
Chapter 1

Introduction

A fundamental task in computational science and engineering involves accurately
approximating a smooth target function from limited data. Such a task arises notably
in the study of parametric models of physical processes. Here the variables represent
the parameters in the system, e.g., material properties, forcing terms, or boundary
information, and the parametric model is often represented as a (system of) Differ-
ential Equations (DEs) or Partial Differential Equations (PDEs) depending on these
parameters. Important objectives involve understanding how the choice of such pa-
rameters affect the output(s) of the system and, in the stochastic setting, understanding
how uncertainty in the parameter values propagates to its output – the latter being one
of the key tasks in computational Uncertainty Quantification (UQ) [62, 91, 128, 131].

1.1 High-dimensional function approximation from limited samples

Abstractly, this task can be recast as that of approximating an unknown target function

f W U! V ; y 7! f .y/;

from sample values (or snapshots)

f .y1/; : : : ; f .ym/: (1.1)

Here, the input space U is typically a subset of Rd (in the finite-dimensional case)
or RN (in the infinite-dimensional case). The output space V could either be a scalar
field, a finite-dimensional vector space or an infinite-dimensional Banach or Hilbert
space.

This problem is challenging in a number of ways. First, the dimension d is high,
since modern parametric models typically involve many parameters. It may also be
infinite, e.g., in the case of a random field represented via its Karhunen–Loève expan-
sion. Therefore, care must be taken to design methods that scale well with dimension.
In addition, the amount of samples m is often highly limited. For example, in the
parametric DE setting, each evaluation of f involves an expensive computational
simulation. The data (1.1) is also always corrupted by errors, due to noise in physical
experiments or numerical error in solving a DE. And finally, since the output f .y/
is often the solution of DE parametrized by the vector y , it may consequently take
values in an infinite-dimensional Banach or Hilbert space. While it is commonplace
to circumvent this issue in practice by considering scalar-valued quantities of inter-
est (i.e., functions of the form g.y/ D Q.f .y// for some known map Q W V ! C),
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approximating the full function f is both of theoretical interest and practical impor-
tance [52].

Remark 1.1. As a further consideration, we note that in many scenarios one may
have substantial flexibility to choose the sample points y1; : : : ; ym 2 U in (1.1).
However, in other scenarios they may be fixed, e.g., when dealing with legacy data.
In this work, we consider Monte Carlo sampling – which may be considered either
as a designed sampling strategy or a fixed one, depending on the setting. Here, the
samples are drawn randomly and independently of an underlying probability measure
on U. This is very common in practice, in particular in UQ settings.

1.2 Smoothness and best s-term polynomial approximation

A key characteristic of parametric model problems is that the target function f is
often smooth. There is now a large body of literature that has established that solution
maps of a wide range of different parametric DEs are holomorphic (i.e., analytic)
functions of their parameters. We mention in passing problems such as elliptic PDEs
with affine and (certain) nonaffine parametric dependence, parabolic PDEs, PDEs
over parametrized domains and shape uncertainty, parametric Initial Value Problems
(IVPs), parametric hyperbolic problems and parametric control problems. Classical
results in this area can be found in, e.g., [146]. For surveys of more recent results, we
refer to [41] and [8] and references therein.

In tandem with the effort to establish holomorphic regularity of parametric DEs,
there has also been a focus on applying polynomial methods, and in particular, best
s-term polynomial approximation to construct finite approximations to such func-
tions. In best s-term approximation, the function f is approximated by an s-term
expansion corresponding to its largest s coefficients (measured in the V -norm) with
respect to a polynomial basis. Common choices include multivariate Taylor polyno-
mials, tensor-product Legendre and Chebyshev polynomials on bounded hypercubes
or tensor-product Hermite and Laguerre polynomials on Rd or Œ0;1/d , respec-
tively. Over the last fifteen years, there have been significant developments in the
approximation theory of such techniques (see Section 1.6). Signature results have
established exponential and algebraic convergence rates for the best s-term approx-
imation. The former assert that the error decays at least exponentially fast in s1=d in
finite dimensions for any holomorphic function. The latter assert that the error decays
algebraically fast; specifically, like s1=2�1=p for some 0 < p < 1. These algebraic
rates also hold in infinite dimensions, thus establishing best s-term approximation as
a (theoretical) means to approximate holomorphic functions of infinitely many vari-
ables. We review several such results in Section 2.6.
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1.3 Computing sparse polynomial approximations

Unfortunately, the best s-term approximation cannot usually be computed from the
samples (1.1). Indeed, constructing it in theory involves computing and then search-
ing over infinitely many coefficients. Both tasks are generally impossible. Therefore,
there has also been a focus on methods to compute accurate polynomial approxima-
tions from sample values.

