is real-valued.
2Thanks to Theorem 1.2.22, the function W.u; u/ is a continuous function, so it makes

sense to consider its pointwise values.
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Remark 6.4.3. There are many other interesting properties and generalizations of
the space M 1 and in particular a close link between the Bargmann transform, the
Fock spaces and modulation spaces: we refer the reader to Remark 5 on page 243 in
Section 11.4 of [16], to our Section 1.2.8 in this memoir and to Section 2.4 of [33].

Remark 6.4.4. As a consequence of the previous theorem, we could say that for any
generic u in L2.Rn/ (i.e., any u 2 G D L2.Rn/nM 1.Rn/), we can find open sets
EC; E� such that the real-valued˙W.u; u/ is positive on E˙ and“

E˙
W.u; u/.x; �/dxd� D ˙1:

We shall see in the next section some results on polygons in the plane and for instance,
we shall be able to prove that there exists a “universal number” �C3 > 1 such that for
any triangle3 T in the plane, we have

8u 2 L2.R/;

“
T

W.u; u/.x; �/dxd� � �C3 kuk
2
L2.R/: (6.4.5)

Note in particular that we will show that (6.4.5) holds true regardless of the area of the
triangle (which could be infinite according to our definition of a triangle). Although
that type of result may look pretty weak, it gets enhanced by Theorem 6.4.2 which
proves that no triangle in the plane could be a set EC.u/ (cf. (6.4.3)) for a generic u
in L2.R/.

3We define a triangle as the intersection of three half-planes, which includes of course the
convex envelope of three points, but also the set with infinite area ¹.x; �/ 2 R2; x � 0; � �
0; x C � � �º for some � > 0.


