
Chapter 7

Convex polygons of the plane

7.1 Convex cones
We have seen in Proposition 5.4.4 and Theorem 5.2.4 that the self-adjoint bounded
operator with Weyl symbol H.x/H.�/ does satisfy

��2 D m0 D �min
�
Opw .H.x/H.�//

�
� Opw .H.x/H.�//

� �max
�
Opw .H.x/H.�//

�
DM0 D �

C
2 ;

Œ��2 ; �
C
2 � D spectrum

�
Opw.H.x/H.�//

�
; (7.1.1)

with

��2 � �0:155939843191243; �C2 � 1:00767997007003: (7.1.2)

This result is true as well for the characteristic function of any convex cone (which is
not a half-plane nor the full plane) in the plane since we can map it to the quarter
plane by a transformation in Sl.2;R/ D Sp.1;R/. On the other hand, a concave
cone is the complement of a convex cone and the diagonalisation offered by The-
orem 5.2.3 proves that the spectrum of the Weyl quantization of the indicatrix of a
concave cone is

1 � Spectrum
�
Opw .H.x/H.�//

�
:

We may sum-up the situation by the following theorem.

Theorem 7.1.1. Let†� be a convex cone in R2 with aperture � 2 Œ0; 2�� (cf. (5.3.3))
and let A� be the self-adjoint bounded operator with the indicator function of †� as
a Weyl symbol.

(1) If � D 0, we have A� D 0.

(2) If � 2 .0; �/, the operator A� is unitarily equivalent to Opw .H.x/H.�//,
thus with spectrum Œ��2 ; �

C
2 � with ��2 < 0 < 1 < �C2 , as given in Theorem

5.2.4.

(3) If � D � , †� is a half-space and A� is a proper orthogonal projection, thus
with spectrum ¹0; 1º.

(4) If � 2 .�; 2�/, †� is a concave cone and the operator A� is unitarily equi-
valent to

Id�Opw .H.x/H.�//;

thus with spectrum Œ1 � �C2 ; 1 � �
�
2 � (see footnote1).

(5) If � D 2� , we have A2� D Id.

1So that we have in particular, from (2), the inequalities 1 � �C
2
< 0 < 1 < 1 � ��

2
.
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Remark 7.1.2. It is only in the trivial cases � 2 ¹0; �; 2�º that A� is an orthogonal
projection. These cases are also characterized (among cones) by the fact that the spec-
trum of A� is included in Œ0; 1�.

Remark 7.1.3. It is interesting to remark that all operators A� for � 2 .0; �/ are
unitarily equivalent and thus with constant spectrum Œ��2 ; �

C
2 � as given in Theorem

5.2.4. Nevertheless, the sequence .A� /0<�<� is weakly converging to the orthogonal
projection A� whose spectrum is ¹0; 1º: indeed for � 2S .R/,  2S .R/, we have

hA��; iL2.R/ D

“
†�

W.�;  /„ ƒ‚ …
2S .R2/

.x; �/dxd�;

and thus the Lebesgue dominated convergence theorem implies that

lim
�!��

hA��; iL2.R/ D hA��; iL2.R/: (7.1.3)

On the other hand, for u; v 2 L2.R/ and sequences .�k/k�1; . k/k�1 in S .R/ with
respective limits u; v in L2.R/, we have

hA�u;viL2.R/D hA� .u� �k/;viL2.R/ChA��k; v� kiL2.R/ChA��k; kiL2.R/;

so that

hA�u; viL2.R/ � hA�u; viL2.R/

D hA� .u � �k/; viL2.R/ C hA��k; v �  kiL2.R/ C hA��k;  kiL2.R/;

� hA�.u � �k/; viL2.R/ � hA��k; v �  kiL2.R/ � hA��k;  kiL2.R/;

implying

jhA�u; viL2.R/ � hA�u; viL2.R/j

� .�C2 C 1/
�
ku � �kkL2.R/kvkL2.R/ C kv �  kkL2.R/k�kkL2.R/

�
C jhA��k;  kiL2.R/ � hA��k;  kiL2.R/j;

and thus, using (7.1.3), we get

lim sup
�!0C

jhA�u; viL2.R/ � hA�u; viL2.R/j

� .�C2 C 1/
�
ku � �kkL2.R/kvkL2.R/ C kv �  kkL2.R/k�kkL2.R/

�
:

Taking now the infimum with respect to k of the right-hand side in the above inequal-
ity, we obtain indeed the weak convergence

lim
�!0C

hA�u; viL2.R/ D hA�u; viL2.R/:
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Of course, we cannot have strong convergence of the bounded self-adjoint A� towards
(the bounded self-adjoint) A� because of their respective spectra and the same lines
can be written on the weak limit 0 when � ! 0C of A� .

