Chapter 7

Convex polygons of the plane

7.1 Convex cones

We have seen in Proposition 5.4.4 and Theorem 5.2.4 that the self-adjoint bounded
operator with Weyl symbol H (x) H (£) does satisfy

1y = mo = Amin(Op,, (H(x)H (£))) < Op,, (H(x)H(§))
< Amax (Opy, (H(x)H (§))) = Mo = i3,
(155 . 115] = spectrum(Op,, (H(x) H(§))). (7.1.1)
with
uy ~ —0.155939843191243, ut ~ 1.00767997007003. (7.1.2)

This result is true as well for the characteristic function of any convex cone (which is
not a half-plane nor the full plane) in the plane since we can map it to the quarter
plane by a transformation in S1(2, R) = Sp(1, R). On the other hand, a concave
cone is the complement of a convex cone and the diagonalisation offered by The-
orem 5.2.3 proves that the spectrum of the Weyl quantization of the indicatrix of a
concave cone is
1- Spectrum(OpW (H(x)H(S))).
We may sum-up the situation by the following theorem.

Theorem 7.1.1. Let ¢ be a convex cone in R? with aperture 0 € [0,2r] (cf. (5.3.3))
and let Ag be the self-adjoint bounded operator with the indicator function of g as
a Weyl symbol.
(1) If 6 = 0, we have Ag = 0.
(2) If 6 € (0, ), the operator Ay is unitarily equivalent to Op,, (H(x) H(§)),
thus with spectrum [i5, uf ] with u; <0 < 1 < uJ, as given in Theorem
5.2.4.
(3) If 0 = 7, X is a half-space and Ay is a proper orthogonal projection, thus
with spectrum {0, 1}.
@) If 0 € (m,2m), Xg is a concave cone and the operator Ay is unitarily equi-
valent to
Id—Op,, (H(x)H(§)),
thus with spectrum [1 — ut, 1 — 5] (see footnote" ).
(5) If 0 = 2w, we have Ay, = 1d.

ISo that we have in particular, from (2), the inequalities 1 — /L;_ <0<Il<l-—p;.
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Remark 7.1.2. It is only in the trivial cases 6 € {0, 7z, 27} that Ay is an orthogonal
projection. These cases are also characterized (among cones) by the fact that the spec-
trum of #yg is included in [0, 1].

Remark 7.1.3. It is interesting to remark that all operators #4g for 6 € (0, &) are
unitarily equivalent and thus with constant spectrum [u; , MEL ] as given in Theorem
5.2.4. Nevertheless, the sequence (#4g)o<g< is Weakly converging to the orthogonal
projection A, whose spectrum is {0, 1}: indeed for ¢ € .Z(R), ¥ € .#(R), we have

(Aod V)2 = //E W, )(x. E)dxdE,

€7 (R2)

and thus the Lebesgue dominated convergence theorem implies that

(Aad, )2y = (Azd, V) 2R)- (7.1.3)

lim
f—>m_

On the other hand, for u, v € L?(R) and sequences (¢ )x>1, (Vi)xk>1 in 7 (R) with
respective limits u, v in LZ(R), we have

(Aou,v)r2®) = (Ao (U — Pr), V) L2®) + (AoPk: v — Vi) 2Ry + (AoPk, Vi) L2(R)>
so that
(Agu, v) 2Ry — (Axtt, V) 12(R)

= (Ag( — Pr), V) L2R) + (AePk. UV — Vi) L2R) + (AePrs Vi) L2(R)
— Az (U — ), V) 2wy — (AP, v — Vi) 2wy — (A Pk Vi) 12(R)>

implying
[{Agu, v)2R) — (AzU, V) 2Ryl

< (u3 + D(llu = el 2@ lvlizwy + 11 — Yl 2@y Ik L2 ®))
+ [{AgPr. Vi) L2y — (Ax k. Vi) L2w)l

and thus, using (7.1.3), we get

lim sup | <eA)9M, U)Lz(R) — (A,,u, U)LZ(R) |
9—)0+
< (13 + DIl = pell 2@ llvlio + v = Vil 2@ loel Lo @))-
Taking now the infimum with respect to k of the right-hand side in the above inequal-
ity, we obtain indeed the weak convergence

li Agu, = (AU, .
9—1>I<I)1+( ou. V) 2®) = (AU, V) 2R)
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Of course, we cannot have strong convergence of the bounded self-adjoint #4g towards
(the bounded self-adjoint) A, because of their respective spectra and the same lines
can be written on the weak limit 0 when 6 — 04 of Ag.

