Appendix A

A.1 Fourier transform, Weyl quantization, harmonic oscillator

A.1.1 Fourier transform

For f € .(R"), we define its Fourier transform by
f© = / e 2 f(x)dx, (A.L1)
RN
and we obtain the inversion formula

Fx) = /R P ey (A12)

Both formulas can be extended to tempered distributions: for 7 € . (R, we define
the tempered distribution 7" by

<T—', ¢)Y’(RN),5’(RN) = (T, (i)y’(RN),Y(RN)' (A13)

Note also that with this normalization, it is natural to introduce the operators D§
defined for o« € NV by

ou
o — o [097] J—
Diu = Dxll ---DxNu, Dyx;u = 2in8xj’ (A.14)
so that -
Diu = §*u(§),
with
%-a — ‘111 Rf,N'

It follows readily from (A.1.1), (A.1.2), and (A.1.3) that for u € .¥’(R"), the inver-
sion formula

NPT

=u, (A.1.5)
holds true, where the distribution # (extending (1.1.10)) is defined by

(11, §) @), o @®m) = (. ) 5/ ®n), 7 ®N)-
Using (1.2.6) and denoting the Fourier transformation by %, (A.1.5) read

00F2=1d, [F.,00]=0, sothat F* = F ! =0oF = Foy. (A.1.6)
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This normalization yields simple formulas for the Fourier transform of Gaussian func-
tions: for A a real-valued symmetric positive definite n X n matrix, we define the
function v4 in the Schwartz space by

VA (x) — e—n(Ax,x) i

and we have 1
Ta(E) = (det A)~1/2emm AT 8E),

Similarly, when B is a real-valued symmetric non-singular n x n matrix, the function

wp defined by

wg (x) — ein(Bx,x)

is in L°°(R") and thus a tempered distribution and we have

Wp(£) = |detB| /2 T sien B o—in(BTIEE) (A.1.7)

where sign B stands for the signature of B that is, with E the set of eigenvalues of B
(which are real and non-zero),

sign B = Card(ENR4)—Card(ENR_).

vy (B) v—(B)=index (B)

The integer v_(B) is called the index of B, noted index (B); formula (A.1.7) can be
written as

e—inn/4$(ein(Bx,x)) — i_i“deXB|detB|_1/ze_i”(B_15=5), (A18)
since vy + v_ = n (as B is non-singular),

e d e > — eT("'++V—_2V—) — eiTﬂ sign(B)‘

‘We note also that
sign(det B) = (—1)M* B,

so that
(i7" B|detB|71/2)? = (—1)"~|detB| ! = sign(det B)|detB| ™" = (det B)"",

and thus the prefactor i 7"* B |det B|~1/2 in the right-hand side of (A.1.8) is a square-
root of 1/ det B.
With H standing for the characteristic function of R, we have

\=H+H, 8 =H+H,

D sign= ,—0, Dsign=—, §&sign=—, sign=-—pv—, (principal value)
in in

i im £’
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the latter formula following from the fact that
— 1
&\ sign—pv—- | =0,
iné
which implies
— 1

sign — pv— = ¢§p = 0,
im

since s?g\n - % is odd. We infer from that

and

Lemma A.1.1. Let T be a compactly supported distribution on R" such that

VN €N, (§YNT(&) isbounded, with (§) = 1+ |E|2. (A.1.9)
Then, T is a C*® function.

Proof. Note that T is an entire function, as the Fourier transform of a compactly sup-
ported distribution. Moreover, from (A.1.9) with N = n 4 1, we get that T belongs
to L!(R") and thus T is a continuous function. Moreover, we have for any a € N”,

(D7) = [ el @) e,
——
eLl(R")
so that T is a C°° function. n

Proposition A.1.2. Let p > 0and let f be a holomorphic function on a neighborhood
of {z € C,|Imz| < p} such that

Yy € [—p,pl. / | f(x +iy)|dx < +o0, (A.1.10)

lim | f(£R +iy)|dy = 0. (A.1.11)
R—>+o00 J|y|<p

Then, we have
VEER, |[f(§)| < Ce 2™kl

with
C =max(Cy,C-), Ci= / | f(x £ip)|dx.
R

Conversely, if f is a bounded measurable function such that f (€) is O(e™2""I&l) for
some r > 0, then f is holomorphic on {z € C,|Imz| < r}.
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Proof. If f is holomorphic near {z € C, |Imz| < p}, satisfies (A.1.10) and (A.1.11),
then Cauchy’s formula shows that for |y| < p,

R
/ e 2TOHIE £y 4 iy)dx = 2™¢ lim e 27X £(x +iy)dx
R

R—>+oco J_R
= lim e 72778 £(2)dz
R—>+00 JI—R+iy,R+iy]
= lim e 277 £(2)dz

R—>+00 JI—R+iy,—RJU[-R,R]U[R,R+iy]

A y . .
f(é) + RliI-E (/ e—217r(R+zt)$f(R + il‘)id[
—>+o00 0

y . .
_/ e"2TREIDE £ R +it)idl)-
0

We have for |y| < p,

y . .
‘ / e"HTGERHIOE f(L R 1 ip)idy
0

5/ | f(£R + it)|dte?™PEl,
ltl<p

which goes to 0 when R goes to +o0, thanks to (A.1.11), so that for all y € [—p, p],
we have

[ e fx tiyax = feo)
which implies for y = —psign £ (taken as 0, if § = 0)
FOI= [ 16 Fipldr 2k < cemk
]R W—/
from (A.1.10)

proving the first part of the proposition. Let us consider now a function f in L°°(R)
such that fA(S) is O(e=2""I€l) for some r > 0, and let p € (0, r). We have f(x) =
[ €273 £ (£)d & and for |y| < p, we have Ir 2| £(£)|dE < +oo0, so that f is
holomorphic on {z € C, |Imz| < r} with

Flx+iy) = [ AITEHE £ () d,
R

concluding the proof. ]

A.1.2 Weyl quantization

Let a € .’ (R?"). We have defined the operator Op,,(a), continuous from .#(R")
into .%/(R"), in Section 1.2.1 with the formula

(Opw(a)u, I_J)y/(Rn),y(Rn) = (a, 'W(u, v))y/(Rzn),y(Rzn),
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where the Wigner function 'W(u, v) is defined in Definition 1.1.1. We note that the
sesquilinear mapping .7 (R") x . (R") 3 (u,v) = W(u,v) € % (R?") is continuous
so that the above bracket of duality (a, W(u, v)) o (r2n), 5 ®2n), Mmakes sense. We
note as well that a temperate distribution a € ./ (R?") gets quantized by a continuous
operator Op,,(a) from .#(R") into . (R").

Lemma A.1.3. Let a be a tempered distribution on R?*" and let b be a polynomial of
degree d on R?". Then, we have

attb =" w(a.b), with

0<k<d
1 =D s o
wr(a,b) = Gin)F |a|§|=k 2151 (0F08a)(x, £)(0292D)(x, £), (A.1.12)
wr(b,a) = (—=D)*wi(a,b). (A.1.13)

The Weyl symbol of the commutator [Op,,(a), Op,, (b)] is
cla.b)=2 Y wi(a.b).

0<k<d
k odd

If the degree of b is smaller than 2, we have
1
c(a,b) =2wi(a,b) = —Ha,b},
2mi

and if a is a function of b, the commutator [Op(a), Op,,(b)] = 0.

Remark A.1.4. In particular, if g(x, §) is a quadratic polynomial and a(x, §) =
H(1 — q(x,§)), is the characteristic function of the set {(x, £), g(x, §) < 1}, then
we have [Op,,(a), Op,,(¢)] = 0.

Proof. Applying (1.2.2), (1.2.3), we obtain that this lemma follows from (A.1.13),
that we check now

—1)!8l
@infoat) = Y @ x @b
lal+181=k "

_1)lel
> CDZ 08 0a) (v, £)(@802b) (x. )

a!p!
lee|+1Bl1=k p

_1\k—18BI
= Y E T afaeay 6 (08a2b)(x. £)

wip=k  *P
= (-D*@in)* o (b.a).

which is the sought result. |
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Remark A.1.5. We can note that formula (1.2.61) is non-local in the sense that for
a,b € .7(R?") with disjoint supports, although all wy (a, b) (given by (A.1.12)) are
identically 0, the function afth (which belongs to . (R?")) is different from 0; let
us give an example. Let yo € C°(R; [0, 1]) with support [—1 + &9, 1 — go] with
g0 € (0, 1) and let us consider in R2,

a(x,§) = 1o@)e ™, b(x,£) = folx =2,
so that a, b both belong to . (R?) and
suppa = [—1 + &9, 1 —&o] X R, suppb = [1 + 9,3 — o] X R,

so that the supports are disjoint and all wg (a, b) are identically vanishing. We check
now

(afib)(x,§)

=4 / / / / 20T yo(z — 2)e T e HTETM =D AT E0) gy dydzd ¢
= 4// XO(y)Xo(Z _ 2)6—4n(x—z)2e—4n(x—y)2e4i7r$(z—x+x—y)dydz

B 4(/ xo(y)e—“ﬂfye-‘*ﬂ(x—wzdy)(/ xo(z)e4iﬂfze—4ﬂ<x—2—z>2dz),

so that

(ab)(0.0) = 4 ( / XO(y)e—4”y2dy) ( / m(z)e—“”@“’zdz) -0,

>0 >0

A.1.3 Some explicit computations
We may also calculate with
ua(x) = (2a)4e ™% 4 > 0, (A.1.14)
W(a, ua) (x, §) = (2a)'/? / om2imzE prmalx =3 gmnalv 5P g
_ (za)l/Z / e—2inz-Ee—27mx2e—fmzz/ZdZ
_ (2a)1/2e—27mx221/2a—1/26—n'%{32

— ze—2n(ax2+a_l £2)

which is also a Gaussian function on the phase space (and positive function). The
calculation of

W(ug. ug)(x. §)
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is interesting since we have
42 (Dxb" Dxtg, a) ey, oy = (B Ul ) 51 (Rm), 7 (R
= (b, W(u;, M;));W(RZn)’y(]RZn),

and for b(x, &) real-valued we have

3 b/ 2 b/g: Dy b/ 2 b//
suos = 50+ 3= Jis = 8%+ 325 - = (b4 25 ) =204 122

so that

- b’
4n2//2e—271(ax 152)(§2b+ 6xx )dxdé — (b W(ua, a))

proving that
— 1 _
Wl u,)(x,§) = e2m(ax*+a 152)471252 + ZZGi(e_Z”(“xz’L“ 1‘52))

_ 1
_ 28—27r(ax2+a 1g2) (4”2%‘2 + Z((_4naX)2 — 47'[0))

= 8o 2mlax’+a”lE) (a_1§2 +ax? — L)
4

We obtain that the function 'W(u,, u/,) is negative on

a’ a
1
a 18?2 +ax? < —,
4
which has area 1/4. We may note as well for consistency for u, given by (A.1.14),

we have
_ 2
L= Qa)*(—2max)e ™™ L2, = na,

1
/ W, u,)(x, §)dxdE = 8 a//e—“(yz”z)(ﬁ + 9 — E)dydn

872%a »
= S = ma = |luglz..

For A > 0 and a € .%/(R?"), we define
ay(x,§) = a(A7'x, A§),

and we find that
(ap)” =Uja® Uy, (A.1.15)
for fe SR, (U f)(x)= QA2 U =Uj—1 = (Up)"".