7.2 Triangles

We may consider general “triangles” in the plane that we define as

T
c1;c2;c3
L1;L2;L3

D
®
.x; �/ 2 R2; Lj .x; �/ � cj ; j 2 ¹1; 2; 3º

¯
;

cj are real numbers and Lj are linear forms. To avoid degenerate situations, we shall
assume that

for j 6D k; dLj ^ dLk 6D 0; jT
c1;c2;c3
L1;L2;L3

j > 0 and T
c1;c2;c3
L1;L2;L3

is not a cone:
(7.2.1)

Note that this includes standard triangles (convex envelope of three non-colinear
points) but also sets with infinite area such as®
.x; �/ 2 R2; x � 0; � � 0; x C � � �

¯
; where � is a positive parameter. (7.2.2)

Without loss of generality, we may assume thatL1.x; �/� c1D x;L2.x; �/� c2D � ,
so that

T
c1;c2;c3
L1;L2;L3

D
®
.x; �/ 2 R2; x � 0; � � 0; ax C b� � �

¯
;

where a; b; � are real parameters with a 6D 0; b 6D 0 from the assumption (7.2.1);
using the symplectic mapping .x; �/ 7! .�x; �=�/ with � D

p
jb=aj, we see that the

condition ax C b� � � becomes

x sign aC � sign b � � D �=
p
jabj; i.e.

8̂̂̂̂
<̂
ˆ̂̂:
x C � � Q�;

x � � � Q�;

�x C � � Q�;

�x � � � Q�:

The first case requires Q� > 0 and the other cases Q� < 0. The only case with finite area
is the fourth case

T4;� D
®
.x; �/ 2 R2; x � 0; � � 0; x C � � �

¯
triangle with area �2=2, � > 0.

(7.2.3)
The second case is

T2;� D
®
.x; �/ 2 R2; x � 0; � � 0; x � � � ��

¯
; � > 0; (7.2.4)
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the third case is

T3;� D
®
.x; �/ 2 R2; x � 0; � � 0; � � x � ��

¯
; � > 0; (7.2.5)

and the first case is

T1;� D
®
.x; �/ 2 R2; x � 0; � � 0; � C x � �

¯
; � > 0: (7.2.6)

Proposition 7.2.1. Let T4;� be a triangle with finite non-zero area in the plane given
by (7.2.3), where � is a positive parameter. Then, the operator Opw.1T4;�/ is unitarily
equivalent to the operator with kernel

Qk4;�.x; y/ D 1Œ0;��
�
x C y

2

�
sin.�.x � y/.� � xCy

2
//

�.x � y/
: (7.2.7)

The operator Opw.1T4;�/ is self-adjoint and bounded on L2.R/ so that

kOpw.1T4;�/kB.L2.R// �
1

2

�
�C2 C

q
1C .�C2 /

2
�
WD Q�3; (7.2.8)

where �C2 is given in (7.1.1).

Proof. The kernel k4;� of Opw.1T4;�/ is such that

k4;�.x; y/ D 1Œ0;��
�
x C y

2

�Z ��xCy2

0

e2i�.x�y/�d�

D 1Œ0;��
�
x C y

2

�
.e2i�.x�y/.��

xCy
2 / � 1/

2i�.x � y/

D ei�.�x�
x2

2 /1Œ0;��
�
x C y

2

�
sin.�.x � y/.� � xCy

2
//

�.x � y/
e�i�.�y�

y2

2 /;

proving (7.2.7). We note now that the kernel of the operator with Weyl symbol H.�/
H.� � � � x/ is