One line of work focuses on least-squares methods, wherein a polynomial ap-
proximation (or sequence of approximations) is computed in a fixed polynomial
subspace (or sequence of nested subspaces). See Section 1.6 for relevant references.
Such methods are essentially optimal if a (sequence of) polynomial subspace that
gives a quasi-best s-term approximation is known.

However, this information is generally unavailable in practice (although it may
be for certain simple parametric DEs). It essentially equates to knowing the region of
holomorphy of the underlying function, which is itself similar to knowing the order
of importance of the parametric variables, and their relative strengths. To counter
this, there are adaptive least-squares methods [33, 35, 41, 45, 63, 101, 102]. Here one
strives to construct such subspaces adaptively using the given data (1.1), typically
via a greedy procedure. However, these methods currently lack theoretical guaran-
tees [35, 41].

To overcome this limitation, there has also been a substantial focus on methods
inspired by compressed sensing [13, 61, 145]. See Section 1.6 once more for relevant
references. These methods seek a polynomial approximation in a larger subspace,
whose coefficients are defined as a minimizer of an `1- or weighted `1-minimization
problem. A key component of this endeavour has been to determine the sample com-
plexity of such schemes, i.e., quantifying how many (typically Monte Carlo) samples
m are sufficient to obtain an approximation with a certain guaranteed error bound,
involving a (weighted) best approximation error plus a truncation error. Yet, precise
rates of approximation (i.e., algebraic or exponential in m) have typically not been
derived for these schemes in previous works. Another key limitation of past work is
that such methods are not algorithms per se. Indeed, they consider exact minimiz-
ers of nonlinear optimization problems, which cannot be computed exactly in finitely
many arithmetic operations.

1.4 Problem and main contributions

Least-squares and compressed sensing techniques are commonly applied to compute
polynomial approximations to parametric and stochastic DEs. However, as explained
above, there is a key gap between theory and practice. The theory of the best s-term
approximation asserts the existence of polynomial approximations that attain specific
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algebraic or exponential rates of convergence for arbitrary holomorphic functions.
Yet, it is currently unknown whether similar rates in terms of the number of samples
m can be obtained via an algorithm that computes a polynomial approximation from
the samples (1.1) in finitely many arithmetic operations. The purpose of this work is
to close this gap.

We now describe the problem considered in this work. Let U D Œ�1; 1�d , where
d 2 N or d D 1, and V be an arbitrary separable Hilbert space. Let % be either the
uniform or Chebyshev (arcsine) measure and consider the associated tensor-product
Legendre or Chebyshev polynomials. Now let f W U ! V be the unknown target
function that we seek to approximate, draw m sample points y1; : : : ;ym i.i.d. from %

and let
di D f .yi /C ni ; i D 1; : : : ; m; (1.2)

be m noisy samples of f . Then, informally stated, the problem we study in this
work is the following: devise algorithms that take (1.2) as input and compute the
coefficients of a polynomial approximation Of to f with guarantees on both the com-
putational complexity and the error f � Of . Note that the formal problem statement
involves several technicalities (in particular, the definition of an algorithm), so we
defer it to Section 3.2.

Our main contributions are on the existence of such algorithms (see Tables 4.2
and 4.3 and Algorithms 2 and 5). Let k�kL2%.UIV/ be the Lebesgue–Bochner norm.
Then, in all cases, we establish an error bound of the form

kf � Of kL2%.UIV/ . Eapp CEsamp CEdisc CEalg; (1.3)

with probability at least 1 � � with respect to the (Monte Carlo) draw of the sample
points yi . This bound provides a complete accounting for the main sources of error
in the problem.