We note that the above formula is a particular case of Segal’s formula (see, e.g.,
[33, Theorem 2.1.2]).
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A.1.4 The harmonic oscillator

The harmonic oscillator #, in n dimensions is defined as the operator with Weyl
symbol 7(|x|?> + |£|?) and thus from (A.1.15), we find that

1 W 1 *
H = Uy (1X? + 42 [E17) U T = Uy (=0 + IXP)U

We shall define in one dimension the Hermite function of level k € N, by

w (X) _ (_l)k 21/4enx2 d , (e—Zerz) (A 1 16)
TN/ NEZE ’ a

and we find that (¥ )xen is a Hilbertian orthonormal basis on L?(R). The one-
dimensional harmonic oscillator can be written as

0, =Z(%+k)IP’k, (A.1.17)

k>0

where P is the orthogonal projection onto .
In n dimensions, we consider a multi-index (o1, .. .,a,) = a € N” and we define
on R”, using the one-dimensional (A.1.16),

V()= [] Ve, (xp). € = Vee{Wa yenn gm0 19 = > . (AL18)

1<j=n 1<j=n

We note that the dimension of & , is

k+n-—1
n—1 )

and that (A.1.17) holds with P, standing for the orthogonal projection onto & ,; the
lowest eigenvalue of #, is n/2 and the corresponding eigenspace is one-dimensional
in all dimensions, although in two and more dimensions, the eigenspaces correspond-
ing to the eigenvalue 7 + k, k > 1 are multi-dimensional with dimension (k :fl_l)
The n-dimensional harmonic oscillator can be written as

n
Ho = (5 + k)IP’k;n,
k>0

where Px., stands for the orthogonal projection onto & , defined above. We have in
particular

Pr.n = Z Py, where PP, is the orthogonal projection onto W,. (A.1.19)

aeN”" |a|=k
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A.1.5 On the spectrum of the anisotropic harmonic oscillator

The standard n-dimensional harmonic oscillator is the operator

1
.8Xj7

1<j=n

and its spectral decomposition is

n
JKZZ(E_{_IC)PIC;W Pr = Z Poy @ -+ @ Py,

k>0 aeN" o) ++ap=k

where Py, stands for the orthogonal projection onto the one-dimensional Hermite
function with level ;. Now let us consider for p = (w1, ..., un) with p; > 0, the
operator

Hop =7 Y (D} +x7) = 710p,(qu(x. £)),

1<j=n
with

D= 3w+ .

1<j=<n

With the notation |u| = 32, ;, pj and - = 3, tj@;, we have

Hwy = Z (%"'M'O‘) (Poy ® - ® Py,),

aeN”

Py

so that the eigenspaces are the same as for J¢, but the arithmetic properties of y make
possible that all eigenvalues (% + u - o) are simple. For instance for

K2

n=20<pu; <pp —¢Q,

231
if B € Z? is such that 11 81 + 282 = 0, this implies that 8 = 0 and thus that all the
eigenvalues of #((,,) are simple.

Remark A.1.6. If 0 < puy <--- < pu, andif forall j € [2,n] we have u; /1 € N,
we then have for ¢ € N”,

Ol'/L:[,Ll(Oll—I- Z M)Zﬂﬂ, 182(131707--'70)€Nn'

a<j<n M1

B1

Sinus cardinal. 1t is a classical result of Distribution Theory that the weak limit
when A — +o0 of the sinus cardinal S'“(xﬁ is wdg, where §¢ is the Dirac mass at 0,
but we wish to extend that result to more general test functions.
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Lemma A.1.7. Let f be a function in L} (R) such that

loc

|f(x) — 4

/ lf(f)'dr < +o0 and 3Fa € C so that / dt < +o00.
=1 7l <t 7l
Then, we have 4
lim / SN 4 )dr = a. (A.1.20)
A—>+o00 JR

N.B. In particular, if f is a Holderian function such that f(z)/t € L'({|z] > 1}) we
get that the left-hand side of (A.1.20) equals f(0).

Proof. Let yo be a function in C2°(R) equal to 1 near the origin and let us define
x1 =1 — yo. We have

/ Sm()n)f( Vit / sin(At) (f(r)_a))(o(r)dr%—a/ Sm(/h))(o(r)dr
R R T T R T

—_—
eL!(R)

+ / SAT) et (o) d.
R N———

eLl'(R)

so that the limit when A — 400 of the first and the third integral is zero, thanks to
the Riemann—Lebesgue lemma. We note also that

sin(A1) _ A](t)

TT 272w

and applying Plancherel’s formula to the second integral yields

sin(At N
= A1) o@)de = [ R
R It|<A/2m)

whose limit when A — 400 is [ xo(t)dt = x0(0) = I, thanks to the Lebesgue
dominated convergence theorem, completing the proof of the lemma. ]

A.2 Further properties of the metaplectic group

A.2.1 Another set of generators for the metaplectic group

Definition A.2.1. Let P, L, Q be n x n real matrices such that P = P*, Q = Q*
and det L # 0. We define the operator Mp 1 o by the formula

(Mp.1.ou)(x) = e_i”"/4(detL)1/2/ (1T UPxX) 2L )@Y Iy () dy.
RYI



Further properties of the metaplectic group 163
N.B. In that definition, (det L)l/ 2 stands for a choice of a square-root of the real
number det L, that is &=+/detL if det L > 0 and i +/—det L if det L < O.
With m(L) € 7 /47 defined by (1.2.34) we shall also define

n lﬂm( )

) =

de tL|1/z/Rn I TUPEX)=2Lx )0y () dy.

Proposition A.2.2. The operator Mp, 1,0 given in Definition A.2.1 is an automorph-
ism of . (R™) and of ' (R™) which is a unitary operator on L*(R™) belonging to
the metaplectic group (cf. Definition 1.2.13). Moreover, the metaplectic group is gen-
erated by the set
{Mp,L,0}P=pP* 0=0*
det L#0
Proof. Using the notation (1.2.28) and (1.2.37), we see that!

M{m(B)} M{m(B)+n}f eimn/4 M{m(L)} M{m(L) ’l}(}ve—znn/4)

(A21)

and (1.2.44) imply that the set {Mp 1 o} is included in Mp(n) (second formula in
(A.2.1)) whereas the fact that

’

=i 4 _ {o}
Fe i/t = Mo 1,00
the first formula in (A.2.1) and Definition 1.2.13 imply that Mp(n) is generated by
the set {Mp, 1 o}, proving the proposition. ]

Remark A.2.3. From (A.2.1), we deduce, noting m(I,) € {0,2},m(—1,) € {n,n +
2},

{2} {n+2} {0}
—ld2gny = M, 5,0 Mo —1I oMo 1,,0°
so that
{m(L)+2} _ {m(L)} _ ,n+2} ({0} {m(L)}
°MP L,0 ‘MP,L,Q = *Mo —1,,0 oMo 1,0 ‘MP,L,Q .

"We note that m(B) + n € {m(—B), m(—B) + 2} modulo 4: indeed, we have modulo 4

forneven, {0,2} +n = {0,2} , {1,3} +n= {1,3} ,
—— —— —— ——
detB>0 det(—B)>0 detB <0 det(—B)<0

fornodd, {0,2} +n= {1,3} , {1.3} +n= {0,2}
N—— N—— N—— N——
detB>0 det(—B)<0 detB <0 det(—B)>0

We have also m(L) —n € {m(—L), m(—L) + 2} since we know already (from the above
in that footnote) that m(L) —n € {m(—L), m(—L) + 2} — 2n, which gives m(L) —n €
{m(—L),m(—L) + 2} for n even; for n = 2] + 1 odd we get the same result since

m(L) —n € {m(—L).m(—L) + 2} — 4l =2 = {m(~L) — 2,m(~L)} = {m(—L) + 2,m(—L)}.
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Lemma A.2.4. With the homomorphism V defined in (1.2.46) and defining
Ap.L,o =V (MpL o),

we find that
L710 L1
APaL,Q = PL—IQ _ L* PL—I .

Proof. Indeed, from the second formula in (A.2.1), (1.2.38), (1.2.27), and (1.2.47)
we get that

Abio=Ep 1B _ (L Lo 0 ~Iy
P,L,O “P’_L’Q"‘—I,,,Zl/zln,—ln _pL-! —L*—I—PL_IQ I, 0 >

providing the sought result. =

Lemma A.2.5. Let P;,L;, Q;,j = 1,2 be as in Definition A.2.1 and let us assume
that
Mpy.L1,0 MpPy1y,0, =€ P Tdogny, ¢ €R. (A.2.2)

Then, we have
Pi+Q0:=01+P,=0 Ly=-L}, ¢%e{xl}. (A.2.3)

Proof. The assumption (A.2.2) implies that both sides of the equality belong to Mp(n)
and
APiL1.0\ APsL0, = Y(€? 1dr2@n)) = Lon,

where the last equality follows from the fact that e'? Id;2gn) commutes with every
operator Op,,(Ly) given in Lemma 1.2.17. We have thus

L710y Li! L3'0, L'\ (I, ©
PIL7'O1— LY PIL7Y)\PL3'0,— L5 PL3')  \0 I,)°

so that

first line x second column: L7' QL' + LT'PL5' =0= Q01 + P> =0,
second line x first column: (P Ll_1 01 —LT)L;I 0>+ Py Ll_1 (P2L2_1 0,-L%) =0,
second line x second column: (P1L1_1 01— L’f)L;1 + P]Ll_1 P2L2_1 =1,

which gives

(PILTY Q1 = L)L + LY Py L3 =1, = —LiLy =1, = Ly = LT,
-0
PILT'O\L3 0o —LTLy" Qo+ PLLT' Po L3'02—PiLT'LE=0= P1+05=0,
———— N’ ~———

In -0 —1Iy
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providing the sought formulas in (A.2.3), except for the last one. Let «; be the kernel

of Mp; 1;.0; and let k = k1 o k2 be the kernel of the composition (in the left-hand

side of (A.2.2)). We have consequently

K(x,y)

_ (detLl)l/z(detL2)1/2e—irm/2/ei:r{Plx2—2L1x-z+Q122+P222—2L2z-y+Q2y2}dZ

— (det L1)l/z(det(—]jf))l/ze_i”"/zei”{PlXZ—PIYZ} [ e—2i7r{z-(L1x+L;y)}dZ

= (det L1)"/2(det(~L}))1/2e 77/ 2 P> =P s, (L1 x 4 Ly y)

= (detL1)l/z(det(—LT))1/26_i””/2ei”{P1x2_P1y2}80(x — y)|detL|™",
entailing

ePS0(x — ) = k(x,y) = el LML AN (o ominn/2
(A2.2)
= DS (x - y),

proving that ¢’® = ¢?7"(L1) ¢ {41}, The proof of the lemma is complete. [

Claim A.2.6. Let P, L, Q be as in Definition A.2.1. Then, we have
L))\— —m(L
(MEEH T = MmUY (A2.4)
and moreover n — m(L) € {m(—L*), m(—L*) + 2} modulo 4.

Proof of Claim A.2.6. Indeed, calculating the kernel « of M},mIELé}M?Q_rZ(LLQ ,}_ p» We
get

K(x. y) = egf(m(L)+n—m(L)—n)|detL|/em{PxZ—zLx-z+sz—Qz2+zL*z~y—Py2}dZ

= |detL|e'™P**~P¥? 50 (Lx — Ly) = So(x — ).

so that
M{m(L)}M{”_m(L)}

P,L,0M—0,—L*—P = Idz2 g
and since Mp 1 o is unitary, this proves (A.2.4). The last assertion is equivalent to
m(L) € {n — m(—L*),n — m(—L*) — 2}. Since the latter set is equal to {—m(L),
—m(L) — 2} and the mapping

Z.]AZ > x — —x € Z./AZ,

leaves invariant the sets {0, 2}, {1, 3}, we obtain the sought result, concluding the
proof of the claim. |
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Proposition A.2.7. Let P;, Lj, Q;,j = 1,2 be as in Definition A.2.1 and let us
assume that

det(Q1 + P») # 0.
Then, there exist P, L, Q, as in Definition A.2.1 such that

{m(L 1)} {m(L2)} _ 4 Am(L1)+m(L2)—index (Q1+P2)}
MPIsLlaQIMP2aL25Q2 - !MPsLaQ '

More precisely, we have

P=P —L{(Q1+P) 'Li, Q=0:—L01+ P) 'L},
L=LQ1+ P) 'Ly

Moreover, we have
m(L1) +m(L,) —index (Q1 + P») € {m(L),m(L) +2} mod 4.
Proof. The kernel k of Mp,.1,.,0, Mp,,1,,0, 15

K(x,y)
= 1/2 1/2 —imn/2 in{P1x>—2L1x-z24+ Q122+ P22°—2L>z-y+Q0>y?}
(det L) /=(detLy)"/“e e dz
_ 1/2 1/2 —inn/2 in{P1x2+Q2y2%}
(det Ly)"/“(det Ly)/“e e
X/e—zin(L1x+L§y)-zein(Q1+Pz)22dz
_ 1/2 1/2 —imn/2 ,in{P1x2+Q2y?} ,—inm(Q1+P2) N (Lix+L}y)?
(det L1)"/“(det Ly)"/“e e e

x |det(Q; + P2)|—1/26i%sign(Q1+P2)’

according to formula (A.1.7) (see also (A.1.8)), noting that the matrix Q1 + P, is
real symmetric and non-singular. As a result, we have