`�.x; y/ D e
i�.�x�x

2

2 /H

�
� �

x C y

2

�
sin.�.x � y/.� � xCy

2
//

�.x � y/
e�i�.�y�

y2

2 /;

and that
Opw .H.�/H.� � � � x//

is unitarily equivalent to the operator Opw .H.x/H.�// as given by Theorem 7.1.1.
We get then

k4;�.x; y/ D H.x C y/`�.x; y/ D H.x/`�.x; y/H.y/

CH.x C y/
�
H.x/ {H.y/C {H.x/H.y/

�
H

�
� �

x C y

2

�
�

sin.�.x � y/.� � xCy
2
//

�.x � y/
� ei�.�x�

x2

2 /e�i�.�y�
y2

2 /;
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and we have thus

Opw.1T4;�/ D HOpw .H.�/H.� � � � x//H C��;

where the kernel !�.x; y/ of the operator �� verifies

j!�.x; y/j �
H.x C y/

�
H.x/ {H.y/C {H.x/H.y/

�
�jx � yj

D
H.x C y/

�
H.x/ {H.y/C {H.x/H.y/

�
�.jxj C jyj/

:

We obtain, thanks to Proposition A.5.1 (2), that“
j!�.x; y/jju.y/jju.x/jdydx � k {HukL2.R/kHukL2.R/:

As a result, we find that

jhOpw.1T4;�/u; uiL2.R/j � �
C
2 kHuk

2
L2.R/ C k

{HukL2.R/kHukL2.R/;

proving (7.2.8).

Proposition 7.2.2. Let T1;� be a triangle with infinite area in the plane given by
(7.2.6), where � is a positive parameter. Then, the operator Opw.1T1;�/ is unitarily
equivalent to the operator with kernel

Qk1;�.x; y/ D 1Œ0;��
�
x C y

2

�
sin
�
�.x � y/.� � xCy

2
/
�

�.x � y/
:

The operator Opw.1T1;�/ is self-adjoint and bounded on L2.R/ so that

kOpw.1T1;�/kB.L2.R// �
1

2

�
�C2 C

r
1

4
C .�C2 /

2

�
� 1:066294188078; (7.2.9)

where �C2 is given in (7.1.1).

Proof. We note that the kernel of the operator Opw.H.x C � � �/H.�// is

`1.x; y/ D e
2i�.x�y/max.0;��xCy2 / 1

2

�
ı0.y � x/C

1

i�.y � x/

�
;

so that

Opw.1T1;�/ D H Opw.H.x C � � �/H.�//„ ƒ‚ …
unitarily equivalent to

Opw.H.x/H.�//

H C�1;�; (7.2.10)
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where the kernel !1;� of the operator �1;� is equal to

H.x C y/
�
H.x/ {H.y/C {H.x/H.y/

�
`1.x; y/;

and such that

j!1;�.x; y/j � H.x C y/
.H.x/ {H.y/C {H.x/H.y//

2�.jxj C jyj/
;

and, thanks to Proposition A.5.1 (2), we get from (7.2.10) that

jhOpw.1T1;�/u; uiL2.R/j � �
C
2 kHuk

2
L2.R/ C

1

2
k {HukL2.R/kHukL2.R/;

which gives (7.2.9).

We leave for the reader to check the two other cases (7.2.4), (7.2.5), which are
very similar as well as the degenerate cases excluded by (7.2.1), which are in fact
easier to tackle.

Theorem 7.2.3. Let
T D

®
T
c1;c2;c3
L1;L2;L3

¯
cj2R; Lj

linear form on R2

be the set of triangles of R2. For all T 2 T , the operator Opw.1T / is bounded on
L2.R/, self-adjoint and we have

1:007680 � �C2 D sup
C cone

kOpw.1C /kB.L2.R//

� �C3 D sup
T triangle

kOpw.1T /kB.L2.R// � Q�3 � 1:213668:

N.B. The L2 boundedness is easy to prove since it is obvious for triangles with finite
areas and in the case of triangles with infinite area, we may note that in the case
(7.2.6) (resp., (7.2.4), (7.2.5)) they are the union of two cones (resp., one cone) with
a strip Œ0; 1� �RC. What matters most in the above statement is the effective explicit
bound. Our result does not give an explicit value for �C3 and it is quite likely that the
bound given by Q�3 is way too large.

Proof. The second inequality is proven in Propositions 7.2.1 and 7.2.2, whereas the
first inequality is a consequence of Theorem 5.3.1.