7.2 Triangles

We may consider general “triangles” in the plane that we define as
TEE, = A8 e R Li(x,6) = ¢, j €{1,2,3}},

c¢;j are real numbers and L; are linear forms. To avoid degenerate situations, we shall
assume that

. C1,C2,C C1,C2,C .
forj #k, dLjANdLg #0, |TL11,L22,LS3| >0 and TLll,L22,L33 is not a cone.
(7.2.1)
Note that this includes standard triangles (convex envelope of three non-colinear
points) but also sets with infinite area such as

{(x, £) e R2, x > 0,£>0,x+£&> )L}, where A is a positive parameter. (7.2.2)

Without loss of generality, we may assume that L1(x,§) —c; = x, La(x,§) —cp =&,
so that
TRt = {(x.6) e R*,x > 0, > 0,ax + b§ > v},

where a, b, A are real parameters with a # 0, b # 0 from the assumption (7.2.1);

using the symplectic mapping (x, §) — (ux,&/u) with u = /|b/a|, we see that the
condition ax + b§ > v becomes

x+§& =0,

—_ > 7

xsigna + £signb > A =v/+/|ab|, ie. sz ‘j
_x+§ Zva

—x—£& >9v

The first case requires ¥ > 0 and the other cases b < 0. The only case with finite area
is the fourth case

Tap ={(x.§) € R2,x>06>0,x+&< A} triangle with area A2/2, 1> 0.
(7.2.3)
The second case is

Toa={(x.§eR*x>0>0x—§> -1}, 1>0, (7.2.4)
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the third case is
T ={(x.§) eRLx >0, >0 —x > -1}, A1>0, (7.2.5)
and the first case is
Tia={(x.6eR*x>0£E>0E+x>1}, A1>0. (7.2.6)

Proposition 7.2.1. Let 74 ; be a triangle with finite non-zero area in the plane given
by (7.2.3), where A is a positive parameter. Then, the operator Opy,(1g, ,) is unitarily
equivalent to the operator with kernel

X+ y\sin(r(x — ) = 52)
2 m(x—y) '
The operator Opy, (17, ;) is self-adjoint and bounded on L?(R) so that

1 -
10p,, (A7, )l 8(z2R)) = E(M; + 1+ (/«L;)z) = i3, (7.2.8)

where ;,L;_ is given in (7.1.1).

kaj(x,y) = 1[0,/1]( (7.2.7)

Proof. The kernel k4 3 of Op, (17, ,) is such that

_xty

A

xX+y 2 i (x—

kaj(x,y) = 1[0,1]( 5 )/ Q2T VE g &
0

1 x+y (e2irr(x—y)()t—
— oAl 2 2im(x —y)

- +
— ein’(lx—%)l[o Al xX+y sin(7r(x — y)(A — %)) e_i”uy_%)
’ 2 m(x—y) ’

proving (7.2.7). We note now that the kernel of the operator with Weyl symbol H (§)
HA—-§E—x)is

x+y
2

)—1)

. ity
Ox,y) = «‘f"”(’”_xzz)H()L - y) it Z 32 = T))e—m(xy—%),

2 7(x—y)
and that
Opy, (H(E)H(A —§ —x))
is unitarily equivalent to the operator Op,, (H (x)H(§)) as given by Theorem 7.1.1.
We get then

kaa(x,y) = H(x + y)l(x,y) = H(x){(x, y)H(y)

+ H(x+ ) (H&OH Q) + ﬁ(x)H(y))H(A 2 er y)

. v 5ty
SN (6 = YA =52 | inix—D) iny—2)
w(x—y)
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and we have thus
Op, (17, ;) = HOp, (H(E)H(A —§ — x))H + Qy,
where the kernel w), (x, y) of the operator €2 verifies

H(x + y)(Hx)H (y) + H(x)H(y))
lx =yl
_ H(x+ y)(H&)H(y) + H(x)H(y))
w(lx|+ [y])
We obtain, thanks to Proposition A.5.1 (2), that

lwa(x, y)| <

// lor Ceo N GOl dyde < | gyl Hull2g)-
As a result, we find that

[{Opy, (17, ; Ju, u) 2Ryl < M;”HMHiz(R) + | Hull 2wyl Hull 2wy
proving (7.2.8). ]

Proposition 7.2.2. Let 71 5 be a triangle with infinite area in the plane given by
(7.2.6), where A is a positive parameter. Then, the operator Op, (17, ,) is unitarily
equivalent to the operator with kernel

x 4 y\sin(z(x — y)(A — £2))
o e

kya(x,y) = 1[0,1](
The operator Op,, (17, , ) is self-adjoint and bounded on L?(R) so that

1 /1

where /,L;_ is given in (7.1.1).