K(x,y)
in{(P\—L}(Q1+P2) ' L)x24+(Q2—L2(Q) +P2)_1L§y2)}e—2in{L2(Q1 +P2)"'Lixy}

=e
x (det L1)'/?(det Lp) /2™ "/?|det(Q1 + P,)| 7!/ 2e! T sen(@1F2),
We note that, with E;5 standing for the eigenvalues of Q1 + P,
vy = Card(E;p NR;), v_ = Card(E;; NR_) = index (Q1 + P»),
implying that the kernel « is given by

K(x, y) — ei%(m(L1)+m(L2)—n+%(v+—v_))|detL|1/2ein{Px2—2Lx~y+Qy2}’ (A.2.5)
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with
P=P —L{(Q1+P) 'Li, Q0=0,-Ls(01+ P2) 'L, (A2.6)
L =Ly(Q1+ P) 'Ly

Checking the unit factor in front of the right-hand side of (A.2.5), we note that v +
v_ = n since Q1 + P, is non-singular and we get

P B L)L) —n+ 5w —v2)) _ o~ B2 i B (L) +m(La)—4+E 04 —vo)

— o~ B pi B m(L1)+m(L2)—v-)

We have also, since index (Q + P) = index (Q + P»)7!,

(¢! 3O EDFmIA=v-0)2 _ gion(det L) sign(det Ly)(—1)"
= sign(det L) sign(det L,) sign(det(Q + P»)™ 1)
= sign(det L),
entailing that

K(X, y) — e—mT”(det L)1/2ei7'[{P)CZ—ZL)C-y-i-Qyz}7

concluding the proof of the proposition. ]

Lemma A.28. Let P;,L;, Q;, j =1,2,3 be as in Definition A.2.1. Then, there exist
(P',L',Q", (P",L", Q") as in Definition A.2.1 such that

MPlaLlan MPZaL2aQ2MP3aL37Q3 = MP/sL/aQ/MP//aL//’Q//' (A'2'7)

Proof. If det(Q1 + P») # 0, Lemma A.2.7 implies that Mp, 1.,.0, Mp,.1,,0, =
Mpr 17,0 so that (A.2.7) is satisfied with (P”, L”, Q") = (P3, L3, Q3). We may
thus assume in the sequel that det(Q + P») = 0. Then, the kernel of QO + P; is of
dimension r € [1,n]; let us define J as the orthogonal projection onto ker(Q1 + Py).

Claim A.2.9. The matrix J, + (Q1 + P»)? is positive definite (thus invertible).

Proof. Indeed, if J,x + (Q1 + P>2)?>x = 0, we obtain by taking the dot-product with
x that

1|1 + 1(Q1 + Pa)x|* = 0 = x € ker(Q1 + P»), Jyx =0 = x = 0.
This matrix is also non-negative, proving the claim. |

Let us define the real n x n symmetric matrix

P = pLo[Jr +(Q1 + P)?] ' Ls - 0a, (A2.8)
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where p is a positive parameter to be chosen later; we note that P + Q> is invertible.
Also, we have

L3(02 + P)_ILZ —(O1+ P) = M_I[Jr + (01 + Pz)z] — (01 + P).

which is invertible if p (is different from 0 and) does not meet the spectrum of Q1 +
P; (see footnote’). We have also

P — Py = puLy[Jr + (01 + Pz)z]_le — (02 + P3)
= Lo{u[Jr + (01 + P2)*] = L3'(Q2 + Py L5 ') L3,

which is invertible for u large enough®. Eventually, defining
Ao = max(Spectrum |Q> + P1]),
the condition
> max{do. [L3"(Q2 + PHLI . IL3 ' (Q2 + P3)L3T A},
implies that, with P given by (A.2.8), we obtain that the matrices
P+0, 01+ P— L;(Qz + P)_le, P — Pjare invertible.  (A.2.9)

Using now Lemma A.2.7 and the first property in (A.2.9), we get that we can find
P.L, Q as in Definition A.2.1 such that

Mpy,15,0:Mp,1,,0 = Mp 5
with (thanks to (A.2.6)),

P =P, —L5(Q2+ P)'La.
We check now

Mpy 11,0, MPy,Ly,0MP,1,,0 = Mp,L,0, Mp | 5

>The symmetric matrices Q1 + P> and J, can be diagonalised simultaneously so that the
invertibility of
w I + (01 + P2)?] = (Q1 + P2)

is equivalent to u # 0, p,_l)tjz- # Aj,ie., i # A;, where the A; are the non-zero eigenvalues
of Ql + P».
3Indeed, the eigenvalues of [J, + (Q1 + P2)?]~! are 1 and AJTZ where the A; are the
non-zero eigenvalues of Q1 + P». To secure the invertibility of P — Pz, it is thus enough to
have
min(ie, uA;?) > |IL31(Q2 + P3)L3T ),

where the A ; are the non-zero eigenvalues of Q1 + P».
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and we note that
014+ P=0Q,+P,—L3(Q2+ P)'L, isinvertible,

thanks to the second property in (A.2.9) so that, from Lemma A.2.7, we can find
P’, L', Q’ as in Definition A.2.1 such that

Mpy.L, 0, Mp ;5 =Mp.L.0,
and this yields
Mpy,L1,0, MPy,L5,0:MP,1,,0 = Mp,1,0- (A.2.10)

Finally, we check

-1 _
Mp 1,0 MpP3L3,05 = Mo—1,—PMpP;3.15,05,
———

=Mo.—1,,.—P
cf. Claim A.2.6

and since —P + Pj3 is invertible (thanks to the third property in (A.2.9)), we obtain,
using once again Lemma A.2.7, that we can find P”, L”, Q" as in Definition A.2.1
such that

Mply oMPy.L3,05 = Mpr.Lror. (A.2.11)

Gathering the information above, we find that

Mpy,L,,0, MP5,L5,0, MP3,L3,05
_ —1
= Mp,,L,,0, MP>,L5,0:MP,1,,,0 Mp 1, o MP3,15,05.

MP’,L’AQH (A.2.10) ‘MP”.L”.Q”’ (A2.11)
which ends the proof of the lemma. |

Proposition A.2.10. The metaplectic group Mp(n) is equal to the set

{Mp\.L1.0 MPy.L>.0:} P =PF,0,=07%-
detL; #0

In other words, every metaplectic operator of Mp(n) is the product of two operators
of type Mp 1 .o as given by Definition A.2.1.

Proof. From Proposition A.2.2, the metaplectic group is generated by the Mp 1 o
and since the inverse of Mp 1 o iS M_g _r+ _p, thanks to Claim A.2.6, it is enough
to check the products

'MPl,Ll,Ql T ‘MPN,LN,QN

for N > 3. Lemma A.2.8 is tackling the case N = 3 and a trivial recurrence on N
provides the result of the proposition. |
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Theorem A.2.11. Let M be an element of Mp(n) such that M = e'? Id;2gny. ¢ €R.
Then, ¢'® belongs to the set {—1, 1}. In other words, the intersection of the metaplectic
group with the unit circle (identified to the unitary operators in L*>(R"™) defined by
the mappings v + zv where z € S' C C) is reduced to the set {—1,1}.

Proof. Using Proposition A.2.10, the result follows from Lemma A.2.5. |

We may go back to the description given by Proposition 1.2.11 and Definition
1.2.13.

Proposition A.2.12. The metaplectic group Mp(n) is equal to the set

{MAI ,B1,Cy MA25329C2}AJ’=A;,CJ'=C;<’
detBj#O

where the operators My, g c are defined in Proposition 1.2.11.

Proof. Let M be in Mp(n). We have

M = (MAl,Bl,Cl)il ”'(MANsBN’CN):tl

—iﬂn/45(7)i1.“( —irm/437):t1

- ,(MAI:_BI’Cle MAN’_BNacNe
(A.2.1)

+1 +1
= (Ma,—B,.c;Mo.1,.0)" - (May.—By.Cy Mo.1,.0)

9
and since from Claim A.2.6, we have
-1
Mapc = M-c—B*-4,

we find that M is in fact a product of 2N terms of type Mp 1 o, and thanks to
Proposition A.2.10, we get
—irm/437 (e—irm/437)—

1
M = ‘MPhLl,Ql‘MPLLz,Qz = MPIaLlane ‘MP2,L2=Q2

Mp,.—L,.0 . -1
1 1-¥1 —
(‘M7Q2.7L’2“.7P2e trrn/43€7)

= Mp,1,.0,(M_g,—15-p,) "

= Mp,—1,0Mo,1,,0, (Mg, —15.0Mo1,,~P,) "

= Mp,,~L,,0Mo,1,,0, Mo,1,,P> (M—Qz,—L;o)_1

= Mp, —1,.0Mo.1,.0,+P,(M_g, _13,) (cf. formula (1.2.33))

= Mp,,—1,,0,+P,Mar,B7,0 (cf.Lemma A.2.14 below in the next subsection),

proving the proposition. |
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A.2.2 On some subgroups of the metaplectic group

We have seen in (1.2.24), (1.2.22) some equivalent conditions for a matrix

8= (; g) where P, Q, R, S are n x n real matrices, (A.2.12)
to be symplectic. We note here that when E € Sp(n, R), we have
o S* _N*
Bl = (_R* PQ* ) (A.2.13)

as it is easily checked from (1.2.24), (1.2.22). When det P # 0, we proved that & =
E4.B.c as defined in (1.2.19). Also from (A.2.13), we get that if det S # 0 we have

—~—1
o/

= E4,B,C,

~_(In C\(B 0 I, 0
=~ \o 1,)J\o B*')\-4 I,)°

Some other properties of the same type are available when det Q or det R are different
from 0. Indeed, we have for E € Sp(n,R) and o given by (1.2.15),

- (P O\ _ (-0 P\ _ _
ua_(R S)O_(—S R) —=_ EBasBc. (A2.14)

ifdet @ # 0
so that

o o oI 0 B~' 0\/[(I, -C\ (0 —I,
=T UEABCT T4, o B*J\o 1,)\1, o)

If we have det R # 0, using the two first equalities in (A.2.14), we get that (Eo) ™! =
E4,B,c, which gives

—_ (I C\(B 0 I, O\[/0 =—I,
=~ \o ,J\o B*')\-4 1,)J\1, 0 )

However, it is indeed possible when n > 2 to have a symplectic matrix in Sp(n, R) in
the form (A.2.12) such that all blocks are singular, as shown in the following remark.

so that

Remark A.2.13. The 4 x 4 matrix

00 10
01 00| (P O
—1000_(RS)
0 0 01

belongs to Sp(2, R) although all the block 2 x 2 matrices P, Q, R, S, are singular
(with rank 1).
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Lemma A.2.14. With M4 g c defined in Proposition 1.2.11, the sets

£ ={MyBo} a=a*» R={Mopc}c=c*. (A.2.15)
det B#0 det B#0

are subgroups of the metaplectic group (cf. Definition 1.2.13).

Proof. Indeed, £ contains the identity of L?(R") and we have for v € L?(R"),

MAl,Bl,OMA_zl,Bz,OU = MA1,Bl,0{Mo,Bz—l,o{e_mAzsz(x)}}
_ MAI,Bl,O{e—inB;*‘A2351x2v(32—1x)}(det Bz)_l/z
_ einA1x2e—mB;'<B;—1A232—131x2v(32—1le)(detBl)l/z(det By)~1/2
_ ein(Al—B,*B;—lAZB;IBl)x2v(Bz—1le)(detBl)l/z(det Bz)—l/z
= (MAI—B;‘B;—IAsz—lBl,B;lBl,oU)(x)v

so that MAl,Bl,OMX;,Bz,o belongs to the set &£ in (A.2.15), proving that £ is indeed
a subgroup of the metaplectic group. We note also that the bijective mapping

L£>M > F*MF € R, (A.2.16)
(F stands for the Fourier transformation) sends &£ onto R since we have
F*Mg,poF = F*My,1,0FF*MopoF = Mo,1, AMj g1 ¢
= My p+—1 p+—14p-1. (A.2.17)

Moreover, the mapping (A.2.16) is obviously one-to-one and is also onto since, given
By € Gl(n,R) and C; a symmetric n X n matrix, we see from (A.2.17) that

* —_—
F MBl_lclBik_l,Bik_l,OF — MO,BI,CI.

The mapping (A.2.16) also extends to a group isomorphism of Mp(n), proving the
lemma. ]

Remark A.2.15. We may note that
; 2
(M4, .B,.0May.By.00)(x) = 1% (My, p, ov)(B1x)(det By)'/?
= T TBI 42803 (B, By x) (det By) '/ ?(det By)'/?