Remark 7.2.4. This implies that for any u 2 L2.R/ and any T 2 T , we haveˇ̌̌̌“
T

W.u; u/.x; �/dxd�

ˇ̌̌̌
� Q�3kuk

2
L2.R/; with Q�3 � 1:213668:
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7.3 Convex polygons

We want to tackle now the general case of a convex polygon in the plane. We consider

L1; : : : ; LN ;

to beN linear forms of x;� (Lj .x;�/D aj � � j̨xD Œ.x; �/I .aj ; j̨ /�) and c1; : : : ; cN
some real constants. We consider the convex polygon

P D
®
.x; �/ 2 R2;8j 2 ¹1; : : : ; N º; Lj .x; �/ � cj � 0

¯
; (7.3.1)

so that
1P .x; �/ D

Y
1�j�N

H
�
Lj .x; �/ � cj

�
:

Definition 7.3.1. LetN 2N�, letL1; : : : ;LN be linear forms on R2 and let c1; : : : ; cN
be real numbers. The polygon with N sides P

c1;:::;cN
L1;:::;LN

is defined by (7.3.1). We shall
denote by PN the set of all polygons with N sides.

N.B. Since we may take some Lj D 0 in (7.3.1), we see that PN �PNC1.

Note as above that it includes some convex subsets of the plane with infinite area
such as (7.2.2).

Theorem 7.3.2. Let PN be the set of convex polygons with N sides of the plane R2.
We define

�CN D sup
P2PN

kOpw.1P /kB.L2.R//:

Then, �C2 is given by Theorem 5.2.4 and

8N � 3; �CN �
p
N=2:

Proof. Using an affine symplectic transformation, we may assume that LN .x; �/ �
cN D x, so that

1P .x; �/ D H.x/
Y

1�j�N�1

H
�
aj � � j̨x � cj

�
;

and the kernel of the operator Opw.1P / is

kN .x; y/ D H.x C y/

Z
e2i�.x�y/�

Y
1�j�N�1

H

�
aj � � j̨

�x C y
2

�
� cj

�
d�:

As a result, we have

kN .x; y/ D H.x C y/kN�1.x; y/;
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where kN�1 is the kernel of Opw.1PN�1/, where

PN�1 D
®
.x; �/ 2 R2;8j 2 ¹1; : : : ; N � 1º; Lj .x; �/ � cj � 0

¯
:

We may assume inductively that for any convex polygon Pk with k � N � 1 sides,
there exist �C

k
such that

Opw.1Pk / � �
C

k
;

where �C
k

depends only on k and not on the area of the polygon, a fact already proven
for k D 1; 2; 3. We note that with AN D Opw.1PN /, we have withH standing for the
operator of multiplication by H.x/,

HANH D HAN�1H; AN�1 D Opw.1PN�1/;

since the kernel of HANH is

H.x/H.y/kN .x; y/ D H.x C y/H.x/H.y/kN�1.x; y/ D H.x/H.y/kN�1.x; y/:

Also, we have, with {H.x/ D H.�x/, that {HAN {H D 0, since the kernel of that
operator is

{H.x/ {H.y/H.x C y/kN�1.x; y/ D 0:

We have thus
AN D HAN�1H C 2Re {HANH; (7.3.2)

and the kernel of 2Re {HANH is

!N .x; y/ D H.x C y/
�
{H.x/H.y/C {H.y/H.x/

�
kN�1.x; y/:

We calculate now

kN�1.x; y/ D

Z
e2i�.x�y/�

Y
1�j�N�1

H
�
aj � � j̨

�x C y
2

�
� cj

�
d�:

We check first the j such that aj D 0 (and thus j̨ 6D 0)2. Without loss of generality,
we may assume that this happens for 1 � j < N0 so that with some interval J of the
real line, Q̨j D j̨ =aj ; Qcj D cj =aj ,

kN�1.x; y/ D 1J
�x C y

2

� Z
e2i�.x�y/�

Y
N0�j�N�1

aj>0

H
�
� � Q̨j

�x C y
2

�
� Qcj

�
�

Y
N0�j�N�1

aj<0

{H
�
� � Q̨j

�x C y
2

�
� Qcj

�
d�:

2In this induction proof, we may assume that all the linear forms Lj , 1 � j � N are
different from 0, otherwise we may use the induction hypothesis.
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We note that the integration domain is