• Eapp is a polynomial approximation error term. Depending on the specific setup,
it decays algebraically (Theorems 3.4–3.9) or exponentially (Theorems 3.10–
3.12) with respect to m (up to several log terms). For instance, in the infinite-
dimensional setting (Theorems 3.7–3.9), this term is given by

Eapp D C �
� m

c0L

�1=2�1=p
; L D log.m/ � .log3.m/C log.��1//; (1.4)

where c0 � 1 is a universal constant, C is a constant depending on (the region
of holomorphy of) f only, p 2 .0; 1/ is a parameter determined by the region of
holomorphy of f and 0 < � < 1 is the failure probability of (1.3). It is completely
equivalent to the corresponding algebraic decay rate (Theorem 2.5) for the best
s-term approximation error, except with s replaced by m=.c0L/.
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• Esamp is the sampling error. It is equal to

Esamp D

vuut 1

m

mX
iD1

knik
2
V ;

i.e., the norm of the error in the samples (1.2). The presence of this term means
that the algorithms are robust to errors in the samples.

• Edisc is the physical discretization error. This term accounts for the fact that an
algorithm cannot work with (i.e., take as input, or perform computations in) V

when it is an infinite-dimensional Hilbert space. The algorithms (see Tables 4.2
and 4.3 and Algorithms 2 and 5) therefore work in a finite-dimensional discretiza-
tion space Vh �V . This is a standard step in parametric DEs, where discretization
is often performed via techniques such as the Finite Element Method (FEM). In
this case, Vh is a finite element space. The term Edisc quantifies the effect of this
error. It is given by

Edisc D kf �Ph.f /kL1.UIV/;

where Ph WV!Vh is the orthogonal projection onto V . In other words, the effect
of working in Vh instead of V is determined by the error of the (pointwise) best
approximation Ph.f / to f from Vh. If V has finite dimension, we may set

Vh D V ;

which implies that Edisc D 0 in this case.

• Ealg is the algorithmic error. It depends on the number of iterations t performed
by the algorithm that computes the coefficients of the polynomial approxima-
tion Of . We construct one type of algorithm (see Table 4.2 and Algorithm 2)
where this term is O.1=t/ as t ! 1. This decay is relatively slow, especially
in the regime where Eapp is exponentially small in m. However, we also present
an efficient algorithm (Table 4.3 and Algorithm 5) for which this term decays
exponentially fast in t (specifically, O.e�t / as t !1), subject to an additional
theoretical constraint. This constraint is seemingly an artefact of the proof. Our
numerical experiments suggest it is unnecessary in practice.

We also determine the computational cost of the algorithms in all cases. Here, we
draw two main conclusions.

• In the infinite-dimensional case (Theorems 3.8–3.9), the computational cost is
subexponential in m. Specifically, after t iterations of the algorithm, it is

O
�
t �m1C.˛C1/ log.4m/= log.2/�; m!1;

where ˛ D 1 (Legendre) or ˛ D log.3/= log.4/ � 0:79 (Chebyshev).



6 Introduction

• In the finite-dimensional, exponential setting (Theorems 3.11–3.12), the compu-
tational cost is algebraic in m for fixed d : namely,

O
�
t �m˛C2.log.m//.d�1/.˛C1/

�
; m!1;

for the same values of ˛.

Note that these computational cost estimates also depend polynomially on the dimen-
sion of the discretization space Vh.

1.5 Discussion and further contributions

This work bridges a gap between the best s-term polynomial approximation theory
and algorithms for computing such approximations from sample values. In particular,
it asserts algebraic and exponential rates with respect to the number of samples m
that are highly similar to those of the best approximation. In other words, polynomial
approximations of holomorphic functions can be achieved in a sample efficient man-
ner. Furthermore, they can be computed in supexponential or algebraic computational
cost.

Our main results assume holomorphy of the underlying function in order to attain
these rates. However, they require no a priori knowledge of the region of holomor-
phy. As discussed, if such information is available, then least-squares methods can be
used more straightforwardly to compute an approximation. The holomorphy assump-
tion is made in order to have concrete algebraic and exponential rates. However, our
algorithms exist independently of this smoothness assumption. It would be possible
to also provide rates for other classes of functions, e.g., those possessing finite orders
of (mixed) smoothness. We use holomorphy as our assumption due to its strong con-
nections with the theory of parametric DEs.

Our algorithms and analysis are based on compressed sensing theory and involve
computing approximate minimizers of certain weighted `1-minimization problems.
Here we make several additional contributions.