- (MA] +BTA231 ,B> B ,Ov)(x)’

so that the internal binary operation x can be defined on the set {(A4, B)} 4—4* as
det B#0

(A1, B1) x (A2, B2) = (A1 + B A2B1, B2 By),
for which the identity is (0, /,) and the inverse

(A,B)™! = (=B*14AB~! B7h).
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Remark A.2.16. A consequence of Lemma A.2.14 is, with W defined in (1.2.46),
that

{W(M4,Bo)} a=a* = {B4,B,0} a=a*, {¥Y(Mo,p, c)}c —c* ={Bo,B.c}c=C*,
det B#0 det B#0 et B#0 det B#0

are subgroups of the symplectic group Sp(n, R).

Proposition A.2.17. The metaplectic group Mp(n) is equal to the set

{Ma,.B1.C Mas.By.Co b4y = at.ci=C-
det B; #0

In other words, every metaplectic operator of Mp(n) is the product of two operators
of type M4 g.c as given by Proposition 1.2.11.

Proof. Let M € Mp(n); using Proposition A.2.10, we may assume that

M = Mp, 1,0, MpP,.1,,0,
= Mp,.1,.0,F e Fe Y Mp, 1.0,
(A2.1) = Mp, 1,0, (Mp 1, o, Fe 747
(Claim A.2.6) = Mp, —1,.0,(M_g, _15.—p, Fe ™47

(A2.1), (1233) = Mp, ~L,.0. M2, 15 _p,

= Mp, —1,0Mo.1,,0,(M_g, 15,0Mo.1,,—P>)

= Mp,—1,,0Mo,1,.0, Mo,1,,,, M, L3.0

-1

= MP1,—L1,oMo,In,Q1+PzM__Q2,L;,o
_ -1
= MPl,—Ll,Ql-i‘PzM—Qz,L; 0

(using Lemma A.2.14) = Mp, —1,,0,+P,Ma’.B' 0,
proving the sought result. |

Remark A.2.18. We have used two different sets of generators of the metaplectic

group. First the set 4 = {Mj”;(lé)}} given by (1.2.35) which is somewhat natural,

also allowing us to recover the operator e " /4% where the phase factor appears via
formula (1.2.38). The Identity appears clearly as Mé I} o but the inverse of Méf’gﬁ?}
cannot always be expressed within ¥, .

Also, we have the set 4, = {MX”;?C)}} given in Definition A.2.1, which incorpor-
ates a phase prefactor e *7*/4  looking a priori rather arbitrary but of course necessary
for the sequel (this prefactor is also suggested by (1.2.38)); here to express the iden-
tity, we need to write it as *Mo 1, 0“Mon 1,.0° but the inverse of Mi’f’ggc)} is easily
obtained by Claim A.2.6 within E% Certainly the description given by %, is much
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better, in particular because the calculations leading to Lemma A.2.5 and Proposition
A.2.7 are rather easy as well as the proof of Lemma A.2.8; a statement analogous
to Proposition A.2.10 for ¢ is true (cf. Proposition A.2.12), but its proof is quite
indirect and relies heavily on the results for %,.

A.3 Mehler’s formula

We provide here a couple of statements related to the so-called Mehler’s formula,
appearing as particular cases of L. Hormander’s study in [22] (see also the more recent
K. Pravda-Starov’ article [42]). In the general framework, we consider a complex-
valued quadratic form Q on the phase space R?” such that Re QO < 0: we want to
quantize the Gaussian function (here X stands for (x, §)) a(X) = ¢{@X-X) and to
relate the operator with Weyl symbol a to the operator

exp {Op,, ((QX. X))}

Lemma A.3.1. ForRet > 0,t ¢ in(2Z + 1), we have in n dimensions,
(cosh(z/2))" exp —tOp,,(|x|* + |£[*) = Op, (e_Z‘a“h(%)”(XZJFEZ)).
In particular, fort = —2is,s e R, s ¢ %(1 + 27), we have in n dimensions
(cos s)" exp(2i rsOp,, (|x|* + |£]?)) = Op,, (eZi”ta“S(lxlz’Llslz)). (A3.1)

Lemma A.3.2. Forany z € C,Rez > 0, we have in n dimensions

5 20 1 1-z\F
Op,, (exp—(2z7 (|&*> + |x|?))) = g +Z)”]§)(1 +Z) Pt (A3.2)

where Py, is defined in Section A.1.4 and the equality holds between L*(R")-bound-
ed operators.

We provide first a proof of a particular case of the results of [22].

Lemma A.3.3. ForRet > 0,t ¢ in(2Z + 1), we have in n dimensions,
(cosh(t /2))" exp —twOp,, (|x|? + |£?) = Op,, (e—ztanh(%>”<x2+$2>). (A3.3)

Proof. By tensorisation, it is enough to prove that formula for n = 1, which we
assume from now on. We define

L=¢+ix, L=&—ix, M()=p(1)Op, (e *®rLL)
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where «, 8 are smooth functions of ¢ to be chosen below. Assuming 8(0) = 1, «(0) =
0, we find that M (0) = Id and

M +70p, (|LP)M = Op,, (fe ™11 — Bar|LI?e=* I + (|LP)tpe "),

We have from (1.2.3), since 8)685|L|2 =0,
=0

r——
_ 2 _ 2 1 _ 2
|L|21:Ie ar|L|* _ |L|26’ am|L| + = {|L|2,€ am|L| }

Qs 2ya2 —am|L|? 2 2yq2 —am|L|?
+ — L + L
i3 (RILPI%e R(ILP)aZe ")

— |L|26—om'|L|2

+ @in)? %e—anlle (2((—20mx)2—20m) +2((—2a7r§)2—2an))

4272 [0 %14 2
= |LI% —an|L|? 1— A —am|L]
ILIe 1672 ) T a2t

’

so that
M + nOp,(|LI>)M

= Op,, (Be_“”|L|2 — ,Bdﬂ|L|ze_“”|L|2

N anp 2
L 2 —am|L|? 1— —am|L|
+ nB|L|%e TenZ + T e

= Opw(e_“”|L|2{|L|2(— & + nﬂ(l - %2)) +B+ ?})

‘We solve now

G=1- “T @(0) = 0 <= «(f) = 2tanh(1/2),

and
4 +ap =0, BO)=1+p)= cosh(1/2)’

‘We obtain that
M + n0p,(|LI>)M =0, M(0) = Id,

and this implies
B(1)Op, (e *OLLy = M(r) = exp—tn(|L[*)*,

which proves (A.3.3). ]
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In particular, fort = —2is,s e R, s ¢ %(1 + 27), we have in n dimensions
(cos 5)" exp(2ins0pw(|x|2 + |E|2)) = Op, (ezintans(|x|2+|$|2))_ (A.3.4)

Lemma A.3.4. Foranyz € C, Rez > 0, we have in n dimensions

1 1—z\F
Op, (exp~ @zl + X)) = Z( L ) Pen,

where Py..,, is defined in Section A.1.4 and the equality holds between L?(R™)-bound-
ed operators.

Proof. Starting from (A.3.4), we get for t € R, in n dimensions,
(cos(arctan 7))" exp(2i 7 arctan tOp,,(|x|> + |§]?)) = Op,, (ezinr(|x|2+|§|2)>’

so that using the spectral decomposition of the (rn-dimensional) harmonic oscillator
and (A.8.1), we get

(147223 il nb+Dp, — Op, (ezm(\x|2+|e-|2)),
k>0

which implies

(1+it)**" 2ime(|xI2+IE1%)
(1 + 2) n/2Z ]P on =OPW (e int(|x >’
(14 2)ktz ™
k>0

entailing

k
Z A+iof p — Op (e2im(IXI2+|E\2))
5 w ’

k+n
k>0 lr)

proving the lemma by analytic continuation (we may refer the reader as well to [50,
pages 204-205] and note that for any z € C,Rez > 0, we have | =l <1. ]
A.4 Laguerre polynomials

A 4.1 Classical Laguerre polynomials

The Laguerre polynomials {Lj }rcn are defined by

e 5 - (-0 )

o<l<k
(A4.1)
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and we have

Lo=1,
Li=-X+1,

1
L = E(X2_4X +2),

1
L= 6(_X3 +9X2 — 18X +6),
1
Ly = ﬂ(X4 —16X3 +72X% — 96X + 24),

1
Ls = —(—=X° 4+25X*—200X3 + 600X2 — 600X + 120),

120
1 6 5 4 3 2
Le = 7%(X —36X° + 450X % —2400X> + 5400X 2 — 4320X + 720),
_ —X7 4 49X° — 882X 4 7350X* — 29400X 3 + 52920X 2 — 35280X + 5040

L, =

5040

We get also easily from the above definition that
Liy = Ly — L.

sincewith 7T =d/dX — 1

d Xk+1 d
k! dx (k + 1)!) T dx

Xk
Ly —Ly=TLy = Tk“(—) = Tk“(— —— L1

Formula (6.8) and Theorem 12 in the R. Askey and G. Gasper’s article [2] provide

the inequalities
VkeN.Vx=0. Y (-D'Li(x)>0. (A4.2)
o<l<k

This result follows as well from formula (73) in the 1940 paper [12] by E. Feldheim.
Let us calculate the Fourier transform of the Laguerre polynomials, we have

L = ()

so that
. , ol —1\k88 (- 1k NI
Le®) = @ing = (5—) 2 = (- 52) 8@

As aresult, defining for k € N, ¢ € R,

Mi(t) = (“D)FH@®e " Li(2t), H =1gr,, (A4.3)
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we find, using the homogeneity of degree —k — 1 of S(gk),

1(=D* 1\ w(r (—1)k
M — ) P2 ) s — L
M) = 37 (2 2m) 0 (2)*1+2im

)*/k!
k k
—D (%) {1—|—21n(r—0)}|a 0
_ N T
My () = Z( D (1) k- 1+2m(r ))Hkl =0
AN
_Z( l)k(l) |+ 2in 1+k1

_(DF k (—2)" N

(1 +2in7) ; (l) (1+ 21’711)"_1

G VL SR B

N (1+2i7t‘[)( (1+2inr))

_(=DF —142ime\f 1 1—2im7\*
T +2im)( 1 +2int ) T —|—2im:)(1 +2im)

(1-2izr)k (1 -2im7)?kH!
(14 2imo)k+tl (1 + 4m2g2)k+1

so that

My (7) = (A.4.4)

A.4.2 Generalized Laguerre polynomials

Let @ be a complex number and let k£ be a non-negative integer such that o + k ¢
(=N™). We define the generalized Laguerre polynomial L by

d k k+a d k k+a
Lg(x):x—“eX(E) {e—xxk! }:x_“(ﬁ—l) {xk! } (A4.5)

We note that L7 is indeed a polynomial with degree k with the formula

o= Y - (k)( DR 4ot 1)
k.x - o — o
s Tk +a+t1—k)
( 1)k xk—kl
_ Ik I
0<;<kk1'(k o F e D T T

k -1 1.1
e

o<i<k
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N.B. We recall that the function 1/ T is an entire function with simple zeroes at —N.
As aresult to make sense for the binomial coefficient

k+a) 'k +oa+1)
k—1)] (-=DIT(+a+1)

we need to make sure thatk + o« + 1 ¢ —N,ie,a ¢ —N* — k.

Lemma A4.1. Let o € C\(—N7*) and let k be a non-negative integer. For a = 0,
we have LY = L, where Ly is the classical Laguerre polynomial defined in (A.4.1).
Moreover, we have for | <k,

d 1
(ﬁ) LY = (1) LeH. (A4.7)
Proof. Indeed, we have from (A.4.6)
d ) k +a) (=1mtxmt
- @ _ (] > 7 &
(dX) P=c0t ) (k—m) (m—1)!

I<m<k
k—Il+a+1Y=D"X"

_ (_1\! — (— l7a+l
- p (GO )R

proving the sought formula. u

A.5 Singular integrals

Proposition A.5.1. (1) The (Hardy) operator with distribution kernel

H(x)H(y)
a(x + y)

is self-adjoint bounded on L*(R) with spectrum [0, 1] and thus norm 1.
(2) The (modified Hardy) operators with respective distribution kernels

H(x)H(y) H(x)H(y)

SRELETEETN SEE

H(y —x)

are bounded on L*(R) with norm 1/2.