Proof. We note that the kernel of the operator Op,,(H (x + & — A)H(§)) is

: i 1 1
Gi(x, y) = 2mEImaOA=5D 2 Gy (y ) 4 ———— ),
2 in(y —x)

so that

Op,(17,,) = HOp, (H(x +§ — VH() H + 2., (7.2.10)

unitarily equivalent to

Op,, (H(x)H (§))
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where the kernel w; , of the operator €, , is equal to
H(x +y)(HE@H®Y) + HEOHD)) (. p).
and such that

(H(x)H (y) + H(x)H(y))
27 (x| + 1))

lwa(x, )| = H(x +y)

’

and, thanks to Proposition A.5.1 (2), we get from (7.2.10) that

1 ~
{Opy (17 )u, u)p2ry| < /‘L;”HMHiZ(R) + E”H“”Lz(R)”Hu”LZ(]R),
which gives (7.2.9). ]

We leave for the reader to check the two other cases (7.2.4), (7.2.5), which are
very similar as well as the degenerate cases excluded by (7.2.1), which are in fact
easier to tackle.

Theorem 7.2.3. Let
~C1,C2,C
T = {JLll,LZZ,L33} ¢j€R, L;
linear form on R?
be the set of triangles of R%. For all T € 7, the operator Opy,(17) is bounded on
L?(R), self-adjoint and we have

1.007680 ~ ;= sup [|Op(Le)l g2y

€ cone

<ud = sup |Op, (A7)l zr2my < fis ~ 1.213668.

T triangle

N.B. The L2 boundedness is easy to prove since it is obvious for triangles with finite
areas and in the case of triangles with infinite area, we may note that in the case
(7.2.6) (resp., (7.2.4), (7.2.5)) they are the union of two cones (resp., one cone) with
a strip [0, 1] x R4. What matters most in the above statement is the effective explicit
bound. Our result does not give an explicit value for pv; and it is quite likely that the
bound given by fi3 is way too large.

Proof. The second inequality is proven in Propositions 7.2.1 and 7.2.2, whereas the
first inequality is a consequence of Theorem 5.3.1. |

Remark 7.2.4. This implies that for any u € L?(R) and any 7 € .7, we have

’/ W, u)(x, )dxd§| < fisull72 gy,  With fis ~ 1.213668.
T
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7.3 Convex polygons

We want to tackle now the general case of a convex polygon in the plane. We consider
Ll LIRS LN ’

tobe N linear forms of x,& (Lj(x,§) =a;& —ajx =[(x,§):(aj,aj)])and cy,....cn
some real constants. We consider the convex polygon

P ={(x.§) eR*Vje{l.....N},Lj(x.§) —¢; > 0}, (7.3.1)

so that

Lp(x.§) = [] HLi(x§-c).

1<j=N

Definition 7.3.1. Let NeN*, let Lq,..., Ly belinear formson R? andletcy,...,cn
be real numbers. The polygon with N 51des Pr g, is defined by (7.3.1). We shall
denote by Ay the set of all polygons with N s1des

N.B. Since we may take some L; = 0in (7.3.1), we see that Zy C Py 1.

Note as above that it includes some convex subsets of the plane with infinite area
such as (7.2.2).

Theorem 7.3.2. Let Py be the set of convex polygons with N sides of the plane R?.

We define

py = sup [0p,(12)llgr2(ry)-

Pe?yn

Then, /,L;_ is given by Theorem 5.2.4 and

VN >3, uf < /N/2.

Proof. Using an affine symplectic transformation, we may assume that Ly (x, &) —
cN = X, so that

lp(x.§)=Hx) [] Hlaj§—ejx—c).

1<j<N-1

and the kernel of the operator Op,, (1) is

kn(x,y) = H(x +y)/e2i”(x_y)5 l_[ H (ajé—oej(x +y) —cj)dé.

: 2
1<j=<N-1

As a result, we have

kn(x,y) = H(x + y)kn-1(x,y),
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where ky_1 is the kernel of Op,,(1p,,_,), where
Pn-1={(x,§) eR Vje{l,....N —1},L;(x,§) —¢; > 0}.

We may assume inductively that for any convex polygon & with k < N — 1 sides,
there exist p,,j such that

Op, (1p,) < .

where u; depends only on k and not on the area of the polygon, a fact already proven
for k = 1,2, 3. We note that with Ay = Op,, (1, ), we have with H standing for the
operator of multiplication by H (x),

HANH = HAy_1H, An_1=O0p,(1p,_,),
since the kernel of HAy H is
H(x)H(y)kn(x.y) = H(x + y)H(x)H(y)kn-1(x,y) = H(x)H(y)kn-1(x, y).