(i) We provide precise error rates for polynomial approximation via com-
pressed sensing. As noted, most prior work on compressed sensing involves
quantifying the sample complexity to obtain a certain (weighted) best ap-
proximation error. We impose the holomorphy assumption to obtain spe-
cific algebraic and exponential rates.

(ii) Prior works consider polynomial approximations formed by exact minimiz-
ers of nonlinear optimization problems. We introduce novel, efficient algo-
rithms to compute approximate minimizers in finite computational time
(see also below).
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(iii) While these algorithms are motivated by the desire to have full theoreti-
cal guarantees, they are also completely practical. We present a series of
numerical experiments demonstrating their practical efficacy. In fact, our
experiments show that these algorithms work even better than our theoreti-
cal results suggest.

(iv) Most prior works on compressed sensing (with the exception of [52]) focus
on scalar-valued functions, e.g., quantities of interest of parametric DEs.
We develop algorithms that work in the Hilbert-valued setting, and, cru-
cially, provide error bounds that take into account physical discretization
error (see above).

More precisely, we first formulate the approximation problem as the recovery of a
finite, Hilbert-valued vector (i.e., an element of VN ) via a so-called weighted, Square-
Root LASSO (SR-LASSO) optimization problem. The use of the SR-LASSO, as
opposed to the classical LASSO or various constrained formulations, is crucial to this
work. It is noise-blind. Hence, it allows us to devise algorithms that do not require any
a priori (and generally unavailable) estimates on the measurement error ni in (1.2) or
the truncation error with respect to the finite polynomial space in which the approxi-
mation is constructed.

To develop algorithms, we employ two key ideas. First, we use a powerful, gen-
eral-purpose first-order optimization method for solving nonsmooth, convex opti-
mization problems. Second, we use the technique of restarts to drastically accelerate
its convergence. For the former, we employ the primal-dual iteration (also known as
the Chambolle–Pock algorithm) [30,31]. We present error bounds for this method for
solving the Hilbert-valued, weighted SR-LASSO, which decay like O.1=t/, where t
is the iteration number. Next, we use a novel restarting procedure, recently introduced
in [47, 48], to obtain faster, exponential decay of the form O.e�t /.

To the best of our knowledge, this is the first time either the primal-dual iter-
ation or a restarting scheme has been applied to the problem of sparse polynomial
approximation. Many existing works use blackbox solvers such as SPGL1 [143,144].
See [52] for a forward-backwards splitting technique in combination with Bregman
iterations and fixed-point continuation and [142] for an approach based on Douglas–
Rachford splitting. Besides its amenability to theoretical analysis, the primal-dual
scheme is also particularly attractive because of its insensitivity to parameter choices
and the possibility of performing acceleration via restarts.

As noted, polynomial-based methods have become popular tools for the practi-
cal approximation high-dimensional, holomorphic functions arising in problems in
computational science and engineering. However, they are by no means the only
method. Other popular techniques include Gaussian processes (also known as krig-
ing) [128, 131], radial basis methods [84, 128], reduced-order methods [78, 118] and,
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recently, methods based on deep neural networks and deep learning [5, 6, 11, 49, 59,
60, 76, 92, 114, 115, 125]. Our goal in this work is to develop algorithms for con-
structing polynomial approximations that achieve the same rates as the theoretical
benchmark provided by the best s-term polynomial approximation. An important
consideration that we do not address in this work is tractability and the informa-
tion complexity [111, 113] of these classes of functions and, in particular, whether
polynomial-based methods constitute optimal algorithms. This question has been
studied in the infinite-dimensional case in recent work [12]. Here, it is shown that the
rate m1=2�1=p is a lower bound for the (adaptive) m-width for such classes, i.e., no
combination of m (adaptive) linear samples and a (potentially nonlinear) reconstruc-
tion map can achieve an approximation error decaying faster than this rate. Notice that
this rate is the same, up to constants and logarithmic factors, as (1.4). Unfortunately,
this does not imply our algorithms are near optimal for this problem – and, moreover,
that standard information, i.e., pointwise samples, constitutes near-optimal informa-
tion – because our theoretical results in the infinite-dimensional case are nonuniform.
See Remark 3.13 for further discussion on this point, and Chapter 11 for further com-
ments on tractability.