Proof. Let us prove (1): for ¢ € L2(R,.), we define fort € R, ¢(1) = ¢(e’)e’/?, and
we have to check the kernel

et/2e5/2 1 1 t—s
= —= — sech ,
T[(et + es) jT(e(t—s)/Z + e—(t—s)/Z) 27 ( )
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which is a convolution kernel. Using now the classical formula

/e_Zi”xE sechxdx = 7 sech(2§),

1 t :
—/sech — )e™2""Jt = sech(7w?27),
2 2

a smooth function whose range is (0, 1], proving the first part of the proposition. To
obtain (2), we observe with the notations ¢ (1) = u(e*)e'/2, Y (s) = v(e®)e*/? that
we have to check

we get that

t/2 s/2 _
/H(s—t) e e P OYdids

// H(s — _)(t M) POV (s)dtds = (R * ¢. ¥) 2 w):

7T(€(t S)/z

with N
H(t ~ 1 o0 .
R(1) = # R(1) = —/ sech(t/2)e 21" ¢,

27 cosh(t/2) 27 Jo

so that*
N . 1 +o0
|R(7)| < R(0) = —/ sech(z/2)dt = =
2 0

yielding the sought result. =

A.6 On some auxiliary functions

A.6.1 A preliminary quadrature
Lemma A.6.1. We have

/2 +o00 T
/ (cscs —cschs)ds = / cschsds = Log (coth —),
0 7/2 4

with cscs = 1/sins, cschs = 1/ sinhs.

Proof. Note that the function [0, 7/2] 3 s > m—_;‘n“:, is continuous. Moreover, we
have

ds 1 1 —coss ds 1 coshs — 1
— = —-Log{ —— ] and - = —Log| —— |,
sin § 2 1+ coss sinh s 2 coshs + 1

4We recall that % arctan(sinh s) = sechs.
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so that

/2
f (cscs —cschs)ds
&
1 1 —coss\ 12 1 coshs — 17172
= —| Log| —— —|zLog| ———
2 1 +coss / |, 2 coshs +1/ |,
1 14+ cose) [ coshe—1 1 cosh%+1
= —Log + - Log| ————— ).
2 1 —cose coshe + 1 2 cosh 7 —1

_ <2+0(s2)>(%+0(e4)>
(5 +0(*)2+0(:2))

—1fore > 0

so that we obtain

7'[/2 1 ”/2 —7[/2 2 h 4
/ (cscs —cschs)ds = ELOg(e +e + ) _ Log &% (/%)
0

e —2) = i)
which is the first result. Also, we have | ]:;;o cschsds = % Log(%), yielding

the second result. [

A.6.2 Study of the function p,

We study in this section the real-valued Schwartz function p, given in (5.2.10). Using
the notations

w=2nt, k=210, V=Ko, (A.6.1)
we have
e (T) = / ,Lez"“’(s_”2 anhs) gg = / .s cos(2a)(s — vztanhs))ds.
R sinhs R sinhs
Defining the holomorphic function F by
F(Z) — .LeZiw(Z—vz tanhZ), (A62)
sinh z

we see that F' has simple poles at i7Z* and essential singularities at in(% + Z).
We already know that the function p, belongs to the Schwartz space, but we want to
prove a more precise exponential decay. We start with the calculation of

t+ig ot i T —p? i
/ F(Z)dZ — / 4 e21w(t+z r—v= tanh(z +i 4))dl
R+i % R Sinh(z +1%)

2elA+i)—e I (1—i)

£ .
= e_’”"/ZZx/E/ a9 tt—H(; et @210t T ROV T D FeT(1=D)
R el —(1—1i)e

t+iZ L ojepredt—eTtd=i)
_ e—nw/Zﬁ : .4 e2iot, 2iwy ef(I++e—T(1=0) Jf.
R sinh# + i cosht
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We have
. e'(l+i)—e'(1—1i) —Im sinhz +icoshz) 1
el(1+i)y+et(1—i)) cosht +isinht ) cosh®¢ + sinh?¢’
so that
rw v 2 +(3)? _ 2wv2
/ F(z)dz| <e 2 V2 / esmZi+eon?t
R+i % R +/sinh? ¢ + cosh? ¢
=72 V2e% dt < 6e™ 2 ¢
R +/sinh? ¢ + cosh2
(A.6.3)
Claim A.6.2. We have
lim F(z)dz = lim F(z)dz = 0.
R—>+00 JIR,R+in/4] R—>+00 JI—R,~R+in/4]
Proof of Claim A.6.2. We note first that
¢ F(z)dz = —% F(z)dz,
[~R,—R+in/4] [R,R+irn/4]
so that it is enough to prove one equality. Indeed, for R > 0, we have
95 F(z)dz = /ﬂm ' R+ ”. Q210 (R-+it=v wh(R+i0); g,
[R,R+im/4] o  sinh(R +i7)
so that
¢ F(z)dz
[R,R+in/4]
< /4 2v R? + 12 —2wt62/c Im(tanh(R-i—it))dt
= Jo  |eRFiT||1 — ¢—2R-2ir|
R V4R2 +7t2/ [ R = ‘—’_if} iiildr
C1—e2R
R—V4Rz+nz/4ﬂ a- (4—21?)
- I—e2R 4°
proving the claim. u

Lemma A.6.3. We have for t > 0,0 > 0, ps given in (5.2.10),

0o (7)] < 6™ T4 (A.6.4)
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Proof. We have, with the notations (A.6.1), F givenin (A.6.2) and yg =[-R,—R +
iIZJU[-R+iZ . R+iZJU[R+i%, R]

gtzlim/ F(s)ds = lim (¢ dez) = ¢ F(z)dz,
pu() = lim | Fods= tim (@ Feyz) = ¢ FG)

Claim (A.6.2)

so that (A.6.3) implies the lemma. ]

A.6.3 On the function ¥,
Let v € (0, 1) be given. We study first the function ¢, defined on [0, 7/2) by

2,2
$u(s) = s —vitans, sothat ¢} (s) =1—v*(l +tan’s) = COS#
cos? s
so that
S 0 Sy ty Z
Pl(s) | 1—v2 + 0 — — (A.6.5)
$v(s) | 0 () N\ 0 N\ —o0
We have

sy = arccosv = Z —v + 0O(v3),

forv — 0. (A.6.6)
Pv(sy) = arccosv —vv/1—v2 =Z — 20 + O(v?),

The function ¢, is concave on (0, 7r/2) since we have there
(s) = —v*(=2)(cos §) 3 (—sins) = —v22(coss) 3sins < 0.

‘We have defined in (5.2.45)

V(o) = ds. (A.6.7)

e T® /n/2 e2w¢v(s) -1

2 sin §
Let us start with an elementary lemma.

Lemma A.6.4. Let A > 0 be given. Defining

A o _1

J) =e—*/0 ¢ .

JA) =21+ 00A7%), A +oo, (A.6.8)
VA>0, JA)=A"1—172 (A.6.9)

do,

we have
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Proof. Indeed, we have for A > 0,

A k—1 k k+1
_ —)L o _ _){ A, _ —A A, k + 1
AJ(A) = Ae Z/O o do = \e Zm—e Z(k+1)!7
k>1 k>1 k>1
)kk_H Ak-i—l 1
_ A - :
=) aE i T Gk
k>1 k>1
=e Mt —1-21) + 217! (e—A > M l) (A.6.10)
- = (k+ D) "
R(A)
with
k+2 2 2
0<RM) <e?> (kl+2)'l% < e—*(e*— 1—X— %) x3 = 0(1),
k>1 ’
(A.6.11)
so that

AW =e e —1-V)+1To() =14+1"10()—(1+1)e™d =1+ 171 0(1),
proving (A.6.8). Note also that (A.6.10), (A.6.11) imply, since R(A) > 0,
AJA) = 1—e 21+ 1),
sothat J(A) > A™1 —e™*(1 4+ A7), and thus’ the sought result (A.6.9). n

Remark A.6.5. Considering now the function ¢ defined by

e T /2 e2ws -1
Po(w) = / : ds,
2w Jo sin §

we find that, for @ > 0, using Lemma A.6.4,

—Tw /2 2ws _ 1 —Tw Tw L0 _ 1
Po(w) > ‘ / ¢ ds = & / ¢ do = —J(nw),
2w Jo s 2w Jo o 2

so that
1

C 2n3w?’
It is our goal now to prove a minoration of the same flavour for the function (A.6.7)
defined above.

>
po(®) = 72w

5We leave for the reader to check that for A > 0, e_’l(l + l_l) < 172, which boils down
to study ¢(1) = e *(A? + 1) reaching its maximum for A € R, at Ao = (1 + +/5)/2 with
q(Ao) ~ 0.84 < 1.
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Assuming v € (0, 1/2), we have % <sy <t < % (sy, t, are defined in (A.6.5),
¥y in (A.6.7)),

v p20¢u(s) _ | 7/2 p20¢v(s) _
———ds +/ ———ds
t

sin s

2we”™ Y, (w) = / -
0 sin s

v

ty 62w¢u(s) -1 /2 ds
e e
0 sin s r, ~sins

on (O,t‘)), ¢U(S) Z 0

Sy equ&U(s) -1 /2 ds
[y
0 sin § x/3 Sins

Su g2weu(s) _ In3
- / R P (A.6.12)
0 sin s 2

on (0,s,)
v (s)>0 and ¢/, (s)>0

Claim A.6.6. For s € (0,7/2), we have ¢, (s) > ¢,,(s) sins. Moreover, for s € (0, s,),

1 ?1(5)
we have Sins > PROR

Proof of Claim A.6.6. Indeed, we have

$u(s) — ¢, (s)sins = s —v*tans —sins 4+ vZ(1 + tan” 5) sins

= v2(sins + sinstan® s — tans) + s — sins

5f sins sin s .
=v > — + s —sins
cos?s  coss
vZsins
= > (1 —coss) +s—sins >0, fors e (0,7/2).
cos? s

The last part of the claim follows from the first part and the fact that sin s and ¢, (s)
are both positive on (0, s,). [

Going back now to (A.6.12), we obtain that for v € (0, 1/2) and @ > 0, we have

Sv @200u(s) _ In3
2mwe™® (ui/ — ¢/ (5)ds — —
wv( ) 0 ¢v(s) ¢V()
20¢v(sv) o | In3 In3
N / o — =2 = 20O Qugy () — -
0 o 2 2

so that, using (A.6.9), we get

1 1 1 In3 1
¥y () > —e_”wezw¢”(SV)( — 2) — n——e_”“’,
27 20¢y(sy)  Cwdy(sy)) 2 2n




Appendix 186

and since ¢, (s,) = % — &y, with ¢, € (0, w/2), we find also that ¢, is a concave

function® of v € (0, 1) and
v
— <& =2
2
so that

2¢,(sy) = — 28, € [m —4v, T — V],

so that for v € (0, 1/2], we have’ (assuming @ > 0),

1 1 In3 1
- —nTw w(n—28u) — - 50
Yv(w) = e € (a)(n —2&) (o(r— 251)))2) 2"
> i —4vew L_; —Eieﬂm
~ 2 or  w*(r —2)? 2 2n ’

We recall the notations (A.6.1), so that v = /k/w, i.e., vw = /kw and we get

1 1 1 In3 1
Yo >0, ¥,(0)> 2—6_4V"“’(— - —) — n——e_”‘”, V= Vik/o.
Ed

Tw w2 2 2w
(A.6.13)
A.6.4 An explicit expression for aj
According to (5.2.22), we have
1 1 [*®sinQnrtt — 470 tanh(z/2
a11(7,0) = =~ + — sin@ntz — 4ro tanh(t/2)) ;. (A.6.14)

2 2m J sinh(z/2)

We have used in Section 5.2 the equivalent expression a1 (z7,0) = % + T, (1), where
Ts is defined in (5.2.9) and we were able to prove the estimate in Lemma 5.2.2. It
turns out that (A.6.4) is not optimal, and it is interesting to give an “explicit” expres-
sion for a;; as displayed in [55]. Using the notations (A.6.1), we can write (A.6.14)
as

expi(wt — 2k tanh(t /2))

1 1
ay(r,0) = ——i—E IR{Im

2 sinh(z/2)
1 1 2i — Kk tanh

=~ 4Im lim — exp 2i(ws — tanhs) ;o 4 615)
2 R—>+00 27 JI_R,R] sinh s

“We have from (A.6.6),

d d?
gy = %—arccosv+v\/1—v2, dg‘} =2vV1 -2, 82” =2v/vV1-1v2 <0,
v

dv

so that the concavity gives %v <egy <2v.
"We know that w(r — 2¢,,) > w(r — 4v) > w(w — 2) so that to ensure w(r — 2¢,,) > 4, it
suffices to assume @ > 4/(w — 2).
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Defining the holomorphic function G by

exp2i(wz — k tanh z)

G(z) = , (A.6.16)

27 sinh z

we see that G has simple poles at i 7Z and essential singularities at i n(% + Z). For
R eR\TZ,e € (0,7/2), we have

¢ G(z)dz + ¢ ve G(z)dz + % + G(z)dz
[—R,—¢]U[e,R] VR

— —eplB .
i Vi O)=Rel"
- o<t<nm
=2im ) Res(G.ikm/2). (A.6.17)
keN
km<2R

Claim A.6.7. We have )
lim¢ G(z)dz = L
Ye 2

e—>0

Proof. Indeed, we have

0 . i6 if
exp 2i (wee'” — k tanh(ge .
/ p2i( - 7 ( ))iseledé
— 27 sinh(ge'?)
i 0 eZiwseiggeiG

2n J-n Sinh(gelg) exp (—2ik tanh(ge'”))

2iwz

and since the function z — 24—
sinh z

we get the result of the claim. [

—2ixtanhZ 44 holomorphic near 0 with value 1 at 0,

Lemma A.6.8. We have

Nam—>+o00

lim Im ¢ G(z)dz | =0.
}’_J’r_ T

gtmz

Proof. Indeed, we have with R = % + m%,

. /ﬂ exp 2i(a)Re".9 — K ta.nh(Reie)) iR 40
o 27 sinh(Re’?)