Also, we have, with H (x) = H(—x), that HAnH = 0, since the kernel of that
operator is
H(x)H(y)H(x + y)kn-1(x,y) = 0.

‘We have thus
Ay = HAy_1H +2Re HAN H, (7.3.2)

and the kernel of 2 Re H A NH is
oN(x,y) = H(x + y)(HX)H(y) + H(y) H (X)) kn-1(x, ).
‘We calculate now
. _ X + y
kn-1(x,y) = /ez”’(x y)gl l_!V IH(ajé—aj(—z )—Cj)dé-
<j<N-

We check first the j such that ¢; = 0 (and thus «; # 0)”. Without loss of generality,
we may assume that this happens for 1 < j < Ny so that with some interval J of the
real line, &; = «; /a;,C; = c¢j/aj,

kyo1(x.y) =1 (5 ;L y)/ez"”(x_y)g [T #(e —d/(g) =)

No<j<N-1
a_,->O
~ . Xty ~
X l_[ H(E—aj( 5 )—cj)dé.
No<j<N-1
aj<0

2In this induction proof, we may assume that all the linear forms L;, 1 < j < N are
different from 0, otherwise we may use the induction hypothesis.
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We note that the integration domain is

o) = e (65 +a)

No<j=N-1
aj>0
. - x+y> ~ (x+y>
< < . L=
st<, min G(57) 5 =—(=57)
llj<0

with ¢, ¢ convex piecewise affine functions; since ¢ + v is also a convex function,
we get the — convex — constraint (¢ + ¥)((x + ¥)/2) < 0, so that (x + y)/2 must
belong to a subinterval J of the interval J. As a result we get that

kn-1(x,y)
—1 N(x + y>e_2i”(X—J’)¢(x—5y) _ ezm(x—y)w(%)
AN 2in(x —y)

—im(x=))@+V)CFL) _ pim(x—»)(@+¥)(ZFY)

_ li(x + y);tn(x—y)@—dx)(%) ¢
2

—1 N(x + y> —in(x—y) @9 (ELY) sin(rr(x — ) (¢ + ¥)(3F))
AN 7 — )

2im(x —y)

’

and thus the kernel of 2 Re HANH is

on(x,y) = H(x + ) (HE)HE) + H)HE)

« p-inCr—y)@-w)() ST — ) (@ + NEEH)
m(y —Xx)

x+y)
2

so that, thanks to Proposition A.5.1 (2),
2Re(H Ay Hu,u) < |Hul|Hul,
and with (7.3.2) we obtain, (Ayu, u) < ;L]J(,_l |Hu|? + || Hul ||bvlu||, and we get

y—y + yV (Mp-1)? +1

2

My =
This implies that
VN >3, u} <+/N/2.
since it is true for N = 3 and’ if we assume that it is true for some N > 3, we get

L My +l 1 [N [Nt2 N1
Wi < > sV V5 )=V

2

3Indeed, we have i < fi3 < 1.2137 < 1.2247 ~ /3/2.
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where the latter inequality follows from the concavity of the square-root function
since we have for a concave function F,

IN IN+2 N+1

22 7272 2
and thus I /Ny 1 _/N+2 N1
SF(5) +5F( < F( )
F(5) 3 (7)< F (5
The proof of Theorem 7.3.2 is complete. |

Remark 7.3.3. The above result is weak by its dependence on the number of sides,
but it should be pointed out that it is independent of the area of the polygon (which
could be infinite). Another general comment is concerned with convexity: although
Flandrin’s conjecture is not true, there is still something special about convex subsets
of the phase space and it is in particular interesting that an essentially explicit calcu-
lation of the kernel of the operator Op,, (1) is tractable when J is a polygon with N
sides of R2. Something analogous could probably be done with convex polytopes of
R2",

7.4 Symbols supported in a half-space

Theorem 7.4.1. (1) Let A be a bounded self-adjoint operator on L*(R™) such that
its Weyl symbol a(x, £) is supported in Ry x R?"~1. Then, with H standing for the
orthogonal projection onto

{u e L*(R"),suppu C R_ x R*"'},

we have HAH = 0.
(2) Let A be as above; if A is a non-negative operator, then with H = I — H, we

have
HA=AH =0, A= HAH,

N.B. We have seen explicit examples of bounded self-adjoint operators such that
the Weyl symbol is supported in x > 0 but for which H AH # 0: the quarter-plane
operator (see Section 5.1) has the Weyl symbol H (x) H (£), the kernel of