1.6 Related work

The systematic study of best s-term polynomial approximation of high- or infinite-
dimensional holomorphic functions began around 2010 with the works of [25,42,43,
75, 139]. For reviews, see [41] and [8, Chapter 3]. Note that many of these works
assume the function is a solution of a parametric PDE, and therefore first demon-
strate that such a function is holomorphic. However, other works avoid this step and
use specific properties of the DE to obtain refined estimates. See, e.g., [19, 20] for
results of this type. Other recent works such as [8,27] also study the problem without
assuming the function is a solution of a parametric PDE.

The study of least-squares method for constructing such approximations from
sample points began in the early 2010s [34,40,100,105]. There has since been signif-
icant research on this topic. Many subsequent works have pursued extensions, such as
enhanced sampling strategies [65,104,107,126,135,155,156], near-optimal sampling
strategies [9,44,71], optimal sampling strategies [21,54,56,85,93,137], methods for
general domains [14, 55, 103], optimal and adaptive methods [46, 101, 102] and mul-
tilevel strategies [70]. See [45, 67, 69] and [8, Chapter 5] for reviews.

Compressed sensing was introduced in the context of image and signal processing
by modeling image and signals as sparse vectors [13,29,57,61]. Its use in polynomial
approximation started early in the last decade with the works of [26,58,99,120,149].
This has also led to substantial research. See [51, 52, 58, 99, 119, 151] and refer-
ences therein for applications to parametric PDEs. Various extensions include refined
sampling strategies [17, 53, 68, 72, 83, 94, 134], iterative methods and basis selection
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techniques [16, 74, 142, 152, 152–154], nonconvex optimization methods [64, 140,
148, 150], sublinear-time algorithms [38, 39], gradient-enhaced minimization tech-
niques [15, 66, 82, 117, 130, 133], methods for dealing with corrupted samples [3, 7,
80, 127] and multilevel and multifidelity strategies [28, 109]. For additional informa-
tion and reviews, see [73, 86, 97, 98, 108] and [8, Chapter 7].

Our work combines and extends several key elements of this literature. First,
weighted `1-minimization, which was developed in [1–4, 37, 116, 121, 151] and [8,
Chapter 6–7]. Second, the notions of lower and anchored sets (see Section 2.7). These
have been extensively studied in the best s-term polynomial approximation literature.
Compressed sensing techniques aiming to exploit such structures were first consid-
ered in [2, 3, 37] and [8, Chapter 7]. Third, the extension of classical compressed
sensing theory from vectors in RN (or CN ) to Hilbert-valued vectors in VN . This
was first developed in [52]. In order to prove our main results, we also extend this
work to the weighted setting.

See [30, 31, 31] for more on the primal-dual iteration and [122–124] for the gen-
eral notion of restarts in continuous optimization. Note that there are also various non-
optimization based techniques in the compressed sensing literature (see, e.g., [61]),
including iterative thresholding and greedy methods. The latter are closely related to
the adaptive least-squares methods discussed earlier [8, Section 6.2.5]. However, such
techniques currently do not possess theoretical guarantees in the weighted setting.

There have been several previous attempts to connect compressed sensing theory
for analyzing the sample complexity of polynomial approximations via (weighted)
`1-minimization and best s-term polynomial approximation theory. In [119], the au-
thors consider approximating scalar quantities of interest of solutions to affine para-
metric operator equations in Banach spaces. Assuming a certain weighted summabil-
ity criterion, they first show holomorphy of the parametric solution map and then use
a weighted `1-minimization procedure in combination with Chebyshev polynomials
to derive algebraic rates of convergence, similar to (1.4). Our work is more general,
since its starting point is a holomorphic function, not a solution of a parametric opera-
tor equation. We also consider Hilbert-valued functions, i.e., the whole solution map,
not a scalar quantity of interest of it. Moreover, the work of [119] is based on exact
minimizers of certain constrained, weighted `1-minimization problems, whereas we
construct full algorithms. Recently, at the same time as writing this work, some sim-
ilar results were presented in the book [8] written by two of the authors. However,
these only consider the scalar-valued case and do not address algorithms, which is
the main focus of this work.

1.7 Outline

The remainder of this work proceeds as follows. We commence in Chapter 2 by
introducing preliminaries, including key notation and best s-term polynomial