R R F14 eZin cos Ge—ZRa) sin@eiG
= — R€ n
0 1 — ¢—2Rei?

e~Re'? exp (—2ik tanh(Re'?))d0
T

2R n/ZR {e2ia)Rcos96—2Ra}sinOei0
= — e

1 — ¢—2Rei® e Re' exp (—2ik tanh(Reie))}dQ,

T Jo
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so that

(9,

T imI

T
2

/2 ]
/ e—R cos 96—2Rw sin 6

0

G(z)dz)

4
2R
T

eZincosBeiG o )
x Re {We_msme exp (—2ik tanh(Re’e))}dG. (A.6.18)
p— e_

‘We have also

1— e—2Rei9

0y _
tanh(Re'”) = 1o g2Rei? o 2Re?

(A.6.19)

Claim A.6.9. Defining for m € N, 0 € [0, 7], gm(0) = 1 — e_(%“Lm”)em, we find
that
pddf |gm(@)] = Po>0. inf [2-gu(0)]=p1>0.

€[0,n] €[0,n]
meN meN

Proof of Claim A.6.9. If it were not the case, we could find sequences ; €[0, w],m; €
N such that Y
lim e~ (ZFmme™ — (A.6.20)

=400
Taking the logarithm of the modulus of both sides, we would get

lim (% + mln) cosf =0,

[ —>+o00

i.e.,
&l

cos; = lim ¢ =0.

% + mlzt’ [—>+00
Going back to (A.6.20), we find then

lim e—i(%-leﬂ)SinB] =1
[—>+o00

i.e., since sin6; > 0,

2 1/2
lim exp—i z—}—mln) 1—8—1 =1
I—>+00 2 (5 +mym)? ’

implying lim;_, 4o e*(3 77 = [, which is not possible since

e GAmm = _j(—1)™ e {+i},
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proving the first inequality of the claim. The second inequality follows from the same
reductio ad absurdum, starting with

lim e~(GFrmme® _
=400 ’
ending-up with an impossibility since —1 ¢ {#4i}. [

As a consequence of Claim A.6.9 and (A.6.19), we obtain for R = - +m7,
0 € (0, ),

; 2
| tanh(Re'?)| < =.
B1

Formula (A.6.18) gives then

n(f, o)

where for w > 0, the right-hand side goes to zero when R goes to 400, completing
the proof of Lemma A.6.8. ]

2R (™2 o 1
< _/ e—RcosGe—2Ra)sm9_eXp (4K/‘31)d0,
T Jo Bo

Lemma A.6.10. With G defined in (A.6.16), we have

1 s e2iwz—2i/ccothz
27 Z Res(G,ikm/2) = + ( ,0).

Res
—2nw ; —2nw
= 1+e i(l+e ) cosh z

(A.6.21)
Proof. We have Res(G,ikm/2) = Res(Gg,0) and with k = 21,

exp 2i (w(z + lkTﬂ) — i tanh(z + lkTﬂ)) B e—2lnw p2iwz ,=2ik tanhz

Gi(2) = _ =
€ 27 sinh(z + &%) 27 (—1)! sinh z

(_l)le—2lnw

Res(Gy,0) = o

whereas for k = 2/ + 1, we have

exp2i(w(z +ilm + %’) —ktanh(z +ilm + iy”))
27 sinh(z + ilw + %”)
e—(21+1)nw62iwz

Ga+1(2)

6—21 K coth z

27 (—1)%i cosh z

so that

(_1)16—(21+1)nw eziwz—zilccothz
Res 0],

Res(Gar+41,0) = 2mi cosh z
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yielding
27 > Res(G.ikm/2)
keN
-1 l,—Ql+)rw 2iwz—2ik cothz
=3 (e Y (=D'e ’ Res(e ’0)’
e e I coshz
1 e~ e2iwz—2il<cothz
= + Res ,0),
1 +e72m@ (] + ¢ 27®) ( cosh z )
concluding the proof of the lemma. |

Proposition A.6.11. Using the notations (A.6.1), with ay; defined in (A.6.14) (see
also (A.6.15)), we have for t > 0,0 > 0,

1 e T eZi(wz—Kcothz)
all(r, O’) = 1 T e—27rw + 1 n e_277w Im {Res(w,())} (A622)

Proof. Taking the imaginary part of both sides in (A.6.17), and letting R — +o0,
& — 04, we get, using (A.6.21), (A.6.15), Claim A.6.7,

1 i 1 e T® eZiwz—Zi/ccothz
— — 4 Im- =1Imi R 011,
i 2+ 3 ml(l—}—e—zm" +i(1—|—e—2”“’) es( coshz ))

which is (A.6.22). ]

Remark A.6.12. In particular, when 0 = 0, we find for 7 > 0

—4n2t
1 —api(r,0) = [

and since (5.2.24) implies that

0 sin(4nt 1)

cosht

d . .
4i7tt<E{el4””}H(l), sechz>

1 ((i{emmt[-[(t)}, secht> — (b0, sech))

4imt \\dt

1 1 .
= — —Im ——(e!*"* H(t), sech’(¢))
drt 4imt

dt = Im(e"*™ ™ H(t),secht) o1(r,).#®R,)

2w Reaya(t,0) = /
0

=Im

1
—+ 0(t_3), T — +o0o,
4t

we readily find that
Reaiz(7,0) > 1 —a;1(1,0), 17— 400,

providing another proof of Theorem 5.2.4 in the case o = 0.
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o2
ean

Remark A.6.13. Equation (5.2.41) gives also Ima2(7,0) = “~——ai1(z,0), where
(5.2.22) gives, using the notations (A.6.1),
+ cos(tw — 2kcoth(t/2))
Imayr(r,0) = —
47 Jo cosh(z/2)
1 /+°° cos(2(tw—kcotht)) di— 1 / cos(2(tw—«cotht)) gt
2 S cosht 4w g cosht '

With G given by (A.6.16), we note that

Gy = 0G24 12 = &Pz —Kcothz)
2 2 47 cosh z

’

a holomorphic function with simple poles at i JT(% + Z) and essential singularities at
inZ. Following now for G the track of G in Claim A.6.7, Lemmas A.6.8, A.6.10,
and Proposition A.6.11, we get

Imajz(r,0) = lim Re¢ G(z)dz, R, = T + mz, (A.6.23)
m—>+00  JI_R. —e]U[e,Rm] 4 2
8_)0+ ms sf\m

and we have also

35 G(z)dz _9§ +  G(z)dz + 95 + G(z)dz
[=Rm.—€]U[e, Rin] ve YRm

+ )= i0 + _ i
ve 0( 5)1 sfre YRm (()i)t_;;m e'?
~ ikm im
=2i Res(G,ikn/2) = —mwe™® R G —+—1,0
in Z es(G,ikm/2) e Z es( (C-i— > + 2) )
1<k<m 1<k<m
ilm
— _pe™ res(G(c+2Z).0). A.6.24
e Z es( ({'—F > ) ) ( )

2<l<m+1

Claim A.6.14. We have lim,_s gﬁy+ G(z)dz = 0.

. . . 72£ei9
Proof. Indeed, we have —2ik coth gelt = —21K1+8W and for 0 € (0, 7),
—e—
1+ e—ZSei(" (1 + e—Za‘eie)(l _ e—Zse*ie) e—2£e“" _ 6—286719
Im(———— | =Im = = Im =
1 — ¢—2¢€’ |1 _ p—2¢e! |2 |1 — e—2ee'?)2
—2¢i sin @ 2¢i sin @
_ . e —e
—e 2¢&cos O Im -
|1 _ e—28el |2
_ —2i sin(2¢esin 0
—e 2¢ cos O Im )

11— e—2¢ei? |2

4 sin(2esin 6
= —26_2‘90059_|1 _(e_ZSEieTZ <0, ife<un/4,
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so that [e~2ikothee’” | < | implying
5 /4 |eiwsei9| ) F 4 e—wesin@
4rr 56 G(2)dz| < / ———elie’’|d6 = g/ —————db,
Vv o |cosheet?| o |coshee'?|
which goes to zero when ¢ — 04, concluding the proof of Claim A.6.14. u

Claim A.6.15. We have imnsym—+c0 6, + G(z)dz = 0.
Fomg

2

Proof. Indeed, we have, using Claim A.6.9,

) 1+e—2Rmcus<9 < L
T e e L (L
| coth(Rye'”)| = T o 2Bme® | = | |1te2mmei | _ 5 for 8 € [X
|—e2Rmei® | = B> 1OF €[3.7l,
so that

|G(Rmei9)iRmei9|

—Rmel? — Ry cos 6
2o M| < 2e 00 for 6 € [0, Z],
4 R sing ) | 1FeTEme b 2
< Rye K/ﬁoe R,y sin ,
zeRmel 2€Rm cos 6 T
| < T
Cretkme | = TR for 0 € [, 7],
< 2Rm e4/c/ﬂ()e—2me sin @—Ry;, | cos GI’
B1
which goes to 0 when m goes to +o00, proving the claim. ]

Using (A.6.21), we calculate now

27 ) “Res(G(¢ + ”7”), 0)

1>2
1 e T e2iwz—2i/< cothz
= R .0
1 + e 27 + i(1+4e27@) es( cosh z )
—2m(Res(G,im/2) + Res(G, 0))

1 e T eZia)z—Zilc cothz
= R ,0
1+ e 27 + i(1+ e 27@) es( cosh z )

eZiwz—ZiKcothz
+ie"Res| ——— 0] —1
coshz

e—an . e T o eZla)z—Zuc coth z
= — ) —1 ) —e Res| —,0
1 4 e—27@ 1 4 e—27@ coshz

e—2na> e—27rw e2iwz—2i/<cothz
— s —TTW
=——0>5—+ie R, Res| ——— .0},
1+e 1+e coshz
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so that from (A.6.23), (A.6.24), Claims A.6.14 and A.6.15, we obtain

Imalz(r, O)
C e L ( L e (ﬂ)
27 1 + e—27ra) 1 + e—2nw
eZiwz—2iKcothz
xIm{Res| ——,0
{ ( coshz )})

1 e—27ra) e—271w eZi(uz—Zi/c cothz
=" | ———+ e " ————— | Im{Res( ——., 0 ,
2\ 1 4 e 270 1 4 e 270 cosh z

so that

e T e—Zna) e2iwz—2il< cothz
Imalz(T,O') = m{Res(—,O s

I
2(1 + e 27w) + 2(1 + e 27w) coshz
(A.6.25)

recovering (A.6.22) from (5.2.41).

N.B. We note that
€2iwz—2i/< cothz 1 ei(wz—2/< coth(z/2))
Res| —————,0) = —Res 01,
cosh z 2 cosh(z/2)

so that (A.6.25) corroborates formula (A14) in [55]; however, we were not able to
understand formulas (A10), (A11), and (20) in [55].

A.7 Airy function

A.7.1 Standard results on the Airy function

We collect in this section a couple of classical results on the Airy function (see,
e.g., Definition 7.6.8 in Section 7.6 of [23] or the references [51], [49], [29]). For
all the statements of this section whose proofs are not included, we refer the reader to
Chapter 9 of [35].