- - 1
HOp, (H(x)H(§))H is H(x)H(y)H(x + y)mpVy —

which is not the zero distribution and, according to the above result, this alone implies
that

Op,, (H(x)H (§))

cannot be non-negative.
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Proof. Let us prove first that HAH = 0; let ¢, ¥ € C(R") such that
supp ¢ U supp ¥ C (—o0,0) x R"1,

Since the Wigner distribution 'W(¢, ) belongs to .#’(R?") and is given by the integ-
ral

Wip 0. = [ o(x+3)0(x-3)e

we infer right away” that supp W(¢, ¥) C (—00,0) x R?"~1, We know also that
(AD, ¥ ) 2mny = (AP, V) srwm), »@®m) = (@, W(P, V) o (r2n), w21y = 0.

As aresult, the L2(R") bounded operator H AH is such that, foru,v € L2(R"), ¢, ¥
as above,

(ﬁAﬁM, U)Lz(Rn) = ( vAﬁﬁu, ﬁv)Lz(Rn)
= (HAH(HL{ - ¢), HU)Lz(Rn) + (HAH¢, Hv — w>L2(R”)
+ (HAH$, V) 2®n).

(A¢’¢>L2(R”)=O

so that

|(HA]§M, U)Lz(Rn)|

< Al gu2@my(1Hu = bl 2@my vl L2@my + 1 HY = ¥l 2@ 19l 2@n))-
Using now that the set {¢ € C>°(R"), supp$ C (—o0,0) x R"1} is dense’ in

{w € L>(R"), suppw C (—00,0] x R"~"}, (7.4.1)

*In the integrand, we must have, x| + 3+ < —go < 0,x; — 5+ < —¢; < 0 and thus x; <

—(e0 +€1)/2
SLet xo be a function satisfying (5.2.1) and let w be in the set (7.4.1). Let (¢ )k>1 be a
sequence in C2°(R™) converging in L2 (R") towards w; the function defined by

b (x) = ro(—kx1)¢x (x),

belongs to C2°(R"), is supported in (—oo, —1/k] x R”~!, and that sequence converges in
L?(R™) towards w since

Ifx — wllz2emny < lxo(—kx1)(x (x) — w )| L2@ny + 1 (xo(—kx1) — Dw ()|l 22 (mn)

<Il¢x—wll 2 (gn)—> O when k — +o00.

and ||(yo(—kx1) — 1)w(x)||i2(R”) </ 1{—% <x; < 0}|w(x)|2dx which has also limit 0
when k goes to +o00 by the Lebesgue dominated convergence theorem.
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we obtain that (FI AHu, v)2@ny = 0 and the first result. Let us assume that the
operator A is non-negative. We have

A= B? B = B* bounded self-adjoint.
It implies with L2(R") norms and dot-products,
(Au,u) = (HAHu,u) + 2Re(ﬁAHu, Flu)
= (HBBHu,u) + 2Re(H BBHu, Hu)
— |BHu||> + 2Re(BHu, BHu)
= |BHu + BHul||> — |BHu|?
= |Bul® = | BHu|* = (Au,u) — | BHu|?,

andthus BH =0, sothat HB =0and thus HB2=HA=0= AH,sothat HAH =
0= HAH,and A = HAH, concluding the proof of (2). |

Corollary 7.4.2. Let A be a bounded self-adjoint operator on L*(R™) such that its
Weyl symbol is supported in Ry x R?"~1 and such that Re(HAH) # 0, then the
spectrum of A intersects (—oo, 0).

Proof. We have from (1) in the previous theorem,
A= (H + H)A(H + H) = HAH + 2Re HAH,

and from (2), if A were non-negative, we would have AH = 0and Re HAH = 0,
contradicting the assumption. |

Remark 7.4.3. If € is a compact convex body of R?”, we may use the fact (see,

e.g., [45]) that
€= N ;.

$; closed half-spaces
containing K

Then, of course Op,,(1¢) is a bounded self-adjoint operator on L2(R"), and if §; is
defined by
9; ={(x.£) e R? Lj(x.§) > ¢;}.

where L; is a linear form on R? and ¢; a real constant, we obtain with the symplectic
covariance of the Weyl calculus, setting

Hj(x,8) = H(Lj(x,§) —¢;),
that for all $; closed half-spaces containing €, we have
Op,,(Le) = Op,,(H;)Op,(1e)Op,,(H;) + 2Re Op, (H;)Op, (1e)Op,, (H;).

where H (x,€) = H(—L;(x,£) + ¢;).