 
�x C y

2

�
D max
N0�j�N�1

aj>0

�
Q̨j

�x C y
2

�
C Qcj

�
� � � min

N0�j�N�1
aj<0

Q̨j

�x C y
2

�
C Qcj D ��

�x C y
2

�
;

with �;  convex piecewise affine functions; since � C  is also a convex function,
we get the – convex – constraint .� C  /..x C y/=2/ � 0, so that .x C y/=2 must
belong to a subinterval QJ of the interval J . As a result we get that

kN�1.x; y/

D 1 QJ
�x C y

2

�e�2i�.x�y/�.xCy2 / � e2i�.x�y/ .
xCy
2 /

2i�.x � y/

D 1 QJ
�x C y

2

�
e�i�.x�y/.�� /.

xCy
2 / e

�i�.x�y/.�C /.xCy2 / � ei�.x�y/.�C /.
xCy
2 /

2i�.x � y/

D 1 QJ
�x C y

2

�
e�i�.x�y/.�� /.

xCy
2 /

sin.�.x � y/.� C  /.xCy
2
//

�.y � x/
;

and thus the kernel of 2Re {HANH is

!N .x; y/ D H.x C y/
�
{H.x/H.y/C {H.y/H.x/

�
1 QJ
�x C y

2

�
� e�i�.x�y/.�� /.

xCy
2 /

sin.�.x � y/.� C  /.xCy
2
//

�.y � x/
;

so that, thanks to Proposition A.5.1 (2),

2Reh {HANHu; ui � kHukk {Huk;

and with (7.3.2) we obtain, hANu; ui � �CN�1kHuk
2 C kHukk {Huk, and we get

�CN �
�CN�1 C

q
.�CN�1/

2 C 1

2
:

This implies that
8N � 3; �CN �

p
N=2;

since it is true for N D 3 and3 if we assume that it is true for some N � 3, we get

�CNC1 �
�CN C

q
.�CN /

2 C 1

2
�
1

2

�r
N

2
C

r
N C 2

2

�
�

r
N C 1

2
;

3Indeed, we have �C
3
� Q�3 < 1:2137 < 1:2247 �

p
3=2.
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where the latter inequality follows from the concavity of the square-root function
since we have for a concave function F ,

1

2

N

2
C
1

2

N C 2

2
D
N C 1

2

and thus
1

2
F
�N
2

�
C
1

2
F
�N C 2

2

�
� F

�N C 1
2

�
:

The proof of Theorem 7.3.2 is complete.

Remark 7.3.3. The above result is weak by its dependence on the number of sides,
but it should be pointed out that it is independent of the area of the polygon (which
could be infinite). Another general comment is concerned with convexity: although
Flandrin’s conjecture is not true, there is still something special about convex subsets
of the phase space and it is in particular interesting that an essentially explicit calcu-
lation of the kernel of the operator Opw.1P / is tractable when P is a polygon withN
sides of R2. Something analogous could probably be done with convex polytopes of
R2n.

7.4 Symbols supported in a half-space

Theorem 7.4.1. .1/ Let A be a bounded self-adjoint operator on L2.Rn/ such that
its Weyl symbol a.x; �/ is supported in RC � R2n�1. Then, with {H standing for the
orthogonal projection onto®

u 2 L2.Rn/; suppu � R� �Rn�1
¯
;

we have {HA {H D 0.
.2/ Let A be as above; if A is a non-negative operator, then withH D I � {H , we

have
{HA D A {H D 0; A D HAH;

N.B. We have seen explicit examples of bounded self-adjoint operators such that
the Weyl symbol is supported in x � 0 but for which {HAH 6D 0: the quarter-plane
operator (see Section 5.1) has the Weyl symbol H.x/H.�/, the kernel of

{HOpw.H.x/H.�//H is {H.x/H.y/H.x C y/
1

2i�
pv

1

y � x
;

which is not the zero distribution and, according to the above result, this alone implies
that

Opw .H.x/H.�//

cannot be non-negative.
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Proof. Let us prove first that {HA {H D 0; let �; 2 C1c .R
n/ such that

supp� [ supp � .�1; 0/ �Rn�1:

Since the Wigner distribution W.�; / belongs to S .R2n/ and is given by the integ-
ral

W.�;  /.x; �/ D

Z
Rn
�
�
x C

z

2

�
N 
�
x �

z

2

�
e�2i�z��dz;

we infer right away4 that supp W.�;  / � .�1; 0/ �R2n�1. We know also that

hA�; iL2.Rn/ D hA�; iS 0.Rn/;S .Rn/ D ha;W.�;  /iS 0.R2n/;S .R2n/ D 0:

As a result, theL2.Rn/ bounded operator {HA {H is such that, for u;v 2L2.Rn/, �; 
as above,

h {HA {Hu; viL2.Rn/ D h {HA {H {Hu; {HviL2.Rn/

D h {HA {H. {Hu � �/; {HviL2.Rn/ C h {HA {H�; {Hv �  iL2.Rn/

C h {HA {H�; iL2.Rn/„ ƒ‚ …
hA�; i

L2.Rn/D0

;

so that

jh {HA {Hu; viL2.Rn/j

� kAkB.L2.Rn//
�
k {Hu � �kL2.Rn/kvkL2.Rn/ C k {Hv �  kL2.Rn/k�kL2.Rn/

�
:

Using now that the set ¹� 2 C1c .R
n/; supp� � .�1; 0/ �Rn�1º is dense5 in®

w 2 L2.Rn/; suppw � .�1; 0� �Rn�1
¯
; (7.4.1)

4In the integrand, we must have, x1 C z1
2
� �"0 < 0; x1 �

z1
2
� �"1 < 0 and thus x1 �

�."0 C "1/=2
5Let �0 be a function satisfying (5.2.1) and let w be in the set (7.4.1). Let .�k/k�1 be a

sequence in C1c .Rn/ converging in L2.Rn/ towards w; the function defined by

Q�k.x/ D �0.�kx1/�k.x/;

belongs to C1c .Rn/, is supported in .�1;�1=k� � Rn�1, and that sequence converges in
L2.Rn/ towards w since

k Q�k � wkL2.Rn/ � k�0.�kx1/
�
�k.x/ � w.x/

�
kL2.Rn/„ ƒ‚ …

�k�k�wkL2.Rn/! 0 when k!C1.

Ck.�0.�kx1/ � 1/w.x/kL2.Rn/

and k.�0.�kx1/ � 1/w.x/k2L2.Rn/
�
R

1
®
�
2
k
� x1 � 0

¯
jw.x/j2dx which has also limit 0

when k goes toC1 by the Lebesgue dominated convergence theorem.
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we obtain that h {HA {Hu; viL2.Rn/ D 0 and the first result. Let us assume that the
operator A is non-negative. We have

A D B2; B D B� bounded self-adjoint.

It implies with L2.Rn/ norms and dot-products,

hAu; ui D hHAHu; ui C 2Reh {HAHu; {Hui

D hHBBHu; ui C 2Reh {HBBHu; {Hui

D kBHuk2 C 2RehBHu;B {Hui

D kBHuC B {Huk2 � kB {Huk2

D kBuk2 � kB {Huk2 D hAu; ui � kB {Huk2;

and thusB {H D 0, so that {HB D 0 and thus {HB2D {HAD 0DA {H , so that {HAH D
0 D HA {H , and A D HAH; concluding the proof of (2).

Corollary 7.4.2. Let A be a bounded self-adjoint operator on L2.Rn/ such that its
Weyl symbol is supported in RC � R2n�1 and such that Re. {HAH/ 6D 0, then the
spectrum of A intersects .�1; 0/.

Proof. We have from (1) in the previous theorem,

A D .H C {H/A.H C {H/ D HAH C 2ReHA {H;

and from (2), if A were non-negative, we would have A {H D 0 and ReHA {H D 0,
contradicting the assumption.

Remark 7.4.3. If C is a compact convex body of R2n, we may use the fact (see,
e.g., [45]) that

C D
\

Hj closed half-spaces
containingK

Hj :

Then, of course Opw.1C / is a bounded self-adjoint operator on L2.Rn/, and if Hj is
defined by

Hj D
®
.x; �/ 2 R2; Lj .x; �/ � cj

¯
;

where Lj is a linear form on R2 and cj a real constant, we obtain with the symplectic
covariance of the Weyl calculus, setting

Hj .x; �/ D H
�
Lj .x; �/ � cj

�
;

that for all Hj closed half-spaces containing C , we have

Opw.1C / D Opw.Hj /Opw.1C /Opw.Hj /C 2Re Opw.
{Hj /Opw.1C /Opw.Hj /;

where {H.x; �/ D H.�Lj .x; �/C cj /.