Definition A.7.1. The Airy function Ai is defined as the inverse Fourier transform of
£ > 01 27E)3/3

Proposition A.7.2. Forany h > 0 and all x € C, we have

Ai(x) = L e%(&+ih)3eix(§+ih)d$ _ e_Xheéi e_hézei(§_5h2)eix5d§‘
27 27

We note that the function R 3 § — e5E+in? belongs to the Schwartz space for any
h > 0 since

i h? 3
FE+ih)* = —he? + = +i(? - shz),

so that e 5E+iN? = e—hézei(%3—éh2)eh3/3_
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Theorem A.7.3. The Airy function Ai is an entire function on C, real-valued on the
real line, which is the unique solution of the initial value problem for the Airy equation
3-1er(/3 3l/er2/3
AM"(x)—xAi(x) =0, Ai(0) = 2—(/) Ai'(0) = ——(/).
b4
(A.7.1)
We have also, for any x € C,

1 [tee 3
Ai(x) = — e 83712 cog 23 + 2 )de,
T Jo 2 6

and the power series expansion of the Airy function is

1/3 Kk
M(x) = 32/32(3 x) ( . )sin(2(k+1)%).

k>0

Lemma A.7.4. For x € C\R_, we have

1 .
A(x) = s e_x1/2§2e153/3d§. (A.7.2)
2 R

Proof. Using Proposition A.7.2, we get (A.7.2) for x > 0 (choosing & = x'/2), and
then we may use an analytic continuation argument. |
Theorem A.7.5. Forall M € N, for all x € C\R_, we have
: L a3z (_l)l 1Y 3102
Ki(x) = —e” 7T x { Y =T 31+5 x + R (x) },

21 |
051§M3 20)!

1
. r'(3M +3+ _(3M+D arg x )\ D72
with |RM(x)|_321(u+2(2M+23,| - )(cos( )) .

(A.7.3)

For x < 0, we have

. g
Aix) = |x|1/4f( ( |x|3/2) + O0(x|” 3/2)) (A7.4)

oy x x|1/4 T 3/2 _3/2
Ai'(x) = NG cos | 7 + §|x| + O(]x| ). (A.7.5)

Lemma A.7.6. With j = e*"/3 we have for all x € C,

Ai(x) + j Ai(jx) + j? Ai(j2x) = 0.
In particular, for r > 0, we have

ni(—r) = 2Re(e T ni(re')). (A7.6)
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Lemma A.7.7. The zeroes of the Airy function are simple and located on (—o0, 0).
We shall use the notation

MTN{0Y) = {mde=0.  Mh+1 <Mk <0, lim g = —oo.
k—+o00
The largest zero of Ai is ng ~ —2.338107410 and Ai(n) is positive for n > ng. We
have also for all k > 0,

Ai(Nak+1) = 0, A" (Mag+1) <0, Ai(nak) = 0, A'(n2x) > 0,
Ai(n) <0 forn € (Mak+1.M2k). Ai(n) > 0 forn € (Mak42.M2k+1), (AT.7T)
Ai"(n) > 0 for n € (Nak+1.M2), Ai"(n) < 0 for n € (Nak42. N2k+1)-(A.7.8)

N.B. The simplicity of the zeroes of the Airy function holds true for any non-zero
solution of the Airy differential equation y” = xy. The solutions of this ODE are
analytic functions and if @ is a double zero, we have y(a) = y’(a) = 0 and thus from
the Airy equation, we get y”(a) = 0; we may then prove by induction on k > 1 that
y(l)(a) =0for0 <! <k + 1:itis proven for k = 1, and if true for some k > 1, we
get

(@) = ey ()® = yE* (@) =0,

proving the final step in the induction; as a consequence, the function has a zero of
infinite order, which is impossible for a non-zero analytic function. Assertion (A.7.8)
follows from the Airy differential equation (A.7.1), from (A.7.7) and n, < 0.

Remark A.7.8. For M = 0, | arg x| < 7/3, we have

7
re+1 3\ 2 5
|Ro(x)| = %M_% (%—) = |x|72 ﬂm < |x[7% x 0.305455,

so that

|Ro(x)| < 0.305455|x|73/2 if |arg x| < /3,
and for |x| > 12, |argx| < w/3 we have |Ry(x)| < 0.007349.

We get then for A > 0, using (A.7.6)

.y ‘ ‘ |
Al(—)\,) = ;Re<eln/3/\—1/4e—l%)\3/2(ﬁe—lﬂ/IZ + Ro(kelﬂ/:;)))

1 5 1 . | N
= —ﬁ/\_l/“ cos (% - 5/\3/2) + = Re{l_l/“Ro(re’”/3)e’”/4e_’%“/2}
1 T 2 1 , _ s
= —A_1/4 . - —13/2 R R A’ in/3\ in/4 —l3l ’
NG sin { -+ 3 + NG e {Ro(Le'™?)ei™/4e \
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so that
1
for A >0, MAi(-A)=—=A"1* + 13/2 + Ro(1) ), (A7.9)
Jr
with  [Ro(1)] < 1732 x 0.172335,
and for A > 12, |Ro(1)| < 0.004146. (A.7.10)

Remark A.7.9. For M =1, |arg x| < 7/3, we have

F(6—+1)| |~ 3(£)_6_%

|R1(x)] <

34(4)! 2
= x|V 1! < |x|73 x 0.377203
221/2  337/4 x5 — ’ ’
and
for [x| > 12, |R;(x)| < 0.000219,
so that

Ai(_r)er—lM sin £+%r3/z +F(7/2) 2 3n T\ -3
VT 4 3 187 1

1
+ T Re {Rl(rezn/3)em/4 —i 3r3/2})

=Lr—1/4 sin z+%r3/2 +F(7/2) sin [ 273/2 T F—3/2
JT 4 3 184/ 4
1 -
+ —R ,
N 1(’))
so that

forr >0, |Ri(r)] <r~3x0.377203, (A.7.11)
forr > 12, |Ry(r)| < 0.000219.

We find for A > 0,

too 1 T2, r'a/2) 2 T
_ — . - < ..3/2 —3/2 <.3/2 _ 2
G4 /A r1/4ﬁ(sm(4 37 )+ TN (3r 4)

Iél(r))dr, (A.7.12)

1
+ﬁ

and we have

+o00
1 12 (7T 2 30
A mr S1n (Z + 57’ dr

_ T 2.3, 1 3t 1 T2 5,
_COS(Z—FgA )13/4\/;—1 A WCOS Z—Fgl’ dl",
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as well as

3 (7 1 T2,
-z Z,.3/2
4A r7/4fcos( +3r )dr

3t 1 T 2
- _> a2 T 2.3/2
= 4A r9/4ﬁr cos(4+ r )a’r

3
3 2 3 9 ptoo )
= ——sin Z+_k3/2 1_9/4———/ r~13/%gin £+—r3/2 dr,
4.7 4 3 4. /w4 J, 4 3

so that

teo ] T, 25 T 2 1
/2 dr = - —/\.3/2
A 1/4\/_ ( + ) r cos(4+3 )13/4 =

39 2
4\/_Sln(jr 513/2))&_9/4 4\/_4f r_13/4sin(%+§r3/2)dr.

(A.7.13)
We have also
oo 1 T(7/2 2
/ LA/D) 52 (2,32 -7\ gy
L 1/4 187 3 4
+
_ I'(7/2) =14 gin 2r3/2 _T dr
187 Ji 3 4
__Ta” cos (22372 _ T\, -9/
187 3 4
[(7/2)9 [T 2
L La/ )_/ cos [ Zr3/2 = L) m13/4y, (A7.14)
187 4 J; 3 4

so that (A.7.13), (A.7.14), and (A.7.12) entail

T 2 1 3 T 2
G(=A) = i 702 : £93/2),-9/4
b COS(4 M PNV P

_ 3 2/+ r~ 134 gin n+zr3/2 dr
4/ 4 J; 4 3

U] cos (%ﬁ/z _ 2)1—9/4

187 4
r(7/2 oo 2

+ 7/ )2/ cos [ 27372 _ ), —13/4 4,
187 4 J, 3 4

1 [t )
+ —/ r AR ().
A

T
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We get then

A3/4 3
G(—)) = ( (”+ A3/2) 4sm( + 13/2)1—6/4
3
VR
T

13/4/ - r13/46in n+%r3/2 dr
4 A 4 3

(7/2) ( )t3/2 _)1—6/4
4

18f
+
L 29 1_‘(7/2)9 3/4/ OOCOS %r3/2_£ 134,
187 4 y 3 4
A3/4 +o00 B
+ _ﬁ "_1/4R1(”)),
so that
—3/4 T 2
G(-1) = —— S I 4272500 ), A7.15
(=) ﬁ(008(4+3 + 1(A) ( )
with
3 I'(7/2 I'(7/2 4
ISt(V)] < - + + (/2 + a/2) + x 0.377203 < 1.80293,

187 = 18Jm = 9w

where we have used (A.7.11) for the bound of the last term above. As a consequence,
if L > 12, we get that
A7281(X)] < 0.0433716. (A.7.16)

This is allowing us to extend the proof of Lemma A.7.15 to all values. Note that the
first 10 values (and more) are accessible numerically.

Since we have
ne = —12.82877675 < —12,

formulas (A.7.9), (A.7.10), (A.7.15), and (A.7.16) imply the following result.
Lemma A.7.10. With Ai and G defined above, we have for —A < ng

K1) = Jl;)t 1/4( ( i W) +Ro(x)),

|Ro(A)| < 1732 % 0.172335 < 0.004146, (A.7.17)
A3/4 T 2 ~
G(-1) = 7(cos (Z + 513/2) + S (A)),

IS1(M)] < 21732 x 1.80293 < 0.0433716.
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A.7.2 More on the Airy function
Proposition A.7.11. We have

+oo 1
Ai(x)dx = -. (A.7.18)
0 3
Proof. According to Theorem A.7.5, the Airy function Ai is rapidly decreasing on the
positive half-line and thus belongs to L!(R ), so that the integral in (A.7.18) makes
sense. Also, we have from Theorem A.7.5 and the Lebesgue dominated convergence
theorem that,
400 +o00

Ki(x)dx = lim Mi(x)e*dxe™ /3, (A.7.19)

0 =04+ Jo

and we shall now calculate the right-hand side of (A.7.19). We have for & > 0,

+ +
OoAi(x)exhdxe_h3/3 =/ oOL/e_hgzei(%?,_Shz)e"xga’éa’x
0 0 27
+oo A
= Yn(—x)dx,
0
with R
Yn(§) = e7hETO? (BT —CrOn?), (A7.20)
so that
too 8 11
Ai xhd —h3/3 — % -, )
/0 i(x)e™dxe > 2]”.st Vn .
1

1 e—h(zns)zei(mfp—(znsmz)>

= % — %<Pvé, e~ sin (% - $h2)>.

We note at this point that, according to (4.2.5), the right-hand side of the above equal-
ity is for & = 0 equal to

so that, with (A.7.19), we are left to proving that

3
lim <pvé, e~ sin (% . Eh2)> . (A.7.21)

h—04 3
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We have
sin(5 —£h%) 0 ™, sin(§) — £h2)e "€ — sin(£))

/ e %73 / £ a*
Cx o fsin) o e g [ Sin@ER?) (g) e
=3 —|—/ E (cos(éh )e l)dE /—5 cos 3 e d€.

I1(h) L(h)
We have
+o00 £2 ; ﬁ »
Ii(h) = /1 %(cos(éhz)e_hs —1)d&
+o0 i(cos(ﬁ))
_ dE 3 2\, ~hE2
/1 = (cos(Eh*)e 1)dé,

and a simple integration by parts® shows that limy,_,¢ 1,1 (/1) = 0; we have also trivi-
ally that

2
0= lim /E (cos(Eh%)e ™" — 1)dE.

h—0
On the other hand, we have

100 < [ 1274 dg = 00
which completes the proof of (A.7.21) as well as the proof of Proposition A.7.11. m

Lemma A.7.12. We have

0

2
lim Ai(x)dx = —. (A.7.22)
R—>+oco J_R 3

Proof. Using (A.7.4), we find for R > 1,

0 R 1
/;R Al(x)dx :A Al(—r)dr :/ Al(_r)dr
R
+/1 ( 1/4fs1n(n 42 3/2) +O(;,—7/4))

proving that the limit in the left-hand side of (A.7.22) is existing.

8The boundary term is easy to handle and for the derivative falling on £ 3, we use that
| cos(éhz)e_hEZ — 1| < 2; if the derivative falls on the other term we get

o0 g
./ 0085(33 ) (2ng cos(Eh2)e % 4 oThE? sin(§h*)h?)d§,
1

which goes trivially to 0 with 4.
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Claim A.7.13. We have
0 0
lim M (x)e*dx =/ Ai(x)dx.
h=04+ J 00 —00
Proof of Claim A.7.13. We have
0 -1 0
/ Ai(x)ex”dx:/ Ai(x)e"hdx-i-/ Ai(x)e*dx,
1

—00 —00 -
[ S ——

with limit [° Ai(x)dx

and using (A.7.4), we have only to check

-1
/ |x|—1/4exh+i%|x\3/2dx
—00
+
_ / oo (VA o—th+izt32 g,
1
+o00 d .
— _/ E{e—th-l-l%t*%/z}(h_l'tl/2)—ll—1/4d[
1
— €_h+i%(/’l _ l-)—l
+o0 ;
+ / e—th-l—i%t?’/z (h _ i[1/2)—21_t—3/4 _ (h _ it1/2)—llz—5/4 dt,
1 2 4
and since the absolute value of the integrand in the last integral is bounded above by
%t_7/4, we get the result of the claim. ]
With (A.7.19), (A.7.20), this gives

+oo 400 3
/ AM(x)dx = hlim M(x)e*dxe /3

00 =0+ J—co

(/R@(—s)ds - wh(O)) 1,

lim
h—>0+

and Proposition A.7.11 provides the result of the lemma. |

A.7.3 Asymptotic expansion for the function G defined in (4.2.4)
Lemma A.7.14. With G defined in (4.2.4), we have

3t 2
G(=A) = 27341 2in (Tﬂ + 5/\3/2) + 007, A= +oo.
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Proof. Property (A.7.22) and (A.7.4) give forn = —A < 0,
2 n n +o00
G(n) = 3 +/0 Ai(§)dE =/_ Ai(§)dE =A Ai(—r)dr

+oo in in
= / 2Re(e 3 Ai(e 3 r))dr
A

(we have used (A.7.6); we use now (A.7.3)for M = 1,x € ei”/3R+)

too 1 T2, '(7/2) 2 T
_ G - < ..3/2 ~\TE) —T7/4 “.3/2
a /A (r1/4ﬁsm (4 T3 ) T T (3r 4)

+ O(r_13/4))dr

+o00
= (2/3)1/271_1/2/ 5712 sin (z + s)ds
%13/2 4

(2/3)321(7/2) [+

—3/2 . o d 01~/
5. %13/2s sin (s 4) s+ 0( ).

We integrate by parts in the first integral with

+o0 T
/ s~ Y2 in (— +s)ds
233/2 4
+o0
=—/ s_l/zi{cos (Z—I-s)}ds
2,32 ds 4
-1/2
= 2A3/2 cos (2 + gk3/2
3 4 3

400
+ / (=1/2)s73/% cos(r/4 + s)ds.

2
513/2

We have to deal with two integrals of type

+o00 d .
/ S_3/2.—€lsds
23/2 ids

. 1 [t .
= (WD / (=3/2)s7%2eids = O(A~4).
A

l 3/2
Eventually we find

T

G(—=A) = A3 47712 ¢o8 (4

2
+ 513/2) + 0oL,

202
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With () x>0 standing for the decreasing sequence of the zeroes of the Airy func-
tion (cf. Lemma A.7.7), we have the following table of variation for the function G.

n ‘—oo e Mkt Mak+1 Mok oM no +00
G'm=a'(mM| 0 - + - + = + 0
G'(m=unm | 0 - 0 + 0 - 0 - 0 — 0 + 0
G(n) 0 o Gu+2) /' Gnakt1) o G(nzk) -+ Gn1)  G(no) /' 1
U G(n)

Na —7.944133589 —0.1187912133

n3 —6.786708100 0.1333996865

N2 —5.520559828 —0.1550343634

m —4.087949444 0.1917571397

1o —2.338107410 —0.2743520591

N9 —12.82877675 0.08315615192

ns —11.93601556 —0.08775971160

n7 —11.00852430 0.09322050200

Ne —10.04017434 —0.09984115980

N5 —9.022650854 0.1080976882

Lemma A.7.15. The zeroes of the function G on the real line are simple and make a
decreasing sequence of negative numbers (£1); <o such that

o Mak42 <6ak+2 < N2k+1 <E2k+1 <Mak <2k, So~—1.38418.  (A.7.23)
The largest ten zeroes of G are given by the following:

o = —1.38418, & = —3.33004, £ = —4.86074, £ = —6.18885,
£y =—7.39024, £5=-8.5022, £¢=—10.5366, & = —11.4826,
fs = —12.3913, £9 = —13.2679.

Forall k € N, we have
G(n2k) <0 < G(N2k+1)s (A.7.24)

and G(nax) (resp., G(Nag+1)) is a local minimum (resp., maximum) of G near 1y
(resp., Nag+1)- Moreover, G(ng) is an absolute minimum of the function G on the real
line.
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N.B. We claim also that

|G(M21)| > G(Mak+1) > |G (M2k42). (A.7.25)

but shall not provide a complete proof for that statement, which is anyway not needed
is our Section 4.3.

Proof. In the first place, we know that G(79) <0 and G strictly increases on [1g, +00)
so that &y ~ —1.38418 is defined as the unique zero of G on (79, 0) since G(0) =
2/3. We may note that we found in particular that Vi > 19, 1 > G(n) > G(no).
Also, the first ten zeroes of G are simple and satisfy (A.7.23), (A.7.24), and (A.7.25).
Moreover, using Lemma A.7.10, we obtain that for A > 12,

3n 2
_13/2
cos (—4 + 3

T 2
: - _13/2
sm(4 + 3

As aresult, if —A is a double zero of G we must have both inequalities above, which
is impossible. As a result all zeroes of G are simple’ and located on (—oo, 0). Let us
consider the interval [n25 41, 72k ], We have

G2 =0= < 0.0433716,

A(=A) =0 => < 0.004146,

Ai(Nak+1) = Ai(nak) =0,  Ai'(Nor41) <0 < Ai'(nar), AL" > 0o0n (Nor41. N2k)-

As a result, we obtain that G has a local minimum at 7,; and a local maximum at
Mok 1. Moreover, we find from (A.7.17) in Lemma A.7.10 and k > 5 that

(2 3/2
max(sm(4+3|nzk| )

which implies that

. T 2 3/2
mln( cos(4 + 3|772k| )

We know that Ai’(n,x) > 0, which implies, thanks'" to (A.7.5)

4

2
sin (z + §|772k+1|3/2)‘) < 0.004146

2
cos (% + 5|n2k+1|3/2) D > 0.99999.

2 2
cos (% + §|7’]2k|3/2) < -0.99999, cos (% + 5|r;2k+1|3/2) > 0.99999,

°Tt is not hard to obtain an asymptotic version of this, namely the same result for A large
enough. However, asymptotic methods provide asymptotic results and to get a result at a finite
distance, we had to use the numerical results of Lemma A.7.10, grounded on a numerical estim-
ate of the constants appearing in Theorem A.7.5.

9Here this is proven if k is large enough from (A.7.5), and we leave to the reader the proof
of a numerical estimate analogous to Lemma A.7.10 for the derivative of the Airy function. A
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and Lemma A.7.10 implies that G(12x) < 0 < G(n2x+1), Which is (A.7.24). Since
the function G is strictly monotone decreasing on the interval [1af 41, 2k], it has a
unique simple zero &4 on the interior of this interval. Analogously, we can prove
that on the interval [1)2x 42, 2k +1], it has a unique simple zero &, .4, on the interior
of this interval, proving that the sequence of zeroes of the function G is decreasing
strictly with

N2k+2 < Eak42 < Nak+1 < a1 < Mok <&k, k>0,

We shall prove a weaker statement than (A.7.25): we know that |G ()| < |G(no)|
for 1 </ < 9 from the numerical values obtained above. Moreover, if A > 12 we find

1G(=A)| < A73477V2(1 + 0.0433716) < 0.0913016 < |G (10)| = 0.2743520591,

proving indeed that G (7o) is the absolute minimum of the function G on the real line,
since the desired estimate is proven for n > 719 and for n < 5y, either G(n) > 0, or
—0.0913016 < G(n) < 0if n < —12. As said above, the values less than 12 are treated
directly by a numerical calculation. The proof of the lemma is complete. |

A.8 Miscellaneous formulas

A.8.1 Some elementary formulas

We define for 7 € R,

/’ dt
arctant = e
0 1+ 2

and we note that arctan t € (—x/2, /2),
YVt eR, tan(arctant) =7, V6 € (—xn/2,7/2), arctan(tanf) = 6.

Moreover, we have for T € R,

) 1
ezarctanr — m(l + i‘L’), (A81)

since for 0 € (—n/2,7/2), T = tand, we have

direct estimate is possible, using (A.7.2) and the identity (to be differentiated) for A > 0,

—1/4 T 2
2 Lsin( =+ 2A%2 ) + a2,
T { (4 3
AS/Z (T i
ao(h) = el (3337 /R mERRY2ET (0 (63 /3) — 1) dE.

M(-2) =
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14 % =
T cos2 0
and thus
1 1
cosf >0=cosf = ——— = —sinf = — (1 + 12)">22¢(1 + 7?),
ST e e )
so that
e'? = ;(1 +it)
V1412
Let a € Ry be given. The Fourier transform of 1_, 4] is
a X _ b 2
/ e 2TxE gy = 2/ cos(rx§)dx = —[sm(2nx§)] -0 = M.
—a 0 E T[E

A.8.2 Taking the derivative of Fy on R+
We have, using a parity argument,
2k+l ( 1)[ 21

: 1 . 2k+1
Fk(a):/Rsmar( +iT1) Z /smar Jr.

2 k+1 2)k+1
mt (1+1?) 0<2] =2k nt (1+1?)

We see also that 1 + 2k + 2 — 2/ = 2k + 3 — 2] > 3 so that we can take the derivative
of Fy and get

cosar ( 2k+1 )(— 1! c? 1 (1+it)k
Fl(a)= Z / (1+12)k+1 r:;/R(cosar)Re((] lt)k+1)dT

0<2l<2k

with absolutely converging integrals. For a > 0, we have

1 i)k
Fi@) =~ / (cosat)%dr, (A.8.2)

since

. A 1d cos(ar)
lim

yim | Wdr makes sense for j < 2k + 1 (and vanishes for j odd).

A.8.3 A proof of the weak limit
We have for u € . (R"), according to (1.2.1),

(127 (2 + £2) < a))"uu) = // W, u) (x. E)ddE,
2n(x2+£2)<a
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so that implies
> Fe(@)(Peu.u) 2y = // W, u)(x, £)dxdE.
k>0 2 (x2+£2)<a

Choosing now u = uy, as a normalized eigenfunction of the harmonic oscillator with
eigenvalue k + %, we obtain

Fe(a) = //2 e, B0

Since the function (x, £) = W(uy, ur)(x, £) belongs to the Schwartz class of R2",
we find that

tim Fe@) = [[ W dxds = il 2o, = 1
Rn

a——+o0o

which is the sought formula.

A.8.4 A different normalization for the Wigner function

The paper [39] is using a different normalization for the Wigner distribution in »
dimensions with

W) 6) = @0 [ (e 3)o(x - 5)e ez

The relationship with definition (1.1.4) is W(u, v)(x, &) = W(u, v)(x, %)(271’)_".
As a result, we find that

6B (k)= s | W u)(x, £)doxd.
”u”Lz(R”)=1 ‘x|2+|$|25R2
is equal to

2= //|x|2+4n2|5|25mW(“’“)(x’f)dxcfé

"u”L2(Rn)_1
= sup // Wu,u)(x,&)dxdé,
”u”LZ(Rn):l 2ﬂ(|x‘2+|‘§|2)§R2
and we have proven here that for u € L?(R") with norm 1

/[ " Wu,u)(x,E)dxdé
[x]2+[g]2< L =&

a _ K=
2 T 27w

1 +o00 T ,R2
<1- / et ldr =1— M
(n—=11J, L'(n)
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where the upper incomplete Gamma function I'(z, x) is given by
400
I'(z,x) = / > le7ldt. (A.8.3)
X

This is indeed the result of [39, Theorem 1].

N.B. Let x > 0 be given and let z € C with Rez > 0. Then, we have

+o0 +o00
I'(z,x) = / (s +x)* e ¥ds = e_x/ (s + x)*te™5ds,
0 0

sothatifz =n + 1,n € N, we find

+00 +oo
I'n+1,x) = e_x/o +x)'e ds=e"" Z (Z)xk/() s"Ke=5ds

0<k<n

k
. n . X
=e Z (k)xkF(n+l—k)=n!e Z R

0<k<n 0<k<n
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Figure A.1. The function G and its derivative the Airy function, on R_.



